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Abstract The concept of randomness has been unjustly neglected in recent
philosophical literature, and when philosophers have thought about it, they
have usually acquiesced in views about the concept that are fundamentally
flawed. After indicating the ways in which these accounts are flawed, | pro-
pose that randomness is to be understood as a special case of the epistemic
concept of the unpredictability of a process. This proposal arguably captures
the intuitive desiderata for the concept of randomness; at least it should sug-
gest that the commonly accepted accounts cannot be the whole story and
more philosophical attention needs to be paid.

[Rlandomness. . . is going to be a concept which is relative to
our body of knowledge, which will somehow reflect what we
know and what we don’t know.

Henry E. KyBura, R. (1974, 217)

Phenomena that we cannot predict must be judged random.
Patrick Suppes (1984, 32)

The concept of randomness has been sadly neglected in the recent philosophi-
cal literature. As with any topic of philosophical dispute, it would be foolish to
conclude from this neglect that the truth about randomness has been established.
Quite the contrary: the views about randomness in which philosophers currently
acquiesce are fundamentally mistaken about the nature of the concept. More-
over, since randomness plays a significant role in the foundations of a number
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of scientific theories and methodologies, the consequences of this mistaken view
are potentially quite serious. After | briefly outline the scientific roles of ran-
domness, | will survey the false views that currently monopolise philosophical
thinking about randomness. | then make my own positive proposal, not merely
as a contribution to the correct understanding of the concept, but also hopefully
prompting a renewal of philosophical attention to randomness.

The view | defend, that randomness is unpredictability, is not entirely with-
out precedent in the philosophical literature. As can be seen from the epigraphs
| quoted at the beginning of this paper, the connection between the two concepts
has made an appearance beforEhese quotations are no more than suggestive
however: these authors were aware that there is some kind of intuitive link, but
made no #orts to give any rigorous development of either concept in order that
we might see how and why randomness and prediction are so closely related.
Indeed, the Suppes quotation is quite misleading: he adopts exactly the perni-
cious hypothesis | discuss below (§3.2), and takes determinism to characterise
predictability—so that what he means by his apparently friendly quotation is ex-
actly the mistaken view | oppose! Correspondingly, the third objective | have in
this paper is to give a plausible and defensible characterisation of the concept of
predictability, in order that we might give philosophical substance and content to
this intuition that randomness and predictability have something or other to do
with one anothéfl

1 Randomness in Science

The concept of randomness occurs in a numberfééidint scientific contexts. If

we are to have any hope of giving a philosophical concept of randomness that is
adequate to the scientific uses, we must pay some attention to the varied guises in
which randomness comes.

All of the following examples are in some sense derivative from the most
central and crucial appearance of randomness in science—randomness as a pre-
requisite for the applicability of probabilistic theories. Von Mises was well aware
of the centrality of this role; he made randomness part oflbfgitionof proba-
bility. This association of randomness with von Mises’ hypothetical frequentism
has unfortunately meant that interest in randomness has declined with the fortunes
of that interpretation of probability. As | mentioned, this decline was hastened by
the widespread belief that randomness can be explained merely as indeterminism.
Both of these factors have lead to the untimely neglect of randomness as a cen-

LAnother example is more recent: ‘we say that an event is random if there is no way to predict
its occurrence with certainty” (Frigg, 2004, 430).
2Thanks to Steven French for emphasising the importance of these motivating remarks.
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trally important concept for understanding a number of issues, among them being
the ontological force of probabilistic theories, the criteria and grounds for accep-
tance of theories, and how we might evaluate the strength of various proposals
concerning statistical inference. Especially when one considers the manifest in-
adequacies of ontic accounts of randomness when dealing with these ig$sues (82),
the neglect of the concept of randomness seems to have left a significant gap in the
foundations of probability. We should, however, be wary of associating worries
about randomness too closely with issues in the foundations of probability—those
are only one aspect of the varied scientifically important uses of the concept. By
paying attention to the use of the concept, hopefully we can begin to construct an
adequate account that genuinely plays the role required by science.

1.1 Ranpom SysTtems

Many dynamical processes are modelled probabilistically. These are processes
which are modelled by probabilistic state transitifiRaradigm examples include

the way that present and future states of the weather are related, state transitions
in thermodynamics and between macroscopic partitions of classical statistical me-
chanical systems, and many kinds of probabilistic modelling. Examples from
‘chaos theory’ have been particularly prominent recently (Smith, [1998).

For example, in ecohydrology (Rodriguez-lturbe, 2000), the key concept is
the soil water balance at a point within the rooting depth of local plants. The dif-
ferential equations governing the dynamics of this water balance relate the rates
of rainfall, infiltration (depending on soil porosity and past soil moisture content),
evapotranspiration and leakage (Latoall, 2001, Rodriguez-Iturbet al, [1999).

The occurrence and amount of rainfall are random infjute details are in-
teresting, but for our purposes the point to remember is that the randomness of
the rainfall input is important in explaining the robust structure of the dynamics of
soil moisture. Particular predictions of particular soil moisture based on particular
volumes of rainfall are not nearly as important for this project as understanding
the responses of soil types to a wide range of rainfall regimes. The robust prob-
abilistic structures that emerge from low-level random phenomena are crucial to
the task of explaining and predicting how such systems evolve over time and what
consequences their structure has for the systems that depend on soil moisture, for
example, plant communiti€k.

3This is unlike the random mating exampl1.2), where we have deterministic transitions
between probabilistically characterised states.

4These are modelled by a Poisson distribution over times between rainfall events, and an
exponential probability density function over volumes of rainfall.

SStrevens| (2003) is a wonderful survey of the way that probabilistic order can emerge out of
the complexity of microscopic systems.



Similar dynamical models of other aspects of the natural world, including con-
vection currents in the atmosphere, the movement of leaves in the wind, and the
complexities of human behaviour, are also successfully modelled as processes
driven by random inputs. But the simplest examples are humble gaming devices
like coins and dice. Such processes are random if anything is: the sequence of out-
comes of heads and tails of a tossed coin exhibits disorder, and our best models of
the behaviour of such phenomena are very simple probabilistic models.

At the other extreme is the appearance of randomness in the outcomes of sys-
tems of our most fundamental physics: quantum mechanical systems. Almost
all of the interpretations of quantum mechanics must confront the randomness of
experimental outcomes with respect to macroscopic variables of interest; many
account for such randomness by positing a fundamental random process. For in-
stance, collapse theories propose a fundamental stochastic collapse of the wave
function onto a particular determinate measurement state, whether mysteriously
induced by an observer (Wignér, 1961), or as part of a global indeterministic dy-
namics |(Bell, 1987&, Ghirardst all, [1986). Even no-collapse theories have to
claim that the random outcomes are not reducible to hidden varf@bles.

1.2 Ranpom Benaviour

The most basic model that population genetics provides for calculating the dis-
tribution of genetic traits in anftspring generation from the distribution of such
traits in the parent generation is the Hardy-Weinberg Law (Hartl, 2000, @—9).
This law idealises many aspects of reproduction; one crucial assumption is that
mating between members of the parent generation is random. That is, whether
mating occurs between arbitrarily selected members of the parent population does
not depend on the presence or absence of the genetic traits in question in those
members. Human mating, of course, is not random with respect to many genetic
traits: the presence of particular height or skin colour, for example, does influence
whether two human individuals will mate. But even in humans mating is random
with respect to some traits: blood group, for example. In some organisms, for in-
stance some corals and fish, spawning is genuinely random: the parent population
gathers in one location and each individual simply ejects their sperm or eggs into
the ocean where they are left to collide and fertilise; which two individuals end up
mating is a product of the random mixing of the ocean currents. The randomness
of mating is a pre-requisite for the application of the simple dynamics; there is no
explicit presence of a random state transition, but such behaviour is presupposed

SFor details, see Albert (1992), Hughes (1989).
"The law relates genotype distribution in thspring generation to allele distribution in the
parents.



in the application of the theory.

Despite its many idealisations, the Hardy-Weinberg principle is explanatory of
the dynamics of genetic traits in a population. Complicating the law by making its
assumptions more realistic only serves to indicate how various unusual features of
actual population dynamics can be deftly explained as a disturbance of the basic
underlying dynamics encoded in the law. As we have seen, for some populations,
the assumptions are not even idealised. Each mating event is random, but never-
theless the overall distribution of mating is determined by the statistical features
of the population as a whole.

Another nice example of random behaviour occurs in game theory. In many
games where players have only incomplete information about each other, a ran-
domising mixed strategy dominates any pure stratégy (Suppes| 1984, 210-2).
Another application of the concept of randomness is to agents involved in the
evolution of conventiong (Skyrms, 1996, 75-6). For example, in the convention
of stopping at lights which have two colours but no guidance as to the intended
meaning of each, or in the reading of certain kinds of external indicators in a game
of chicken (hawk-dove), the idea is that the players in the game can look to an ex-
ternal source, perceived as random, and take that as providing a way of breaking
a symmetry and escaping a hon-optimal mixed equilibrium in favour of what Au-
mann calls aorrelated equilibrium In this case, as in many others, the epistemic
aspects of randomness are most important for its role in scientific explanations.

1.3 RanpoMm SampLING

In many statistical contexts, experimenters have to select a representative sample
of a population. This is obviously important in cases where the statistical proper-
ties of the whole population are of most interest . It is also important when con-
structing other experiments, for instance in clinical or agricultural trials, where
the patients or fields selected should be independent of the treatment given and
representative of the population from which they came with respect to treatment
efficacy. The key assumption that classical statistics makes in these cases is that
the sample isandom(Fisher, 1935@ The idea here, again, is that we should ex-
pect no correlation between the properties whose distribution the test is designed
to uncover and the properties that decide whether or not a particular individual
should be tested.

8See alsb Howson (2000), pp. 48-51 and Mayo (1996). The question whether Bayesian statis-
tics should also use randomisation is addressed by Howson and Urbach (1993), pp. 260-74. One
plausible idea is that if Bayesians have priors that rule out bizarre sources of correlation, and ran-
domising rules out more homely sources of correlation, then the posterior after the experiment has
run is reliable.



In Fisher’s famous thought experiment, we suppose a woman claims to be able
to taste whether milk was added to the empty cup or to the tea. We wish to test
her discriminatory powers; we present her with eight cups of tea, exactly four of
which had the milk added first. The outcome of a trial of this experiment is a
judgement by the woman of which cups of tea had milk. The experimenter must
strive to avoid correlation between the order in which the cups are presented, and
whatever internal algorithm the woman uses to decide which cups to classify as
milk-first. That is, he must randomise the cup order. If her internal algorithm is
actually correlated with the presence of milk-first, the randomising should only
rule out those cases where it is not, namely, those cases where she is faking it.

