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Physics and Leibniz�s Principles
Simon Saunders

Leibniz�s principles made for an elegant and coherent philosophy. In part meta-
physical, in part methodological, they addressed fundamental questions - in the
treatment of symmetry, in the relationship of physics to mathematics, in logic -
that are if anything even more pressing today than they were in Leibniz�s time.
As I shall read them, they also expressed a distinctive and uncompromising form
of realism, a commitment to the adequacy of purely descriptive concepts. This
doctrine has been called �semantic universalism�by van Fraassen (1991), and
the �generalist picture�by O�Leary-Hawthorne and Cover (1996): it will become
clearer in due course just what it entails.
The principles that I shall consider are the Principle of Su¢ cient Reason

(PSR) and the Principle of Identity of Indiscernibles (PII). In the �rst instance
I shall take them both to be methodological principles. The former I shall read
as requiring that the concepts of physics be entirely transparent. Analysis and
explanation are to proceed without any limits. The perspective is impersonal:
any epistemological limitation, to do with our human situation or perceptual ap-
paratus, is to be viewed as a purely practical matter, re�ecting no fundamental
constraint. This puts in place a part of the generalist picture.
The PSR clearly promotes the use of mathematical concepts in physics. The

PII, in contrast, depends on a sharp distinction between purely mathematical
concepts, and physical ones. Leibniz too made use of this distinction (between
�real�and �notional�or �ideal�concepts), but in his hands the principle depended
heavily, though often tacitly, on his metaphysical theory of substance (and, with
quali�cations, on his philosophical logic). He was led to a restrictive formulation
of it in consequence:

There are never in nature two beings which are perfectly alike and
in which it would not be possible to �nd a di¤erence that is internal
or founded upon an intrinsic denomination. (Leibniz, 1714, §9.)

In due course we shall come across two possible candidates for what Leibniz
called �intrinsic� denominations. But there have been major changes in logic
since Leibniz�s time, and a purely metaphysical theory of substance is unlikely
to command much assent today: we shall �nd little reason to plump for either
of them.
There is a widespread view that, apart from the trivialization of the PII

whereupon identity is made out in terms of predicates that themselves involve
identity, there are straightforward exceptions to every version of this principle.
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It is a mistaken view; as we shall see, there is a natural analysis of identity
available for any formal language that is immune to the usual counter-examples;
the principle is not, I hold, in any di¢ culties from this quarter. The problem,
rather, concerns the justi�cation for the PII - why embrace such a principle?
What is wrong with identity taken as primitive?
In the most general context, I see nothing wrong with identity. But in physics

- speci�cally identity as it �gures in physical theory - there are special reasons
to view it as derivative. I take we are concerned with physical objects in the
logical sense, as objects of predication. I suggest it is through talk of objects,
in the light of mathematical theories and experiments, that we achieve a clear
interpretation of these theories and experiments in terms of physical objects
- our understanding of what objects there are, I am suggesting, is clearest in
our use of simple declarative sentences. And it is here that purely formal,
logical considerations come into play; Quine and the logical empiricists had
something important to say in this respect. But my suggestion is not that
physical theories should be reconstructed in a formalized language (they should
not be rewritten, as a construction in set theory). What I have in mind is
description, as informed by theory, in predicative terms. (This puts in place the
other part of the generalist picture.)
Taking this route, our �rst concern is with syntax. Here, I suggest, the non-

logical symbols of the language - for simplicity I shall consider only �nite, �rst-
order languages - can be derived more or less directly from the physical theory.
They are to be interpreted in terms of the real physical functions, properties
and relations. Our guide here, as for Leibniz, lies in the measurable quantities.
Not so identity, as the relation that every physical object has to itself and to no
other. It would be hard to imagine a quantity whose measurement could tell
us about this directly. Nor is the identity relation itself under investigation in
physical theorizing, unlike measurable properties and relations (in this sense it
is not treated as a physical relation at all). From a formal point of view, the
mathematics used in physics is far away from set theory, and still further from
formal logic: the identity sign, as it �gures in extant physical theories, signi�es
only the equality or identity of mathematical expressions, not of physical objects.
In summary, we may read o¤ the predicates of an interpretation from the

mathematics of a theory, and, because theories are born interpreted, we have a
rough and ready idea of the objects that they are predicates of. But there is
nothing systematic to learn from the formalism to sharpen this idea of object.
It is plausible, in this situation, that we should look to a purely logical aid.
It is the fact that there is an essentially unique prescription for how to use

the identity sign, available for any formal language whose predicates do not
involve identity, that now is really telling: this is the chief selling-point for the
PII as I shall understand it. Indeed, given a �nite lexicon, this prescription even
generates an explicit de�nition of identity.
I shall �rst sketch the details, and then show how the principle fares in the

face of the usual scenarios o¤ered as counter-examples to Leibniz�s principles.
The generalist picture is also supposed to be in trouble in these contexts; that
too will need some defending. To proceed from that, we shall need the rudiments
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of Leibniz�s theory of possible worlds; as we shall see it can be taken over for
our purposes with little change. The most important question, from that point
on, is how we are to distinguish the real physical quantities of a theory from the
purely mathematical ones. Leibniz too needed this distinction, but he fell back
on a fairly crude form of veri�cationism. Measurable quantities will be our guide
as for Leibniz, but they are only the starting point of our analysis: symmetries
are the essential tool for going beyond them. At the end I will return to the
PSR, and its relationship to the PII.

