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Abstract

We present a probabilistic extension to active-path analyses of token causation (Halpern

and Pearl, 2001, 2004; Hitchcock, 2001). We also make the previous accounts more

explicit, presenting them in computational form. The extension uses the generalized

notion of intervention presented in (Korb, Hope, Nicholson, and Axnick, 2004): we

allow an intervention to set any probability distribution over the possible values, not

just a single value. The resulting account can handle a wide range of examples. We

do not claim the account is complete — only that it fills an obvious gap in previous

active-path approaches. It still succumbs to recent counterexamples by Hiddleston

(forthcoming 2004), because it does not explicitly consider causal processes. We claim

three benefits: a detailed comparison of three active-path approaches, a probabilistic

extension for each, and an explicit computational form.

Causal models represent type causation, such as the general effect of smoking
on lung cancer. Recently, Halpern & Pearl (2001; 2004) and Hitchcock (2001)
have shown how they can also be used to analyze token causation. The accounts
make sense of token cases where things happen “the hard way”, and naturally
handle troublesome cases involving pre-emption and multiple paths. Hitchcock’s
account is more straightforward, but slightly less general. Unfortunately, both
accounts assume deterministic networks, which is unnecessary and contrary to
the spirit of causal models.

The basic trick for token causation is to make use of a causal model’s natural
type-causation semantics: C is a cause iff there is a context in which a change
in the value of C would make a difference to E. The problem is that in token
causation, we must restrict which contexts we can consider. Whether a token
event c causes e depends importantly upon the actual context in which c and e
occur. The accounts we present, and therefore our probabilistic extension, are
just attempts to set out these restrictions. On the accounts presented here, the
relevant contexts are those in the redundancy range for variables not on the
active path.

We acknowledge recent counterexamples (Hiddleston, forthcoming 2004) show-
ing that redundancy ranges sometimes pick the wrong context. It is likely that a
complete account must make reference to causal processes, and we develop one
in a companion piece (Korb et al., 2005). Nevertheless, this account is valuable
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for greatly extending active-path approaches. By presenting algorithms for the
theory, it also opens the way for automatically comparing accounts of causa-
tion on large sets of examples, providing philosophers with much better metrics
for comparison than the usual handful of successes or failures presented in any
paper.

1 Deterministic causation

We begin with an example from Hitchcock (2001). A boulder falls F towards a
hiker. The hiker sees the boulder in time, and ducks D, therefore surviving, S.
We represent the causal variables as nodes in a graph, and the causal links as
arrows between them. We specify the exact dependencies with a series of simple
structural equations. So:

F S

D

F = 1
D = F

S = ¬F ∨D

The first equation gives an initial condition: in the actual world, the boulder
falls. The second says that the hiker ducks iff the boulder falls. The third says
the hiker survives if he ducks, or if the boulder does not fall. The equations
are asymmetric because ‘=’ stands for “is determined by”, not mere algebraic
equality.

Graph plus equations plus possible values of the root variables specify our
causal model. The model encompasses all possibilities we are willing to entertain
seriously. One way to think about the model is a mathematically precise set
of possible worlds. The model defines the set of counterfactuals which can be
entertained, and provides truth conditions for evaluating them.

Note: For simplicity we presume that all descendants of E are excluded from
the model, or at any rate, never observed or otherwise fixed. We do this to avoid
confusion. Knowing descendants of E will tell us what happened, and obscure
the causal impact of C. We would get the right answers to the wrong questions.

1.1 Simple Token Causation (H1)

In the Boulder example, we might ask whether ducking causes the hiker to
survive. Intuitively, the answer is “yes”: had the hiker not ducked, he would
not have survived. However, a näıve account might allow counterfactuals to
“backtrack” like so: had the hiker not ducked, the boulder would not have fallen,
so ducking made no difference to survival. David Lewis ruled out backtracking
in his original counterfactual analysis of causation (1973), and to our knowledge,
no one has held such an account.

Almost any non-backtracking account says that ducking saved the hiker, and
the semantics of causal models preclude backtracking. We merely replace the
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equation for D with a particular value—holding fixed the background variables
(F ) at their actual values—, and let the remaining machinery calculate the
answer. In this case, F is unaltered, as is the equation for S. Then, S = 1
when D = 1 and S = 0 when D = 0, so ducking makes a difference. Therefore,
ducking caused survival.

When we replace an equation like this, we say we have blocked the path
to D, because there is no longer any counterfactual dependence of D on F . In
effect, by replacing D with a particular value (D = 0), we have removed the arc
F−−I D, or at least blocked the influence travelling along it. Such “arc surgery”
gives an intuitive way to entertain counterfactuals about causal relationships.
Given our causal model, the closest possible world where the hiker did not duck
is just the same model with D = F (an arc) replaced by D = 0 (a fixed value).
The rest of the causal structure is left intact.

So far this method of counterfactual reasoning is in agreement with Lewisian
counterfactual semantics. Next, we might ask whether the boulder’s fall caused
the hiker to survive. Here, intuition says “no”, and indeed there is no coun-
terfactual dependence. However, in order to handle several counterexamples,
Lewis (1973) abandoned simple counterfactual dependence in favor of chains of
dependence. These “Lewis chains” entail that causation is transitive. There-
fore, because S depends on D and D depends on F , Lewis would say that the
boulder’s fall caused the hiker to survive.

Causal model counterfactuals have all the advantages of Lewis chains without
entailing transitivity. Let us see how Hitchcock (2001) handles the case. We
define an Active Path Token Cause.