An important feature of this case is that it is important that the cup selection
be random to the woman, but not to the experimenters. The experimenters want a
certain kind of patternlessness in the ordering of the cups, a kind of disorder that
is designedo disturb accidental correlatioris (Dembs$ki, 1991). The experimenters
also wish themselves to know in what order the cups are coming; the experiment
would be uninterpretable without such knowledge. Intuitively, this order would
not be random for the experimenters: they know which cup comes next, and they
know the recipe by which they computed in which order the cups should come.

1.4 Caprice, ARBITRARINESS, AND NOISE

John Earman has argued that classical Newtonian mechanics is indeterministic,
on the basis of a very special kind of case (Earman, [1986, 33-39). Because New-
tonian physics imposes no upper bound on the velocity of a point particle, it is
nomologically possible in Newtonian mechanics to have a particle whose veloc-
ity is finite but unbounded, which appears at spatial infinity at some tittgs

is the temporal inverse of an unboundedly accelerating particle that limits to an
infinite velocity in a finite time). Prior ta that particle had not been present in

the universe; hence the prior state does not determine the future state, since such a
‘space invader’ particle is possible. Of course, such a space invader is completely
unexpected—it is plausible, | think, to regard such an occurrence as completely
and utterly random and arbitrary. Randomness in this case does not capture some
potentially explanatory aspect of some process or phenomenon, but rather serves
to mark our recognition of complete capriciousness in the event.

More earthly examples are not hard to find. Shannon noted that when mod-
elling signal transmission systems, it is inappropriate to think that the only rele-
vant factors are the information transmitted and the encoding of that information
(Shannon and Weaver, 1949). There are physical factors that can corrupt the phys-
ical representation of that data (say, stray interference with an electrical or radio
signal). Itis not appropriate or feasible to explicitly incorporate such disturbances
in the model, especially since they serve a purely negative role and cannot be



controlled for, only accommodated. These models therefore includadom
noisefactor: random alterations of the signal with a certain probability distribu-
tion. All the models we have mentioned include noise as a confounding factor,
and it is a very general technique for simulating the pattern of disturbances even
in deterministic systems with no other probabilistic aspect. The randomness of
the noise is crucial: if it were not random, it could be explicitly addressed and
controlled for. As it stands, noise in signalling systems is addressed by complex
error-checking protocols, which, if they work, rely crucially on the random and
unsystematic distribution of errors. A further example is provided by the concept
of random mutation in classical evolutionary theory. It may be that, from a bio-
chemical perspective, the alterations in DNA produced by imperfect copying are
deterministic. Nevertheless, these mutations are random with respect to the genes
they alter, and hence thefliirential fitness they conv@/.

2 Concepts of Randomness

If we are to understand what randomness is, we must begin with the scientifically
acceptable uses of the concept. These form a rough picture of the intuitions that
scientists marshal when describing a phenomenon as random; our task is to sys-
tematise these intuitions as best we can into a rigorous philosophical analysis of
this intuitive conception.

Consider some of the competing demands on an analysis of randomness that
may be prompted by our examples.

(1) Statistical Testing We need a concept of randomness adequate for use in
random sampling and randomised experiments. In particular, we need to
be able to produce random sequences on demand, and ascertain whether a
given sequence is random.

(2) Finite Randomness The concept of randomness must apply to the single
event, as in Earman’s example or a single instance of random mating. It
must at least apply to finite phenomena.

(3) Explanation and Confirmation Attributions of randomness must be able
to be explanatorily fective, indicating why certain systems exhibit the
kinds of behaviour they do; to this end, the hypothesis that a system is
random must be amenable to incremental empirical confirmation or discon-
firmation.

9Thanks to Spencer Maughan for the example.
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(4) Determinism The existence of random processes must be compatible with
determinism; else we cannot explain the use of randomness to describe pro-
cesses in population genetics or chaotic dynamics.

Confronted with this variety of uses of randomness to describe such varied phe-
nomena, one may be tempted to despair: “Indeed, it seems highly doubtful that
there is anything like a unique notion of randomness there to be explicated.”
(Howson and Urbach, 1993, 324). Even if one recognises that these demands
are merely suggested by the examples and may not survive careful scrutiny, this
temptation may grow stronger when one considers how previous explications
of randomness deal with the cases we described above. This we shall now do
with the two most prominent past attempts to define randomness: the place se-
lectiorystatistical test conception and the complexity conception of randomness.
Both do poorly in meeting our criteria; poorly enough that if a better account were
to be proposed, we should reject them.

2.1 VoN Mises/CHURCH/M ARTIN-L OF RANDOMNESS

Dermnition 1 (von Mises-Ranbomness). An infinite sequence” of outcomes of
typesAy, ..., A, is vM-randomiff (i) every outcome typeA, has a well-defined
relative frequencyelf;y in .; and (i) for every infinite subsequencé’ chosen
by anadmissible place selectipthe relative frequency ok remains the same as
in the larger sequenceelf”’ = relf” .

Immediately, the definition only applies to infinite sequences, and so fails con-
dition (2) of finiteness.
What is an admissible place selection? Von Mises himself says:

[T]he question whether or not a certain member of the original sequence

belongs to the selected partial sequence should be sattlegendently of

the resultof the observation, i.e. before anything is known about the result.
(von Mises| 1957, 25)

The intuition is that, if we pick out subsequences independently of the contents
of the elements we pick (by paying attention only to their indices, for example),
and each of those has the same limit relative frequencies of outcomes, then the se-
guence is random. If we could pick out a biased subsequence, that would indicate
that some set of indices had a greater than chance probability of being occupied
by some particular outcome; the intuition is that such an occurrence would not be
consistent with randomness.

Church (1940), attempting to make von Mises’ remarks precise, proposed that
admissible place selections are recursive functions that decide whether an element



s is to be included in a subsequence on input of the index nuirdred the initial
segment of the sequence upgo,. For example, ‘select only the odd numbered
elements’, and ‘select any element that comes after the subsequence 010’ are both
admissible place selections. An immediate corollary is that no random sequence
can be recursively computable: else there would be a recursive function that would
choose all and only 1s from the initial sequence, namely, the function which gener-
ates the sequence itself. But if a random sequence cannfiebé\ely generated,

we cannot produce random sequences for use in statistical testing. Neither can we
effectively test, for some given sequence, whether it is random. For such a test
would involve exhaustively checkirgll recursive place selections to see whether
they produce a deviant subsequence, and this is not decidable in any finite time
(though for any non-random sequence, at some finite time the checking machine
will halt with a ‘no’ answer). If random sequences are neither producible or dis-
cernible, they are useless for statistical testing purposes, failing the first demand.
This point may be made more striking by noting that actual statistical testing only
ever involves finite sequences; and no finite sequence can be vM-random at all.

Furthermore, it is perfectly possible that some genuinely vM-random infinite
sequence has an arbitrarily biased initial segment, even to the point where all the
outcomes of the sequence that actually occur during the life of the universe are 1s.
A theorem of Ville (1939) establishes a stronger result: given any countable set
of place selection§p}, there is some infinite sequencé such that the limit fre-
quency of 1s in any subsequencedf = ¢;(.”) selected by some place selection
is one half, despite the fact that for every finite initial segment of the sequence,
the frequency of 1s is greater than or equal to one half (van Lambalgen, 1987,
730-1,745-8). That is, any initial segment of this sequence is not random with
respect to the whole sequence or any infinite selected subsequence. There seems
to be no empirical constraint that could lead us to postulate that such a sequence
is genuinely vM-random. Indeed, since any finite sequence is recursively com-
putable, no finite segment will ever provide enough evidence to justify claiming
that the actual sequence of outcomes of which it is a part is random. That our ev-
idence is at best finite means that the claim that an actual sequence is vM-random
is empirically underdetermined, and deserving of a arbitrarily low credence be-
cause any finite sequence is better explained by some other hypothesis (e.g. that
it is produced by some pseudo-random function). vM-randomness is a profligate
hypothesis that we cannot be justified in adopting. Hence it can play no role in ex-
planations of random phenomena in finite cases, where more empirically tractable
hypotheses will do far better.

One possible exception is in those cases where we have a rigorous demon-
stration that the behaviour in question cannot be generated by a deterministic
system—in that case, the system may be genuinely vM-random. Even granting
the existence of such demonstrations, note that in this case we have made essential
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appeal to a fact about the random process that produces the sequence, and we have
strictly gone beyond the content of the evidence sequence in making that appeal.
Here we have simply abandoned the quest to explain deterministic randomness.
Random sequences may well exist for infinite strings of quantum mechanical mea-
surement outcomes, but we don't think that random phenomena are confined to
indeterministic phenomena alone: vM-randomness fails demand (4).

Partly in response to these kinds of worries, a final modification of Von Mises’
suggestion was made by Martin-L.6f (1966, 1969, 1970). His idea is that biased
sequences are possible but unlikely: non-random sequences, including the types
of sequences considered in Ville’s theorem, form a set of measure zero in the set
of all infinite binary sequences. Martin-L6f’s idea is that truly random sequences
satisfy all the probability one properties of a certain canonical kind: recursive se-
guential significance tests—this means (roughly) that a sequence is random with
respect to some hypothedit, about probabilityp of some outcome in that se-
quence if it does not provide grounds for rejectidg at arbitrarily small levels
of significancd Van Lambalgen|(1987) shows that Martin-L6f (ML)-random
sequences are, with probability 1, vM-random sequences also—almost all strictly
increasing sets of integers (Wald place selections) select infinite subsequences of
a random sequence that preserve relative frequencies.

Finally, as Dembski[ (1991) points out, for the purposes of statistical testing,
“Randomness, properly to be randomness, must leave nothing to chance.” (p. 75)
This is the idea that in constructing statistical tests and random number generators,
the first thing to be considered is the kinds of patterns that one wants the random
object to avoid instantiating. Then one considers the kinds of objects that can be
constructed to avoid matching these tests. In this case, take the statistical tests you
don’t want your sequence to fail, and make sure that the sequence is random with
respect to these patterns. Arbitrary segments of ML-random sequences cannot
satisfy this requirement, since they must leave up to chance exactly which entities
come to constitute the random selection.

2.2 KCSRANDOMNESS

One aspect of random sequences we have tangentially touched on is that random
sequences are intuitively complex and disordered. Random mating is disorderly
at the level of individuals; random rainfall inputs are complex to describe. The

10Consider some statistical test such as ¢haest. The probability arising out of the test is
the probability that chance alone could account for the divergence between the observed results
and the hypothesis; namely, the probability that the divergence between the observed sequence
and the probability hypothesis (the infinite sequence) is not an indication that the classification
is incorrect. A random sequence is then one that, even given an arbitrarily small probability that
chance accounts for the divergence, we would not reject the hypothesis.
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other main historical candidate for an analysis of randomness, suggested by the
work of Kolmogorov, Chaitin and Solomonov (KCS), begins with the idea that
randomness is the (algorithmic) complexity of a sequ@ce.

Thecomplexityof a sequence is defined in terms @eetive production of that
sequence.