1 Identity

How, in the interpretation of a physical theory, is identity to be analyzed in terms
of other properties and relations, which do not themselves involve identity?
There is a canonical answer to this question. Given the simplest case of a
language with only �nitely-many predicates, for each n � N; let there be Kn

n-ary predicate symbols Pn1 ; P
n
2 ; :::; P

n
Kn
: Now let �s�and �t�be terms (variables,

names, or functions of such). The familiar axiom scheme for identity is:

s = s

s = t! (Fs! Ft) (1)

where F is any predicate of the language - expressing, essentially, the substitu-
tivity of identicals. As Gödel showed, a complete proof procedure for the pred-
icate calculus without identity, supplemented by this scheme, yields a complete
proof procedure for the predicate calculus with identity (Gödel 1930 Th.VII).
It is therefore enough, from the point of view of completeness, to take the con-
junction of every instance of (1) as su¢ cient for identity. In the case of 1-place
predicates, we obtain formulae of the form

P 1i s$ P 1i t (2)

for 1 � i � K1. If it is right to read �1-place predicate�for �intrinsic denomi-
nation�, this would clearly do as a formalization of the principle of identity as
Leibniz stated it (Eq.(2) is often called the strong version of his principle). In
the case of 2-place predicates, generalizing on the free variable that remains in
instances of (1) we obtain

8z1((P 2i sz1 $ P 2i tz1) ^ (P 2i z1s$ P 2i z1t)) (3)

for 1 � i � K2: Likewise, for 3-place predicates:

8z18z2(P 3i sz1z2 $ P 3i tz1z2) and permutations

for 1 � i � K3. And so on, up to predicates in N variables: Call such formulae
identity conditions for s and t. The conjunction of all these identity conditions
is to serve as our de�nition of identity, where the question of which conditions
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in fact hold, for given terms, is to be settled by appeal to the physical theory
from which the non-logical vocabulary is derived.
This principle is the only analysis of identity that is really workable from a

modern logical point of view, embracing as it does every deductive consequence
of the axioms of identity. It was �rst proposed as such by Hilbert and Bernays
in the Grundlagen der Mathematik in 1934. It was subsequently defended by
Quine in the above, de�nitional sense, for any �rst-order language with a �nite
lexicon (in Set Theory and Its Logic, in Word and Object, and in Philosophy of
Logic). Quine�s interest in the principle was that it allowed him to extend his
view of logical truth, as truth by virtue of grammatical form alone, to truths
involving identity. As such he considered it an account of identity su¢ cient for
mathematics as well.
There are plenty of reasons to be skeptical of Quine�s program, understood to

have the generality that he intended for it, but there is no need to consider them
in any detail; the proposal I am making is quite di¤erent. I do not suppose that
there is anything wrong with identity, taken in an irreducible sense; whatever
objects there are, we know what the identity relation is among them; given
objects, identity can look after itself. Neither are we concerned here with the
ground for logical truth. The proposal, rather, is that in a situation in which
we do not know what physical objects there are, but only, in the �rst instance,
predicates and terms, and connections between them, then we should tailor our
ontology to �t; we should admit no more as entities than are required by the
distinctions that can be made out by their means. The most common objection
to Quine�s proposal is that a language-relative notion of identity cannot possibly
do - that we end up with is not really identity.1 But in the present context that
is either to call in question the correctness of the underlying physical theory
(we may not have the right vocabulary or identity conditions), or the method
of interpreting it in terms of objects (certain identities may be negated in an
unanalyzable sense). Certainly theory or method may be wrong; both of course
are defeasible; but just for that reason, neither can be rejected a priori.
There is certainly plenty of evidence in favour of the principle when it comes

to ordinary physical objects.2 Following Quine (1960 p.230), call two objects
absolutely discernible if there is a formula with one free variable true of one of
them but not of the other. With the obvious extension of this terminology to sets
of objects, it is clear that ordinary solid objects are all absolutely discernible:
no two solid objects can occupy the same spatiotemporal position, and given an
asymmetric distribution of such objects each will satisfy di¤erent spatiotemporal

1See e.g. Wiggins (2001, Ch.6). Having considered Quine�s original proposal, Wiggins
goes on to consider a supervenience thesis of identity (ibid p.187-8) that is closer to what I
am proposing, but at this point he puts the lessons that should have been earlier learned to
one side (the counter-examples he adduces against the supervenience thesis are examples of
relative or weak discernibles - see below).

2Quine has o¤ered an extensive account of how concepts of objects are �rst acquired,
according to which predications (and connections among predicates) well precede the full-
blown notion of object involved in the use of the identity sign (Quine 1974). Whether or not
he is right on this, it can hardly be denied that the simplest ways in which we discriminate
among ordinary objects is by qualitative, sensible di¤erences.
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relations with every other (referred to by bound variables). Given any countable
set of absolute discernibles, for each there will exist a �nite formula in one free
variable that applies to it uniquely; call it an individuating predicate for that
object. It follows that every solid object in an asymmetric universe has an
individuating predicate.
If the PII identi�ed any two objects not absolutely discernible, we would have

what is usually called the weak version of Leibniz�s principle.3 But this is only
one category of discernibility, according to the PII. Call two objects relatively
discernible if they are not absolutely discernible and there is a formula with two
free variables that applies to them in only one order. For an example, consider
the instants in time in an empty Newtonian spacetime; they are all relatively
discernible (of any two, one will be earlier than the other, but not vice versa).
There is a third and �nal category. An identity condition may fail even