Definition 1 (APT-C:) C = c was a token cause of E = e iff there was an
active path from C to E.

A path is a walk from C to E along the arrows, in the direction of the
arrows. A path is active if it was making a difference. However, we will have to
distinguish between strongly and weakly active paths. We leave weakly active
paths for the next section.

A path is strongly active if C = c makes a difference to E = e when all other
paths between C and E are blocked by setting variables along those paths to
their actual values. “Making a difference” has the usual counterfactual meaning:
Had C been different, E would have been different, for at least some c′ 6= c.

In Boulder, neither of the paths from F to S is strongly active. (It also turns
out that they are not weakly active.) First, we hold D fixed at its actual value
(D = 1), and note that the direct path F −−I S is inactive: given that the hiker
ducked, the boulder has no effect. Then, we fix all paths except FDS. There
being no variables to fix along the other path, we fix nothing, and note that
overall, S does not depend on F . We happily conclude that F did not cause
S. “Intuitively, the falling boulder does not save Hiker’s life because without
it, Hiker’s life would not have been endangered in the first place” (Hitchcock,
2001, page ??).

In general, paths can be long chains like C −−I X −−I Y −−I E. We want to
leave exactly one path open, such as the path through D, and block all others. A
straightforward (if inefficient) way to do this is to fix all ancestors of E, except
those along φ. This is the background for E, which we shall call β. (It is
common to use π for the parents of E, so if we use Π for all the ancestors, then
β = Π\φ.)

Let c and c′ be states of C, with c the actual state. Let e be the actual state
of E. We use the notation Ic to mean that we intervene to set C = c, replacing
the equation for C with the value c. Likewise, Ic′ means we intervene to set
C = c′. Etc.
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Then we define:

Definition 2 (Strongly active path:) a path φ = 〈C, Y1, . . . , Yn, E〉 is strongly
active in causal model M iff Ic makes a difference to E (relative to Ic′) in the
β-actual model, where the β-actual model replaces all the equations for the back-
ground of E with their actual values.

In Hitchcock’s examples, all paths to E start at C. But in general, there can
also be external causes. The simplest case is C −−I E J−− D. Our definition
rightly requires us to block all other paths to E, including those originating
from other causes.

If we limit active paths to strongly active paths, APT-C gives us Hitchcock’s
simple account of causation. Following Hiddleston (forthcoming 2004), we shall
call this H1.

Unfortunately, this simple account cannot handle symmetric overdetermina-
tion nor late cutting. We must invoke weakly active paths.

1.2 Symmetric Overdetermination (H2)

Symmetric overdetermination happens when there are multiple sufficient causes.
One such case is Matches. Two lit matches (M1 and M2) are dropped in the
forest. Either one would suffice to burn it down. The forest burns down (FB).

FB

M1 M 2

M1 = 1
M2 = 1
FB = M1 ∨ML2

Did M1 cause the forest to burn down? Given M2, it made no difference,
so a näıve counterfactual account says no. Hitchcock’s simple account also says
no. Using Definition 2, we fix M2 at its actual value, and find that the forest
burns down regardless of how we set M1. The problem being symmetric, M2

likewise makes no difference. We have a problem.
Lewis set aside these completely symmetric cases claiming he had no clear

intuitions (1973, ??), and it was “spoils to the victor”. Not only does our
analysis differ from his, but we do have clear intuitions. In fact, both matches
contributed, even though neither alone was necessary. It is only by chance that
the actual circumstances have masked the probabilistic dependency. The causal
structure shows how to reveal it.

Note that we can let M2 be 0 without affecting the result—the forest still
burns down. A variable often has several values which make no difference on
their own. Hitchcock calls this set the redundancy range. Let us set M2 = 0.
We immediately see the hidden dependency: now M1 makes a difference! That
is what it means to be a token cause: to actually contribute to the causal history,
even if your effect is accidentally masked. That is another reason why we cannot
identify token causation with actual probabilistic relevance.

Noting that an instantiated model is one with actual values for its variables,
we define:
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Definition 3 (Redundancy range:) Given an instantiated causal model M,
a path φ = 〈C, Y1, . . . , Yn, E〉, and the background β = Π\φ = {B1, . . . , Bm},
the set of values b′ = {b1, . . . , bm} lies in β’s redundancy range for φ iff Ib′

leaves φ unchanged.

The redundancy range for path φ is the set of all possible ways of fixing the
other variables so that they make no difference to anything in φ. Note that the
actual values of β are also in the redundancy range!

Hitchcock defines a weakly active path to be one which is revealed by set-
ting variables outside that path to values in their redundancy range. However,
since the redundancy range includes the actual values, strongly active paths are
(somewhat counterintuitively) also weakly active.

Here is Hitchcock’s definition, rewritten in our terms.

Definition 4 (Weakly active path:) a path φ = 〈C, Y1, . . . , Yn, E〉 is weakly
active in causal model M iff Ic makes a difference (relative to Ic′) to E in any
β-redundant model, where a β-redundant model replaces all B ∈ β with values
in their redundancy range for instantiated φ. (Replacement is an intervention.)

Using weakly active paths Hitchcock’s definition can now handle cases of
symmetric overdetermination: neither path in Matches is strongly active, but
both are weakly active, so both matches are causes according to Definition 1.
Hiddleston calls this account H2.

1.3 Late Cutting

Late cutting is a kind of pre-emption by overdetermination. It occurs when one
of the potential causes pre-empts the other, precisely by completing first. A
common example is Bottle:

Suzy and Billy throw rocks at a bottle. Suzy’s rock arrives first, breaking
the bottle before Billy’s rock, which would also have broken it.

