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                                                        Abstract 
 
This is the second of two papers responding (somewhat belatedly) to ‘recent’ 
commentary on various aspects of hyperplane dependence (HD) by several authors. In 
this paper I focus on the issues of the general need for HD dynamical variables, the 
identification of physically meaningful localizable properties, the basis vectors 
representing such properties and  the relationship between the concepts of ‘localizable 
within’ and ‘measureable within’. The authors responded to here are de Koning, 
Halvorson, Clifton and Wallace. In the first paper of this set (Fleming 2003b) I focused 
on the issues of the relations of HD to state reduction and unitary evolution and addressed 
comments of Maudlin and Myrvold. The central conclusion argued for in this second 
paper (§§ 5, 7) is the non-existence of strictly localizable objects or measurement 
processes and the consequent undermining of the principle of universal 
microcausality. This contrasts with the existence of strictly localizable properties and 
results in the consequent priority of the concept of ‘localizable within’ over ‘measureable 
within’. The paper opens with discussions of the need for and status of HD dynamical 
variables which  are responses to anonymous queries. 
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1: Introduction  
 
This is the second of two papers (The first is Fleming 2003b) in which I try 
to clarify some of my views on Lorentz covariant quantum theory (LCQT) 
and the role of hyperplane dependence (HD) therein. The main body of the 
discussion is structured around a detailed response to ‘recent’ arguments in 
the literature concerning HD, state reduction, dynamical evolution and 
localization.   
 
In this second paper of the set the topics addressed are as follows: In § 2 the 
need for HD over ordinary time dependence of dynamical variables and 
states and the relationship between classical and quantum examples of HD 
dynamical variables is discussed in the form of responses to anonymous 
queries. In § 3, as a response to de Koning’s (2001), I consider issues of 
frame dependence and frame independence that are resolved by HD and the 
relationships between the localization of observables and the localizability of 
measurements. In a longish § 4, responding to Halvorson’s (2001), the 
relationship between putative localization schemes, the comparison of local 
subluminal dynamics over a superentangled vacuum on one hand and non-
local HD superluminal dynamics over a product vacuum on the other, the 
distinction between localizing entities and localizing properties of entities 
and the status of universal microcausality and, again, the localizability of 
measurements are all considered. In § 5, responding to Halvorson and 
Clifton’s (2002), some of the same issues as in § 4 as well as the non-
existence of strictly localizable objects and, consequently, strictly localizable 
measurements and, once again, the status of universal microcausality are 
addressed. In § 6 I consider Wallace’s (2001a) and comment on the status of 
Newton-Wigner (NW) localization in his analysis. Section 7 contains a 
detailed quantitative comparison between HD NW localization and a variant 
of Halvorson’s ‘standard’ localization scheme and a proof of the unbounded 
space-like extension of single spinless quantons in QFT. I devote the last 
section, 8, to considerations related to the speculative conjectures concerning 
spatio-temporal ontology proposed at the end of the preceding paper 
(Fleming 2003b).  
 
The specific topics addressed in the first paper of this set, in the order in 
which they arise, were: (§1) general considerations on the status and nature 
of the particles or quanta of quantum field theory (QFT) (here I tried to shed 
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a reputation for championing views I, in fact, do not hold), (§2) the causal 
analysis of statistical correlations between state reductions on intersecting 
hyperplanes (response to Maudlin’s 1996), (§3) the part-whole relations that 
can hold within composite and/or spatially extended quantum systems and 
the different forms they can take on intersecting hyperplanes (response to 
Maudlin’s 1998), (§4) the limiting case of hyperplane dependent state vector 
assignments in the presence of composite systems with constituents space-
like separated by distances greatly in excess of their own space-like 
dimensions (response to Myrvold’s 2002) and (§5) dynamical evolution 
outside of foliations and spin as a non-local observable  (response to 
Myrvold’s 2003). In the last section, 6, I entertained some speculative 
conjectures as to where the preceding considerations may be pushing 
regarding the ontology of the spatio-temporal framework. 
 
1a: the term ‘quanton’. 
 
In the first paper I proposed (in place of the misleading term ‘particle’ or the 
overused term ‘quanta’) as the name of the family to which photon, electron, 
muon, tauon, lepton, gluon, neutron, proton, nucleon, pion, kaon, meson, 
hadron, and yes - - - quark and neutrino, belong as instances or subsets – the 
term ‘quanton’. The term has been suggested before (Levy-Leblond 1988) 
(von Bayer 1997). Continuing the effort to generate familiarity, I will use 
that term throughout this paper. 
 
To firm up the definition, let’s reserve ‘quanton’ for any particle-like quanta 
of a quantized field or any bound state of such quanta due to interactions 
which have, themselves, no macroscopic classical field manifestation, i.e., so 
far as we know, interactions other than electromagnetism or gravitation. 
Thus, atoms, molecules, bricks and planets are not quantons while nucleons 
and the nuclei of atoms, such as α-particles, are. 
 
 
2: The need for hyperplane dependence (HD).  
 
2a: motivating HD over time dependence 
 
Some years ago I was asked by a prominent member of the philosophy of 
physics community (who shall remain nameless as I don't remember his 
exact words) an interesting question. He asked whether it was not the case,  
that any observable on a given hyperplane could always be expressed as a 
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function of observables at a definite time, and whether, therefore, any 
measurement of an observable on a given hyperplane could not be 
implemented by measuring appropriately chosen observable(s) at a definite 
time? I took the purpose of the question to be that of undermining the notion 
that we need HD observables at all. For strictly speaking, the answer to the 
question is yes. But I asked my questioner if he agreed that his question was 
analogous to asking, within non-relativistic quantum theory, another 
question. That question is whether an observable at a given time could 
always be expressed as a function of observables at the time, t = 0, and 
whether, therefore, any measurement of an observable at a given time could 
be implemented by measuring appropriately chosen observable(s) at the 
time, t = 0? This question also has the answer, yes, and my questioner 
agreed to the analogy. But that (replacing observables at definite times by 
observables at time, t = 0) would be a crazy way to do physics, said I! No it 
wouldn't, said he. Circumstances then intervened and the discussion ended, 
never to be resumed. 
 
I will here explain why I claimed it would be a crazy way to do physics. 
Why, in fact, it would be an impossible way to actually do physics! The 
explanation will be given, first, for the non-relativistic question. 
 
To know the functional dependence of observables at a given time on 
observables at t = 0, and to, therefore, know what must be measured at t = 0 
in order to measure a given observable at a given time – we must know the 
solutions of the equations of motion of the physical system. And for realistic 
systems, we never know those solutions! At best we have approximations to 
those solutions, which, if exploited in the manner suggested by the question 
and to the degree required, would put us far off the mark, indeed. We need 
direct access, albeit always approximate access, to observables at arbitrary 
times, in order to examine and test and improve the best ideas we can muster 
concerning the solutions of the equations of motion. How else to determine 
whether we've got the equations of motion, themselves, reasonably correct? 
 
In the Lorentz covariant domain, relatively moving inertial observers 
associate their observables at definite times with distinct families of 
hyperplanes. So we can not know how the general, time dependent, 
observables of one inertial observer are related to those of a relatively 
moving inertial observer unless we know the solutions of the equations of 
motion, which, again, for realistic systems, we never do. 
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The counter argument that is sometimes offered, that we don't need to know 
the solutions because the Lorentz transformations between inertial observers 
are purely kinematical, is erroneous. It fails to take into consideration the 
dependence of Lorentz boosts on the presence and nature of interactions 
(Fleming 2003a); in short, on dynamics. While non-relativistic Galilean 
boosts were interaction free, Lorentz boosts are not.  
 
If all the observables we ever measured were local fields at points, this 
would not be a problem, for a point is a point in any inertial frame. But we 
never actually measure local fields at points. Nor does the local algebra 
approach avoid this problem. For although it employs functionals of the 
fields over extended space-time domains, it fails to come to grips with the 
fact that relatively moving inertial observers tend to favor different 
observables within a given local algebra. Each inertial observer tends to 
favor, for measurement, observables that approximate observables at a 
definite time for that observer. Furthermore, as I've argued in the first paper 
(2003b), local observables associated with space-like bounded domains are 
insufficient for physical conceptual adequacy. There are natural physical 
observables with space-like unbounded functional dependence on the local 
fields. The total energy, momentum, angular momentum and the center of 
energy (CE) and Newton-Wigner (NW) positions, for arbitrary systems, are 
among them. The argument that in real measurements we can approximate 
these global observables adequately well by local observables presumes the 
ability to prejudge that space-time domain beyond which we need not 
consider.  
 
Since one inertial observers' definite time is another inertial observers tilted 
hyperplane the favored observables can not be related without recourse to 
solving the dynamics of the system. Instead, for unfettered comparison of 
observables and measurements, without recourse to dynamical solutions,  
each inertial observer must have direct access to the definite time 
observables for all inertial observers. In other words, each inertial observer 
must have direct access to observables on arbitrary hyperplanes, and thus, 
to the HD version of observables. 
 
If my argument holds water, how is it that contemporary high energy physics 
makes no explicit use of the HD formalism? The answer lies in the limited 
character of the observables actually measured in this branch of physics. 
They are all scattering observables, i.e., properties of individual quantons or 
collections of quantons moving freely ‘long’ before or ‘long’ after 
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participating in interactions. The dynamical and transformational aspects of 
these observables, themselves, are trivial. But if we are ever to go beyond 
this restricted set of observables, the HD approach, or something very much 
like it, will be required. Some interesting examples of recent practical use of 
the HD formalism have appeared in contexts out side of scattering theory. 
The examples occur in the ongoing research into relativistic quantum state 
diffusion, (Breuer et al 1998, 2002), where one is trying to build a covariant 
dynamical theory of state reduction, and in the field of relativistic plasma 
physics, (Hoell et al 2001a, b, 2002), where the quantons are always 
immersed in intense electromagnetic interactions. 
 
But the philosophically interesting issue is whether the HD operators that 
I’ve been arguing for are, in principle, genuine physical observables or not. 
I claim they are and that they are required for a conceptually adequate 
formulation of LCQT. 
 
2b: functional dependence and fundamentality 
 
More recently, another prominent member of the history and philosophy of 
physics community told me that he had heard expressions of puzzlement 
about why I spent so much time, in some of my articles and presentations, 
on the classical instances of HD dynamical variables (e.g., Fleming 2000). 
Since all of the classical instances are functionals of more fundamental non 
HD fields (integrals over hyperplanes of non HD or trivially HD integrands), 
the examples seemed to emphasize the, at best, secondary, derived and non-
fundamental character of the HD dynamical variables and thereby acted to 
depress interest in HD dynamical variables in LCQT. 
 
My response was three-fold:  
 
(1) The classical examples make clear that HD is not novel with Lorentz 
covariant QM and help to render more clear (and, hopefully, more palatable) 
some seemingly odd features of HD such as the violation of world-line 
invariance by HD position variables. 
 
(2) In the context of local QFT the HD dynamical variables are also 
functionals (often exactly the same functional form as in the classical 
analogue) of non-HD local field structures. But these functionals play the 
role of collective coordinates for the systems they refer to (which latter can 
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be physically quite arbitrary) and, in my view, are more closely related to 
what we actually measure than the so-called more fundamental fields. 
 
(3) Unlike the classical case, the quantum HD dynamical variables are 
usually incompatible (i.e., non-commuting) with the non-HD dynamical 
variables of which they are functionals. Thus one can never, even in 
principle, measure the HD quantities by measuring the local fields and then 
calculating the HD quantities. Thus they offer genuinely alternative modes 
of description and their formally secondary character is somewhat less 
diminishing than in the classical domain. 
 
Perhaps the most elementary instance of this third feature is provided by the 
total 4-momentum of a system, S, which, if the system is open, is HD, 
 
                      ∫ ν

νµµ ηθτηδ=τη x) ) x (x d  ) ,P S
4

S (ˆ(ˆ -     ,                             (2.1) 
 
where  x)S (ˆ νµθ  is the stress-energy-momentum tensor field for the system, 
S. 
 