Derinition 2 (CompLEXITY). The complexityK - (.) of sequence” is the length
of the shortest programmn@ of some Turing machine” which produces¥ as
output, when given as input the length.gf. (K ~(.¥) is set tow is there does not
exist aC that produces”).

This definition is machine-dependent; some Turing machines are able to more
compactly encode some sequences. Kolmogorov showed that there exist universal
Turing machines” such that for any sequencé,

(1) VY73cs Ky(Y) <Kz (F)+cCz,

where the constartt,; doesn’t depend on the length of the sequence, and hence
can be made arbitrarily small as the length of the sequence increases. Such ma-
chines are known aasymptotically optimaimachines. If we let the complexity

of a sequence be defined relative to such a machine, we get a relatively machine-
independent characterisation of comple@ﬂ.’he upper bound on complexity of

a sequence of lengthis approximately)—we can always resort to hard-coding

the sequence plus an instruction to print it.

DeriniTion 3 (KCS-RanpomnEss). A sequence” is KCS-randonif its complexity
is approximately its lengtrk () ~ I1()[H

One natural way to apply this definition to physical processes is to regard the
sequence to be generated as a string of successive outcomes of some such process.

IA comprehensive survey of complexity and the complexity-based approach to randomness is
Li and Vitanyi (1997). See also Kolmogorov and Uspensky (1988), Kolmogorov (1963), Batter-
man and White[ (1996), Chaitin (1975), van Lambalden (1995), Earman|(1986, ch. VIII),| Smith
(1998, ch. 9), Suppgs (1984, pp. 25-33).

?Though problems remain. The mere fact that we can give results about the robustness of
complexity results (namely, that lots of universal machines will give roughly the same complexity
value to any given sequence) doesn't really get around the problem that any particular machine
may well be biased with respect to some particular sequénce (He[lman| 1978,/Smith, 1998).

13A related approach is the so-called ‘time-complexity’ view of randomness, where it is not
the space occupied by the programme, but rather the time it takes to compute its output given
its input. Sequences are time-random just in case the time taken to compute the algorithm and
output the sequence is greater than polynomial in the size of the input. Equivalently, a sequence
is time-random just when all polynomial time algorithms fail to distinguish the putative random
string from a real random string (equivalent because a natural way of distinguishing random from
pseudo-random is by computing the functign) (Demljski, 1991, 84).
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In dynamical systems, this would naturally be generated by exantirgjggtories

in the system: sequences that list the successive cells (of some partition of the state
space) that are traversed by a system over time. KCS-randomness is thus primarily
a property of trajectories. This notion turns out to be able to be connected with a
number of other mathematical concepts that measure some aspects of randomness
in the context of dynamical syste@.

This definition fares markedly better with respect to some of our demands than
vM-randomness. Firstly, there are finite sequences that are classified as KCS-
random. For each there are 2binary sequences of lengthBut the non-KCS-
random sequences amongst them are all generated by programmes of less than
length| — k, for somek; hence there will be at most2 programmes which
generate non-KCS-random sequences. But the fractidp22 = 1/2% so the
proportion of non-KCS-random sequences within all sequences of |ér{fiih
all I) decreases exponentially with the degree of compressibility demanded. Even
for very modest compression in large sequences kay20,| = 1000) less than
1 in a million sequences will be non-KCS-random. It should, | think, trouble us
that, by the same reasoning, longer sequences are more KCS-random. This means
that single element sequences are not KCS-random, and so the single events they
represent are not KCS-random eitfr.

It should also disturb us that biased sequences are less KCS-random than un-
biased sequences (Earman, 1986, 143-5). A sequence of tosses of a biased coin
(e.g. Prd) > 0.5) can be expected to have more frequent runs of consecutive 1s
than an unbiased sequence; the biased sequence will be more compressible. A
single 1 interrupting a long sequence of 0s is even less KCS-random. But in each
of these cases, intuitively, the distribution of 1s in the sequence can be as random
as desired, to the point of satisfying all the statistical significance tests for their
probability value. This is important because stochastic processes occur with arbi-
trary underlying probability distributions, and randomness needs to apply to all of
them: intuitively, random mating would not be less random were the distribution
over genotypes non-uniform.

What about statistical testing? Here, again, there arefi@ctere computa-
tional tests for KCS-randomness, nor any way fiéetively producing a KCS-
random sequen@.This prevents KCS-random sequences befifigeively use-

4For instance, Brudno's theorem establishes a connection between KCS-randomness and what
is known asKolmogorov-Sinai entropywhich has very recently been given an important role in
detecting randomness in chaotic systems.| Seel|Frigg (2004, esp. 430).

There are also fliculties in extending the notion to infinite sequences, but | consider these
far less worrisome in application (Smiith, 1998, 156-7).

16There does not exist an algorithm which on inputields a KCS-random sequencgé as
output such that¥| = k; nor does there exist an algorithm which on inpttyields output 1
iff that sequence is KCS-random (van Lambalgen, 1995, 10-1). This result is a fairly immediate
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ful in random sampling and randomisation. Furthermore, the lack offentive
test renders the hypothesis of KCS-randomness of some sequence relatively im-
mune to confirmation or disconfirmation.

One suggestion is that perhaps we were mistaken in thinking that KCS com-
plexity is an analysis of randomness; perhaps, as Earman|(1986) suggests, it ac-
tually is an analysis oflisorderin a sequence, irrespective of the provenance of
that sequence. Be that as it may, the problems above seem to disqualify KCS-
randomness from being a good analysis of randomness. (Though random phe-
nomena typically exhibit disorderly behaviour, and this may explain how these
concepts became linked, this connection is neither necessarsfioresu.)

3 Randomness is Unpredictability: Preliminaries

Perhaps the foregoing survey of mathematical concepts of randomness has con-
vinced you that no rigorously clarified concept can meet every demand on the
concept of randomness that our scientific intuitions place on it. Adopting a best
candidate theory of content (Lewjs, 1984), one may be drawn to the conclusion
that no concept perfectly fills the role delineated by our four demands, and one
may then settles on (for example) KCS-randomness as the best partial filler of the
randomness role.

Of course this conclusion only follows if there is no better filler of the role. |
think there is. My hypothesis is that scientific randomness is best analysed as a
certain kind ofunpredictability | think this proposal can satisfy each of the de-
mands that emerge from our quick survey of scientific applications of randomness.
Before | can state my analysis in full, some preliminaries need to be addressed.

3.1 BRrocess aND ProbucT RANDOMNESS

The mathematical accounts of randomness we addressed do not, on the surface,
make any claims about scientific randomness. Rather, these accounts invite us
to infer, from the randomness of some sequence, that the process underlying that
sequence was random (or that an event produced by that process and part of that
sequence was random). Our demands were all constraints on random processes
requiring that they might be used to randomise experiments, to account for ran-

dom behaviour, and that they might underlie stochastic processes and be compat-
ible with determinism. Our true concern, therefore, is with process randomness,

not product randomness (Earman, 1986, 137-8). Our survey showed that the in-

ference from product to process randomness failed: the class of processes that

corollary of the unsolvability of the halting problem for Turing machines.
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possess vM-random or KCS-random outcome sequences fails to satisfy the intu-
itive constraints on the class of random procegées.

Typically, appeals are made at this point to theorems which show that ‘al-
most all’ random processes produce random outcome sequences, and vice versa
(Frigd,|2004, 431). These appeals are beside the point. Firstly, the theorems
depend on quite specific mathematical details of the models of the systems in
guestion, and these details do not generalise to all the circumstances in which ran-
domness is found, giving such theorems very limited applicability. Secondly, even
where these theorems can be established, there remains a logical gap between pro-
cess randomness and product randomness, some random processes exhibit highly
ordered outcomes. Such a possibility surely contradicts any claim that product
randomness and process randomness are ‘extensionally equivalent’ [(Frigg, 2004,
431).

What s true is that product randomness is a defeasible incentive to inquire into
the physical basis of the outcome sequence, and it provides at least a prima facie
reason to think that a process is random. Indeed, this presumptive inference may
explain much of the intuitive pull exercised by the von Mises and KCS accounts
of randomness. For, insofar as these accounts do capture typical features of the
outputs of random processes, they can appear to give an analysis of randomness.
But this presumptive inference can be defeated; and even the evidential status of
random products is less important than it seems—on my account, far less stringent
tests than von Mises or KCS can be applied that genuinely do pick out the random
processes.

3.2 RANDOMNESS IS |INDETERMINISM?

The comparative neglect of the concept of randomness by philosophers is in large
part due, | think, to the pervasive belief in the pernicious hypothesis that a physical
process is random just when that process is indeterministic. Hellman, while con-
curring with our conclusion that no mathematical definition of random sequence
can adequately capture physical randomness, claims that ‘physical randomness’
is “roughly interchangeable with ‘indeterministic]” (Hellman, 1978, 83).
Indeterminism here means that the complete and correct scientific theory of
the process is indeterministic. A scientific theory we take to be a class of models
(van Fraassen, 1989, ch. 9). An individual model will be a particular history of
the states that a system traverses (a specification of the properties and changes in
properties of the physical system over time): call such a histingjectoryof the

YThere is some psychological research which seems to indicate that humans judge randomness
of sequences by trying to assimilate them to representative outcomes of random processes. Any
product-first conception of randomness will havéfidulty explaining this clearly deep-rooted
intuition (Griffiths and Tenenbaurn, 2001).
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system. The class of all possible trajectories is the scientific theory. Two types
of constraints govern the trajectories: the dynamical laws (like Newton’s laws of
motion) and the boundary conditions (like the Hamiltonian of a classical system
restricts a given history to a certain allowable energy surface) govern which states
can be accessed from which other states, while the laws of coexistence and bound-
ary conditions determine which properties can be combined to form an allowable
state (for instance, the idea gas IRV = nrT constrains which combinations of
pressure and volume can coexist in a state). This model of a scientific theory is
supposed to be very general: the states can be those of the phase space of classical
statistical mechanics, or the states of soil moisture, or of a particular genetic dis-
tributi?ﬂ? in a population, while the dynamics can include any mappings between
state

DeriniTioN 4 (EarRMaN-MonTagUE DETERMINISM). A scientific theory isdetermin-

istic iff any two trajectories in models of that system which overlap at one point
overlap at every point. A theory isdeterministidaff it is not deterministic; equiv-
alently, if two systems can be in the same state at one time and evolve into distinct
states. A system is (in)deterministt€ the theory which completely and correctly
describes it is (in)deterministic. (Earman, 1986, Montague, [1974)

Is it plausible that the catalogue of random phenomena we began with can
be simply unified by the assumption that randomness is indeterminism? It seems
not. Many of the phenomena we enumerated do not seem to depend for their ran-
domness on the fact that the world in which they are instantiated is one where
guantum indeterminism is the correct theory of the microphysical realm. One can
certainly imagine that Newton was right. In Newtonian possible worlds, the kinds
of random phenomena that chaotic dynamics gives rise to are perfectly physically
possible; so too with random mating, which depends on a high-level probabilis-
tic hypothesis about the structure of mating interactions, not low-level indeter-
minismfY Our definition of indeterminism made no mention of the concept of
probability; an adequate understanding of randomness, on the other hand, must
show how randomness and probability are related—hence indeterminism cannot
be randomness. Moreover, we must at least allow for the possibility that quantum
mechanics will turn out to be deterministic, as on the Bohm theory|(Bell, 1987b).
Finally, it seems wrong to say that coin tossing is indeterministic, or that creatures

8S50ome complications are induced if one attempts to give this kind of account for relativistic
theories without a unique time ordering, but these are inessential for our purposes (van Fraassen,
1989).