when objects have exactly the same properties and exactly the same relations
to all other objects and exactly the same relations to each other; (3) will be
false if x and y only satisfy an irre�exive relation A (for then 9z1 � (Axz1  !
Ayz1), namely when z1 = x or when z1 = y). Call objects not absolutely or
relatively discernible, that satisfy an irre�exive relation, weakly discernible;4 if
none of absolutely, relatively, or weakly discernible, indiscernible. Using these
de�nitions the Hilbert-Bernays principle is precisely the principle of the identity
of indiscernibles. (This is what I shall mean by the PII from this point on.)
For an example of weakly discernible objects, consider Black�s two iron

spheres, one mile apart, in an otherwise empty space (this volume, p.xxx). The
irre�exive relation A is �...one mile apart from....�. It is because this relationship
holds that we may say that there are two - that it is intuitively evident that
there are two. The example was intended as a counter-example to Leibniz�s
original principle, in either the strong or weak form, and so it is; what went
unnoticed is that it is the PII that sanctions the example, and shows us its
logical form - and with which, of course, it is not in contradiction.
There are plenty of realistic examples of weak discernibles. Consider the

spherically-symmetric singlet state of two indistinguishable fermions. Each has
exactly the same mass, charge, and other intrinsic properties, and exactly the
same reduced density matrix. Since the spatial part of the state has perfect
spherical symmetry, each has exactly the same spatiotemporal properties and
relations as well, both in themselves and with respect to everything else. But
an irre�exive relation holds between them, so they cannot be identi�ed (namely
�....has opposite direction of each component of spin to ....�). Since symmetric,
they are weakly, not relatively discernible. Indeed, indistinguishable fermions

3As a reading of Leibniz, this is to include relations involving bound variables as among the
intrinsic denominations of a substance. (For a defence of the view that Leibniz was prepared
to countenance relations not reducible to monadic predicates, see Ishiguro 1972.)

4This category went unnoticed in Quine (1960), where the terms �absolute�and �relative�
indiscernibles were introduced. Quine remarked on it later (Quine 1976), but there he intro-
duced a di¤erent terminology (in terms of �discriminability�). It is true that weakly discernible
objects are indiscernible under the strong or weak versions of Leibniz�s principle - the tradi-
tional ones in the philosophy literature - but then so, usually, are relative discernibles; I see
no reason to follow Quine in this shift in terminology.
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are always at least weakly discernible; an irre�exive relation exists between any
pair of fermions, whatever their state.5 There has been plenty of discussion of
the bearing of Pauli�s exclusion principle on principles of identity; the prevelant
view is that none can be secured by it under the standard, minimial interpreta-
tion of quantum mechancis.6 But the relations that I have made use of follow
from the eigenvector-eigenvalue link, and are not in any doubt.
One might conclude that the PII is so weak that it can never be compromised,

but that view too is mistaken. Indistinguishable elementary bosons may all
exist in exactly the same state, and satisfy no irre�exive physical relation. It
was argued by Cortes (1976) that photons are a counterexample to Leibniz�s
principle; free photons are certainly a counterexample, even to the PII. Does it
follow that the principle should be abandoned? But the argument can be turned
on its head. The stable constituents of ordinary matter are all fermions.7 Apart
from the Higgs particle - not so far observed - all elementary bosons are gauge
quanta; they all mediate forces between fermions. The number of elementary
bosons all in exactly the same state may better be thought of as the excitation
number of a certain mode of a quantum �eld. It is the discrete measure of the
strength of dynamical couplings, dependent on the mode, between the genuine
physical objects of the theory, whether fermions or other modes of quantum
�elds.
Schrödinger argued very early on for such a view (Schrödinger 1926). For

a recent proposal of this sort, but with a somewhat di¤erent motivation, see
Redhead and Teller (1992). Our conclusion, however, is that only boson numbers
should be viewed as properties of things: the PII treats fermions quite di¤erently.
Given the contrast between the two, as gauge �elds and sources respectively, it
is a merit of the principle that it does.

5The most general antisymmetrized 2-particle state is of the form 	 = 1p
2
(�
 � 
�);

where � and  are orthogonal. Analogues of operators for components of spin can be de�ned
as S = P� � P , where P�, P are projections on the states �;  . Each of the two particles
in the sate 	 has opposite value of S, but no particle can have opposite value of S to itself.
(For a general theory of the state in terms of systems of relations, see Mermin 1998.)

6As �rst argued by Margenau (1944), Leibniz�s principle must be rejected as the reduced
density matrix for each fermion in any antisymmetrized state is exactly the same. A more
general argument was given by French and Redhead (1988) and by Butter�eld (1993); the
theorems proved there, like those proved by Huggett (this volume), apply only to either
the strong or the weak version of Leibniz�s principle, not to the PII. (For a criticism of
such methods from a rather di¤erent perspective, see Massima 2001; for a commentary on
interpretation-dependent treatments, see Castellani and Mittelstaedt 2000.)

7 It is unclear to French and Rickles (p. 20, fn.19, this volume) �why metaphysics should
follow the physics in this particular way, or at all�. Perhaps it need not. But if I am concerned
with metaphysics at all, it is descriptive metaphysics, in Strawson�s sense, as an aid to the
interpretation of physics, and to that end I aim to preserve a good part of established practise.
Ordinary objects had better turn out to be objects, on any account, and so they do on mine;
it is as an extension from this that their stable constituents had better turn out to be objects
as well. With the rest there is more latitude.