We are accustomed to thinking of the total 3-momentum of a composite 
system as commuting with the contributions to it of the constituents of the 
system. The same with the total energy if interactions between the 
constituents are absent. But at the field theoretic level this notion must be 
qualified. Quite generally, for any bounded region, R, of the (η, τ) 
hyperplane, the total 4-momentum of the system on the hyperplane will not 
commute with that portion of the system 4-momentum contained within R, 
i.e., 
 
                       0  ] x) ) x (x d ), ,P [  

S
4

R x S ≠ηθτηδτη ∫ λ
λν

∈
µ (ˆ(ˆ -   .                (2.2) 

 
When the system, S, is closed we can calculate this commutator explicitly 
since then the total 4-momentum of the system becomes the generator of 
space-time translations for the system. The commutator is then equal to the 
hyperplane integral, 
 
                              x)   ) -x (x d i  

S
4

R x λ
λν

µ∈ ηθ∂τηδ∫ (ˆ- .                          (2.3) 
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Similar, albeit usually more complicated, results hold for most HD 
quantities. 
 
For the preceding complex of reasons, then, the functional dependence of 
HD dynamical variables on non-HD local fields does not seem to me to 
undermine the interest or importance of the former in LCQT. 
 
  
3. Response to de Koning (2001) on hyperplane dependent localization 
 
In a wide ranging and interesting dissertation, entitled, “Particles out of 
place: The feasibility of a localizable particle concept in relativistic 
quantum theory”, Henk de Koning (2001) devotes several pages to a 
discussion and assessment of the ideas of HD localization. Unique, so far as 
I know, among commentators, he has learned the HD formalism and 
provides a useful introduction to some aspects of it. Unfortunately, there are 
a number of early passages, not intended to be critical, in which I must 
disagree with his account of the purpose of the HD formalism and what it 
achieves. I can’t quite shake the feeling that our differences here may be 
primarily a matter of terminology, but it is precisely here that careful choice  
is all important! After these early passages de Koning’s main focus is on the 
HD extension of NW localization and in one particular he criticizes an 
aspect of my views on that localization in a manner duplicated, as we will 
later see, by Halvorson and Clifton. 
 
3a: interpreting the purpose of HD 
 
The first interpretive comments requiring response occur on p. 44 of the 
dissertation where de Koning writes, 
 
"Already in 1965 Gordon Fleming noted the problem involving 'non-objective' 
localization associated with the NW-operator as well as the superluminal propagation by 
an initially NW-localized particle. In order to safeguard the localization concept in the 
context of relativistic quantum theory he introduced the notion of hyperplane 
dependence. Among other things hyperplane dependence implies that the (non-
spatiotemporal) properties depend on the inertial reference frame you have chosen. So, 
judging whether a system is localized depends on the inertial reference frame you happen 
to be in." 
 
He returns to the same points on p. 96 with, 
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"First of all the [HD]-version of Newton-Wigner localized states are completely 
delocalized under a passive Lorentz boost as we can see from Eq. (4.31). This is 
evidently not a problem anymore if we adopt the [HD] framework; localization is 
hyperplane dependent and a passive Lorentz boost corresponds to shifting perspective 
from one to another hyperplane. Combining these two features makes it clear that it is in 
general not to be expected that localization in a bounded region is an invariant property 
under passive Lorentz boosts." 
 
De Koning is correct that prior to the HD generalization of NW localization, 
that localization is non-objective since NW localization at a definite time 
(the only kind available prior to the HD generalization) is lost under a 
passive Lorentz boost. NW localization at a definite time is dependent upon 
the inertial frame perspective adopted. However, the HD generalization 
removes that inertial frame dependence. The fact that generalized NW 
localization occurs on a definite hyperplane is a fact that, itself, holds 
equally from the perspective of all inertial frames. It is not lost under a 
passive boost! The hyperplane in question 'looks' different from the 
perspective of different frames, but it is one hyperplane that is in question 
and localization on a specific hyperplane or within a region of a specific 
hyperplane holds or does not hold, uniformly for all inertial frames. The 
non-objective character of the original NW localization is completely absent 
in the HD generalization. That removal of non-objective character was, for 
myself, the motivating purpose for introducing the HD generalization. 
 
Passive Lorentz boosts shift the perspective from one inertial frame to 
another, not from one hyperplane to another, i.e. from one system of 
description to another, not from one object of description – the hyperplane 
and the physical state of affairs on it – to another. Localization on a 
hyperplane is invariant under all passive Lorentz boosts. Any observer, even 
one not moving inertially, can choose to examine any aspect of the physical 
situation on any hyperplane. And he can retain his focus on that one 
hyperplane even as his state of motion changes. Two differently moving 
observers, examining the physical situation on one and the same hyperplane, 
will agree on what that physical situation is, however much they may 
describe it in different terms. They will, for example, agree on the 
probability for finding the NW position of a given system to lie within a 
given region of that hyperplane. They will also agree, for example, on the 
point of the hyperplane designated by the expectation values of the 
Minkowski components for the CE position operator for that system on that 
hyperplane. 
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On p. 92 de Koning misjudges the intended applicability of HD;  "The 
central idea in this approach is that all physical variables or observables are 
hyperplane dependent." But it is not the case that all physical variables are 
hyperplane dependent. The electric charge-current density 4-vector field is 
not. The electromagnetic field tensor is not. The stress-energy-momentum 
tensor density field is not. No local fields are. The total 4-momenta and total 
generalized angular momenta of closed systems are not. 
 
Roughly speaking, the physical variables that are hyperplane dependent 
include all physical variables representing non-constant or non-conserved 
global or collective properties of space-like extended systems.  If there are 
no physical point entities, and I believe there are not (see §1 in my 2003b 
and §7 below), then most position operators, at least, are essentially (as 
opposed to trivially) HD. The NW operator valued fields also have a 
covariant HD generalization (Fleming 2000), but they are non-local fields. 
 
3b: localizable properties 
 
On p. 94 de Koning, referring to Fleming and Butterfield (1999), writes, " 
The localization operator Fleming and Butterfield use is the Newton Wigner 
(NW) operator, - - - ." But in that paper, “Strange Positions”, we discussed 
both the HD CE position operator and the HD NW position operator and, 
briefly, in pp. 151-153, the general relationship between them. There is no 
sense in which we chose between them or in which it would make sense to 
choose between them. They each represent the locations on hyperplanes of a 
particular collective physical property of space-like extended systems. For 
the CE position operator, the property in question is indicated by the name, 
center of energy.1 For the NW position operator the property located is, in a 
very precise sense, the center of spin (CS)(Fleming 1965a, b).2a We should 
all start calling the HD NW position operator the center of spin, or the HD 
CS position operator. A calculational advantage to the HD CS comes from it 
having commuting Minkowski components. A calculational advantage of the 
HD CE comes from the simple way it is formed for a composite system in 
terms of the HD CE's for the constituent subsystems2b, especially in the 
absence of interactions between the subsystems. For systems with zero 
internal angular momentum, but only for such systems, the HD CE and the 
HD CS coincide. 
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3c: ‘localized within’ vs. ‘measureable within’ 
 
The most important comments by de Koning regarding HD concern the 
meaning of localization. On p. 98 de Koning  conjectures an interpretation of 
comments made in ‘Strange Positions’ to undermine the demand 
for the space-like separated spectral projectors for the HD CE or HD CS to 
be commuting operators. To our (p.160),  " - - the inference to causal 
anomalies assumes that association of the projectors with spacelike 
separated regions involves precise measurability via operations performed 
within those regions. But this assumption is questionable.", de Koning 
responds with, 
 
"- - - what is the operational meaning of associating an operator to a region, if this 
operator can't be measured in that region? In particular in the case of a position operator, 
the rejection of [this association] is very counterintuitive. It sounds as if one has to look 
also in a region ∆ to figure out if, for instance, a particle is located in region ∆', spacelike 
related to ∆. Besides, it is not only very counterintuitive, it is also at odds with current 
experimental practice in which detection and localization experiments are always local." 
 
While I admit that we did not write clearly enough to rule out de Koning’s 
interpretation of our comments as a possible one (Halvorson (2001) and 
Halvorson and Clifton (2002) also adopted this interpretation), that 
interpretation was not what we intended! The suggestion that observables 
associated with a space-time region may not be measurable within that 
region was not intended to mean that we need to examine other regions to 
determine the observable of interest in the associated region. What the 
suggestion intended was that to determine the observable in the associated 
region we may need to deploy instruments and initiate processes that occupy 
regions that are not confined to the associated region. 
 
Contrary to the spirit of de Koning’s last quoted sentence, one need only 
consider the historical examples of Geiger counters, cloud chambers, spark 
chambers, bubble chambers, electron microscopes and scanning tunneling 
microscopes, to suspect that the smaller the region of interest, ∆, the more 
vastly larger, by comparison, the deployment of apparatus might need to be! 
The instrumentation and physical processes of these devices are hardly 
strictly confined to the space-time regions in which one expects the 
phenomena or properties of interest to occur! The same can be said for 
ordinary unaided human observation. And if one wishes to split hairs and 
include ALL correlated features of the measurement, then the 



 13 

instrumentation and process domain may well be unbounded!  Indeed, the 
real possibility of there not being any precise boundary at all within which 
all the apparatus was strictly confined is a consideration that will be forced 
upon us in section 5! In any case, once the existence is granted, of apparatus 
and physical processes germane to the measurements but extending outside 
the regions to which the measurements refer, it is not so easy to justify 
compatibility of the measurements (commutativity of the corresponding 
operators) merely on the basis of space-like separation of those regions. For 
in such a case one could not so easily rule out time-like influences between 
sets of apparatus deployed to examine space-like separated regions, and thus 
interfering with commutativity (Fig. 1).  In this connection it is important to  
 
                                                                                                                                                      
                                                                Possible boundaries of processes 
                                                                          and systems tenuously connected 
                                          Future                      with measurements and having time-         
                                          light-cone                like connections                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Possible boundaries of processes 
and systems very tenuously 
connected with measurements                  Space-like separated regions of 
and having time-like connections             interest to be measured                                                    
                                                            
 
Fig.1: Possible source of incompatibility of measurements of    
           observables associated with space-like separated regions 
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remember that the microcausality violating non-vanishing commutators in 
question (commutators between space-like separated spectral projectors for 
the HD CE or HD CS position operators) are invariably exponentially 
damped with increasing space-like separation. 
 
3d: the Hegerfeldt theorems 
 
Finally I will take this opportunity to respond to a query of de Koning's. On 
p. 99 he writes, "Curiously, Fleming and Butterfield don't even mention 
Hegerfeldt's theorem, so it [is] not so clear how they appreciate it." 
 
While we did mention Hegerfeldt's (1974, 1985) on pp. 108, 116 and in the 
references, we did not discuss Hegerfeldt's theorem in ‘Strange Positions’ 
because we accept the theorem completely. In keeping with the conclusion 
of the theorem both the HD CE and HD CS localized states display HD 
constrained superluminal components to their evolution (Fleming 1965a, b). 
Unlike Hegerfeldt, however, I believe this superluminal evolution to be a 
real physical process, not something to be eliminated from the theory. We 
suggested, and I continue to expect, that in the context of our views on non-
local measureability the HD constrained superluminal evolution does not 
lead to causal anomalies. Admittedly, all that is certain thus far is that no one 
has shown that it does lead to causal anomalies. If my expectation is correct, 
demonstrating that it doesn't is a matter to be worked out in the future.  
 
De Koning’s dissertation contains much more of interest and worthy of 
consideration, but as the rest does not bear directly on HD, I leave it here. 
 
 
4: Response to Halvorson (2001) on the relationship between the Reeh-
Schlieder theorem and Newton-Wigner localization. 
 
This section addresses the conflicting claims made in my (2000) ‘Reeh-
Schlieder meets Newton-Wigner’ and Halvorson's (2001) ‘Reeh-Schlieder 
defeats Newton-Wigner’. In this instance misinterpretation is, I think, a 
minor issue, being replaced by genuine disagreement on several points. 
 