PThere are also purported proofs of the compatibility of randomness and indeterminism
(Humphreys| 1978). | don't think that the analysis of randomness utilised in these formal proofs
is adequate, so | place little importance on these constructions.

15



engage in indeterministic mating: it would turn out to be something of a philo-
sophical embarrassment if the only analysis our profession could provide made
these claims correct.

One response of behalf of the pernicious hypothesis is that, while classical
physics is deterministic, it is nevertheless, on occasion, a useful idealisation to
pretend that a given process is indeterministic, and hence ra@jbthink that
this response confuses the content of concepts deployed within a theory, like the
concept of randomness, with the external factors that contribute to the adoption
of a theory, such as that theory being adequate for the task at hand, and therefore
being a useful idealisation. Classical statistical mechanics does not say that it is
a useful idealisation that gas motion is random; the theory is an idealisation that
says gas motion is random, simpliciter. Here, | attempt to give a characterisation
of randomness that is uniform across all theories, regardless of whether those
theories are deployed as idealisations or as perfectly accurate descriptions.

We must also be careful to explain why the hypothesis that randomness is
indeterminism seems plausible to the extent that it does. | think that the historical
connection of determinism with prediction in the Laplacean vision can explain
the intuitive pull of the idea that randomness is objective indeterminism. | believe
that a historical mistake still governs our thinking in this area, for when increasing
conceptual sophistication enabled us to tease apart the concepts of determinism
and predictability, randomness remained connected to determinism, rather than
with its rightful partner, predictability. It is to the concept of predictability that we
now turn.

4 Predictability

The Laplacean vision is that determinism is idealised predictability:

[A]n intelligence which could comprehend all the forces by which nature is
animated and the respective situation of all the [things which] compose it—
an intelligence sfliciently vast to submit these data to analysis—it would
embrace in the same formula the movements of the greatest bodies in the
universe and those of the lightest atom; for it, nothing would be uncertain
and the future, as well as the past, would be present to its eyes.

(Laplace| 19501, 4)

DeriniTion 5 (LarLacEaN DeTErMINISM). A system id.aplacean deterministiidf it
would be possible for an epistemic agent who knew precisely the instantaneous

20John Burgess suggested the possibility of this response to me—and pointed out that some
remarks below (particularly §84.3 ahd 6.3) might seem to support it.
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state and could analyse the dynamics of that system to predict with certainty the
entire precise trajectory of the system.

A Laplacean deterministic system is where the epistemic features of some ideal
agent cohere perfectly with the ontological features of that world. Given that there
are worlds where prediction and determinism mesh in this way, it is easy to think
that prediction and determinism are closely related con@dpts.

There are two main ways to make the features of this idealised epistemic agent
more realistic that would undermine this close connection. The first way is to try
and make the epistemic capacities of the agent to ascertain the instantaneous state
more realistic. The second way is to make the computational and analytic capac-
ities of the agent more realistic. Weakening the epistemic abilities of the ideal
agent allows us to clearly see the separation of predictability and detern@ﬂsm.

4.1 Beistemic CONSTRAINTS ON PREDICTION

The first kind of constraint to note concerns our ability to precisely ascertain the
instantaneous state of a system. At best, we can establish that the system was in a
relatively small region of the state space, over a relatively short interval of time.
There are several reasons for this. Most importantly, we humans are limited in
our epistemic capabilities. Our measurement apparatus is not capable of arbitrary
discrimination between fterent states, and is typically only able to distinguish
properties that correspond to quite coarse partitions of the state space. In the
case of classical statistical mechanics of an ideal gas in a box, the standard parti-
tion of the state space is into regions that are macroscopically distinguishable by
means of standard mechanical and thermodynamic properties: pressure, temper-
ature, volume. We are simply not capable of distinguishing states that ffan di
by arbitrarily little: one slight shift of position in one particle in a mole of gas.
In such cases, with even one macrostate compatible with more than one indis-
tinguishable microstate, predictability for us and determinism do not match; our
epistemic situation is typically worse than t@s.

2IAn infamous example of this is the bastardised notion of ‘epistemological determinism’,
as used by Popper (1982)—which is no form of indeterminism at all. The unfortunately named
distinction between ‘deterministic’ and ‘statistical’ hypotheses, actually a distinction concerning
the predictions made by theories, is another example of this persistent confusion (Howson, 2000,
102-3).

22For more on this, see Bishop (2003), Eariman (1986, ch. 1), Schurz (1995), Stone (1989).

2Note that, frequently, specification of the past macroscopic history of a system together with
it present macrostate, will help to make its presmidrostatemore precise. This is because the
past history can indicate something about the bundle of trajectories upon which the system might
be. These trajectories may not include every point compatible with the currently observed state.
In what follows, we will consider the use of this historical constraint to operate to give a more
precise characterisation of the current state, rather than explicitly considering it.
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There is an ‘in principle’ restriction too. Measurement involves interactions: a
system must be disturbed, ever so slightly, in order for itffec the system that
is our measurement device. We are forced to meddle and manipulate the natural
world in ways that render uncertain the precise state of the system. This has two
consequences. Firstly, measurement alters the state of the system, meaning we are
never able to know the precise pre-measurement state (Bfshop, 2003, 85). This is
even more pressing if we consider the limitations that quantum mechanics places
on simultaneous measurement of complementary quantities. Secondly, measure-
ment introduces errors into the specification of the state. Repetition does only so
much to counter these errors; physical magnitudes are always accompanied by
their experimental margin of error.

It would be a grave error to think that the in principle limitations are the more
significant restrictions on predictions. On the contrary: prediction is an activity
that arose primarily in the context of agency, where having reasonable expecta-
tions about the future is essential for rational action. Creatures who were not goal
directed would have no use for predictions. As such, an adequate account of pre-
dictability must make reference to the actual abilities of the epistemic agents who
are deploying the theories to make predictions. An account of prediction which
neglected these pragmatic constraints would thereby leave out why the concept of
prediction is important or interesting at all (Schurz, 1995, 86).

A nice example of the consequences of imprecise specification of initial con-
ditions is furnished by the phenomenon from chaotic dynamics knowarastive
dependence on initial conditionar ‘error inflation’ (Smith| 1998, pp. 15, 167-8).
Consider some small bundle of initial statésand some statg, € S. Then, for
some systems,

(2) Fe>0VY6>035e STt >0(ls—- S <Al —S|>€).

That is, for some bundle of state space points that are within some arbitrary dis-
tances in the state space, there are at least two states whose subsequent trajec-
tories diverge by at least after some time. In fact, for typically chaotic sys-

tems, all neighbouring trajectories within the bundle of states diverge exponen-
tially fast. Predictability fails; knowledge of initial macrostates, no matter how
fine grained, can always leave us in a position where the trajectories traversing
the microstates that compose that initial macrostate each end up in a completely
different macrostate, giving us no decisive prediction.

How well can we accommodate this behaviour? It turns out then that pre-
dictability in such cases is exponentially expensive in initial data; to predict even
one more stage in the time evolution of the system demands an exponential in-
crease in the accuracy of the initial state specification. Given limits on the ac-
curacy of such a specification, our ability to predict will run out in a very short
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time for lots of systems of very moderate complexity of description, even if we
have the computational abilities. However (and this will be important in the se-
guel) we can predict global statistical behaviour of a bundle of trajectories. This
is typically because our theory yields probabilities of state transitions from one
macrostate into anoth@}. This combination of global structure and local insta-
bility is an important conceptual ingredient in randomnéss (Smith,|1998, ch. 4).
Bishop (2003) makes the plausible claim that any error in initial measurement will
eventually yield errors in prediction, but exponential error inflation is a particu-
larly spectacular example.

4.2 ComMpuUTATIONAL CONSTRAINTS ON PREDICTION

There may also be constraints imposed by our inability to track the evolution of a
system along its trajectory. Humphreys’ (1978) purported counterexamples to the
thesis that randomness is indeterminism relied on the following possibility: that
the total history of a system may supervene on a single state, hence the system is
deterministic, while no computable sequence of states is isomorphic to that his-
tory. Given the very plausible hypothesis that human predictors have at best the
computation capacities of Turing machines, this means that some state evolutions
are not computable by predictors like us. This is especially pronounced when the
dynamical equations governing of the system are not integrable and do not ad-
mit of a closed-form solution (Stone, 1989). Predictions of future states when the
dynamics are based on open-form solutions are subject to ever-increasing com-
plexity as the time scale of the prediction increases.

There is a sense in which all deterministic systems are computable: each sys-
tem does ffectively produce its own output sequence. If we are gide (mpos-
sibile) to arbitrarily control the initial conditions, then we could use the system
itself as an ‘analogue computer’ that would simulate its own future behaviour.
This, it seems to me, would be prediction by cheating. What we demand of a
prediction is the making of some reasonable, theoretically-informed judgement
about the unknown behaviour of a system—not remembering how it behaved in
the past. (Similarly, predicting by consulting a reliable oracle is not genuine pre-
diction either.) | propose that, for our purposes, we set prediction by cheating
aside as irrelevant.

An important issue for computation of predictions is the internal discrete rep-
resentation of continuous physical magnitudes; this significant problem is com-
pletely bypassed by analogue computation (Eariman, 1986, ch. VI). This approach

24We can also use shadowing theorems (Smith, 1998, 58-60), and knowledge of chaotic pa-
rameter values.
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also neglects more mundane restrictions on computations: our finite lifespan, re-
sources, memory and patience!

4.3 RaceMmaric CoNSTRAINTS ON PREDICTION

There are also constraints placed on prediction by the structure of the theory yield-
ing the predictions. Consider thermodynamics. This theory gives perfectly ade-
guate dynamical constraints on macroscopic state conditions. But it does not suf-
fice to predict a state that specifies the precise momentum and position of each
particle; those details are ‘invisible’ to the thermodynamic state. Some features of
the state are thus unpredictable because they are not fixed by the theory’s descrip-
tion of the state.