6



2 The Generalist Picture

The immediate di¢ culty is not that the PII identi�es indiscernibles that are
not even weakly discernible; it is that it does not identify those that are. On
familiar, Strawsonian lines, such highly symmetric situations call in question the
adequacy of the generalist picture (of what he called �descriptions-in-general-
terms�), for given two weakly discernible objects, individual reference can be
made to neither of them. Likewise in the case of relative discernibles. Yet
confronted with two objects of this sort, there could be no obstacle to the
use of indexicals; indexicals would do better here than any purely predicative
description;8 the generalist picture is therefore incomplete - and so the PSR is
also in question.
There is an obvious �aw in this argument. The use of indexicals presup-

poses the existence of an observing agent, but introduce such an agent and the
symmetry is broken. Each of two weakly discernible objects, once related to
something as highly asymmetric as, say, a functioning human being, become
absolutely discernible. And there is little point in envisaging a perfectly sym-
metric observer, so long as indexicals are tracking perception: attention to one
rather than the other object, by whatever perceptual means, will surely break
the symmetry. But for all that there is a di¢ culty, even concerning asymmetric
observers; for it is easy to imagine a large-scale exact symmetry (for example,
a spacetime containing a plane of exact mirror-symmetry), where the observer
too has a symmetric duplicate. It need not be the perception of an observer
of two weakly discernible objects that creates the problem, it is enough, given
that she has an exact duplicate elsewhere, that she sees only one of them.
The scenario is fanciful; one can deny that it is a genuine physical possibility.

We are not concerned with defending the generalist picture or the PII in the
face of any conceivable physics. For example, a physical theory that is explicitly
a �rst-order formal theory (with physical objects as values of variables) is at
least conceivable, however remote from the theories that we have; in such a case
one might have as a law a sentence involving identity in which the identity sign
cannot be treated as a de�ned term (using the PII) without contradiction. But
these are challenges we do not have to meet.
Nevertheless, I think we should grasp this nettle.9 We may grant a certain

limitation to the generalist picture. But it is not that by the use of indexicals
one can provide something more than what is there available, it is that one can
provide something less - one provides less than a complete account of what there

8 It should be clear, here as elsewhere, that although the PII as stated permits the use of
proper names (0�ary functions), it is contrary to the spirit of our program to invoke them;
certainly no physical theory makes use of them explicitly. (They may do so tacitly; indexicals
are obviously unavoidable in practise; the question, from the point of view of the PSR, is
whether they are avoidable in principle.)

9Here I follow Pooley (2002 Ch.2). Yet another alternative is to embrace Hacking�s strategy
(Hacking 1975), as recently endorsed by Belot (2001); I do not believe this strategy can be
implemented with the generality Hacking claimed for it (see French 1995), but it may be it
can for the special case of large-scale spacetime symmetries, that gives rise to the present
di¢ culty for the generalist picture.
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is. For suppose - the example is due to Adams (1979) - that each of Black�s
identical globes is inhabited, in such a way that the symmetry between them is
preserved. The inhabitant of each globe refers to his own uniquely. But that
fact is perfectly well described in the generalist picture. Nothing is left out of
it. That is the point of relative and weak discernibles in the generalist picture:
one can only describe the part in terms of the whole.10

3 Possible Worlds

A similar challenge arises from a di¤erent quarter. What of possible worlds?
Might there be possible worlds which are only weakly discernible11? In partic-
ular, might there be a possible world that is only weakly discernible from our
own? We surely do refer uniquely to actual physical objects and to the actual
world.
It should be evident that here the strategy just canvassed will hardly do.

It is one thing if, in the generalist picture, in highly symmetric cases, we can
only describe the entire world, but it is quite another if even in the physically
realistic case we can do no better than describe a set of possible worlds - that
we cannot describe the actual without describing all its possible simulacra as
well.
In fact there is no such di¢ culty. We have been talking all along of real

physical properties and relations. Objects can only be discernible, yet fail to
be absolutely discernible, if they bear relations to each other - real, irreducible
physical relations, relations that are not deductive consequences of their prop-
erties. If there are none such, the PII reduces to the identity of objects not
absolutely discernible (and the latter in turn to the strong principle, Eq.(2)).
What real physical relation can one possible world, a possible physical universe,
bear to another? A world, in Leibniz�s philosophy as in modern cosmology, is
a system which is physically closed. For every real relation, from spatiotempo-
ral and causal relations to quantum correlations, the relata always have to be
included together to arrive at the closed physical system.12

10Another challenge to the generalist picture arises from Kant�s argument from incongruent
counterparts. Pooley (this volume, p.11) may be read as insisting on a principled sense in
which ostensive de�nition is required, in the context of a relational account of handedness.
According to him, what objects we call �left�can only, in the �nal resort, be shown. Against this
- assuming spatial inversion is a symmetry (the relevance of this will become clear shortly) - I
would maintain that a description of the universe which depicts a handed object as congruent
to the hand on the side of the heart of a typical human body describes that object as left-
handed (in other words, that the causal processes to which Pooley refers can themselves be
described in the generalist picture).
Pooley rightly remarks that such descriptions do not solve the Ozma problem, but then

this problem is not a di¢ culty for the generalist picture per se (concerning, as it does, the
question of whether orientation can be locally de�ned).
11The PII can hardly be applied to all possible worlds, since among them will be worlds