Halvorson and I agree that the NW fields, which create or annihilate 
quantons in NW position eigenstates, satisfy the 4-dimensional version of 
the Reeh-Schlieder (RS) theorem and that it is only the 3-dimensional 
version of the RS theorem that the NW fields avoid. We disagree on whether 
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the avoidance of the 3-dimensional RS theorem coupled with the display of 
superluminal evolution makes the NW field’s relation to the vacuum state 
any less counterintuitive than the local field’s relation to the vacuum state. 
We also disagree on whether NW localization is more susceptible to a 
coherent interpretation than what Halvorson calls the “standard localization 
scheme”. I will, in fact, argue that the ‘standard’ localization scheme is not 
a quantum localization scheme of any kind at all, i.e., it does not 
correspond to the identification of any possessable, observable property for 
the quantum system in question. I will suggest a variant that does so and will 
compare the variant approximate localization scheme to HD NW 
localization in §7. We disagree on the physical acceptability of superluminal 
evolution, which NW representation state functions and HD NW quantized 
fields display as a part of their time-like evolution. Finally, we disagree on 
the acceptability of violations of universal microcausality. I challenge the 
implication of act-outcome correlations over space-like intervals for NW 
localization by interpreting the localized states as not confining the quanton 
itself but rather as confining a localizable property that exists within the 
(infinitely) extended quanton (See §5 and §7.) and by denying (as stated in 
§3c) the interpretation of ‘localized within’ in terms of ‘measureable within’. 
 
4a. cyclic states and superluminal evolution 
 
Let me provide some background to this tangled web. 
 
The RS theorem concerns the breadth of results that can be obtained by 
applying the members of a local algebra of fields to states of bounded 
energy. For any 4-dimensional bounded, open region of space-time, O, or 
any 3-dimensional bounded, open region, G(η,τ), of the (η,τ) space-like 
hyperplane, the local algebras, A(O) and A(G(η,τ)), contain the operator 
valued functionals of the quantized fields with support in O or G(η,τ), 
respectively. A state vector, Ψ, in the quantum state space, is said to be 
cyclic with respect to an algebra, A, of operators acting within the state space 
iff the set of state vectors, AΨ, obtained by applying all the operators of the 
algebra to the original state vector, is dense in the state space. The RS 
theorem asserts that for free quantized local fields, the state vectors with 
bounded energy spectrum (which includes the vacuum) are all cyclic with 
respect to any A(G(η,τ)) and for both free or interacting quantized local 
fields, the same state vectors are cyclic with respect to any A(O). 
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This result was, at first, quite surprising to the Physics community as it 
seemed to suggest that by the performance of operations confined to 
bounded regions of space-time or hyperplanes (certain operators within the 
algebras were interpreted as representing such operations) one could produce 
results at arbitrary space-like separation from the operations (the generated 
set of state vectors included members arbitrarily close to those representing 
such results). With time, however, the majority of field theorists came to 
accept the RS theorem as just another of the many counterintuitive features 
of quantum theory with which we must live. 
 
I. E. Segal (1964) pointed out that a non-local transform at definite time of 
local free fields, which transform creates and annihilates NW position 
eigenvectors, fails to satisfy the RS theorem for instantaneous regions of the 
type, G, i.e., if one forms the algebra, ANW(G((1,0),x0)), of the transformed 
field with support confined to the bounded, open region of 3-space at the 
time x0, G((1,0),x0), then the states of bounded energy spectrum are not 
cyclic under that algebra. At the time the superluminal evolution and non-
covariant transformation properties of the new NW field defined by Segal  
stood in the way of a physically satisfying interpretation of these results. 
 
I introduced the covariant HD generalization of the NW fields in my (1966) 
but was not then concerned with the RS theorem (by virtue of being wholly 
unaware of it), which I did not address until my (2000), pointing out there 
that the lack of cyclicity of the energy bounded states under any of the HD 
NW-local algebras, ANW(G(η,τ)), over the HD NW fields on the (η,τ) 
hyperplane was a Lorentz invariant feature. I then claimed this feature to 
provide an additional perspective on the structure of the quantum states 
relative to quantized fields and that the HD NW fields had a less 
counterintuitive relation to those states than the local fields.     
 
Halvorson (2001) showed that the HD NW fields do still satisfy the 4-
dimensional version of the RS theorem for space-time regions, O, of 
arbitrarily small but non-vanishing time-like dimension. He then claimed 
that the failure of the 3-dimensional RS theorem to hold for the ANW(G(η,τ)) 
algebras, with zero time-like dimension, can hardly do much to alleviate the 
putative counterintuitive character of the RS theorem. He further claimed 
that the counterintuitive character itself was effectively removed by attention 
to the distinction between selective and non-selective operations within the 
algebras concerned. 
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On page 125 of his (2001) Halvorson writes “Thus, if worry about the RS 
theorem is about cyclicity in general, adopting the NW localization scheme 
does nothing to alleviate this worry.” And then on page 127 he writes, 
 
“- - - the RS theorem already has ‘counterintuitive’ consequences for the fixed time NW 
localization scheme. In particular, although the vacuum Ω is not cyclic under operations 
NW-localized in some spatial region G at a single time, Ω is cyclic under operators NW 
localized in G within an arbitrarily short time interval . - - - In Fleming’s language, then, 
the NW-local fields ‘allow the possibility of arbitrary space-like distant effects’ from 
actions localized in an arbitrarily small region of space over an arbitrarily short period of 
time. Is this any less ‘counterintuitive’ than the instantaneous version of the RS theorem 
for the standard localization scheme?” 
 
And then on page 132, “while their may be very good reasons for seeing the 
NW fields as covariant structures, avoiding the RS theorem is not one of 
them.”  
 
But the worry, if ‘worry’ is the right word, is not about cyclicity per se. It is, 
as Halvorson realizes is a possibility, about the cyclicity of the vacuum , and 
states of bounded energy generally, relative to the local algebras of a strictly 
subluminally evolving, microcausal field. We come to ‘understand’ the RS 
theorem, for the local fields, by learning that relative to local fields the  
vacuum is neither empty nor unstructured (see my 2000 and Halvorson’s 
2001 for details). Indeed, relative to local fields, the vacuum is 
superentangled. Relative to the NW fields, however, the vacuum is both 
empty and 'unstructured'. We then come to 'understand' the 4-dim. RS 
theorem, relative to the NW fields, by recognizing the superluminal aspect of 
the evolution of the NW fields and their violation of microcausality. By 
virtue of superluminal evolution the NW fields can propagate the 
consequences of operations NW localized within G throughout space within 
an arbitrarily short time-like interval. But this can constitute real 
understanding of the RS theorem, relative to the NW fields, only if the NW 
fields can be understood as covariant structures, i.e., as structures compatible 
with the principles of Lorentz covariance. So while we do not avoid the four 
dimensional version of the RS theorem by seeing the NW fields as covariant 
structures, we do achieve some dynamical understanding of the theorem 
thereby. And yes, while it may reduce to a matter of personal psychology 
and so be devoid of objective significance, I have to say that a 4-dim. RS 
theorem springing from HD, covariant, superluminal evolution and 
microcausality violation is, by virtue of its dynamical character, less 
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counterintuitive to me than the 3 or 4-dim. RS theorem for local fields due to 
global features, i.e., superentanglement, of the cyclic states. 
 
Ultimately, the difference between the subluminal evolution of microcausal 
local fields and the superluminal evolution of microcausality violating NW 
fields has nothing fundamental to do with HD. Instead it has to do with the 
separation of local fields into their positive and negative frequency parts, or, 
put another way, into their creation and annihilation parts. The NW field is 
just an integral transform of the annihilation part of the local field. Even 
without the integral transform that part of the local field evolves 
superluminally and violates microcausality. The integral transform is then 
brought to bear to extract the annihilation operators for HD NW position 
eigenvectors and this is done to give the Minkowski coordinate that labels 
the field physical significance as an eigenvalue of an observable, the HD 
NW position operator. 
 
Finally, for this subsection, a word on the claimed removal of 
counterintuitive character from any version of the RS theorem via the 
distinction between selective and nonselective operations. This distinction 
was introduced in (Clifton and Halvorson 2000), a paper I’m not formally 
responding to here as it did not address any claims concerning HD. 
Halvorson employed the distinction in the paper under consideration, 
however, where, on page 119 he writes, “- - once one makes the crucial 
distinction between selective and nonselective local operations, local 
cyclicity does not obviously conflict with relativistic causality.” Without 
claiming a conflict with relativistic causality, I fail to see how the distinction 
mentioned does anything to lessen the counterintuitive character of the RS 
theorem. The argument appears to be that of the two kinds of operations, 
only the nonselective ones can be construed as consisting solely of physical 
operations and it is not possible for a nonselective local operation associated 
(in the local algebra sense) with one space-time region O, to change the 
expectation value of any observable associated (in the same sense) with a 
space-like separated region, O’. A selective operation, however, consists of a 
nonselective operation that yields distinguishable subensembles, a mixed 
state, in effect, followed by a selection of a subset of those subensembles 
and it is only the selected subset that can yield altered expectation values 
within O’. But altering expectation values by selecting, i.e., focusing ones 
attention, on a subset of distinguishable subensembles is hardly 
counterintuitive. 
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Now I certainly agree that there is nothing counterintuitive about changing 
distant expectation values by selecting within distinguishable subensembles 
for states of the joint O & O’ system. But it was the initial, nonselective, 
purely physical operation that produced the distinguishable subensembles, 
within which the altered expectation values occur. It is this purely physical 
process which is counterintuitive and yes “amazing”. The fact that we don’t 
get to see the effect until we make the selection does nothing, it seems to me, 
to diminish the surprise that the effect is there to be seen if we choose. 
 
As for being counterintuitive; quantum theory has been characterized by 
counterintuitive features from the beginning and continues to be so. I suspect 
we will not see the end of such revelations for some time yet. But the 
revelations need not mean, and usually don’t mean, that anything is wrong. 
Only that, being counterintuitive, our understanding of them can benefit 
from a variety of perspectives on how they come about. The local algebra 
perspective explains the counterintuitive features under discussion here via a 
highly entangled structure of all states of bounded energy, including the 
vacuum. The NW approach explains the same counterintuitive features by 
eliminating the 3-dimensional version and bringing the 4-dimensional 
version about via superluminal evolution, all rendered consistent with 
Lorentz covariance by HD.     
 
4b: superluminal evolution itself   
 
Of course the superluminal aspect of the evolution of the HD NW fields or 
position eigenvectors or state functions is, itself, troublesome to some. 
Halvorson, in effect, challenges the idea that superluminal evolution can be 
physically acceptable when he writes, on page 125, "From a physical point 
of view, the spectrum condition corresponds to the assumption that (a) all 
physical effects propagate at velocities at most the speed of light, and (b) 
energy is positive." The spectrum condition referred to is that the joint 
eigenvalue spectra of physical 4-momentum operators lie within the forward 
light cone of 4-momentum space. But the first part, (a), of the 
correspondence referred to is strictly demonstrable only in classical relativity 
and while it carries over into QFT for the dynamical evolution of local 
fields, it does not carry over for the HD  NW fields, even though both kinds 
of field satisfy the spectrum condition.  
 
Furthermore, it is risky to equate possible velocities with possible 
propagation effects. For while NW position representation state functions 



 20 

have a space-like propagation aspect (which we call superluminal) the time-
like derivative of any HD NW position operator, i.e., an HD NW velocity 
operator, has a strictly subluminal eigenvalue spectrum which does emerge 
directly from the spectrum condition. Thus, for any closed system, S, we 
have, 
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SS NW,

P
P  
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ˆ
ˆˆ
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τη∂ µµ

    ,                                  (4.1a) 

 
strictly subluminal, even though, < η, x; NW| Ψ ) , the HD NW 
representation state function for a single spinless quanton, evolves, via the 
free quanton HD Schroedinger equation, 
 
                      i η∂ < η, x; NW| Ψ ) = Rη < η, x; NW| Ψ ) ,                   (4.1b) 
 
 partly superluminally, where, 
     
              |NW  x;,    x  )x    ,(X |NW  x;, NW η<=η=τηη< µµˆ .                    (4.2a) 
 
and                              Rη : = [κ2 + ∂µ∂µ – (η∂)2]1/2 ,                              (4.2b) 
 
is anti-local (Segal et al 1965).3 

 
What is guaranteed by the subluminal velocity operator for the state function 
evolution is that no superluminal group velocities can be generated. But 
mere space-like contributions to the evolution of fields and/or state functions 
is compatible with Lorentz covariance and to demand, beyond that, 
compatibility with classical relativistic causality is, it seems to me, an 
unwarranted and probably unworkable imposition in the quantum domain.  
 