This is only of importance because, on occasion, this is a desirable feature of
theory construction. A theory of population genetics might simply plug in the pro-
viso that mating happens unpredictably, where this is to be taken as saying that, for
the purposes of the explanatory and predictive tasks at hand, it cafebavely
treated as such. It is more perspicuous not to attempt to explain this higher-order
stochastic phenomenon in terms of lower level theories. This is part of a general
point about the explanatory significance of higher-level theories, but it has par-
ticular force for unpredictability. Some theories don't repay tfererequired
to make predictions using them, even if those theories could, in principle, predict
with certainty. Other theories are more simple affé@ive because various de-
terministic phenomena are treated as absolutely unpredictable. A random aspect
of the process is perhaps to be seen as a qualitative factor in explanation of some
quite diferent phenomenon; or as an ancillary feature not of central importance
to the theory; or it might simply be proposed as a central irreducible explanatory
hypothesis, whose legitimacy derives from the fruitfulness of assuming it. Given
that explanation and prediction are tasks performed by agents with certain cogni-
tive and practical goals in hand (van Fraassen, 1980), the utility of some particular
theory for such tasks will be a matter of pragmatic qualities of the theory.

4.4 RkepictioN DEFINED

Given these various constraints, | will now give a general characterisation of the
predictability of a process.

Dermnition 6 (PrepicTiON). A prediction functionspr(M, t) takes as input the cur-

rent stateM of a system described by a thedryas discerned by a predicté,

and an elapsed time parameter, and yields a temporally-indexed probability dis-
tribution Pk over the space of possible states of the systenprelictionis a
specific use of some prediction function by some predictor on some initial state
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and elapsed time, who then adoptsdrtheir posterior credence function (condi-
tional on the evidence and the theory). (If the elapsed time is negative, the use is
aretrodiction)

Let us unpack this a little. Consider a particular system that has been as-
certained to be in some stald at some time. The states are supposed to be
distinguished by the epistemic capacities of the predictors, so that in classical me-
chanics, for example, the states in question wilhi&crostatesindividuated by
differences in observable parameters such as temperature or pressure. A predic-
tion is an attempt to establish what the probability is that the system will be in
some other state after some timleas elapse@ The way such a question is an-
swered, on my view, is by deploying a function of a kind whose most general
form is a prediction function. The ageRtwho wishes to make the prediction has
some epistemic and computational capabilities; these delimit the fine-grainedness
of the partition of whichM is a member, and the class of possible functions. The
theoryT gives the basic ingredients for the prediction function, establishing the
physical relations between states of the theory accepted by the agent. These are
contextualfeatures that are fixed by the surroundings in which the prediction is
made: the epistemic and computational limitations of the predictor and the the-
ory being utilised are presuppositions of the making of a prediction (Stalnaker,
1984). These contextual features fix a set of prediction functions that are avail-
able to potential predictors in that context. The actual prediction, however, is the
updating of credences by the predictor who conditions on observed evidence and
accepted theory, which jointly dictate the prediction functions that are available to
the predictor.

The notion of an available prediction function may need some explanation.
Clearly, the agent who updates by simply picking some future event and giving
it credence 1 is updating his beliefs in future outcomes in a way that meets the
definition of a prediction function. Nevertheless, this prediction function is (most
likely) inconsistent with the theory the agent takes to most accurately describe the
situation he is concerned to predict, unless that agent adopts a very idiosyncratic
theory. As such, it is accepted theory and current evidence which are to be taken
as basic; these fix some prediction functions as reasonable for the agents who be-
lieve those theories and have observed that evidence, and it is those reasonable
prediction functions that are available to the agent in the sense | have discussed
here. Availability must be a normative notion; it cannot be, for example, that a
prediction function is available if an agent could update their credences in accor-
dance with its dictates; it must also be reasonable for the agent to update in that

25A perfect, deterministic prediction is the degenerate case where the probability distribution
is concentrated on a single state (or a single cell of a partition).
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way, given their other belief§]

Graham Priest suggested to me that the set of prediction functions be all recur-
sive functions on the initial data, just so as to make the set of available predictions
the same for all agents. But | don’t think we need react quite so drastically, espe-
cially since to assume the availability of these functions is simply to reject some
of the plausible computational limitations on human predictions.

This conception of prediction has its roots in consideration of classical statis-
tical mechanics, but the use of thermodynamic macrostates as a paradigm for the
input stateM may skew the analysis with respect to other thecﬂefhe input
stateM must include all the information we currently possess concerning the sys-
tem whose behaviour is to be predicted. This might include the past history of the
system, for example when we use trends in the stockmarket as input to our pre-
dictive economic models. It must also include some aspects of the microstate of
the system, as in quantum mechanics, where the uniform initial distribution over
phase space in classical statistical mechanics is unavailable, so all probabilities of
macroscopic outcomes are state dependent. Sometimes we must also include rel-
evant knowledge or assumptions about other potentially interacting systems. This
holds not only in cases where we assume that a system is for all practical purposes
closed or isolated, but also in special relativity, where we can only predict future
events if we impose boundary conditions on regions spacelike separated from us
(and hence outside our epistemic access), for example that those regions are more
or less like our past light cone. So the input state must be broader than just the cur-
rent observations of the system, and it must include all the ingredients necessary,
whatever those might be, to fix on a posterior probability function.

The relation of the dynamical equations of the theory to the available predic-
tion functions is an important issue. The aim of a predictive theory is to yield
useful predictions by means of a modified dynamics that is not too false to the
underlying dynamics. For some theories, the precise states will be ascertainable
and the dynamical equations solvable; the prediction functions in this case will
just be the dynamical equations used in the theory, and the probability distribu-
tion over final states will be concentrated on a point in the deterministic case, or
given by the basic probabilistic rule in the indeterministic case (say, Born’s rule
in elementary quantum theory). Other cases are more complicated. In classical
statistical mechanics, we have to consider how the entire family of trajectories
that interseciM (i.e. overlap the microstateshat constituteVl) behave under the
dynamical laws, and whether tractable functions that approximate this behaviour
can be found. For instance, the very simple prediction function for ergodic statis-
tical mechanical systems is that the probability of finding a system in some state

26] thank Adam Elga for discussion of this point.
27As Hans Halvorson pointed out to me.
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M after suficient time has elapsed is the proportion of the phase spacéthat
occupies. This requires a great many assumptions and simplifications, ergodicity
prominent among them, and each theory will havedent requirements. The
general constraints seem to be those laid down in the preceding subsections, but
no more detailed universal recipe for producing prediction functions can be given.
In any case, the particular form of prediction functions is a matter for physical
theory; the logical properties of such a function are those | have specified above.

Of course, whether any function that meets these formal requirements is a
useful or good prediction function is another matter. A given prediction function
can yield a distribution that gives probability one to the whole state space, but no
information about probabilities over any more fine grained partition. Such a func-
tion, while perfectly accurate, is pragmatically useless and should be excluded by
contextual factors. In particular, | presume that the predictor wishes to have the
most precise partition of states that is compatible with accurate prediction. But
the tradeff between accuracy and fine-grainedness will depend on the situation
in hand.

The ultimate goal, of course, is that the probability distribution given by the
prediction function will serve as normative for the credences of the agents mak-
ing the prediction/ (van Fraassén, 1989, 198). The probabilities are matched with
the credence by means opeobability coordinationrule, of which the Principal
Principle is the best known example (Lewis, 1980). This is essential in explaining
how predictions give rise to action, and is one important reason why the outcomes
of a prediction must be probabilistic. Another is that we can easily convert a prob-
ability distribution over states into a@xpectatiorvalue for the random variable
that represents the unknown state of the system. Prediction can then be described
as yielding expectation values for some system given an estimation of the cur-
rent values that characterise the system, which enables a large body of statistical
methodology to come to bear on the use and role of predidifbns.

5 Unpredictability

With a characterisation of predictability in hand, we are in a position to charac-
terise some of the ways that predictability can fail. Importantly, since we have
separated predictability from determinism, it turns out that being indeterministic
is one way, but not the only way, in which a phenomenon can fail to be predictable.

Derinition 7 (UnpPREDICTABILITY). An eventE (at some temporal distantgis un-
predictablefor a predictorP iff P’s posterior credence ik after conditioning on
current evidence and the best prediction function availabRitonot 1—that is,

28For a start, see fieey| (2004), especially ch. 4.
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if the prediction function yields a posterior probability distribution that doesn’t
assign probability 1 t& [

There is some worry that this definition is too inclusive—after all, there are
many future events that are intuitively predictable and yet we are not certain that
they will occur. This worry can be assuaged by attending to the following two
considerations. Firstly, this definition captures the idea that an event is not per-
fectly predictable. If the available well-confirmed prediction function allows us to
considerably raise our posterior credence in the event, we might well be willing
to credit it with significant predictive powers, even though it does not convey cer-
tainty on the event. This only indicates that between perfect predictability, and the
kind of unpredictability we shall call randomness (belojn, 86), there are greater
or lesser degrees of unpredictability. Often, in everyday circumstances, we are
willing to collapse some of these finer distinctions: we are willing, for example,
to make little distinction between certainty and very high non-unity credences.
(This is at least partially because the structure of rational preference tends to ob-
scure these slight flerences which make no practicaffdrence to the courses
of action we adopt to achieve our preferred outcomes.) It is therefore readily un-
derstood that common use of the concept of unpredictability should diverge from
the letter, but | suggest not the spirit, of the definition given above. Secondly, we
must recognise that when we are prepared to use a theory to predict some event,
and yet reserve our assent from full certainty in the predictions made, what we
express by that is some degree of uncertainty regarding the theory. Our belief in
and acceptance of theories is a complicated business, and we frequently make use
of and accept theories that we do not believe to be true. Some of what | have
to say here about pragmatic factors involved in prediction reflects the complexi-
ties of this matter. But regardless of our final opinion on acceptance and use of
theories, it remains true that our conditional credences concerning events, condi-
tional on the truth of those theories, capture the important credential states as far
as predictability is concerned. So, many events are predictable according to the
definition above, because conditional credence in the events is 1, conditional on
the simple theories we use to predict them. But we nevertheless refrain from full
certainty because we are not certain of the simple theory. The point is that predic-
tion as I've defined it concerns what our credences would be if we discharged the
condition on those credences, by coming to believe the theory with certainty; and
this obviously simplifies the actual nature of our epistemic relationship with the

2Note, in passing, that this definition does not make biased sequences any more predictable
than unbiased ones, just because some outcome turns up more often. Unpredictability has to
do with our expectations; and in cases of a biased coin we do expect more heads than tails, for
example. We still can't tell what the next toss will be to any greater precision than the bias we
might have deduced; hence it remains unpredictable.
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theories we accept.

An illustration of the definition in action isfiorded by the case of indetermin-
ism, the strongest form of unpredictability. If the correct theory of some system is
indeterministic, then we can imagine an epistemic agent of perfect computational
and discriminatory abilities, for whom the contextually salient partition on state
space individuates single states, and who believes the correct theory. An event is
unpredictable for such an agent just in case knowledge of the present state does
not concentrate posterior credence only upon states containing the event. If the
theory is genuinely indeterministic there exist lawful future evolutions of the sys-
tem from the current state to each of incompatible future sgtslS’. If there is
any event true irs but not inS’, that event will be unpredictable. Indeed, if an in-
deterministic theory countenances any events that are not instantiated everywhere
in the state space, then those events will be unpredictable.