governed by di¤erent physical laws; here I only consider possible worlds with the same physics
as ours (and, naturally, the problem only arises for these).
12Teller�s �liberalized relationism�, therefore, is not an option for us (Teller 1991). Possible

objects may, of course, be physically related, if they are described as such by a physical theory
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There is of course a di¢ culty in saying just what are the real physical rela-
tions, as opposed to the purely nominal, mathematical ones - we shall come on
to that in a moment. But we do not have to settle this question to justify the
claim that possible worlds may bear no real relations to one another. I take this
point to follow from the de�nition of physical closure: if we cannot make sense
of the di¤erence between real physical relations and mathematical ones, we will
be equally hard put to say what physical closure really means. If the notion of
�real relation�is too vague then so is the notion of �world�. And I suggest there
is no good example in which the idea of closure under physical relationships is
really in doubt. Even admitting exotica like cosmic wormholes, or spacetimes
with topological change, it is clear whether or not one is dealing with a closed
physical system if only because one is considering a single solution to Einstein�s
�eld equations (or a single extension of a solution).13 Of course this is not
to rule out comparisons of solutions to Einstein�s equations. It clearly makes
sense to talk of the mean matter density of one space-time model, in relation
to another. But these relations are reducible to properties; they are deductive
consequences of the properties of their relata.
Given that possible worlds bear no physical relations to one another, it

follows from the PII that numerically distinct worlds will be absolutely (and in
fact strongly) discernible. A world is surely an individual substance, in Leibniz�s
original sense of the term, even if nothing else is. But it follows from this that
any object which is absolutely discernible from every other in one possible world,
will be absolutely discernible from any other in any other possible world - for we
have only to take the conjunct of its individuating predicate in the one possible
world with the individuating predicate of the possible world to which it belongs;
that will absolutely discern it from any possible object in any other world.14

When it comes to possible worlds, we not only obtain a form of the PII that
is recognizably Leibniz�s, we recover a part of his original motivation for it too.
For the alternative to an analysis of identity in terms of predicates - taking
identity as unanalyzable - always amounted to a purely extensional account of
it, in terms of whatever objects there are (as that relation that every object
bears to itself and to no other). That is how Lewis, agnostic as to the nature
of the full space of logical possibility, could declare himself agnostic on the
principle: whether there exist indiscernible possible worlds depended, for him,
on whatever possible worlds really exist. But for Leibniz, as for those of us who

(as in the Everett interpretation of quantum mechanics): in that case they do not belong to
distinct possible worlds, in Leibniz�s sense (and they may well be only weakly discernible).
13 If there is a di¢ culty it seems likely to lie in quantum cosmology or, classically, in regions

interior to Cauchy horizons (in the neighbourhoods of singularities). The two topics are
connected. In these cases we do not, properly speaking, have a serviceable theory at all. They
o¤er no real threat to the view that a real physical relation is a part of reality, to be solved
for along with all the other physically meaningful quantities, rather than a link to something
beyond.
14 It is true that the individuating predicate we end up with in this way will no longer

be �nite in length (for there the number of possible worlds is surely uncountable), but we
are familiar with this from Leibniz�s philosophy: there, in comparisons across worlds, the
individual concept of a substance must be in�nitely complex (this played an important role
in his theory of contingency).
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do not believe that possible worlds exist independent of us, that account will
hardly do.

4 Leibniz Equivalence

I come back to the distinction between real and mathematical properties and
relations in its more general setting. As we have just seen, transworld relations
are either reducible or purely mathematical; our concern is with properties
and relations internal to worlds. Here, as remarked earlier, our chief guide
is experiment: properties and relations de�ned in terms of directly measurable
quantities are certainly real. But to restrict ourselves to these would be a crude
form of veri�cationism.
Symmetries are the key to moving beyond them. As I shall understand it, any

exact symmetry of a system of equations is a transformation that leaves its form
unchanged (under which the equations are covariant). It is their mathematical
form, I take it, that has real physical meaning. Such symmetries therefore leave
all the physically real quantities unchanged - among them the measurable ones.
In the �rst instance we look for symmetries of these quantities; in the second to a
theory or theory-formulation which respects these symmetries - which has a cor-
responding invariant structure or form. Under such a symmetry, those elements
of the formalism that are transformed will have no direct physical signi�cance,
and their associated properties and relations that are likewise modi�ed will not
be physically real. But if there is no such theory formulation, that is an indica-
tion that there are further properties and relations, which are modi�ed by these
transformations, that are physically real - whether or not they are measurable.
(This, as it were, explains why the transformations in question are not after all
symmetries.) We then move to a smaller group of transformations, with respect
to which the structure of the theory is preserved: the invariant quantities under
these are the ones we count as real.
An example will illustrate the procedure. Relative distances between parti-

cles in Newton�s theory of gravity (NTG) are surely measurable; they are invari-
ant under translations, rotations, and boosts to reference frames with constant
velocities. Since the equations of motion are form-invariant under these trans-
formations - they are indeed symmetries - it follows that (absolute) positions
and (absolute) velocities, as properties, are not physically real. What now of
(absolute) linear accelerations? They are not directly measurable; but here the
equations of NTG prove to be uncooperative. It turns out that they do not
preserve their form under boosts to linearly accelerating frames. So the latter
are not symmetries, and the quantities modi�ed by these transformations - ab-
solute accelerations, that are invariant under the symmetries of NTG - should
also be counted as physically real.
This procedure, relying as it does on the details of a theory formulation, has