4c: Halvorson’s ‘standard’ localization scheme and a variant 
 
As an alternative to the HD NW localization scheme, Halvorson contrasts 
what he calls the ‘standard’ localization scheme, based on a canonical 
mapping of classical Cauchy data (CCD) of a real classical Klein-Gordon 
field onto the space of single quanton states. Avoiding the mildly prejudicial 
term, ‘standard’, I will call this the CCD representation of the single quanton 
state space. Prior to erecting the multi-quanton Fock space and operator 
algebras on this basis, Halvorson displays the relation between the CCD and 
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the NW representation in the single quanton state space accompanied with 
the comment, “Thus the one particle [representations, CCD and NW] are 
mathematically, and hence physically, equivalent. On the other hand, the 
two [representations] certainly suggest different notions of localization.”(my 
paraphrasing). Putting aside the issue of whether mathematically equivalent 
structure of distinct formalisms entails physically equivalent content of their 
interpretations, I want to claim that this comment suggests a notion of 
localization in the CCD representation that can not be sustained.  
 
The displayed relation between the CCD and NW representations is, 
 
                         ψNW = 2−1/2 ( R1/2u0 + i R−1/2u1 ) ,                                    (4.3) 
 
where u0 is the real Cauchy data for the field, φ, and u1 is the real Cauchy 
data for the time derivative, ∂φ/∂t . I take Halvorson’s comment to imply 
that the notion of localization suggested by the CCD representation is that if 
u0 and u1 have support confined to a region, G, then the quanton or some 
localizable property of the quanton is confined, or at least approximately 
confined to G. But suppose we multiply the NW state function by the 
imaginary unit, i. This can change nothing in the physical content of the state 
being represented. Yet, 
 
                                 i ψNW = 2−1/2 ( i R1/2u0 − R−1/2u1 )  
 
                           = 2−1/2 ( R1/2( −R−1u1) + i R−1/2( Ru0 )),                          (4.4) 
 
and the corresponding CCD is now ( −R−1u1, Ru0 ) rather than ( u0, u1 ). In 
particular, if the original CCD was confined to a bounded G, then the new 
CCD has unbounded support.  
 
I am not certain Halvorson did intend the notion of CCD localization I’m 
criticizing here. He never declares it explicitly and he is very aware that 
CCD confined to a bounded region defines only a real linear space, which is 
the feature that leads to my example. But he also never cautions against this 
interpretation which his comment that I quoted lends itself to. If I have 
misunderstood what he meant, I have no idea what that might be. 
 
The reality of u0 and u1 is due to Halvorson working with a self conjugate 
field, i.e., a field for which the quantons are identical to their anti-quantons. 
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Such quantons are comparitively rare in the actual quanton zoo and I would 
prefer to abandon that assumption, thus allowing u0 and u1 to be complex. 
This will not reinstate the questioned CCD localization scheme, however, 
since the CCD in this case will yield a superposition of a single quanton and 
a distinguishable anti-quanton (a superposition which usually violates a 
superselection rule) unless we have (positive frequency condition), 
 
                                                 i u1 = Ru0 ,                                             (4.5a) 
 
for a single quanton state and (negative frequency condition), 
 
                                               i u1 = − Ru0 ,                                            (4.5b) 
 
for a single anti-quanton state. We notice that in these cases at most one of 
u0 and u1 can have bounded support. The NW representation state function 
for single quanton or single anti-quanton states then are, 
 
                           ψNW = 2−1/2 ( R1/2u0 + i R−1/2u1 ) = (2R)1/2u0 ,               (4.6a) 
and 
                       ψ^ NW = 2−1/2 ( R1/2u0 − i R−1/2u1 )* = (2R)1/2u0* ,            (4.6b) 
 
respectively. We will designate the functions, u0, that satisfy (4.5a, b) in the 
customary way as u(+) and u(−), for positive and negative frequency, 
respectively. We then have, quite generally, 
 
                    ψNW = (2R)1/2u(+),        ψ^ NW = (2R)1/2u(−)*.                        (4.7) 
 
With these last results we are again offered a possible alternative localization 
scheme to compare with the NW scheme and this time it’s a scheme that 
survives arbitrary complex linear superposition. I will call it the definite 
frequency (DF) localization scheme.  
 
If F(+)(G) is the set of NW state functions with positive frequency data 
confined to G, then, being a subspace closed under complex linear 
superposition, the subspace represents some possessed property of the single 
quanton.4 The property in question, however, is not  precise localization of 
anything within the designated bounded regions! The reason is that even if G 
and G’ are disjoint the state functions in F(+)(G) are not all orthogonal to 
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those in F(+)(G’), respectively. In particular, the point localized basis 
functions for the positive frequency data, i.e., 
 
                                          uy

(+)(x) : = δ3( x – y )                                      (4.8) 
 
are not orthogonal for distinct y and y’. Thus, within F(+)(G), putting, 
 
                                     ψNW, y (x) : = (2Rx)1/2uy

(+)(x),                               (4.9) 
 
we have, 
 
                   < ψNW, y’ | ψNW, y > = ∫ d3x ψNW, y’ (x)* ψNW, y (x)  
 
    = ∫ d3x [(2R)1/2uy’

(+)(x)]*[(2R)1/2uy
(+)(x)] = ∫ d3x uy’

(+)(x)*2R uy
(+)(x) 

 
                                        = 2Ry’δ3( y’ – y ) ≠ 0.                                     (4.10) 
 
Consequently the subscript, y, labeling these basis functions is not an 
eigenvalue of any self adjoint operator and does not represent a definitely 
possessed property.4 Nevertheless, these non-orthogonal basis functions can 
be interpreted as ‘states’ approximately localized around the coordinate, y, 
in some sense, and the sense of the approximation can be made precise by 
analyzing the relationship of these ‘states’ to the NW position operator and 
the NW position eigenfunctions. This will be done in §7. 
 
The discussion of the last few pages has not considered HD in any detail and 
the reader may suspect that the modified localization scheme based on 
definite frequency initial data, by virtue of (4.9), generalizes to an HD 
scheme just as the NW scheme does. This is, however, not the case. To see 
this we note that the definite frequency parts of the local field operator are 
given by formally the same relations that define the definite frequency parts 
of the initial data. Thus, just as we have, 
 
                          u0 = u(+) + u(−)        and       u1 = iR(u(−) − u(+)),             (4.11) 
 
we also have (allowing for possible HD), 
 
                                      x),(   x),( (x) )()( ηφ+ηφ=φ −+ ˆˆˆ                             (4.12a) 
and 
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                              )  x),(   x),((iR  (x))( )()( ηφ−ηφ=φ∂η +−
η

ˆˆˆ                    (4.12b)  
 
This yields,  
         

                               (x)])(R i  (x)
2
1  :  x),( 1)( φ∂η±φ=ηφ −

η
± ˆˆ[ˆ .                    (4.13) 

 
But now, if we use,           
 
                             ∂ (η∂) /∂ηµ = ∂µ − ηµ(η∂) : = Dη; µ ,                         (4.14a) 
 
      ∂ Rη /∂ηµ = (∂/∂ηµ) [κ2 + ∂α∂α − (η∂)2 ]1/2 = − Rη

−1Dη; µ η∂ ,         (4.14b) 
 
and the KG field equation, 
 
                                        (x) R   (x))( 22 φ−=φ∂η η

ˆˆ ,                                (4.14c) 
 
it follows that  
 
                                          0   / x),( )( =η∂ηφ∂ µ±ˆ ,                                  (4.15a) 
 
or                                       (x)     x),( )()( ±± φ=ηφ ˆˆ .                                  (4.15b)                             
 
Thus, for a single spinless quanton state vector, | Ψ ),  
 
                                < x | Ψ ) : = ( Ω | (x))(ˆ +φ | Ψ ),                               (4.16a)  
 
is the DF representation state function and 
 
                            < η, x; NW| Ψ ) = ( 2Rη )1/2 < x | Ψ ) ,                      (4.16b) 
 
is the corresponding HD NW representation state function.  
 
Halvorson spells out in some detail the construction of the operator algebras 
associated with 3-dimensional compact space-like regions by virtue of being 
functions and weak limits of functions of field operators that, in turn, are 
linear functionals of CCD with support confined to the compact regions. 
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This makes all the operators in such an algebra, themselves, functionals of 
the corresponding quantized local field with support confined to the region 
in question and this latter, slightly looser characterization suffices for our 
purposes. Inside the algebra for a bounded region, G, nothing like the above 
problem for single quanton states occurs since complex linear superposition 
is permitted. Accordingly, Halvorson mounts the ‘standard’ or CCD 
localization scheme here by identifying the operators in such an algebra with 
the observables that can be measured within the region in question. I turn to 
that interpretation next. 
 
4d: again, ‘measureable within’ vs ‘localized within’   
 
Just as with de Koning above, Halvorson grounds the relation ‘is localized 
in’ on the claimed more fundamental relation ‘is measurable in’ and is 
puzzled that (p. 130) "- - Fleming appears to take the localization relation to 
be primitive. However, if localization is a primitive relation, it is not obvious 
why we should think it coincides with the assignments made by the NW 
localization scheme."  
 
In the first place, how would one know that a measurement was a 
‘measurement within’ a given bounded region unless one had reason to 
accept that either the apparatus or at least the processes involved had, 
themselves, been ‘localized within’ that region? Would this assessment 
require yet another ‘measurement within’ and thus put us on the road to 
infinite regress? But we know that this is not required. While an observation 
is required to confirm localization, that observation need not itself be 
similarly localized. 
 
In the second place, localization, per se, does not , even in my approach, 
always coincide with NW localization. As was mentioned in p. 11, above, 
and spelled out in more detail in notes 2a and 2b, in a system with non-zero 
internal angular momentum NW localization is distinct from localization of 
the CE and one might very well be concerned with the latter rather than the 
former. (CE localization could only be sharply bounded, however, for one 
Minkowski component of the CE since the Minkowski components of the 
CE do not commute in the presence of internal angular momentum)2b. In 
field theoretic systems with non-zero total charge – of the electric or other 
varieties – we can define a center of charge (CC) position operator and 
examine the localization of the CC in various quantum states. For general 
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systems in QFT, many different localizable properties can coexist. And this 
is a crucial point: 
 
It is not some unique kind of localization of objects or systems, themselves, 
that is at issue, but the localization of various properties, all of which are 
carried by a great variety of kinds of objects and systems. 
 
Elsewhere on page 130 Halvorson writes, 
 
"How then does Fleming interpret the association of an observable with a region of 
space? That is, what does he mean by saying that an observable is localized in a region of 
space? - - - the NW position operator is not contained in any NW local algebra, and there 
is no natural correspondence between the spectral projections of the NW position 
operator and the NW local algebras. Thus, even if we were to concede that the NW 
position operator has 'unequivocal physical significance', this would not appear to clarify 
the physical significance of NW local algebras." 
 
To further emphasize the ambiguity resulting from taking localization as 
primitive relative to measurement, Halvorson considers (p.131) applying a 
unitary transformation, that leaves a hyperplane invariant, to a NW local 
algebra associated with a bounded region of the hyperplane. Because of the 
preservation of formal properties under the unitary transformation, he asks 
how I would decide whether the original algebra or the transformed one 
represents observables associated with the region. 
 
I will address these comments in reverse order. 
 
While one can always subject every operator and state vector to arbitrary 
unitary transformations without changing physically significant formal 
properties, the NW position operator(s) and NW local algebras are not, by 
themselves alone, susceptible to such transformations. In particular, once the 
assignment of total energy, total momentum, total angular momentum and 
Lorentz boost operators for arbitrary systems is made, the corresponding 
assignments of the CE position and the NW position for arbitrary systems is 
determined.5 

 
The NW local algebras are then defined in terms of these global operators 
since the NW fields, themselves, are defined as those linear functionals of 
the local fields and their time-like derivatives that create and annihilate field 
quantons in NW position eigenstates. An NW local observable is associated 
with a given region of a hyperplane iff it is a functional of the NW fields 
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with support confined to the points on the hyperplane belonging to that 
region. The correspondence between the spectral projectors of NW position 
and the NW local algebras is not as simple as Halvorson seeks and so he 
may choose not to dub it “natural”, but it’s the same kind of correspondence 
that exists in non-relativistic QFT between the spectral projectors of the 
center of mass position operator and the field theoretic ‘local’ algebras. In 
both cases the center in question for a system can be sharply confined to a 
region without all of the parts of that system having their corresponding 
centers similarly confined. But so what?! What’s so unphysical about that? 
 