We want to say that Suzy’s throw caused the bottle to break, but that Billy’s
did not. First, note that the obvious model does not work.

BS

BTST

ST = 1
BT = 1
BS = ST ∨BT

This is the same model as Disjunctive Matches, so it gives the same answer: both
Billy’s throw and Suzy’s throw are weakly active, so both caused the bottle to
smash. But our intuitions strongly favor Suzy’s throw over Billy’s. Billy’s throw
was pre-empted.

Halpern and Pearl (2001) argue that we have misrepresented the case. Ac-
cording to them, since Matches is symmetric and Bottle is not, we cannot rep-
resent both with the same model. They argue that a proper model should
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structurally show the key asymmetry in the example: Suzy’s throw hitting pre-
vents Billy’s from hitting. (We argue elsewhere Korb et al. (2005) that we
can keep this model if we attend to processes. Here we strive merely to give a
probabilistic extension of active-path accounts, so we keep to their formulation.)

Halpern & Pearl suggest the following model:

BS

BHSH

BTST

ST = 1
BT = 1
SH = ST

BH = BT ∧ ¬SH

BS = SH ∨BH

This seems to be a good model, and it works. Suzy’s path is strongly active:
given that Billy’s rock does not hit, had Suzy not thrown, the bottle would not
have shattered. But Billy’s path is not active.

It is not strongly active because in the actual case he does not hit the bottle.
It is not weakly active because the redundancy range is degenerate.1 The only
path from BT to BS is BT −−I BH −−I BS. Everything else is background.
If Suzy had not hit (SH = 0), then Billy would have (BH = 1). But then we
have changed BH, which is on our path, so (SH = 0) is not in the redundancy
range for φ. Given our interventions on SH, ST is irrelevant. The redundancy
range is degenerate, so BT is not weakly active.

Therefore BT −−I BH−−I BS was inactive. There being no other path from
BT , Billy’s throw did not cause the bottle to smash.

H2 can handle most cases in the philosophy literature. However, Halpern
and Pearl (2004) present one which H2 cannot handle.2

1.4 Problem and diagnosis

The Voting Machine example (Halpern and Pearl, 2004, Example A.3) shows
that H2 is too strict about the path φ. Suppose we model a simple voting
scenario. Two people (V1 and V2) vote, and the measure passes (P ) if at least
one votes in favor. Both vote in favor, and the measure passes. This scenario is
similar to Matches, and both votes cause the measure to pass. Suppose we now
introduce a voting machine (M) that tabulates the votes first. Then our model
is:

1Perhaps it is only a dundancy range?
2Our thanks to Chris Hitchcock for directing our attention here and saving us from trying

to prove equivalence between H2 and Halpern & Pearl.
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M

P

V1 V2

V1 = 1
V2 = 1
M = V1 + V2

P = M ≥ 1

However, H2 now says that neither V1 = 1 nor V2 = 1 causes P = 1. Like
Matches, neither path is strongly active. Unlike Matches, they are not even
weakly active, because the redundancy range is degenerate. The problem is V1

and V2 can affect P only via M , which is on the path. H2 explicitly prevents
the background variable from changing the value of variables along the path.
This is too strong. As Halpern & Pearl note, “we cannot insist on the variables
in [the path] remaining constant; instead, we require merely that changes in
[the background] not affect [E].” We now present their account. We shall call
it H3.

1.5 H3: Halpern & Pearl

Where Hitchcock forbids any alteration to the path, Halpern & Pearl allow
any alteration which does not affect E, but then add a “resetting” clause that
captures the crucial path asymmetry in cases of late cutting.

Here is our rendition of Halpern & Pearl’s account.

Definition 5 (H3) C = c is a token cause of E = e iff:

AC1 Actually, c and e.

AC2 There is a partition of variables into φ (path) and β (background), with
C ∈ φ, and some values c′, b′ such that:

(a) If we were to set c′ and b′, we would get e′ 6= e.

(b) If we were to set c and b′, we would still get e, even if we reset any
of the other variables in φ to their actual values.

This rendition is identical in effect, but with some minor changes for clarity.3

AC2(a) amounts to saying that there is a background state (b′) where c can
make a difference to e. Condition AC2(b) ensures that the background b′ alone
is insufficient to change e to e′: it means that b′ is in the redundancy range for
e. The “even if” bit about resetting variables in φ to their actual values is only
necessary in cases of late cutting.

3First, we omit the exogenous error terms, which serve mostly to complicate the expressions
and assuage deterministic leanings. Second, we use helpful variable names. Since their set Z
will only include variables between C and E, we call it φ for “path”. Their set W will include
all the ancestors of E not in Z, hence β for “background”. Knowing their interpretation
greatly aids the search for partitions! Finally, we presume C is a single variable, so do not
need their minimality condition AC3.
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Note: The “Background” β often includes variables downstream from C. That
means our causal background to E — chosen to block alternate paths of influence
from C to E — will likely include the temporal foreground of C.

In the augmented bottle-smashing model, Suzy’s throw ST = 1 is a token
cause of BS = 1 in the same way it was for Hitchcock’s weakly-active paths:
we use a redundancy range to reveal the dependency. Choosing {BT, BH} as
our background, and setting BH = 0, we see that ST makes a difference.

Billy’s throw would similarly make a difference, save for the “resetting”
clause. Let the background be {ST, SH} (shown by the rounded box, below).
Setting SH = 0, Billy’s throw makes a difference.