its risks: even if the theory is substantially correct, a di¤erent formulation of
it may come to light leading to a di¤erent conclusion. So it was with NTG: it
turns out that there is a reformulation of the theory that does count boosts to
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accelerating frames as symmetries (where the accelerations are arbitrary func-
tions of the time, but are independent of position).15 Absolute accelerations
are no longer invariant, so they go the way of absolute velocities. Only relative
accelerations and relative velocities, we learn from this theory, are invariants,
along with relative distances, under the full symmetry group that this theory
allows. Only they should be added to the list of real physical quantities.
But the story does not stop there. It turns out that there is an empiically

adequate alternative to NTG according to which certain relative accelerations
and relative velocities - those associated with non-zero total angular momentum
- are necessarily zero. According to this theory, due to Barbour and Bertotti
(1982), the a¢ ne structure of spacetime has a purely dynamical origin, deriving
from a geodesic principle on the relative con�guration space. It follows that
masses and relative distances alone are fundamental; every other real physical
quantity (including every time-dependent quantity and all termporal relations)
can be de�ned in terms of these. The symmetry group of this theory is corre-
spondingly greatly enlarged.
This example makes it clear that whilst we must start with measurable quan-

tities, they may appear in a very di¤erent light at the end. Getting the right
expression for measurable quantities in terms of theoretical ones has proved
almost as di¢ cult as moving beyond them. It is now a familiar story how this
played out in the case of the di¤eomorphism symmetries of the general theory
of relativity (GTR). This symmetry group appeared to be a step too far, given
the then standard interpretation of coordinates in a physical theory. It proved
a considerable di¢ culty for Einstein to appreciate that observable quantities
could in fact be coded into the theory in a di¤eomorphic-invariant way.16

Physically real quantities are invariant under exact symmetries - this is the
general lesson. It has been long in coming. Here there is a potential for confu-
sion which it would be well to dispel. It is sometimes said that every symmetry
transformation has a �passive�and an �active�interpretation. It is not the right
distinction: what matters is the di¤erence between transformations that are de-
�ned by their action on physical quantities that are not themselves modeled in
the equations, as opposed to those that are not, whose physical meaning, if any,
has to be expressed by those equations themselves. Call them extrinsically as
opposed to intrinsically de�ned transformations. In the former case, obviously,
one is concerned only with a subsystem of the universe: the transformation in
question will alter real physical relations between that subsystem and the rest
(the change in the distance to the shore, when Galileo�s ship is set smoothly in
motion, is perfectly real). It is by means of these real physical quantities that
one goes on to interpret the equations. Extrinsically-de�ned symmetries, then,

15This was clear from Cartan�s reformulation of NTG as a di¤eomorphic-covariant system
of equations, but nothing so elaborate is needed: the clue to it was already evident in the
Principia. There Newton showed that his equations yielded the same results for the relative
motions when referred to linearly accelerating frames (and needed to, to apply his principles
to the Jupiter system); see Corollary VI, Book 1.
16Consensus on this now appears to have been reached: see Renn et al, (2000). (For further

background, see Norton, this volume.)
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can usually be given an operational meaning. It is quite otherwise when the
system of equations - the very same equations - is used to provide a model of
the entire universe, or of a part of it (the Solar System, say, in NTG) without
reference to the rest. The correspondence between active and passive interpre-
tations apply only to the former sort, to transformations that are extrinsically
de�ned, not to intrinsic ones.17

Extrinsic transformations, that at least in some applications can be given a
clear operational meaning, have also served as a guide to establishing the symme-
tries of a theory - the transformations under which its form should be preserved
- and hence the theoretical, intrinsic symmetries too, but one misses some of the
most important ones; one is not thereby led to local symmetry groups (symme-
tries which, viewed as Lie groups, are in�nite dimensional). One is not even led
to all the �nite-dimensional ones (the symmetry of the Barbour-Bertotti theory
under transformations to rotating frames of reference cannot be realized opera-
tionally, applying as it does only to the universe as a whole). What similarities
there are disguise the fundamental di¤erence: extrinsically-de�ned symmetries,
viewed from an active, operational point of view, transform real physical prop-
erties and relations, whereas symmetries that are intrinsically-de�ned never do.
Our concern is with the latter. Only equations and transformations that can be
given an intrinsic physical meaning can be used to model the world as a whole.
The consequences of the PII for such transformations are then immediate.

These are intrinsically de�ned symmetries; they therefore leave all the real physi-
cal quantities unchanged. The world thus arrived at does not di¤er, with respect
of any real physical property or relation, from the world with which one begins.
So they are numerically the same.
In the case of di¤eomorphic spacetime models in GTR, this thesis has been

called Leibniz Equivalence. But the thesis is quite general. It applies equally
to any symmetry of a physical theory, when applied to the world as a whole,
and to any transformation that can only be intrinsically de�ned. Some of these
applications remain controversial. In the case of gauge theory, and speci�cally
electromagnetism, the invariant quantities are the electromagnetic �elds: the
scalar and vector potentials A�, that are transformed by the gauge symmetry,
do not directly correspond to any real physical magnitudes. Local (di¤erential)
relations among them are real - as exhibited by the gauge-invariant 2-form
@�A� � @�A� - but not the potentials themselves. This case is controversial
because because an explanation of certain e¤ects - notably the Aharonov-Bohm
e¤ect - in terms of gauge invariant quantities must be non-local, in contrast to
an account of it in terms of the potentials. Another controversial case is the
canonical approach to GTR (the constrained Hamiltonian formalism). There