Agreed, none of the global operators, from the total energy to the NW 
position operator(s) or their spectral projectors can be found within any NW 
local algebra (or any standard local algebra for that matter). Nor can their 
analogues be in the non-relativistic case. This is one reason I eschew 
working solely within the local algebra framework. It offers the sanctuary of 
the mathematically well behaved at the expense, I think, of physical 
conceptual adequacy.   
 
In particular, I think a strong motivation for making ‘measurement within’ a 
primitive concept is the protection thereby conveyed to the principle of 
universal microcausality. But notwithstanding the received attitude towards 
the microcausality condition satisfied by the local algebras based on local 
fields, it is worth noting that that condition does not require the observables 
of local algebras to be strictly measureable within the associated space-time 
region. It, by itself, merely allows for that possibility, in principle. But, in 
fact, we never measure observables that are localized within a space-time 
region by deploying apparatus or executing actions strictly confined to the 
smallest region within which the observable is localized (see §3 c above and 
§5 below for elaboration). So if, in accordance with Halvorson’s CCD 
scheme, the operators within local algebras are measureable within the 
regions they are associated with, then they are not the observables we 
actually measure. In any given instance the situation in this regard may be 
improved with time by technological developments that will diminish, 
without eliminating, the dependence of the measurement process on physical 
processes and apparatus lying outside the minimal domain of the local 
observable. But the fact that we can, and invariably do, measure properties 
within a space-time domain by executing actions not confined to that domain 
means that ‘is measurable within’ has nothing essential to do with the 
meaning of ‘is localized within’ – except to depend, in part, on the latter, for 
its meaning!  
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Consequently, the failure of the NW local algebras to satisfy the 
microcausality condition does not imply that they give rise to act-outcome 
correlations over space-like intervals. Rather it implies, or can be regarded 
as implying, that (at least some of) the essential measurement processes 
lying outside the associated region of the observable have (from the 
perspective of local fields) time-like influences that undermine 
commutativity (Fig. 1). Indeed, given that any observable within an NW 
local algebra is a functional of the local fields with space-like unbounded 
support, there is no reason to expect that such observables can be precisely 
measured with actions strictly confined to any space-like bounded region at 
all. 
 
On the other hand, and in the spirit of what I will call the Halvorson and 
Clifton FAPP argument to be discussed below, the fact that the non-
vanishing commutators of space-like separated observables within NW local 
algebras are 'small' and exponentially decreasing with increasing space-like 
separation helps to account for the FAPP success we have in discussing 
measurement processes as if they were confined to space-like bounded 
domains.  
 
     
5: Response to Halvorson and Clifton (2002) on localization and 
measurement 
 
In Halvorson and Clifton's (2002) "No place for particles in relativistic 
quantum theory", the authors reach some important novel conclusions 
concerning relativistic quantum theory (RQT). For my purposes, the central 
conclusion, is that there are no strictly localized particles or objects in such 
a theory. This result is obtained from some of the premises of the local 
algebra approach to RQT and from strengthened versions, which the authors 
provide, of the theorems of Malament (1996) and Hegerfeldt (1998). 
Throughout the stages of their discussion, the one unchanging presumption, 
upon which the conclusions reached come more and more to depend, is 
universal microcausality (the principle that any two observables ‘referring’ 
to properties localized in space-like separated regions of space-time must 
commute). This principle is, in turn, justified via the insistence, encountered 
above in de Koning (2001) and Halvorson (2001), that the concept of  ‘being 
localized within a region ∆’ receives its meaning from the supposed more 
primitive concept of  ‘being measureable within a region ∆’.  
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With regard to their central conclusion I am completely in agreement! While 
my own arguments in the past, as mentioned in section 1 of my (2003b), 
have only been against the point-like character of quantons and have offered 
some minimal extension diameter estimates, I will here (§7) offer additional 
quantitative arguments in support of the impossibility of strict localization of 
quantons within any bounded space-like region. And from the strict non-
localizability of quantons to the strict non-localizability of any objects 
whatsoever is, in the context of quantum field theory, a very plausible path. 
 
Unfortunately, I see the arguments used by Halvorson and Clifton to reach 
their central conclusion to be confused and inconsistent. I find no problem 
with the purely mathematical aspect of their arguments. It is the physical 
interpretation of their mathematics that I will argue is, at best, ad hoc and 
sometimes inconsistent. The upshot, as I will show, is to undermine the 
support of the principle of universal microcausality by virtue of rendering 
the concept of being measurable (strictly) within a region ∆  devoid of 
reference. These conceptual collapses then open the world of non-localizable 
objects to description, in part, by hyperplane dependent dynamical variables 
with their (exponentially damped) violations of universal microcausality.  
 
5a: opening claims of Halvorson and Clifton   
 
Already in the first page of their paper, referring to the implications of the 
theorems of Hegerfeldt and Malament, Halvorson and Clifton write,  "Thus 
it appears that quantum theory engenders a fundamental conflict between  
relativistic causality and localizability."  The phrase, "relativistic causality"   
includes the proscriptions against superluminal evolution of position 
representation state functions (which I discussed above in §4b) and non-
vanishing commutators of space-like separated observables, particularly 
space-like separated spectral projectors of position operators. By 
"localizability"  is intended a theory that admits point quantons or at least, 
quantons  susceptible to total confinement within finite volumes. 
 
On their p. 2 these judgements are reinforced with two statements. First, 
 
 "- - - if we believe that the assumptions of Malament's theorem must hold for any 
empirically adequate theory, then it follows that our world can not be described by a 
particle theory." 
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  Second, after a description of some results they will derive in an appendix, 
 
 "While these results show that there is no position observable that satisfies relativistic 
constraints, quantum field theories – both relativistic and non-relativistic – already reject 
the notion of a position observable in favor of localized field observables." 
 
In the first statement, the phrase “a particle theory”  means not merely a 
theory that admits localizable quantons, but one that takes such quantons as 
fundamental ingredients from which the theory is built up. In the next 
sentences they promise additional results that will also exclude the former 
option.  In the second statement, the phrase, “already reject the notion of a 
position observable”, must mean rejects the fundamental status of position 
observables since position observables certainly exist in the non-relativistic 
case, albeit as derived concepts, e.g. the total center of mass and the center 
of mass of all electrons, say. Also, I take the  “relativistic constraints”  of the 
second statement to mean the same as the “relativistic causality” that I 
commented upon in the preceding paragraph. 
 
Halvorson and Clifton correctly understand that Butterfield and I do not 
agree that “the assumptions of Malament's theorem must hold for any 
empirically adequate theory” and that we do not regard as binding on all 
observables what they called “relativistic causality”. However, when they 
come to assess the argument that we (1999, see p. 160.) gave on behalf of 
the violation of space-like commutativity of position operator spectral 
projectors, they repeat the interpretations of de Koning (2001) and 
Halvorson (2001). 
 
5b: (and yet again) ‘localized within’ vs ‘measureable within’ 
 
Their interpretation appears on their page 7, where they write, 
 
"According to Fleming, the property 'localized in ∆' (represented by E ∆) need not be 
detectable within ∆ [my emphasis]. As a result, [E ∆, E ∆'] ≠ 0 does not entail that it is 
possible to send a signal from ∆ to ∆'. However, by claiming that local beables need not 
be local observables, Fleming undercuts the primary utility of the notion of localization, 
which is to indicate those physical quantities that are operationally accessible in a given 
region of space-time. Indeed, it is not clear what motivation there could be – aside from 
indicating what is locally measureable – for assigning observables to spatial regions." 
 
Aside from the stridently positivistic slant of these assertions (I would have 
said the utility of the notion of localization is to indicate what exists in a 
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given region of space-time.), the motivation for assigning observables to 
spatial (or space-like) regions, in those instances where we do so, is 
provided by, (1) our recognition of the way those observables behave under 
spatial (or space-like) translations and rotations and, yes, (2) our recognition 
that measuring those observables requires a form of focusing on the spatial 
(or space-like) region in question. But this focusing never requires 
confinement of the whole measurement apparatus and process to that same 
region. As mentioned above (§4d), to so require would lead us into an 
infinite regress.   
 
For, perhaps unneeded, emphasis I will repeat here some comments made in 
response to de Koning’s related queries.  When Butterfield and I wrote      
(p. 160),  “ - - the inference to causal anomalies assumes that association of 
the projectors with spacelike separated regions involves precise 
measurability via operations performed within those regions. But this 
assumption is questionable.”  we meant to refer to all the operations of the 
deployed apparatus for the measurements and to question the confinability 
of the apparatus to the regions of interest. One need only consider the 
historical examples of Geiger counters, cloud chambers, spark chambers, 
bubble chambers, electron microscopes and scanning tunneling microscopes, 
to suspect that the smaller the region of interest, ∆, the more vastly larger, by 
comparison, the deployment of apparatus might need to be. But if this is the 
case, then one could not so easily rule out time-like influences between sets 
of apparatus deployed to examine space-like separated regions, and thus 
interfering with commutativity (Fig. 1). This is especially so if one could not 
determine any precise boundary at all within which all the apparatus was 
strictly confined.  
 
5c: consequences of the non-existence of strictly localizable objects 
 
Now while Butterfield and I raised no explicit question of the precise 
boundary of the deployed apparatus, Halvorson and Clifton have reached 
conclusions that imply no such boundary can exist! For by page 20 of their 
paper they write, 
 
“ The argument for localizable particles appears to be very simple: Our experience shows 
us that objects (particles) occupy finite regions of space. But the reply to this argument is 
just as simple: These experiences are illusory! Although no object is strictly localized in 
a bounded region of space [my emphasis], an object can be well-enough localized to 
give the appearance to us (finite observers) that it is strictly localized.” 
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I will refer to the phrase following the last comma as Halvorson and 
Clifton's FAPP argument. 
 
But if there are no strictly localizable objects, then there are no strictly 
localizable measuring instruments. Furthermore, there are no strictly 
localizable parts of measuring instruments that could be regarded as 
objects in their own right. This being the case, it is hard to see how there 
could be designed any strictly localized measurement processes. But if there 
are no strictly localizable measurement instruments or processes, then it is 
impossible to measure an observable associated with a bounded spatial 
region, ∆, by the deployment of apparatus or the execution of processes 
strictly confined to that region, or, for that matter, strictly confined to any 
region! The conjecture by Butterfield and myself is thus raised to the level 
of a deduced conclusion, the concept of “being strictly measurable within a 
bounded region” is rendered devoid of referance and the argument for 
universal microcausality, undermined.   
 
Technically, the FAPP utility of the common talk of localizable objects 
emerges, as Halvorson and Clifton argue, from the existence, in any local 
algebra, of effects 6 that are arbitrarily close in norm to effects that could 
represent strict localization if it existed. These latter effects do not exist in 
any local algebra (and, in that sense, are non-local effects) and need not 
satisfy space-like commutativity. But from our inferred non-existence of 
localizable measurements, there is no longer any justification for excluding 
these latter effects, and other non-local effects as well, from the domain of 
the measureable. There is no longer any justification for denying the non- 
local effects to be  just as much observables, as the effects belonging to local 
algebras. For in the absence of strictly localizable measuring apparatus and 
measurement processes how could one possibly rule out the measureability, 
in principle, of the non-local effects?! The non-local effects include the 
spectral projectors of the generalized Center of Energy and Newton-Wigner 
position operators which describe sharply localized properties that can (in 
principle) be precisely measured but not by strictly localizable apparatus or 
processes. As mentioned before, it is important to remember here that the 
microcausality violating non-vanishing commutators in question are 
invariably exponentially damped with increasing space-like separation. 
 
The reader may feel I have engaged in a vicious circle here, by undermining 
the internal consistency of the position of Halvorson and Clifton (their 
position relying on universal microcausality and the grounding of ‘localized 
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within’ in terms of ‘measurable within’), and therefore undermining their 
derivation of what I have called their central conclusion – the non-existence 
of strictly localizable objects – which conclusion I have then used to my 
advantage by ruling out strictly localizable measurements and undermining 
thereby universal microcausality. Be that as it may, I will provide my own 
argument on behalf of the central conclusion in section 7.  
 