BS

BHSH

BTST

*

However, the asterisk denotes we reset BH to its original value. Then BS = 0,
in violation of AC2(B). Therefore this path is not an active path, and BT is
not an actual cause.

When detailing Hitchcock’s account, we took the expedient of fixing the
entire background. That would still work here, H3 only requires that fixing
some subset B of B allows c to make a difference. In the deterministic case, it
doesn’t matter: if fixing some B works, then there will also be a way to fix all
of B. In the probabilistic case, that won’t be true.

Before moving on to probabilities, we present the voting machine case in
detail. In the hope that it will help readers working through the example, we
present the solution as two opposing players taking turns in a short game. The
“advocate” tries to show that some C = c is a cause of E = e.4 To this end,
he nominates an active path, a value c′ 6= c, and context b′ such that given b′,
c yields e and c′ yields e′. Next the “naysayer” tries to find a way of resetting
the intermediate variables along that path to make it inactive (meaning that c
no longer yields e).

V1 V2

M

P

*

ADV: (V1 = 1) [c] is a cause of (P = 1) [e]. The path is obviously φ = V1 −−I M −−I P .
Background: b′ = V2, setting V2 = 0. The cause makes a difference: c
gives e, and (V1 = 0) [c′] gives (P = 0) [e′].

NAY: Your b′ has made M = 1. I reset it to its original value, M = 2.

ADV: No worries. M = 2 still gives P = 1, the original e.
4After all, every advocate must have a cause.
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NAY: I have no other intermediate variables to try. You win.

Of course, this is still limited to deterministic causation. However, the prob-
abilistic extension is straightforward.

2 HP: A probabilistic extension

The counterfactuals in H1 through H3 are of the form, “if not (C = c), then
not (E = e).” That will not work for probabilistic causation. In the Matches
example, if each match acts independently with probability p of burning down
the forest, then both matches have a greater probability of burning down the
forest, but it still might not burn down. Both paths are active because they
change the probability that the forest will burn down.

HP replaces that absolute counterfactual with a change in probabilities: “if
not (C = c), then Pr(E = e) would have been different.”. We keep the same
desideratum APT-C: c was a token cause (now meaning token causally relevant)
iff there was an active path from c to e. We will, of course, redefine active paths
to mean probabilistic differences.

We could call this “Probabilistic Token Causal Relevance” to distinguish it
from the absolute version. But that would suggest there was a place for the
non-probabilistic account, whereas the probabilistic version entirely subsumes
it.

Following Hitchcock, we will first present the simple version. This simple
version does not invoke weakly-active paths, so it still has trouble with some
cases of symmetric overdetermination (like the original Matches example) and
late cutting (like Bottle).

Parallelling Hiddleston, we will call these HP1, HP2, and HP3.

2.1 HP1: Strongly active paths

We keep the earlier definition of strongly active path. However, “makes a differ-
ence” now means that there is a change in probabilities, so it is worth rewriting.
Define

∆1 = Pr(e|Ic)− Pr(e|Ic′)

and let 0 ≤ ε < 1 denote some tolerance threshold below which we consider the
change in probability to be meaningless. Then:

Definition 6 (Strongly active:) a path φ = 〈C, Y1, . . . , Yn, E〉 is strongly ac-
tive in causal model M iff abs(∆1) > ε in the β-actual model, where the β-actual
model replaces all the equations for the background with their actual values.

Recall that replacing the background is an intervention, so the equation for
∆1 implicitly conditions on Iβ = Ib1,...,bm

Like before, this definition requires an
explicit contrast class c′.5 However, there is a difference at E. Our definition
∆ is relative to the probability of the actual state e. So if c vs c′ reverses the
probabilities of e1 and e2, but leaves unchanged the probability of actual state
e3, we will count this as no effect.

While that seems more in keeping with the philosophy literature, one could
also just measure the distance between the entire distribution Pr(E|Ic)−Pr(E|Ic′),
using say Kullback-Leibler “distance” or Bhattacharyaa distance. For now we

5Because we have intervened to set β, we can let c′ default to the “prior” distribution on
C after fixing β. If we merely observed β, we might have “unblocked” probability flow from
separate causes of E that share the same path.
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suggest only that the most straightforward extension makes reference to the
actual state e.

Roughly then, HP1 says:

Definition 7 (HP1:) Relative to c′, c was token causally relevant to e iff for
some path φ, abs(∆1) > ε.

The extra details in Definition 6 specify how we calculate ∆1.
Speakers often want to know more than just that smoking is causally relevant.

They want to know the direction (or valence) of the influence. However, C may
promote E along some paths, and hinder E along other paths. Therefore in C
may both promote and prevent E. (Of course, in any particular context the net
effect will be either positive, negative, or too small to count.)

Definition 8 (Token Promotion) c token promotes e iff for some path φ:

1. c is token causally relevant to e along φ, with

2. ∆1 > 0: (Relative to c′, c increases the chance of e.)

Definition 9 (Token Hindrance) c token hinders e iff for some path φ:

1. c is token causally relevant to e along φ, with

2. ∆1 < 0: (Relative to c′, c decreases the chance of e.)