17The contrast has been put in a rather di¤erent way by Stachel (1993), who invokes the
distinction between a theory interpreted in terms of a non-dynamical individuating �eld, and
those interpreted in terms of a dynamical one. According to Stachel, GTR is unique in
requiring the latter. It is true that there are special reasons why the symmetries of GTR
must be intrisically de�ned, but the option is important elsewhere as well; certainly the use
of a dynamical individuating �eld was historically important to NTG (Saunders 2002. There
I spoke of �internally�de�ned symmetries, but since �internal symmetry�is already in use and
means something quite di¤erent, �intrinsic�is better).
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the invariant quantities, the orbits of the group of transformations generated by
the Hamiltonian constraint, are equivalence classes of three-geometries. In fact
it follows that no quantities preserved by the constraints can be functions of the
time (there follows the �frozen time formalism�, as advocated by Rovelli 1991).
Of the discrete symmetries, consider �rst permutation symmetry. This is

as much a symmetry of classical statistical mechanics as quantum theory, al-
though in the former context it has received very little attention. By Leibniz
Equivalence, permutations act as the identity - classical atoms are just as �in-
distinguishable�as quantum ones, in the usual physicists�sense of the term.18

In both cases, it is to this that the extensivity of the entropy function can be
traced, as required of the classical thermodynamic entropy.19 The failure of ex-
tensivity was a puzzle in the early days of classical statistical mechanics, when
it was thought that permutations of particles should yield a physically distinct
state of a¤airs, Gibbs�protests to the contrary notwithstanding. The puzzle
was quickly overwhelmed by another, the discovery of quantum statistics. It
was only much later that it was realized that permutation symmetry could be
treated in exactly the same way in classical statistical mechanics as in quantum
mechanics.20 The point has yet to achieve broad acceptance by the physics com-
munity. let alone among philosophers, but it is a direct consequence of Leibniz
Equivalence.21 (An obvious question then arises: whence then the di¤erence
between classical and quantum statistics? But the answer here is clear enough,
at least from the point of view of phase-space methods: all the di¤erences can be
traced to the use of a discrete measure on phase space rather than a continuous
one.)
Finally, consider spatial inversion. Were this a symmetry, then applied to

the world as a whole it would follow that only quantities and relations invariant

18 I hestitate to call either classical particles or fermions �non-individuals�, in the light of
French and Rickles� use of the term (for such particles satisfy at least one of their criteria
for individuals, namely option (d), that a version of Leibniz�s principle applies to them - this
volume, p.14, and Section 5.3).
19 In particular, to yield zero entropy of mixing for samples of the same gas. Against this,

van Kampen (1984) has claimed that the extensivity of the classical entropy function is only
a convention. Taking this line, Huggett (1999) has concluded that nothing physical hangs
on Leibniz Equivalence in the case of the permutation group (that, as he put it, there is no
physical basis to favour the abandonment of �haecceistic� phase space, a view subsequently
endorsed by Albert 2000 p.45-7). It may be that the entropy of mixing for samples of the same
gas is not directly measurable (although it may be viewed as the limiting case of entropies
that are), but it hardly follows from that that the issue must be settled by convention.
20For a history of this early controversy, see Jammer (1966). For an account of the role of

permutation symmetry in classical statistical mechanics, see Hestines (1970).
21French and Rickles (p.13, this volume) are clearly sympathetic with the view that Leibniz

Equivalence, as applied to permutations, is incompatible with classical physics (equivalently,
that classically one is committed to the use of haecceistic phase space); that Ehrenfest was
right to criticize Planck�s removal of the factor N ! as ad hoc. But I say that the use of the PII
here, as applied to possible worlds, has an obvious pedegree in classical physics and classical
metaphysics, and that there is nothing ad hoc about Leibniz Equivalence as I have derived it.
Why insist that what was wanted was new physics, rather than a better interpretation of the
old? (The same applies in the quantum case. The central question that they raise in Sec.5 -
What is the ground of Permutation Invariance? - is answered the same: it is the consequence
of Leibniz�s principles.)
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under the transformation would be real: two spacetime models, the one the
spatial inversion of the other, would describe the same world, and the same
handed objects within it. The hand considered in itself, in an otherwise empty
space, would be neither left nor right handed.22 This interpretation of global
spatial inversion was �rst advocated by Weyl (1952). It was defended, with
quali�cations, by Earman (1989), and it has more recently been argued for by
Hoefer (2000). Of course it has turned out that spatial inversion is not a sym-
metry of the standard model, but an argument to a similar e¤ect remains: the
combination of space, time, and matter-antimatter inversion (TCP symmetry)
is demonstrably a symmetry of any relativistic quantum theory.23 From Leib-
niz Equivalence, it follows that the world does not have one TCP orientation
rather than the other. Its mirror image, on inverting matter and antimatter
and the arrow of time, is one and the same.24

5 The Principle of Su¢ cient Reason

I have had more to say about the PII than the PSR; let me close with a remark
on their relation: despite the changes in the former principle, they still function
in tandem.
Recall Clarke�s criticism of the PSR:

Why this particular system of matter, should be created in one par-
ticular place, and that in another particular place; when, (all place
being absolutely indi¤erent to all matter,) it would have been ex-
actly the same thing vice versa, supposing the two systems (or the
particles) of matter to be alike; there could be no other reason, but
the mere will of God. (Alexander 1984, p.20-21).