 
6: Wallace on the connection between quantons and fields 
 
In “Emergence of particles from bosonic quantum field theories” David 
Wallace (2001a) analyses the concept of quantons that are understood as 
excitations or special states of quantized fields. For simplicity he confines 
himself to scalar fields, just as I have concentrated on spinless quantons 
here, and, except for a few general remarks, to fields satisfying linear field 
equations. Needless to say, I welcome his approaching the subject via the 
canonical Lagrangian/Hamiltonian formalism, which the majority of 
working quantum field physicists use, rather than the more abstract algebraic 
approach which, I think, extracts a high price in conceptual adequacy for the 
easy access to mathematical rigor. Wallace has very nicely defended the 
status of the Lagrangian/Hamiltonian  formalism in the quantum field 
context in his (2001b). 
 
As I have not seen a published version of Wallace’s paper, my comments 
refer to the electronic posted version. 
 
Compared to my previous sections my comments on Wallace’s (2001a) are 
not a response to criticism as he does not address in detail my views on HD 
or localization. But his interesting and somewhat unorthodox approach to the 
quanton concept and his views of the localization of quantons warrant some  
response here, especially as he interprets NW localization very differently 
than I do. 
 
It also appears that Wallace harbors (see the last paragraph of his p. 6) some 
of the widespread misconceptions of my views that I commented upon in §1 
of my (2003b). I will not re-discuss those matters here. 
 
Two aspects of Wallace’s paper that seemed puzzling to me were (1) the 
absence of any discussion of number operators and the countability of 
quantons as persistent entities (at least when free or weakly interacting) and 
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(2) the superficial discussion, as if in passing, of the energy-momentum 
relations displayed by quantons.  For while localizability, to some degree or 
another, of quantons has been an important aspect of the evolution of our 
concept of quantum particles; historically, the facts that quantons could be 
counted as, at least, semi-persistent entities in appropriate environments and 
that the energy and momentum of quantons are functionally related have 
been at least as important as localization in forming our concept of the 
quanton. 
 
From the photo-electric effect through the Compton effect to the 
contemporary measurements of collision events in high energy physics we 
have employed, at best, if at all, only mesoscopically precise localization to 
obtain sharp quanton counts and microscopically precise energy-momentum 
values. The situation is most striking when Wallace refers, as he does on 
several occasions for comparative and illustrative purposes, to phonons, the 
uniquely condensed matter physics version of a field quanton. Phonons are 
almost never localized and rarely studied in localized states (Wallace alludes 
to the role of localized phonons in heat transport in his p.7) and their 
definitions in condensed matter physics texts are as countable excitations 
displaying specific energy-momentum relations. It seemed to me that had 
number operators and energy-momentum relations been given their proper 
due, the discussion could have been noticeably simpler and shorter. It was as 
if Wallace’s real goal, and not an unreasonable goal at that, was to examine 
how much of the quanton concept could be obtained from the requirement of 
localizability alone. 
 
6a: effective L-localization 
 
But now to localization. In his section 3 Wallace discusses the problem of 
constructing a definition of a quantum particle and reaches the conclusion, 
with which we are in complete accord, that single quanton states of a 
quantized field must comprise a linear subspace of the entire field theory 
state space and the subspace must be spanned by a collection of (possibly 
overcomplete and non-orthogonal) what Wallace calls effectively L-
localized states. It then turns out that for relativistic quantons of a given rest 
mass the scale, L, of the effectively L-localized basis states can not be 
smaller than the Compton wavelength of the quantons. By defining effective 
L-localization through the exponential drop off of differences between field 
operator expectation values within the subspace and in the vacuum state 
when the field operators are evaluated a distance of order L or more away 



 35 

from the localization region of the subspace state, effective L-localization 
does not require strict confinement of the entire quanton within any ball of 
finite radius. Thus far I have no problem with these considerations. 
 
But jumping ahead to Wallace’s section 7, where he discusses Newton–
Wigner localization, we learn that the NW basis vectors (or, more properly, 
normalized superpositions of them with support confined to sub Compton 
wavelength radius balls) are also merely effectively L-localized with L  > 
Compton wavelength, as, of course, they would have to be. So long as one 
interprets, as Wallace does, the NW basis as a construction designed to grant 
access to quanton states of arbitrarily small spatial confinement of the entire 
quanton, the design must be judged a failure. And Wallace so judges it (p. 
36): 
 
The [NW basis vectors] are certainly formally equivalent to position eigenstates, being 
perfectly localized in configuration space and forming an (improper) basis for the one-
particle Hilbert space. But obviously they are not precisely localized in real space: [my 
emphasis] if |xNW > is the abstract ket corresponding to a delta function at x, then - - - it 
is easy to verify that (for instance) 
 
                        < xNW | )(φ)(φ yˆxˆ | yNW > − <  Ω | )(φ)(φ yˆxˆ | Ω >                    (87) 
 
is formally equal to  
 
                                            (1/2)[ R1/4 δ( x − y ) ]2                                             (88) 
 
and hence is localized only within a region of size ~ L c . [Wallace’s R is equivalent 
to my R2]. 
 
He then goes on to note that this is not a real problem, one just has to avoid 
taking superpositions of the | xNW > with support smaller than Compton 
wavelength dimensions too literally since such superpositions will not really 
be so localized. Among his summarizing remarks in this section he declares 
(p. 37), 
 
As such, the Newton-Wigner representation is a perfectly legitimate, and often very 
convenient, way of describing states in the one-particle subspace --- but it doesn’t give 
the exact truth of the matter as to where particles are localized, because there isn’t one: 
particles are superpositions of field excitations with finite size, so any attempt to give a 
wave function description down to arbitrarily small scales is inevitably going to be 
arbitrary at those scales. 
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As the reader well knows by now, I view these comments as involving a 
misunderstanding of the physical significance of the NW eigenvectors.           
| xNW > is, indeed, an improper state in which the quanton is only effectively 
L c-localised around the point, x, but the point, x, is a physically significant 
point and very real! It is, in this case of a spinless quanton, the location of 
the center of the energy distribution, the quantized field energy distribution, 
of the quanton. Thus superpositions of these basis vectors with support 
confined to balls with sub Compton wavelength radii can be taken quite 
literally. They yield single quanton states with the center of energy precisely 
confined within the ball! 
 
There is a widespread tendency to argue against any possibility of sub 
Compton wavelength localization of anything in relativistic quantum theory 
on the grounds that the resolution required to corroborate or generate any 
such localization would entail the use of de Broglie wavelengths, and thus 
the transfer of momenta and energies that would undermine the whole 
endeavor via quantum fluctuations, particle anti-particle creation, etc. While 
it’s clear that these considerations give reason to expect difficulties and 
complications to confront any simple minded efforts at such localizations, I 
see no reasons of principle to justify the conclusion that they are impossible. 
One must rather analyse what theory, with interactions included, has to say 
about specific proposals for such measurements. Even if it became clear that 
no such localization procedure could be implemented on a single quanton 
that would preserve the single quanton nature in the final state, examination 
of the final state that did emerge could still corroborate the suitability of the 
localization interpretation being proposed. 
 
6b: quantum states from coherent states 
 
Let us go back now to Wallace’s section 5 where he first identifies operators 
that create single quanton states effectively L-localised within a region. He 
approaches this identification via the construction of coherent states that are 
closely associated with classical phase space data for the field. The 
motivation for coherent states is the well known way in which the coherent 
states of quantum mechanical harmonic oscillators mimic classical 
oscillatory behaviour without dispersion over time. Fourier analyzing the 
classical field data, φ(x) and π(x), into their harmonic components,7 
 
              φ(x) = (2π)−3/2 ∫ d3k (2ωk)−1/2{α(k)eikx + α(k)*e−ikx} ,              (6.1a) 
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           π(x) = i (2π)−3/2 ∫ d3k (ωk/2)1/2 {α(k)*e−ikx − α(k)eikx} ,             (6.1b) 
 
Wallace builds the coherent state that is a simultaneous eigenstate of the 
momentum space annihilation operator, )(a kˆ , for all k, with eigenvalues, 
α(k), i.e., 
 
                    | C(φ, π) > : = exp[− ||α||2 / 2] exp[ ) ,(a† πφˆ ] | Ω > ,            (6.2) 
 
where, 
 
                                              ||α||2 = ∫ d3k |α(k)|2                                   (6.3a)  
 
and                                ) ,(a† πφˆ = ∫ d3k α(k) )(a† kˆ  .                           (6.3b) 
 
Wallace then argues that the reason this state, notwithstanding it’s close 
connection to classical data, can not represent a single quanton state, lies in 
the discrepancy between superpositions of such coherent states and the 
single coherent state for the corresponding superposition of classical data. 
By considering the limit of vanishingly small classical data he finally settles 
on the state, 
 
                                        | φ, π > : = ) ,(a† πφˆ | Ω > ,                               (6.4) 
 
as best representing the single quanton state most closely associated with the 
classical data (φ, π) via effective L c- localization.8 In particular, these states 
do not suffer from the superposition discrepancy infecting the previous 
coherent states. Needless to say, Wallace is aware that the reader always 
knows in advance, modulo some details, where the analysis is going to end 
up. His motivation is to display the insights that his procedure offers and the 
discussion of the status of his coherent states is valuable. But the absence, in 
this discussion, of any reference to conserved number operators or energy-
momentum relationships is, to repeat myself, very artificial. 
 
Next, to enable the calculation of various field theoretic expectation values 
of the states (6.4), Wallace considers the commutation relations of  ) ,(a† πφˆ  
with the field operators. He finds, 
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                  [ ) ,(a ),(φ † πφˆxˆ ] = (1/2){φ(x) + i (R-1/2π)(x)},                       (6.5a) 
 
                  [ ) ,(a ),( † πφπ ˆxˆ ] = (1/2){π(x) − i (R1/2φ)(x)},                       (6.5b) 
 
and proceeds to calculate to show that the quanton is not confined within 
dimensions of the order of L c.9 

 
But wait, these are pregnant commutators! What must jump out from these 
equations to many readers but is not mentioned is that by judicious linear 
combination we obtain, 
 
[ ) ,(a ),}( i  φ{(1/2) †1/41/41/2 πφπ+ − ˆxˆˆ RR ] = (1/2)1/2{R1/4φ + i R−1/4π}(x) ,   (6.6a) 
 
and                  [ ) ,(a ),}( i  φ{(1/2) †1/41/41/2 πφπ− − ˆxˆˆ RR ] = 0.                      (6.6b) 
 
Furthermore, we recognize (from our §4c if not elsewhere) these linear 
combinations of the operator fields and of the classical data. They are just 
the NW operator fields and state functions, i.e., 
 
                        )}( i  φ{(1/2)  )( 1/41/41/2

NW xˆˆxˆ π+=ψ −RR ,                        (6.7a) 
 
and                     ψNW(x) = (1/2)1/2{R1/4φ + R−1/4π}(x).                            (6.7b) 
 
In terms of them (6.6a,b) become, 
 
                               [ ) ,(a (x),ψ †

NW πφˆˆ ] = ψNW(x) ,                            (6.8a) 
        
and                             [ ) ,(a ),(ψ ††

NW πφˆxˆ ] = 0 ,                                     (6.8b) 
 
and we confirm          [ )(ψNW xˆ , )(ψ †

NW yˆ ] = δ(x − y) ,                          (6.8c) 
 
and                              [ )(ψNW xˆ , )(ψNW yˆ ] = 0.                                      (6.8d) 
 
This, then tells us that 
 
                             )(ψ )(ψx d  ) ,(a †

NWNW
3† xˆxˆ ∫=πφ  ,                          (6.9) 
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and, consequently, Wallace’s coherent states are simultaneous eigenstates of 
the Newton-Wigner annihilation field operator evaluated at all the points of 
space, the eigenvalues at any point being the NW state function evaluated at 
that point and corresponding to the classical data, i.e., for all x, 
 
                               )(ψNW xˆ | C(φ, π) > = | C(φ, π) > ψNW(x) .              (6.10a) 
 
This preferred status of the NW field, relative to Wallace’s coherent states, 
is shared by any linear transform of the NW field such as the positive 
frequency part of the local field, )(φ )( xˆ + , or the momentum space 
annihilation operator, )(a kˆ , as we began with (see eqs. (6.2) and (6.3)), but 
it is not shared by any local field. The corresponding relation for the single 
quanton state, | φ, π >, is given by, 
 
                                     )(ψNW xˆ | φ, π > = | Ω > ψNW(x) .                     (6.10b) 
 
Once one recognizes that NW localization has nothing to do with the issue 
of the size of a quanton but, rather, concerns the location of a localizable 
property within a quanton, the preceding relationships can be seen to convey 
directly precise physical significance regardless of how small the support of 
the NW state function may be.  
 