It is important to note that predictability, while relative to a predictor, is a
theoretical property of an event. It is the available prediction functions for some
given theory that determine the predictions that can be made from the perspec-
tive of that theory. It is the epistemic and computational features of predictors
that fix the appropriate theories for them to accept—namely, predictors accept
theories which partition the state space at the right level of resolution to fit their
epistemic capacities, and provide prediction functions which are well-matched to
their computational abilities. In other words, the level of resolution and the al-
lowed computational expenditure are parameters of predictability, and there will
be diterent characteristic or typical parameters for creaturesftdrdint kinds,
in different epistemic communities. This situation provides another perspective
on the continued appeal of the thesis that randomness is indeterminism. Theories
which describe unpredictable phenomena, on this acctraat,those phenomena
as indeterministicThe way that the theory represents some situatisithe same
as the theory represents some distinct situasiobut the way the theory repre-
sents the future evolutions of those sta{ssandt(s’) are distinct, so that within
the theory we have duplicate situations evolving to distinct situations.

It is easy to see how the features that separate prediction from determinism
also lead to failures of predictability. The limited capacities of epistemic agents to
detect diferences between fundamental detailed states, and hence their limitation
to relatively coarse-grained partitions over the state space, lead to the possibility
of diverging trajectories from a single observed coarse state even in determinis-
tic systems. Then there will exist events that do not get probability one and are
hence unpredictable. Note that one and the sgpeof event can be predicted at
one temporal distance, and unpredictable at another, if the diverging trajectories
require some extended interval of time to diverge from each other.

If the agent does not possess the computational capacities to utilise the most
accurate prediction functions, they may be forced to rely on simplified or approx-
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imate methods. If these techniques do lead to predictions of particular events
with certainty, then either (contra the assumption) the prediction function is not
a simplification or approximation at all, or the predictions will be incorrect, and
the prediction functions should be rejected. To avoid rejecting prediction func-
tions that make incorrect but close predictions, those functions should be made
compatible with the observed outcomes by explicitly considering the margins of
error on the approximate predictions. Then the outputs of such functions can in-
clude the actual outcome, as well as various small deviations from actuality—they
avoid conclusive falsification by predicting approximately which state will result.

If such approximate predictions can include at least a pair of mutually exclusive
events, then we have unpredictability with respect to those events.

Finally, if the agent accepts a theory for pragmatic reasons, then that may in-
duce a certain kind of failure of predictability, because the agent has restricted
the range of available prediction functions to those that are provided by the the-
ory subject to the agent’s epistemic and computational limitations. An agent who
uses thermodynamics as his predictive theory in a world where classical statisti-
cal mechanics is the correct story of the microphysics thereby limits her ability
to predict outcomes with perfect accuracy (since there are thermodynamically in-
distinguishable states that can evolve into thermodynamically distinguishable out-
comes, if those initial states are statistical-mechanically distinguishable). Theo-
ries also make certain partitions of the real state space salient to predictors (the so-
calledlevel of descriptiorthat the theory operates at), and this can lead to failures
of predictability in much the same way as epistemic restrictions can (even though
the agents might have other, pragmatic, reasons for adopting those partitions as
salient—for instance, the explanatory value of robust macroscopic accounts).

6 Randomness is Unpredictability

We are now in a position to discuss my proposed analysis. The views suggested
by Suppes and Kyburg in the epigraphs to this paper provide some support for
this proposal—philosophical intuition obviously acknowledges some epistemic
constraints on legitimate judgements of randomness. | think that these epistemic
features, derived from pragmatic and objective constraints on human knowledge,
exhaust the concept of randomness.

As | discussed earlier, some events which satisfy my definition of unpre-
dictability are only mildly unpredictable. For instance, if the events are distin-
guished in a fine-grained way, and the prediction concentrates the posterior prob-
ability over only two of those events, then we may have a very precise and accu-
rate prediction, even if not perfect. These failures of prediction do not, intuitively,
produce randomness. So what kind of unpredictability do | think randomness is?
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The following definition captures my proposabkndomness is maximal un-
predictability.

DeriniTion 8 (RanpomnEess). An eventE is random for a predictdP using theory

T iff E is maximally unpredictableAn eventE is maximally unpredictable foP

andT iff the posterior probability oE, yielded by the prediction functions that
makes available, conditional on current evidence, is equal to the prior probability
of E. This also means thd&’s posterior credence i, conditional on theory
and current evidence (the current state of the system), must be edqrialpoor
credence irE conditional only on theory.

We may call aprocessrandom, by extension, if each of the outcomes of the
process are random. So rainfall inputs constitute a random process because the
timing and magnitude of each rainfall event is rand@nThat is, since the out-
comes of a proceg&,, .. ., E,} partition the event space, the posterior probability
distribution (conditional on theory and evidence) is identical to the prior probabil-
ity distribution]

This definition and its extension immediately yields another, very illuminat-
ing, way to characterise randomness: a random event is probabilisticdéy
pendentof the current and past states of the system, given the probabilities sup-
ported by the theory (when those current and past states are in line with the coarse-
graining of the event space appropriate for the epistemic and pragmatic features
of the predictor). The characteristic random events, on this construal, are the suc-
cessive tosses of a coin: independent trials, identically distributed because the
theory which governs each trial is the same, and the current state is irrelevant
to the next or subsequent trials—a so-called Bernoulli process. But the idea of
randomness as probabilistic independence is of far wider application than just to
these types of cases, since any useful prediction method aims to uncover a signifi-
cant correlation between future outcomes and present evidence, which would give
probabilistic dependence between outcomes and input states. This connection be-
tween unpredictability and probabilistic independence is in large part what allows

30To connect up with our previous discussionseguencef outcomes is random just in case
those outcomes are the outcomes of a random process. This is perfectly compatible with those
outcomes being a very regular sequence; it is merely unlikely to be such a sequence.

3IAt this point, it is worth addressing a putative counterexample raised by Andy Egan. A pro-
cess with only one possible outcome is random on my account: there is only one event (one cell in
the partition), which gets probability one, which is the same as its unconditional probability. It also
counts as predictable, because all of the probability measure is concentrated on the one possible
state. | am perfectly happy with accepting this as an obviously degenerate and unimportant case;
recall the discussion of the trivial prediction function aboye (§4.4). If a fix is nevertheless thought
to be necessary, | would opt simply to require two possible outcomes for random processes; this
doesn’t seem ad hoc, and is explicitly included in the definition of unpredictability.
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our analysis to give a satisfactory account of the statistical properties of random
phenomena. | regard it as a significant argument in favour of my account that it
can explain this close connection.

However, there are a number of processes for which a strict probabilistic inde-
pendence assumption fails. For example, though over long time scales the weather
is quite unpredictable, from day to day the weather is more stable: a fine day is
more likely to be followed by another fine day. Weather is not best modelled by
a Bernoulli process, but rather by a Markov process, that is, one where the proba-
bility of an outcome on a trial is explicitly dependent on the current state. Indeed,
probably most natural processes are not composed of a sequence of independent
events. Independence of events in a system is likely only to show itself over
timescales where sensitive dependence on initial conditions and simplified dy-
namics have time to compound errors to the point where nothing whatsoever can
be reliably inferred from the present case to some quite distant future@v‘ém.
use of ‘random’ to describe those processes which may display some short term
predictability is quite in order, once we recognise the further contextual parameter
of the temporal distance between input state and event (or random variable) to be
predicted, and that for quite reasonable timescales these processes can become un-
predictable. (This also helps us deciu# to classify as random those processes
which are unpredictable in the limit agrows arbitrarily, but which are remark-
ably regular and predictable at the timescales of human experimenters.) That the
commonsense notion of randomness includes such partially unpredictable pro-
cesses is prima faciereason to take unpredictability, not independence, to be the
fundamental notion—though nothing should obscure the fact that probabilistic in-
dependence is the most significant aspect of unpredictability for our pufpbses.

It is a central presupposition of my view that we can make robust statistical
predictions concerning any process, random oﬁ\ﬁlne of the hallmarks of ran-

32Compare the hierarchic of ergodic properties in statistical mechanics, where the increasing
strength of the ergodic, mixing, and Bernoulli conditions serves to shorten the intervals after which
each type of system yields random future events given past eyents [(Sklar, 1993, 235-40).

33Further evidence for this claim is provided by the fact that probabilistic independence is an
all-or-nothing matter; and taking this as the definition of randomness would have the unfortunate
effect of misclassifying partially unpredictable processes as not random.

34s there ever randomness without probabilistic order? Perhaps in Earman’s space invader
case, it is implausible to think that any prior probability for the space invasion is reasonable—not
even a zero prior. The event should be completely unexpected, and should not even be included
in models of the theory. This would correspond to the event in question not even being part
of the patrtition that the prediction function yields a distribution over. This, as it stands, would
be a counterexample to my analysis, since that analysis requires a probability distribution over
outcomes, and if there is no distribution, the event is trivially not random. | think we can amend
the definition so as to capture this case; add a clause to the definition of predictability requiring
there to be some prediction function which takes the event into consideration.
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dom processes is that these are the best reliable predictions we can make, since the
expectations of the variables whose values describe the characteristics of the event
are well defined even while the details of the particular outcomes are obscure prior
to their occurrence. This is crucial for the many scientific applications of random-
ness: random selections are unpredictable with respect to the exact composition of
a sample (the event), but the overall distribution of properties over the individuals
in that sample is supposed to be representative of the frequencies in the population
as a whole. In random mating, the details of each mating pair are not predictable,
but the overall rates of mating between parents of like genotype is governed by
the frequency of that genotype in the populaffgn.

| wish to emphasise again the role of theories. An event is random, just if
it is unpredictable, that is, if the best theoretical representation of that event rel-
ative to a given predictor leaves the probability of that event unchanged when
conditioned on the current state and the laws of the theory. We should give a natu-
ralised account of the best theory relative to a predictor: that theory should be the
one that maximises fit between the epistemic and computational capacities of the
predictors and the demands on those capacities made by the theory, where those
capacities are perfectly objective features of the predictors. An event is random,
then, just in case these objective features of the agents in question render that event
unpredictabl This means, therefore, that while ascriptions of randomness are
sensitive to the requirements of the agents who are using the concept and making
the ascriptions, they are nevertheless objectively determined, by the theories it is
(objectively) appropriate for those agents to utilise. Randomness is thus an extrin-
sic property of events, dependent on properties of agents and the theories they use.
This observation will become important beloy (§6.3), when discussing whether
randomness as | have defined isigjective

35This illuminates the common ground my proposal shares with Martin-Lof’s statistical testing
view of randomness. If we take the patterns to be provided by some potentially predictive theory,
then failing statistical tests is equivalent to being unpredictable with respect to that theory. For
the theory provides no resources to reject the hypothesis that the only structure governing the se-
quence is pure chance. But a potentially predictive theory will not have infinitely many concurrent
predictions for a single predictor or group of predictors; so no theory can provide the resources
for full Martin-L6f randomness and still remain predictive, except to creatures with computational
abilities quite unlike our own. Nevertheless the spirit of the statistical test proposal remains, yet
relativised to a set of statistical tests that can be actually applied to yield substantive information
about the genesis and behaviour of a random process.