Leibniz did not respond to this directly; he surely agreed with Clarke that atom-
ism is inconsistent with the PSR - but only given the further presupposition,
common to them both, that it must be possible to refer to a substance uniquely,
independent of its relationships with other substances. It would be odd to make

22Kant clearly saw this implication of Leibniz�s principles, although initially he thought it
con�ned to Leibniz�s views on the nature of space (Pooley, this volume, Sec.2). Two years
later, in the Inaugural Dissertation of 1770, he had rejected the generalist picture as well,
and with that much broader principles of Leibniz�s philosophy.
23Pooley (this volume, Sec.4) denies that PCT symmetry is of any relevance to a relational

account of handedness. But my claim is that it tells against absolutism: as I understand it,
only transformations that are symmetries provide a su¢ cient condition for a quantity to be
counted as unphysical. It is only insofar as absolute spatial orientation is changed by the PCT
transformation, if a symmetry, that one can conclude it is not physically real. In the absence
of such a symmetry I see no reason to suppose that absolute 3-dimensional spatial orientation
is not a perfectly respectable real physical quantity in its own right, Pooley�s arguments to
the contrary notwithstanding.
24Of course there remain a number of open questions about the arrow of time, which cannot

be addressed independent of the interpretation of quantum mechanics. (For example, TCP
inversion can hardly remain a symmetry of state-reduction theories.)
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such a claim today: it is a piece of metaphysics without any basis in modern
logic; there is no reason to believe in it from the point of view of any physical
theory; it is more contentious than any of the principles so far considered.
Abjuring metaphysics of this order, there is no longer a con�ict with the

PSR. Leibniz Equivalence applies here as to any other symmetry - for given
Clarke�s assumption that the particles are exactly alike, particle permutations
are surely symmetries. The permutation does not therefore lead to a possible
world numerically distinct from the actual one. No decision as to which particle
is to be placed in which position needs to be made.
A second example shows better how the novel features of the PII - the exis-

tence of relative and weak discernibles - works in tandem with the PSR. Consider
the location of a material system in space. Were space a real entity, then, ac-
cording to Leibniz, it would again follow that its parts must be individuated
uniquely, without reference to anything else. But since qualitatively alike, there
could be no reason to situate the material system in one place rather than
another - a problem for the PSR. How does this case fare under the PII?
The points of space, independent of their relations to matter, unlike particles

of matter, independent of their spatial relations, are in fact discernible. If, now,
it were possible to refer to one point of space rather than another (without ref-
erence to matter), it would make sense to ask at which of the two the material
system is to be placed, leading to the same di¢ culty with the PSR. But in fact
the points of space are only weakly discernible, so we cannot refer to any one
point rather than another, and the di¢ culty does not arise. Evidently insofar
as we can view the parts of a highly symmetric entity, such as a homogeneous
space, as objects in their own right (as discernibles), without reference to any-
thing else, it is essential - consistent with the PSR - that they not be absolutely
discernible from one another.
It is also worth remarking that it is only in the generalist picture that there

is no con�ict with the PSR. For let us introduce into this space Adams�pair
of identical globes, each with identical observers. The material system is to be
placed adjacent to one globe rather than the other - which? In the generalist
picture, there is no choice to be made, for neither can be referred to uniquely.
From the standpoint of the two observers, one will see the system appear nearby,
but not the other - again, this fact can be reported without any di¢ culty. But
the one who sees it appear nearby will consider the event to be wholly arbitrary,
and contrary to the PSR. Here, one might say, is chance, where in the generalist
picture everything is determined.

6 Close

I have spoken throughout of the interpretation of theories in terms of objects,
but it is object in the logical sense, the sense that Frege was concerned with.
And, whilst I maintain that certain doubts have been laid to rest concerning it
- for example, as expressed by Quine, on whether the concept of object must
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crumble altogether in the face of particle indistinguishability in quantum me-
chanics (Quine 1990 p.35-36) - it is object in a very thin sense that is secured.
In strongly interacting high-energy physics, it is doubtful that objects as in-
dividuated (using the PII) by the invariant properties and relations de�nable
in quantum �eld theory will be quanta at all (although, in the light of asymp-
totic freedom in QCD, in the ultra-relativistic limit quarks as objects presum-
ably remain). In classical �eld theories, obviously, one obtains little more than
�eld values (or, given di¤eomorphism symmetry, relations between �eld values).
These are objects as events.
Coincidences of �eld values, and complexes of relations among them - this

is a world understood in terms of structural descriptions, a world as graph, not
a collection of things that evolve in time. It is a structuralist account, too, by
virtue of its reliance on mathematical form, as the key to the distinction between
the physical and the merely mathematical. But I see no reason, deriving from
special relativity and quantum theory, to deny that the descriptions one ends up
with, in the interpretation of physical theories, gives the properties and relations
among objects, in the logical sense of the term. The conservative notion of object
that I have been concerned with, thin as it is, is not in jeopardy. It is not so
thin as to be governed by an unanalyzable notion of identity.
What is not so certain is that the current framework will be preserved in

quantum gravity. In the quantum canonical approach, unlike in the classical
theory, it is not so clear that quantities preserved by the constraints are su¢ -
cient to build up an account of change (not on any approach to the problem
of measurement). And here there are avenues being explored - causal sets, for
example - that, if successful, may well lead to a more direct account of identity
than the logical one that I have given. They are speculative, and if contrary to
the PII, they will have violated the methodology that I have been advocating;
but the PII as I understand it is no a priori truth.
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