 
7: Localization schemes and the space-like extension of quantons 
 
For the sake of easy reference we gather here the basic relationships we will 
need in this section. The relation between NW representation state functions 
and DF representation state functions for single quantons was given, in 
Dirac notation , by10 

 
                           < η, x; NW | Ψ ) = ( 2Rη )1/2< x | Ψ ),                       (4.16b) 
 
where, from (4.2b) and (4.14a), we have, 
 
                   Rη : = [ κ2 + ∂µ∂µ – (η∂)2 ]1/2 = [ κ2 + Dη

2 ]1/2 .                      (7.1) 
 
The bra vectors, < η, x; NW| , for the orthogonal NW basis, and < x | , for 
the non-orthogonal DF basis, are created from the vacuum bra by application 
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of the NW field operator and the positive frequency field operator, 
respectively, i.e., 
 
                                   x),(|  (  |NW  x;, NW ηψΩ=η< ˆ ,                               (7.2a) 
and, 
                                            )(ˆ| x|  (    x )(+φΩ=< .                                      (7.2b) 
 
Accordingly, the relation between the basis bras and the field operators are 
given by, 
 
                                   < η, x; NW | = (2Rη)1/2< x |,                                  (7.3) 
and 
 
                                (x))(2R   x),( )(1/2

NW
+

η φ=ηψ ˆˆ  
 

                         ] (x)R i  (x)R 
2

1 1/21/2 φ∂η+φ= −
ηη

ˆˆ[ .                              (7.4)  

 
We will also, in §7b, need the action of )(ˆ x)(+φ on an arbitrary single 
quanton ket. Since that action must yield a multiple of the vacuum state, it 
follows from (7.2b) that,  
 
                               )(ˆ x)(+φ | Ψ ) = | Ω ) < x | Ψ ) .                               (7.5) 
               
7a: comparing the NW and DF localization schemes for spinless 
quantons 
 
Now just what is the nature of the approximate localization of the quanton 
represented by the basis bra, < x |, compared to the precise localization of 
the NW position within the quanton represented by < x, η; NW | ? At the 
risk of belaboring the obvious I reiterate two points expressed earlier in this 
paper. 
 
(1) It is important to realize that it would make no sense to admit the 
members of one of these two kinds of bases to physical interpretation and 
dismiss the others. Both kinds of bases span the same state space. No doubt 
the members of the two kinds of bases represent different aspects or 
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different conditions for the quanton, but they each represent some aspect and 
some condition. 
 
(2) We know that the DF basis vectors, from their definition, (7.3b), are 
labeled by the coordinates, x, in such a way that under the inhomogeneous 
Lorentz group the ket change is given by the corresponding classical change 
in x (the positive frequency part of (x)φ̂ in (7.2b) is a hyperplane 
independent Lorentz scalar). At the same time we know that the labeling x 
can not be an eigenvalue of any position operator because the DF basis 
vectors are non-orthogonal for any two distinct values of x. From this alone 
we can conclude that the quanton is, in no sense, confined to the point x but, 
at best, localized around x. 
 
But the sine qua non of degree of spatial localization in a quantum state (of 
any feature of any system – not just of quanton positions) is the rapidity with 
which the state approaches orthogonality with itself under space-like 
translation. It is only due to just such behaviour of the inner products of the 
DF basis vectors, themselves, with space-like separated coordinates, i.e.11, 
 

               |y  x   d 
|y x 4

y) x (  yxy) x (
222 ∫

∞

κ

−µ−
κ−µ

µµ
−π
η−ηδ

=><η−ηδ |
|

| e ,       (7.6) 

 
that it is no doubt correct that | x > represents a quanton localized ‘around’ x. 
But how are we to obtain observational access to the ‘center’ of localization, 
x? 
 
For this it is important to ask if there are other coordinate labeled kets that 
approach self orthogonality under space-like translation more rapidly. And, 
of course, there are! The NW position eigenvectors were originally 
deliberately constructed (Newton et al 1949) to go orthogonal to themselves 
under arbitrarily small displacements along instantaneous hyperplanes. The 
HD generalization of them extends that feature to the corresponding non-
instantaneous hyperplanes. 
 
Clearly something is precisely localized in an NW position eigenvector and 
the DF localized vectors are, themselves, superpositions of such NW-
vectors. For spinless quantons the precisely localized point in the NW basis 
vector can be identified as the center of the energy distribution in the 
quanton. This interpretation does not require one to think of the quanton 
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itself as a point entity and in the next subsection we will see vividly that it is 
not. Nevertheless, the quanton as a whole appears more tightly localized in 
the NW basis vectors than in the DF basis vectors as comparison between 
(7.8) and the inner product,12 
 

 | x y    
  
d 

| xy 4
x) y (  xNWy; ,x) y ( 41222 ∫

∞

κ

−µ−
κ−µ
µµ

−π
η−ηδ

=>η<η−ηδ |
][|

| / e ,     (7.7) 

 
suggests. Note that the integral representations on the right sides of (7.6) and 
(7.7) are such that the more slowly damped exponentials (low values of µ) 
are favored in (7.6) over (7.7) while the more strongly damped exponentials 
(high values of µ) are favored in (7.7) over (7.6), an indication of the more 
localized nature of the NW-kets.  
 
From the Fourier representation of (7.7)12 and the one quanton state space 
dyadic representation of the NW position operator, 
 
           ∫ η<>ητ−ηδ=τη µµ |NW ;x, xNW ;x,|) x (x d  ) ,(X 4

NW
ˆ ,            (7.8) 

 
we can calculate the ‘matrix elements’ of ) ,(XNW τηµˆ  in the DF basis. The 
result, for x' and x space-like separated and both lying on the (η, τ) 
hyperplane (i.e., ηx = ηx' = τ), is,   
 

                      ><+=>τη< µµµ xx'  x  x'(
2
1   x|) ,(Xx' NW |)ˆ|  .                  (7.9) 

 
We see that the x of a DF basis vector behaves like an ‘expectation value’ 
(loosely understood since we’re dealing with infinite norm kets and bras) of 
the NW position operator, the (similarly loosely understood) ‘probability 
amplitude’ for which, (7.7), is symmetrically and monotonically decreasing 
as one moves away from x on the hyperplane. 
 
Continuing in this vein we obtain a sense of the magnitude of the ‘rms 
deviation’ of the NW position in the DF basis vectors from, 
 
 

  >+−τη+−τη< νννµµµ x))  x  x'(
2
1  ) (X ))(  x  x'(
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For our last comparison between the NW basis and the DF basis we will 
obtain a relation between the expectation values of the total energy-like 
operator, P̂η , in any two normalizable states, | Ψ, NW; η, τ ) and 
| Ψ, DF; η, τ ), which have identical expansion coefficients in terms of the 
NW basis and DF basis, respectively, i.e., 
 
               | ψ, NW; η, τ ) : = ∫d4x δ(ηx - τ) | η, x; NW > ψ( x ),            (7.11a)   
 
                | ψ, DF; η, τ ) : = ∫ d4x δ(ηx - τ) | x > ψ( x ) .                        (7.11b) 
 
From (7.4) we have, 
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 x, |ˆ|,|  ,                 (7.12a) 
 
and, consequently, 
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From this it immediately follows that, 
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the expectation value, < ηP >ψ, NW, is always equal to or larger than              
< ηP >ψ, DF . 
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Now what is the upshot of all of this? It is, first, that if one accepts the 
interpretation of the NW position operator as locating some property within 
the space-like extended quanton, then the ket, | x >, can not be understood as 
a maximally localized ‘state’ of the quanton that fails the orthogonality 
condition for distinct x because of the quanton's extension. 
 
The upshot is, second, that without the foregoing analysis of the physical 
meaning of the x in the DF ket, | x >, in terms of ‘expectation values’, 
‘probability amplitudes’ and ‘rms deviations’ of the NW position operator, 
that coordinate, x, is just a mathematical symbol, uninvested with physical 
content. Due to the failure of orthogonality of the | x > , the label, x, is not an 
eigenvalue of any single observable and, within standard quantum theory, 
can acquire physical content only by the display of statistical 
relationships with genuine observables. As we have seen, the NW position 
observable is eminently suitable for that purpose. 
 
The upshot is, finally, that if we invoke the identification (which holds only 
for spinless systems) of the NW position with the CE position, then we 
strengthen the assertions of the first upshot. For we are not concerned here 
with the distribution of the quanton's energy density (which I will later show 
extends to space-like infinity in all single quanton states) but with the 
distribution, in the sense of quantum superposition, of the center, or average 
position, of differently centered energy densities. The DF ket, | x >,  must be 
understood as an unbounded superposition of NW kets, in each of which the 
point within the extended quanton localized by the NW operator has a 
precise value. Thus it must be understood as a superposition of differently 
located, extended quantons. The, or at least a, maximally localized ket for 
the quanton is precisely the NW ket  which satisfies the orthogonality 
condition for distinct x on the designated hyperplane, not because the 
localized quanton is a point entity, but because a particular point within the 
quanton is precisely localized in these eigenvectors and differently so for 
distinct x. In particular, any normalizable superposition of NW basis vectors 
yields a higher energy expectation value, presumably because of greater 
space-like localization of the quanton, than the identical superposition of DF 
basis vectors. Thus, to repeat, we are confronted, in the ket, | x >, with a 
superposition of differently centered extended quantons rather than with a 
maximally localized extended quanton. 
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7b: the space-like extension of spinless quantons 
 
The instantaneous energy density field operator for a free scalar field with 
spinless quanton and anti-quanton excitations is  
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where (x)φ̂  is the (charged) scalar local field operator and the bracketing 
colons indicate normal ordering of the creation and annihilation parts of the 
field. For an arbitrary space-like hyperplane with time-like unit normal, ηµ, 
the corresponding energy-like density is, 
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2
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where  Dη, µ : = ∂µ − ηµ (η∂).  
 
This quantity becomes the instantaneous energy density in any reference 
frame for which the hyperplane is instantaneous. In the general case we will 
call (7.14b) the hyperplane energy density or simply, the energy density.  
As a minimal indicator of the space-like extension of a single spinless 
quanton on a hyperplane, I propose the support over the hyperplane of the 
expectation value of the energy density in single quanton states. To 
disentangle the contribution to energy density distributions due to the 
dispersal of the quanton from the contribution due to the extension of the 
quanton we would expect to need to focus on features of the energy density 
distribution that persist in all candidates for highly localized states. But in 
fact, there is no need for that focus since we can immediately establish that 
for all normalizable, single, spinless, quanton states, the energy density 
expectation value over any hyperplane has unbounded support. This is a 
clear sense in which the quanton, itself has unbounded space-like extension. 
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In obtaining this result the DF basis vectors play a central role since, for any 
normalizable, single quanton state vector, | Ψ ), we have, 
 
                         ) :|(x) (x)|: (  ) |  x    x  | ( † ΨφφΨ=Ψ><Ψ ˆˆ .                     (7.15) 
 
Consequently, 
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where we have used 
 
                                i η∂ < x | Ψ ) = Rη < x | Ψ )                                     (7.17) 
 
Remembering the Lorentz metric we see that the three terms, R2, – D2 and 
κ2, in (7.18), are each non-negative after setting  y = x. But from the anti-
local property3 of the psuedo differential operator, Rη, it follows that            
< x | Ψ ) and  Rη < x | Ψ )  cannot both have bounded support. Therefore the 
energy density expectation value, (7.16), has unbounded support for any       
| Ψ ). Since states exist with bounded support for  < x | Ψ ) and states exist 
with bounded support for < η, x; NW| Ψ ), the impossibility of bounded 
support in (7.16) can only come from the unbounded space-like extension of 
the quanton, itself, and not from the unbounded dispersal of some center of 
the quanton over the hyperplane. Therefore, as indicated by the energy 
density expectation value, the single quanton has unbounded space-like 
extension. Clearly the same result holds for the anti-quanton and, while 
considerations of space do not permit the demonstration here, the same holds 
for quantons of any spin. 
 