360f course, if agents know their epistemic limitations, they may know of deterministic theories
which can correctly account for the phenomena, but the use of which lies outside their capabilities.
That is just one additional reason why randomness can correctly be assigned even in cases of
perfect determinism.
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6.1 QG .ARIFICATION OF THE DEFINITION OF RANDOMNESS

The definition of randomness might be further clarified by close examination of
a particularly nice example that Tim Williamson proposed to me. Williamson’s
example was as follows: let us suppose that | regularly play chess against an
opponent who is far superior to me. Not only does he beat me consistently; he
beats me without my being aware at the time of his strategy and without my being
able to anticipate any but the most obvious of his moves. | cannot predict what
his moves will be.Prima facie it may appear that my proposal is committed to
classifying his moves as random; if true, that would pose a serious problem for
the view.

Thankfully, there exist at least three lines of response to this example, each of
which illuminates the thesis that randomness is unpredictability. Firstly, note that
unpredictability is theory relative. It is not only the statistical aspects (i.e. actual
frequencies of outcomes) of a phenomenon which dictate how it will be repre-
sented by theory; if | am convinced that my opponent is an agent who reasons and
plans, no theory | will accept will have the consequence that his chess-playing
behaviour is entirely random. Indeed, we will never regard these apparently prob-
abilistic outcomes as indicative of genuine probabilistic independence (since gen-
uine probabilities have a modal aspect not exhausted by the actual statistics). What
we have in this case is notfigcient for randomness because we will never accept
that the goal-directed activities of a rational agent are genuinely unpredictable,
nor are those behaviours really probabilistically independent of preceding states:
| certainly regard my opponent as being in a position to predict his own behaviour,
and to predict it on the basis of the current state of play. Of course, in this situa-
tion, the theories which are directly available to me are nfit@ent to enable me
to predict that behaviour.

This leads to consideration of a second point. It is essential to note that judge-
ments of predictability will typically be made by an epistemic or scientific com-
munity, and not a particular individual. 1t is communities which accept scientific
theories, and the capabilities and expertise of each member of the community
contributes to its predictive powers. This is because the set of available predic-
tion functions in a given theory does not reflect merely personal idiosyncrasies
in understanding the theory, but instead reflects the intersubjective consensus on
the capabilities of that theory. Since the relevant bearer of a predictive ability is
an epistemic community, a phenomenon is judged random with respect to a com-
munity of predictors, not an individual. My chess playing opponent and myself
are presumably members of the same scientific community and the theories we
jointly accept make his chess playing predictable—he knows the theory while |
accept his authority with respect to knowing it and judge his play predictable, even
if not by me. This serves to reinforce the point that the ’availability’ to me of a
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theory, or of a prediction function, is not a matter of what's in my head, but rather
of what theories count as normative for my judgements, given the kind of person
I am and the kind of community | inhabit. One could, of course, define a concept
of ‘personal unpredictability’, to capture those uses of the term ‘unpredictable’
that reflect the ignorance and incapacity of a particular individual. But—and this
merely underscores the importance of the communitarian concept—such a per-
sonal unpredictability would have little or no claim to capture the central uses
of the term ‘unpredictable’, nor any further useful application in the analysis of
randomness or other concepts.

A third response also undermines the claim that this chess player's moves are
unpredictable. For this is exactly the kind of situation where one might be fre-
quently surprised by the moves that are made, but one can in retrospect assimilate
them to an account of the opponent’s strategy. That is, while playing | operated
with a theory which was not skicient to make accurate predictions concerning
my opponent’s behaviour; in retrospect, and upon due consideration of his play,
| can come to develop my understanding of that play, and hence develop better
accounts of the nature of his chess playing. | can then realise that his behaviour
was not random, though it may hasppearedandom at that time. Moreover, it
may have been (internally) epistemically acceptable for me at the time to judge
his behaviour as random (setting aside for the time being the preceding two re-
sponses), though in retrospect | can see that | had no robust external warrant for
that judgement.

This last response illustrates a point that may not have been clear from the
foregoing discussion: no mention was made, in the definition or its glosses, of
any temporal conditions on the appropriateness of predictive theories for agents.
That is, randomness is relative to the best theory of some phenomenon, where
which theory counts as best is partially dictated by the cognitive and pragmatic
parameters appropriate for some community of agents. It does not, therefore,
depend on whether those agents are actually in possession of that theory. Obvi-
ously it would be inappropriate to criticise past predictors on the grounds that they
made internally warranted judgements of randomness that were false by the lights
of theories we currently possess. On the other hand, it is true that they would de-
serve censure had it been the case that they were in possession of the best theory
of some phenomenon, and had made judgements of predictability which were at
variance with that theory. That is the sense in which theory-relative judgements of
predictability are supposed to bermativefor agents of the kind in question. As
such, it is clear that contingencies of ignorance shouldn’t lead us to count some-
thing as random; it is a kind of (pragmaticatipgnitivelytheoretically) necessary
lack of predictive power which makes an event random. To turn back tpdse
factoanalysis of my opponent’s play: while playing | made a (perhaps) warranted
judgement that it was random. But that judgement was at best preliminary and
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defeasible, for it is clear that it would be in principle possible for me to come

to possess (or to defer to an expert’'s possession of) a good predictive theory of
that play, and hence to recognise the sense behind what appeared wrongly to be
random play. By contrast, events that are genuinely random do not contribute in
this way further illumination of the process of which they are outcomes: no after
the fact analysis of a random event will make greater predictive power available
to me or my epistemic brethren. In one sense this is a simple corollary of the
fact that the Bernoulli process is the paradigm random process, and outcomes in
such a process are probabilistically, and hence predictively, independent. But in
another it provides an important illustration of the application of the definition of
randomness—judgements of randomness can be incorrect though warranted, and
outcomes of such a process may well serve as evidence undermining the warrant
for the judgemerit]]

6.2 RANDOMNESS AND PROBABILITY

One may be wondering what kind of interpretation of probability goes into the
definition Obviously, credences play a central role in attributions of random-
ness, as it is only by way of updating credences that theories yield actual predic-
tions. As such, as long as an agent has credences that could be rationally updated
in accordance with the best theory for the community of which that agent is a
member—that is, whose credence function is suitably deferential to expert cre-
dence functiong (van Fraassen, 1989, §88.4-8.5)—we have the minimum neces-
sary ingredients for potentially correct judgements of randomness. Actual judge-
ments of randomness approach correctness as the actual updating of credences
more closely approximates the updating that would be licensed by possession of
the best theory. However, there is a further question concerning whether there
are other kinds of objective probabilities (‘chances’) which are disclosed by the

$7williamson’s example does point to aficulty, however. Consider the hypothesis that our
world is run by an omnipotent and completely rational deity, whose motives and reasons are quite
beyond our ken, and hence our world appears quite capricious and arbitrary. If we accept such a
theory, we must accept both that (i) the events in the world have reason and purpose behind them,
being the outcomes of a process of rational deliberation by a reasonable agent; and (ii) that the
best theory of such events that we might ever possess will classify them as random. This seems to
me a genuine problem (though there is some question about its significance). One way around it
might be to simply add a condition to the definition that, if the event in question is the outcome of
some process of rational deliberation, it cannot be random, no matter how unpredictable it is. This
proposal seems to avoid the problem only by stipulation. | prefer, therefore, to suggest that any
event which can be rationalised (as the act of a recognisably rational agent) will be predictable;
and that therefore if this deity’s actions are genuinely unpredictable, they are not rationalisable,
and | propose cannot be seen as purposive in the way required for the example to have any force.

38Dorothy Edgington urged me to address this concern.
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theories in question and count as normative for the credences of the predictor, via
something like the Principal Principle (Lewijs, 1980). | hope that the account is
neutral on this important issue, and | hope that, no matter which account (if any)
turns out to be correct, it can simply be slotted into this interpretation of random-
ness.

In fact, the only requirement that my account of randomness makes on an
interpretation of probability is that an account must be given of the content of
probabilistic models in scientific theories. That is, the interpretation must explain
what feature of objective probability allows it to influence credence, and to shape
expectations concerning the way the world will turn out, given that all the agent
does is accept some theory which features probabilistic mM:mst naturally
it might be thought that an objective account of probability could meet this de-
mand, but subjectivist accounts must also be able to do so, although perhaps less
easily. Perhaps the only account that the view is not compatible with is von Mises’
original frequency view: since he includes randomness as part of the definition of
probability, on pain of circularity he cannot use this definition of randomness,
which already mentions probability.

Von Mises’ discussion of randomness was motivated by his desire to find firm
grounds for the applicability of probability to empirical phenomena. | completely
agree: random phenomena are frequently characterised by the fact that they can
typically be given robust probabilistic explanations, particularly in terms of the
probabilistic independence of certain events and certain initial data. But even if
the grounds we have for applying probabilistic theories lie in our own cognitive
incapacities, that does not hold for the probabilities postulated by those theories.
Just because predictability is partially epistemic, and hence randomness is par-
tially epistemic, doesn’t mean that the probability governing the distribution of
predictions is epistemic. So our cognitive capacities and pragmatic demands lead
to the suitability of treating phenomena as random, that is, modelling them prob-
abilistically. Our epistemic account of randomness therefore provides a robust
and novel explanation of the applicability of probabilistic theories even in deter-
ministic cases, without having to mount theéfdiult argument that there are ob-
jective chances in deterministic worlds, and without sacrificing the objectivity of
genuine probability assignments by adopting a wholesale subjectivist approach to
probability. Randomness then has important metaphysical consequences for the
understanding of chance, as well as being internally important to the project of
understanding scientific theories that use the concept. Our epistemic stance man-
dates the use of probabilistic theories; the connection between the probabilities in

39Such a demand is tantamount to requiring the interpretation of probability be able to answer
whatvan Fraassen (1989, 81) calls the ‘fundamental question about chance’, which | take to be an
uncontroversial but dlicult standard to meet.
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those theories, and the credences implicit in our epistemic states, is by no means
direct and straightforward.