Consider a simple probabilistic version of Matches where M1 alone results
in FB = 1 with probability s, and M2 alone with chance t. Then FB = 0
with chances σ = 1 − s and τ = 1 − t. Assume the forest cannot burn down
spontaneously. Then if s = t = .9, and the matches act independently, our
model might be:

M2M1

FB

.9 .9

M1 = 1
M2 = 1

Pr(FB) = 1− σM1τM2

where the exponents just switch the terms on and off, since M1 and M2 are
binary. The equation for FB expresses the idea that M1 and M2 act inde-
pendently, so their chances of failure multiply. In the diagram, σ = τ = .1,
so Pr(FB = 1) = .9 when either match acts alone, and .99 when they both
act. Therefore, ∆1 > 0 for both M1 and M2. Both are strongly active (and
promoters).

If, however, we redefine FB = max(s, t), then in the model shown, Pr(FB) =
.9 so long as any match is lit. Therefore, neither is strongly active. The original
(deterministic) Matches is just a special case of this condition. So we need an
account which considers the redundancy ranges.
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2.2 HP2: Weakly active paths

Once again, the guiding intuition is that c was a token cause of e if there was a
context where wiggling C made a difference. But now, we are allowed to consider
more than just the actual context. We are allowed to consider all contexts in
the redundancy range.

As before, let ∆ be the difference in effect between c and c′, but explicitly
note the context b. To determine whether a context is in the redundancy range,
we must establish that changing context alone does not change the probability
of e. Let ∆2 be the difference between doing C = c in the actual case (b) and
in the alternate case (b′). That is:

∆1 = Pr(e|Ic,b)− Pr(e|Ic′,b)
∆2(x) = Pr(x|Ic,b)− Pr(x|Ic,b′)

We make the plausible assumption that the threshold for ∆2 is the same ε
as for ∆1. (We will see later this has some nice consequences.) Then we can
rewrite the definitions for Redundancy Range and Weakly Active Paths. Using
|x| for abs(x):

Definition 10 (Redundancy range:) Given an instantiated causal model M
and a path φ = 〈C, Y1, . . . , Yn, E〉, and the background β = Π\φ = {B1, . . . , Bm},
the set of values b′ = {b1, . . . , bm} lies in β’s redundancy range for φ iff
|∆2(x)| ≤ ε for all x ∈ φ.

Definition 11 (Weakly active:) a path φ = 〈C, Y1, . . . , Yn, E〉 is weakly ac-
tive in causal model M iff |∆1| > ε in any β-redundant model, where a β-
redundant model replaces all B ∈ β with values in their redundancy range for
instantiated φ.

So HP2 says that if we can find such a weakly active path, c was token
causally relevant. That is:

Definition 12 (HP2:) Relative to c′, c was token causally relevant to e iff for
some φ and some b′, |∆1| > ε and ∀x ∈ φ : |∆2(x)| ≤ ε.

Definition 13 (Token Promotion) : as before

Definition 14 (Token Prevention) : as before

2.3 HP3: Resetting Ranges

To extend H3, we need to generalize the idea of intervention. We shall need to
be able to fix not only the values of a variable, but more generally, probability dis-
tribution over the values. For example, we intervene to freeze SH = {0.7, 0.3}.
The details are described in Korb et al. (2004). We denote this kind of inter-
vention as I~c, denoting that we intervene on the whole distribution for C.

Usually we will intervene to fix the distribution of an unset variable at its
current values. Such an intervention has no effect downstream, but cuts all
back-paths, giving us exactly what we need: the ability to distinguish causes
and effects by the asymmetries of intervention.

Recall that the main difference between H3 and H2 was that H3 cares only
about changes to E, not all of φ. So b′ lies in β’s redundancy range for φ iff
|∆2(e)| ≤ ε.

Then we can add the notion of resetting variables along φ. Let the resetting
ranges R be all ways of intervening to set variables along φ to their actual
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probability distributions. Then, ∀r ∈ R : I~r we verify |∆2| ≤ ε remains true.
(We either add I~r to the conditionals in ∆2, or consider the interventions in
succession.) Therefore:

Definition 15 (HP3-active) A path φ is active iff:

1. For some b′ in the redundancy range for φ:

(a) |∆1| > ε. (Wiggling C makes a difference.)

(b) ∀r ∈ R : I~r leaves |∆2| ≤ ε.

Then c was a token cause relative to c′ iff there was such an active path from
C to E.

2.4 Calculating Procedures

Since Bayesian networks are naturally computational objects, it is helpful to
write down algorithms for calculating the relevant quantities. In fact, we would
argue that it is necessary to prevent confusion over what is being held fixed,
or tacitly assumed. Furthermore, if we are this explicit, it is straightforward to
translate the theory into a computer program, and to compare various theories
on a library of known cases. Finally, problems in the account can be treated
as bugs in the algorithm, and modifications naturally seen as extensions to the
existing account. Furthermore, future accounts can be easily compared.

We now present algorithms to determine whether paths are strongly or
weakly active, and whether C was token causally relevant to E in accordance
with HP1 or HP3. Most algorithms presume the following are common knowl-
edge:

C (the Cause node)
E (the Effect node)
net (The network)
values(The actual states of the variables up to E, inclusive.)
Π (All ancestors of E.)
c′ (Optional contrast.)
ε (Threshold. Defaults to 0.)

Furthermore, they presume the network is uninstantiated and that we have
already performed basic error-checking, such as:

Error-checking: Raise an error in any of these cases:
(1) ε < 0, or ε ≥ 1.
(2) c′ is present but invalid (not a state in C).

In modern programming languages, this common knowledge could be imple-
mented as a class. The main benefit is to reduce the number of variables we
have to pass to our functions, and avoid duplication of error-checking. Some
values (such as Π) can be calculated from the others.