It is worth noting that the situation is different for the momentum density- 
energy flux, 
                         (x))  (g  :  x),( ρ
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In this case the single quanton expectation value is given by, 
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µˆ ,            (7.19) 
 
with the result that it has bounded support under circumstances that include 
when either Dη

µ < x | Ψ ) or  Rη< x | Ψ ) does. This suggests that the support 
of these latter functions is associated with the absence of fluctuations strong 
enough to wipe out the expectation value of dynamical quantities equally 
capable of positive and negative values. The single quanton energy density 
is intrinsically non-negative and fluctuations can not completely wipe out 
the expectation value anywhere. Still, it is striking that the energy density 
expectation value receives additive contributions from the absolute squares 
of mutually anti-local quantities that contribute only multiplicatively to the 
momentum density/energy flux!   
 
Notwithstanding the fact that the preceding argument did not require us to 
compare the energy density distribution for states of varying degrees of  
localization, that comparison is edifying. To that end consider the state 
function, ψ(y), over the (η, 0) hyperplane with unit norm and centered on 
the origin, i.e., 
 
     ∫ =ψηδ 1  |(y)| y)(y d 24     and    ∫ =ψηδ µ 0  |(y)| y y)(y d 24 .              (7.20) 
 
It then follows that, for 1 > λ > 0, and ηz = 0, 
 

                                   ) zy  (  : (y)  3/2-
z , λ

−
ψλ=ψλ ,                                (7.21) 

 
also has unit norm, is centered on z and has been ‘squeezed’ around z by a 
factor of λ compared to ψ(y) around the origin. We then define the unit 
norm state vector, that, on the (η, τ) hyperplane, has its superposition of NW 
eigenvectors centered on z + ητ and ‘squeezed’ by λ,  
 
| η, τ, κ; ψλ, z, NW ) : = ∫d4y δ(ηy) | η, y + ητ, κ; NW > ψλ, z(y).13      (7.22a) 
 
A similar construction can be implemented with the DF basis vectors, i.e.,               
 
 | η, τ, κ; ψλ, z, DF ) : = ∫ d4y δ(ηy) | y + ητ, κ > ψλ, z(y) ,                    (7.22b) 
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with the difference that, as a consequence of the specific way in which the 
DF basis is non-orthogonal (see (7.6)), we have,  
    
       || | η, τ, κ; ψλ, z, DF ) || 2 = λ || | η, τ, λκ; ψ1, 0, DF ) || 2,                    (7.23) 
 
and we must carefully divide by this variable squared norm in calculating 
any expectation value. 
           
Defining the expectation values of the energy density field in these states by  
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we find that, 
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and, 
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4
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ηλ=κψητ+η −
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  , .           (7.25b) 

 
The λ dividing  x – z  in the u functions produces the narrowing of the 
energy distribution as the state is ‘squeezed’, i.e., as λ gets smaller. The λ-4 
factor out front raises the value of the energy density everywhere as λ 
decreases and in such a way as to increase the total energy by a factor of λ-1 
in accordance with the requirements of the uncertainty relation. The factor of 
λ multiplying the rest mass parameter, κ, depresses the relative contribution 
from rest energy as compared to kinetic energy with the ‘squeezing’ of the 
state, also as the uncertainty relation would suggest.  
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The fact that both states, (7.22a,b), produce the same response, (7.25a,b), to 
‘squeezing’ in the energy density is a further indication, if any were needed, 
that both the NW and DF basis vectors represent ‘localized states’ of one 
kind or another. The orthogonal nature of the NW basis, the statistical 
results, (7.9, 10), and the relation, (7.13), which guarantees that the state, 
(7.22a), will always have a larger energy expectation value than (7.22b) then 
tell us that the NW basis vectors are ‘more localized’ than the DF basis 
vectors. 
 
 
8: Remarks on HD and the ontology of Minkowski space-time 
 
I have very little to add to the discussion of this topic that ended the first 
paper of this set, my (2003b). The arguments considered here, which are 
regarded as having secured the central conclusion of the nonexistence of 
strictly localizable entities, as opposed to the existence, on hyperplanes, of 
strictly localizable properties, certainly supports the doubts expressed in the 
first paper about the fundamental status of the points of Minkowski space-
time relative either to points on hyperplanes or to hyperplanes taken 
holistically. One question that arises is that since all of the detailed analysis 
that has been undertaken here focuses on the free quantons of free quantized 
fields, and while one would not expect the presence of interactions to 
completely reverse the qualitative nature of our conclusions, is there any 
reason to expect interactions to either support or divert the directions into 
which our considerations have led us? 
 
I see two reasons to expect support. First, consider the fact that most of the 
quantons of contemporary high energy physics are unstable against 
spontaneous decay, whether as a consequence of strong, weak or 
electromagnetic interactions. Suppose one then adopts the natural, but 
possibly naïve, hypothesis that all such unstable quantons can, in principle, 
exist (perhaps even be prepared) ‘alone’, in nearly a 3-momentum 
eigenstate, at any  definite time. At any other time a superposition of parent 
quanton and decay products would be expected. If this is so, then a novel 
source of HD emerges since the preceding characterization is not covariant 
under the Lorentz group. The covariant generalization is provided by the 
parent quanton being ‘prepared’ on any given hyperplane. A natural 
consequence of this HD of unstable quanton states is a spin spectrum for the 
quanton with non-vanishing width to accompany the standard non-sharp 
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spectrum for the rest mass. Sharp spin spectra for unstable quantons, which 
is standardly assumed but never tested, can be imposed, but only through 
constraints on the HD. 
 
The second reason I expect support comes from the consideration of 
introducing primordial HD into the ‘basic’ fields of theory. By virtue of the 
fact that the seven dimensional space of points-on-hyperplanes 
(parameterized by (η, x)) is a homogeneous space of the Poincare’ group, 
many possible field equations (involving partial derivatives with respect to η 
as well as x) for such fields yield an infinite family of quanton excitations 
with a precise functional relationship between the rest masses and spins of 
the quantons. By turning on a single self coupling for such an HD field, all 
the quantons of the family are assigned a consistent complex of interactions 
with one another.    
 
I and collaborators examined both of the preceding issues in a few papers 
(Fleming 1970, 1971, 1979) (Boyer et al 1974) (Ardalan et al 1975) long ago 
in pre-Standard Model antiquity. The atmosphere was sufficiently desperate 
in those days to encourage the examination of wild ideas. Sometimes it 
seems such an atmosphere may be returning and the examination of suitable 
variants of these ideas in the midst of non-Abelian gauge fields, Superstrings 
and Loop Quantum Gravity may not be amiss.  
 
 
Notes 
 
1. (from p. 11) Strictly speaking, it would be more appropriate to call the CE the ‘center 
of hyperplane energy’ since, if  θµν(x)  is the local stress-energy-momentum field, then on 
a hyperplane normal to the time-like unit vector, ηµ, the CE position locates the ‘center’ 
of the distribution over the hyperplane of the energy density-like quantity, ηµθµν(x)ην. 
Nevertheless, in the context of a discussion of hyperplanes in general, we will call 
ηµθµν(x)ην simply the energy density. 
 
2a. (from p. 11) Let Mµν be the generator of homogeneous Lorentz transformations for a 
closed complex of systems and let S be an interacting subsystem of that complex and let 
MS,µν be the HD contribution from S, alone, to Mµν. Then (understanding that, in what 
follows, every operator associated with the subsystem, S, is HD, i.e., ∀A, AS = AS(η,τ), 
and that all commutators are equal hyperplane commutators), JS

µ := (1/2) εµαβγMS,αβηγ is 
the HD angular momentum due to S, alone, which satisfies the commutation relation,  
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[JS
µ, JS

ν] = iħ εµναβJS,αηβ. The HD NW position operator for S is that unique position 
operator, XS

µ, constructed from the dynamical variables of S, alone, with commuting 
Minkowski components. It decomposes JS

µ into mutually commuting ‘orbital’, 
LS

µ = εµαβγXS,αPS,βηγ, and ‘internal’ angular momenta, SS
µ, satisfying, 

[SS
µ, SS

ν] = iħ εµναβSS,αηβ. This SS
µ is the HD spin of S and, in this sense, XS

µ, is the 
center of spin. Decomposing JS

µ using the HD CE position operator, YS
µ, would yield a 

different and unfamiliar ‘internal’ angular momentum, viz., SS
||,µ + (MSc/ηPS)SS

⊥,µ, where 
SS

||,µ := KS
µ(KSSS)/KS

2 , SS
⊥,µ  := SS

µ − SS
||,µ , KS

µ := PS
µ − ηµ(ηPS) and MSc := [PS

2]1/2.     
 
2b. (from p. 11) Let the subsystem, S, be itself composed of subsystems S’ and S’’ and 
any direct interaction between them. Now lump the interaction energies, momenta, etc. 
with S’’ to form the environment, E’, of S’ within S. Then  
MScYS

µ = MS’cYS’
µ + ME’cYE’

µ. The commutator between Minkowski components of 
YS

µ is given by, [YS
µ, YS

ν] = − iħ εµναβ(SS
||,µ + (MSc/ηPS)SS

⊥,µ )ηβ / (ηPS)2. The 
relationship between the HD CE position and the HD NW position for S is given by, 
YS

µ − XS
µ = εµαβγSS,αKS,βηγ / [ηPS(ηPS + MSc)]. 

 
3. (from p. 20) The Fourier transform of a function, f(x), of bounded support on an η- 
hyperplane enjoys certain analyticity properties in the complex momentum plane. 
Application of the operator Rη to such a function destroys the analyticity properties of the 
Fourier transform due to the branch points at k = + iκ in [k2 + κ2]1/2. In general, at least 
one of f(x) and  Rη f(x) must have unbounded support over the hyperplane. 
 
4. (from pp. 22, 23) Lest the reader think I am embracing here an outmoded conception 
of property possession representable only by projection valued measures (PVM), let me 
deflect that concern. Even in the case of properties represented by the more general 
positive operator valued measures (POVM), definite possession of a property 
corresponds to the expectation value of the associated positive operator being unity, in 
which case the state is an eigenstate of the positive operator with eigenvalue unity. The 
preservation of this feature under arbitrary linear superposition of such states holds for 
positive operators in POVMs as well as for projection operators. 
 
5. (from p. 26) Using the notation of notes 2a and 2b, we have 
YS

µ := (ηPS)-1:(MS
µνην + τPS

µ), where the colon on the right hand side indicates a 
symmetrized product. The corresponding expression for XS

µ is then obtained from the 
relationships in notes 2a and 2b.  
 
6. (from p. 32) Effects are generalizations of projection operators used to represent 
measurements that may not yield definite yes/no answers to measurement questions. 
They are positive operators belonging to families of such which upon summing over all 
members of a family yield the identity operator. The family members need not commute. 
 
7. (from p. 36) My discussion is narrower than Wallace’s in that I confine myself to free 
fields rather than just linear fields.  
 



 52 

8. (from p. 37) Wallace’s single quanton states associated with specified classical data are 
the same states Halvorson referred to in his proposed ‘standard localization’ scheme that 
I discussed in §4. Unlike Halvorson, however, Wallace never suggests that the support of 
the classical data strictly limits the domain of localization. Thus my criticism of 
Halvorson’s ‘standard localization’, on p. 21, does not apply to Wallace’s  account. 
 
9. (from p. 38) Among several calculations Wallace shows that the expectation value of 
the field theory energy density is never more sharply confined than via exponential 
damping on the scale of the Compton wavelength of the quanton, regardless of the 
classical data. This is very close in spirit to my discussion below in §7.  
 
10. (from p. 39) In this section I will use parentheses rather than angle brackets to denote, 
with emphasis, kets, | Ψ ), and bras, ( Ψ |, of finite norm. 
 
11. (from p. 41) This expression for the inner product can be obtained from the Fourier 
representation,  < x | y > = (2π)-3∫[d4kθ(ηk)δ(k2 – κ2)/2ηk] eik(y – x ), by the use of analytic 
continuation and contour integration in the complex momentum plane. 
 
12. (from p. 42 ) This expression for the inner product can be obtained from the Fourier 
representation, <η, y; NW | x > = (2π)-3∫[d4k θ(ηk)δ(k2 – κ2)/(2ηk)1/2] eik(x – y), by analytic 
continuation and contour integration in the complex momentum plane. 
 
13. (from p. 47) The notation from this point on is complicated by the addition of the 
symbol for rest mass, κ, appearing in the state vectors. This is required, not because 
scaling or ‘squeezing’ the state function changes the rest mass, which is absurd, but 
because the comparison obtained is between scaled states of quantons with one rest mass 
and unscaled states of quantons with a scaled rest mass.  
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