6.3 SsBseECcTIVITY AND CONTEXT-SENSITIVITY OF RANDOMNESS

| have emphasised repeatedly that predictability is in part dependent on the prop-
erties of predictors. What one epistemic agent can predict, another \ign-di

ent capacities and fllerent theories may not be able to predict. Laplacean gods
presumably have more powerful predictive abilities than we do; perhaps for such
gods, nothing is random. Or consider a fungus, with quite limited representational
capacities and hence limited predictive abilities. Almost everything is random for
the fungus; it evolved merely to respond to external stimuli, rather than to predict
and anticipate. It may appear, then, that judgements of predictability, and hence
of randomness, must be to some extent subjective and context-sensitive. There is
a worry that this subjectivity may seem counterintuitive. It may also seem quite
worrying that a subjective concept may play a role in successful scientific theoris-
ing. | wish now to defuse these worries.

Firstly, it is a consequence of our remarks jn §6.1 that two epistemic agents
cannot reasonably fiier merelyover whether some process is unpredictable or
random. If they rationally disagree over the predictability of some phenomenon,
they must be members offterent epistemic communities, in virtue of adopting
different theories or having fiierent epistemic capacities or pragmatic goals. It
should be quite unexceptional that agents whtedin their broader theoretical
or practical orientation may fier also in their judgements of the predictability of
some particular process.

Secondly, there will be reasonably straightforward empirical tests of the pre-
dictive powers of that predictor who claims the process is not random. This dis-
agreement will then be resolved if one takes these empirical results to indicate
which theory more correctly describes the world, and which therefore deserves to
be adopted as the best predictive theory.

Given these qualifications, it might seem misleading to label the present ac-
count 'subjective For, given values for the parameters of precision of obser-
vations and required accuracy of computations, and given a background theory,
whether a process is predictable or not follows immediately. When we recognise
that these parameter values do not vary freely and without constraint from agent
to agent, but are subject to norms fixed by the communities of which agents are
a part, it seems that rational agents can’t easily disagree over randomness, and
that purely personal and subjective features of those agents do not play a sig-
nificant role in judgements of randomness. It does not seem quite right to call

40John Burgess made this point.
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predictability ‘subjective’ simply because agents with opposed epistemic abili-
ties and commitments may reasonably disagree over its applicability. And insofar
as we remain content to classify predictability as subjective, these observations
make it clear that it is a quite unusual form of subjectivity, for randomness and
predictability are clearly not applied on a purely personal basis, arbitrarily and
without rational constraint, and as such are capable of having further scientific
significance.

But in this sense few concepts are truly subjective. Like other folk monadic
properties, randomness can be analysed as a relation with the other terms fixed
contextually. Consider so-called ‘subjective probability’, which can be analysed
either as a subjective property of events, or as grounded in an objective relation
between an event and an agent with certain objective behavioural dispositions.
In the case of predictability and randomness, it is features and capacities of the
predictor that fill in the ‘missing’ places of the relation. Given that, it is a matter
of choice whether we decide to analyse the term as a predicate with subjective
aspects, or as a relation. | would be inclined to claim that randomness is a partially
(inter-)subjective property, simply to make clear where my proposal might fall in
a taxonomy of analyses of randomness, but nothing of significance really turns
on this. In a similar fashion we typically use the standard subjective analysis of
probability, in order to make the semantics go more smoothly and to make the
connection with past uses of the term clearer.

The context sensitivity of randomness is more intriguing. Here the possibility
arises that, in a given context, the relevant theoretical possibilities are delimited
by a theory that in other contexts would be repudiated as inadequate. There are, |
have argued [§4].3), contexts where thermodynamic reasoning is appropriate, even
though that theory is false. In such contexts, therefore, a judgement of randomness
may be appropriate, even though the phenomenon in question might be predictable
using another theory. Perhaps when stated so baldly the context-sensitivity of ran-
domness might seem implausible. However, randomness and predictability are
only context sensitive in virtue of the fact that theory-acceptance is very plausi-
bly context sensitive. As such, no special problem of context sensitivity arises
for randomness that is not shared with other theory-dependent concepts. Fur-
thermore, the natural alternative would be an invariantist account of randomness.
Such an account would not be adequate, primarily because one would have to give
a theory-independent account of randomness, and this would be manifestly inade-
quate to explain how the concept is used in diverse branches of scientific practice
(&1).

For instance, in statistical testing we frequently wishdesignrandom se-
guences so that they pass a selected set of statistical tesfiedn we wish to use
an dfectively predictable phenomenon to produce sequences which mimic natural
unpredictability by being selective about which resources (which statistical tests)
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we shall allow the predicting agents to use. Dembski (1991) sees a fundamental
split here between a deterministic pseudo-randomness and genuine randomness.
| reject this split: accepting it would involve a significant distortion of the con-
ceptual continuity between randomness in deterministic theories and randomness
in indeterministic theories. We certainly wish to explicitly characterise some or-
dered and regular outcome sequences as those a genuinely random process should
avoid.

But in selectively excluding certain non-random sequences we do not thereby
adopt some new notion of ‘pseudo-randomness’ that applies to the sequences that
remain. Those remaining sequences play precisely the theoretical role that random
sequences play; in particular, they license exactly the same statistical inferences.
Better, then, to recognise that the appropriate theory for that phenomenon, in that
theoretical context, classifies those phenomena as genuinely random. Random-
ness by design, then, is randomness that arises from our adoption of empirically
successful theories; which is to say, randomness simpliciter.

7 Evaluating the Analysis

| think the preceding section has given an intuitively appealing characterisation
of randomness. The best argument for the analysis, however, will be if it is able
to meet the demands we set down at the beginning jof 82, and if it is capable of
bearing the weight of the scientific uses to which it will be put.

I maintain that unpredictability is perfectly able to support the explanatory
strategies we examined ifn]81. In indeterministic situations, phenomena will be
unpredictable at least partly in virtue of that indeterminism. Randomness there-
fore shares in whatever explanatory power that indeterminism demonstrates in
those cases. In deterministic cases, our account of the explanatory success of
randomness must ultimately rest on something else, such as the pragmatic or
epistemic features of agents who accept the probabilistic theories. Note that the
proximate explanation of the explanatory success of randomness, deriving from
unpredictability, remains unified across both the deterministic and indeterministic
situations—a desirable feature of my proposal. Our cognitive capacities are such
that, in many cases, prediction of some phenomenon can only be achieved by ex-
ceedingly subtle and devious means. As such, these phenomena are best treated
as a random input to the system. The fact that these models are borne out em-
pirically vindicates our methodology; for example, we didn’'t have to show that
rainfall was genuinely completely ontically undetermined in order to do good sci-
ence about the phenomenon in question. This is similarly the case with random
mating, weather prediction, noise and error correction, and coin tossing. In ran-
dom sampling (and game theory), we merely need to use processes unpredictable
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by our opponents or by the experimental subjects to get the full benefits of the sta-
tistical inference: if they are forced to treat the process as random, then any skill
they demonstrate in responding to that process must be due to purely intrinsic
features of the trials to which they are responding.

The defining feature of the scientific theories at which we lookedfin 81 is the
presence of exact and robust statistical information despite ignorance about the
precise constitution of the individual events. Rainfall events have a definite prob-
ability distribution, but precisely when and where it rains is random. If this is the
hallmark of random phenomena, then we can easily see why the particular prob-
abilistic version of unpredictability we used to define randomness is appropriate.
Indeed, in paradigm cases, unpredictability (and hence randomness) involves the
probabilistic independence of some predicted event and the events which consti-
tute the resources for the prediction. In such cases, one can easily see how the
inferential strategies we have identified are legitimate. With respect to random
sampling, it is the probabilistic independence of the choice of test subjects from
the choice of test regimes that allows for the application of significance tests on
experimentally uncovered correlations. In the case of random mating, the fact that
mating partner choice is probabilistically independent of the genetic endowment
of that partner that allows the standard Hardy-Weinberg law to apply. It is relax-
ation of this independence requirement that makes for non-random mating. This
probabilistic aspect of randomness and unpredictability is crucial to understand-
ing the typical form of random processes and their role in understanding objective
probability assignments by theories.

How does our analysis of randomness as unpredictability do on our four de-
mands (8R)?

(1) Statistical Testing Sequences that are unpredictable to an agent can be ef-
fectively produced, since those sequences do not need to have some known
genuine indeterminacy in their means of production in order to ground the
statistical inferences we make using them. Subjecting the process to a fi-
nite battery of statistical tests designed to weed out sequences that are pre-
dictable by standard human subjects is, whil@clilt, nevertheless possi-
ble. Correlations between the test subjects and the random sequence can
still occur by chance, but since there can be no a priori guarantee that could
ever rule out accidental correlations even in the case of genuinely indeter-
ministic sequences, no account of randomness should wish to eliminate the
possibility. We should only rule out predictable sources of correlation other
than the one we wish to investigate.

(2) Finite Randomness Single events, as well as finite processes, can be un-
predictable.
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(3) Explanation and Confirmation A probabilistic theory which classifies
some process as random is, as a whole, amenable to incremental confirma-
tion (Howson and Urbach, 1993, ch. 14). Moreover a particular statistical
hypothesis which states that the process has a unpredictable character can
also be incrementally confirmed or disconfirmed, as the evidence is more
or less characteristic of an unpredictable process. A special case is when
the phenomenon is predicted better than chance; this would be strongly dis-
confirmatory of randomness. When confirmed, there seems no reason why
such theories or hypotheses cannot also possess whatever features make for
good explanations; they can surely form part of excellent statistical expla-
nations for why the processes exhibit the character they do. We have gone
to some lengths above to show that unpredictability can fill in quite ade-
guately for randomness in typical uses; there seems no reason why it could
not efectively substitute in explanations as well.

(4) Determinism Unpredictability occurs for many reasons independent of
indeterminism, and is compatible with determinism. Thus we can still have
random sequences in deterministic situations, and as part of theories that
supervene on deterministic theories. The key to explaining why random-
ness and indeterminism seem closely linked is that the theories themselves
should not be deterministic, even if they are acceptable accounts of ontically
deterministic situations.

Analysing randomness as unpredictability, | maintain, gives us the features
that the intuitive concept demands, without sacrificing its scientific applicability.
It certainly does better than its rivals; even without them, it captures enough of our
intuitions to truly deserve the name. The final, and most demanding test would be
to see how the account works in particular cases: how, for example, to cash out
the hypothesis that the mate of a female Cambrian trilobite was chosen at random
from among the male members of her popula@rin outline, my proposal is
that a correct account of trilobite mating would show that there is no way for
us to predict (retrodict) better than chance which mate would be (was) chosen,
when knowledge concerning the male individuals is restricted to their heritable
properties (which of course are the significant ones in a genetic context). This
entails that there is no probabilistic dependence between possession of a certain
phenotype and success in mating. (Of course, given extra knowledge, such as
the knowledge concerning which male actually did succeed in mating with this
individual, or given facts about location or opportunity, we can predict better than
chance which male would be successful; these properties are not genetic, and do
not conflict with the assumption of random mating.) This account of how to apply

41| owe the question, and the illustrative example, to John Burgess.
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the theory must remain a sketch, but | hope it is clear how the proposal might
apply to other cases.
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