The main functions are HP1 and HP3 (Figure 1) which test all paths between
C and E to see if they are active. If any path is appropriately active, then C
was token causally-relevant for E. Our implementations return the most active
path, and its ∆1. They both use allpaths (Figure 2) which finds all paths from
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function HP1:
Presumes: as per strongly active.

Find the most active path:
let ∆ = 0, φmax = ∅
foreach φ in allpaths(C, E):

let d = strongly active(φ, c′)
if |d| > |∆|:

let ∆ = d, φmax = φ
return (∆, φ)

function HP3:
Presumes: as per HP3 active.

Find the most active path:
let ∆ = 0, φmax = ∅
foreach φ in allpaths(C, E):

let d = HP3 active(φ)
if |d| > |∆|:

let ∆ = d, φmax = φ
return (∆, φ)

Figure 1: HP1 and HP3 return the most active of the weakly-active paths. If
there are none, they return the tuple (0, ∅).

function allpaths:
Variables:

S (source node)
D (destination node)

Φ = ∅ (List of all paths)
let kids = children of S
if D ∈ kids:

add (S, D) to Φ
remove D from kids

foreach kid ∈ kids:
paths = allpaths(kid, D)
foreach φ ∈ paths:

append (S + φ) to Φ

return Φ

function strongly active:
Uses delta() to see whether |∆1| > ε
Presumes: as per delta()
Variables:

φ The path 〈C, Y1, . . . , Yn, E〉
c′ Contrast class

let β = Π\φ Background (B1, . . . , Bm)
return delta(C, β, c′)

Figure 2: allpaths returns all (directed) paths from source (S) to destination
(D), and strongly active returns ∆1 if the path is strongly active (|∆1| > ε),
otherwise 0.

C to E by recursively searching down from C. Of course, they have different
criteria for active, calling respectively, strongly active (Figure 2) and hp3 active
(Figure 3).

The function strongly active is just a wrapper to delta (Figure 3), which does
all the work. That deserves some discussion, because a symmetry lets us use a
single function delta to compute either ∆1 or ∆2. First recall that in our case
(omitting HP2), the quantities are:

∆1 = Pr(e|Ic,b)− Pr(e|Ic′,b)
∆2 = Pr(e|Ic,b)− Pr(e|Ic,b′)

Notice we can write these as functions of two sets of variables x and y,
notionally the cause c and background b:

∆1(x, y) = Pr(e|Ix,y)− Pr(e|Ix′,y)
∆2(x, y) = Pr(e|Ix,y)− Pr(x|Ix,y′)
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function HP3 active:
Presumes: as per strongly active
save φ.
Variables:

φ 〈C, Y1, . . . , Yn, E〉
c′ Contrast class

let β = Π\φ The Background

foreach b′ in redundancy ranges(β, φ):
Ib′ Sets all vars in this b′.
Check |∆| > ε
if not strongly active (φ, c′):

go to next b′

Check ∀r ∈ R : I~r leaves |∆2| ≤ ε
foreach r in resetting ranges(φ):

I~r Freeze at actual distributions.
if not redundant(b′, φ):

go to next b′

Success! Found a b’ that works!
return strongly active(φ, c′)

If we get here, nothing passed.
return 0

function delta:
∆(X, Y, x′) = Pr(e|Ix,y)− Pr(e|Ix′,y)
Presumes net is completely uninstantiated
Variables:

X The notional cause(s). (C or β)
Y The notional background. (β or C)
x′ Contrast state(s) for X.

Error if length(X) 6=length(x′)

Probability for actual state x, y:
x = values(X), y = values(Y )
Ix,y

update net
let p1 = belief of state e ∈ E

Probability for contrast class x′, y:
if x′ is defined: Ix′

else: unset X
update net
let p2 = belief of state e ∈ E

unset(X, Y ) Return net to clean state.
let ∆ = p1 − p2

if |∆| > ε: return ∆
else: return 0

Figure 3: HP3 active returns ∆1 if φ was active, and 0 otherwise. delta does
the real work. Depending on how it is called, it calculates |∆1| > ε or |∆2| ≤ ε.

function redundancy ranges:
Presumes net is completely uninstantiated
Variables:

φ (The path)

Get Pr(e|Ic,b).
let β = Π\φ
let b = values(β)
Ic,b

update net
p1 = Pr(e)

let RR = ∅
Try each possible instantiation of β.

let B = all instantiations(β)
foreach full branch b′ ∈ B:

if redundant(b′, φ):
add b′ to RR

unset c & b′ Clean network
return RR

function all instantiations:
Variables:

β List of vars. The ‘background’.

let B = pop(β) Removes β1

if length(β) = 0: Base case
return (states of B) (a list)

Build A, a tree of states
let A = ∅
foreach state s ∈ B:

add (s + all instantiations(β)) to A

return A

Figure 4: redundancy ranges returns a list of all redundant b′. It uses
all instantiations to get B, a tree showing all possible b′.
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function redundant:
Computes whether |∆2| ≤ ε
Presumes: as per delta
Variables:

b′ Contrast class for β.
φ The path: 〈C, Y1, . . . , Yn, E〉
Note: ensure length(b′) = length(β).
Generally some b′i = bi.

let β = Π\φ The background
return delta(β, C, b′)

function resetting ranges:
Variables:

φ Path variables

if φ is empty:
return ∅ Empty list

let p = pop(φ) Removes φ1

let s = current distribution of p
let rr = resetting ranges(φ)
Make 2 branches: p set and p unset

return [ [(p, s), rr], [(p,−), rr] ]

Figure 5: redundant determines whether a set of background values b′ is redun-
dant for φ, and resetting ranges finds all possible ways to freeze some variables
along the active path at their actual distributions.

We can immediately see that:

∆2(x, y) = ∆(y, x)

Therefore to check that |∆2(c,b)| ≤ ε, we merely swap c and b, and check that
|∆(b, c)| 6 >ε. So both strongly active and hp3 active (Figure 3) call delta.

HP3 (Figure 1) calls hp3 active on all paths, and once again returns the most
active. However, our implementation of hp3 active is computationally intensive,
so we might prefer that HP3 return as soon as it finds one active path.

The function hp3 active in turn calls the utility functions redundancy ranges
and resetting ranges (Figures 4 & 5). We have written these in the most
straightforward way, with exhaustive search. In the toy problems common in
the philosophy literature, this is fine, but for realistic networks, we should look
for more efficient procedures that take advantage of blocking relations in the
network.

Similarly, it has been easy to write these algorithms assuming it is easy and
fast to intervene upon variables, or unset them. In practice, these steps may take
time, and a programming implementation would likely modify the algorithms
to reduce the number of such calls. For example, it might be faster to start with
the network fully instantiated, and unset paths as required.

3 Examples

In which we show that HP3 handles deterministic cases and also some novel
probabilistic variants. In many cases the probabilistic variants are easier to
handle, because paths are more likely to be strongly active.

Disjunctive Matches: As before, FB = M1 ∨M2. But this is equivalent to
saying Pr(FB = 1) = M1 ∨ M2. Did M1 = 1 cause FB = 1? Yes. M2 = 0 is
in the redundancy range, so we may set it. And then M1 makes a difference to
Pr(FB). More formally:

— Actually, M1 = 1 and FB = 1.

— Let ε = 0.
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— Let b′ denote M2 = 0. Then ∆2 = 0 ≤ ε. So b′ is in the redundancy
range.

— |∆1| = 1 > ε. (There are no path variables to freeze.) So M1 makes a
difference.

By symmetry, the same holds for M2.

Probabilistic Matches: As before, presume both matches cause FB inde-
pendently, with failure probabilities α and β.

M1 = 1
M2 = 1

Pr(FB) = 1− σM1τM2

Let σ = .3 and τ = .2, so the probability of the forest burning down is:

M1 M2 Pr(FB = 1)
0 0 0
0 1 .8
1 0 .7
1 1 .94

Then, letting C = M1 and β = M2, actually c = b = 1, and Pr(FB = 1) = .94.
Choosing ε = .1:

1. Actually, c and e.

2. In the actual background (M2 = 1):

— The background change is redundant. (Trivially!)

— There are no variables along φ, so no freezing.

— If we set M1 = 1,M2 = 0, then |∆1| = .94− .7 = .24 > ε.

The path is strongly active, and M1 = 1 is an actual promoter (positively
causally relevant). What about M2? Proceeding similarly, we find that |∆| =
.94 − .8 = .14, so M2 = 1 is also an actual promoter. However, note that the
answer is sensitive to ε. If we choose ε = 0.2, then M1 = 1 is a promoter, but
M2 = 1 is not relevant.

Also note that because ∆1 and ∆2 share the same ε, Mx = 1 is a cause iff it
is not in the RR for My.

Max matches: The same structure as above, but Pr(FB = 1) = max(sM1, tM2),
where s is the probability of M1 to cause FB = 1 when acting alone. Similarly
for t.6 (So s = 1− σ.) Let s = 0.8 and t = 0.7.

First, consider ε < 0.1. Then M1 = 1 is a promoter of FB = 1, but M2 = 1
is not. We have:

1. Actually, M1 = 1,M2 = 1, FB = 1, and Pr(FB = 1) = 0.8.

2. The path from M1 is strongly active: wiggling M1 makes a difference,
because Pr(FB = 1) changes from 0.7 to 0.8. M1 = 1 is a promoter.

3. Wiggling M2 makes no difference: M1 = 1 is carrying the load.
6Here again we include Mx as a shortcut to an if. . . then statement. The shortcut only

works when Mx are restricted to {0, 1}.
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4. And M1 = 0 is outside the RR for M2, precisely because it qualifies as a
cause all by itself. So M2 is not causally relevant.

Now suppose 0.1 < ε < 0.7. Once again, M1 = 1 is a promoter. But now, so
is M2 = 1.

1. Wiggling M1 makes no noticeable difference. However, M2 = 0 is now in
the redundancy range for M1.

2. Setting M2 = 0, wiggling M1 now makes ∆1 = 0.8. M1 = 1 is a promoter.

3. Once again, wiggling M2 makes no difference. However, M1 = 0 is now in
the redundancy range for M2, because it only changes the probability by
0.1

4. Setting M1 = 0, we now have that wiggling M2 makes a difference: ∆1 =
0.7. M2 = 1 is a promoter.

A note on ε: Obviously, we could set ε = 0.8 and get that M1 is a cause
(promoter) and M2 is not relevant. What are reasonable values for ε? We
originally intended ε as a pragmatic concession: in practice we cannot insist
ε = 0 because we have finite data and limited computing precision. But as the
previous example shows, it can also be a personal preference parameter. Indeed,
determinists can always set ε ≈ 1. They will be blessed with few causes.

From here on, we shall assume ε = 0 unless stated otherwise.

Bottle: As we saw above, in the deterministic models, we get the same an-
swers as before: we just convert deterministic functions like BT = SH ∨ BH
to probabilistic functions like Pr(BT = 1) = SH ∨ BH. Let’s move on to
probabilistic variants.

Probabilistic Bottle 1: Being more realistic, we allow that Suzy sometimes

misses, and so does Billy. The model is ST
+
−−I BS

+
J−− BT . Here, both ST and

BT are potentially causes, exactly as in Probabilistic Matches. If both Suzy and
Billy have the same chance of hitting, then both count equally as promoters.

We do not want to accept that conclusion, but what exactly is wrong with
it? We want to say, “But only Suzy’s rock actually hit!” Suzy’s throw is not a
radium atom waiting to decay. There are other states which are relevant, and we
know them to be easily observable. Our model omits the obviously important
variable Hit : as Halpern & Pearl argued, we have the wrong model.

First, we know that Suzy throws faster, and will hit first. Second, we know
that if her throw will hit, Billy’s cannot. (This modelling assumption assumes
she throws enough faster that the bottle will be shattered by the time Billy’s rock
arrives.) Third, we suspect that at some point prior to the bottle shattering,
the outcome is sealed. That is, at some point, there is no more indeterminism
in this system. Halpern & Pearl take this to be when one rock hits the bottle,
presumably a very short time indeed before the bottle shatters.

Probabilistic Bottle 2: So we use Halpern & Pearl’s model, but include

the chance of failure. We add noise to the two initial arcs: ST
.7
−−I SH and

BT
.8
−−I BH. We leave the other arcs as they were, so: SH −−I BS J−− BH

and also SH −−I BH. Given knowledge only of ST and BT , the probability of
the bottle smashing is:
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Figure 6: Probabilistic version of Bottle Smash: results of intervening to fix the
probability distributions. Original state on the left. Freezing SH (middle) has
no effect on BS. But freezing BH (right) does, so BH is not actually causally
relevant.

ST BT Pr(BS = 1)
0 0 0
0 1 .8
1 0 .7
1 1 .94

This is the same as for Matches. The redundancy ranges for both Suzy and Billy
are degenerate. At first it seems that both ST = 1 and BT = 1 are promoters.
However, we must allow for freezing the variables along the active path.

The network is shown in three states in Figure 6. When we freeze SH =
{0.7, 0.3}, the distribution Pr(BS) is unchanged. ST = 1 is an actual cause.
However, when we freeze BH = {.77, .23}, Pr(BS) changes, so ∆2 > ε, meaning
that BT is not actually a cause.

This works because interventions block the usual backwards flow of prob-
ability, priviledging upstream variables. (As an aside, we must be willing to
consider the possibility that by intervention we can make both SH = 1 and
BH = 1. Such constraints help to choose the proper models. We cannot, for
example, replace BS with two binary variables Smashed and Intact. (see Korb
et al., 2005))

Probabilistic Boulder: In Hitchcock’s example Boulder, suppose F
.9
−−I D,

with the rest as before, including that the hiker won’t duck spontaneously. Then
everything proceeds as before, resulting in the same {0, 1} probabilities at S that
we had before.

Let’s add some more noise. Suppose that the CPT at S is:

F D Pr(S = 1)
0 0 1
0 1 1
1 0 .01
1 1 .8

Now, F = 1 is actually causally relevant. In fact, it hinders survival, as we
might expect. Given that the hiker ducked (an intervention), F = 1 reduces the
chances of survival relative to F = 0, as we can see in Figure 7. But that is just
what we would expect.

Two Assassins: Hiddleston (forthcoming 2004) uses the example of the assas-
sin and trainee to suggest that active-path accounts cannot handle probabilistic
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Figure 7: Probabilistic version of Boulder: now F = 1 is actually causally
relevant. It decreases the chances of survival relative to F = 0 (and therefore
relative to baseline).

cases. The original story is that a trainee assassin T shoots at a victim V . The
supervisor also takes aim, prepared to shoot if the trainee loses nerve. The
supervisor is a crack shot.

T S

V

T = 1
S = ¬T

V = ¬T ∧ ¬S

In the actual case, the trainee shoots, the supervisor does not, and the victim
dies. Although such examples are problems for older accounts of probabilistic
relevance, it is easy for any account which considers one path at a time. The
path T −−I V is strongly active, so all accounts presented here get it right.

Hiddleston says that neither H1 nor H2 (and by implication H3) survives a
probabilistic extension. Add an extra variable for whether the supervisor takes
aim, and let the model be probabilistic, with no extreme probabilities. The
supervisor is unlikely to fire without aiming, and always more likely to fire if he
aims. Our model might look like this:

T

V

S A
+−

+ +

Consider whether A = 1 is an actual cause. The only background variable is
T , and only the actual value T = 1 is redundant. In this context, the supervisor
aiming (A = 1) changes the probability the victim will die, compared with not
aiming (A = 0).7 Freezing S at the distribution induced by {A, T} has no effect
on V , because {A, T} already blocked the backwards flow of probability from
S.

Therefore A = 1 is on an active path and is a cause. Hiddleston thinks this
is wrong, because in actual fact the supervisor did not shoot.

7It happens to raise it. But what makes the path active is the fact that the probability
changed at all, not that it went up. Hiddleston says we should “treat counterfactual de-
pendence as probability raising” but that confuses relevance and role. His main criticism is
independent of that point.

RCSfile : token.tex, v Revision : 1.22 19



Probabilistic active paths

Now, on the standard “determination of probabilities” interpretation, chang-
ing the probability of an effect is causing that effect (either promoting or hinder-
ing). In fact, that’s all there is to probabilistic causation. (Humphreys, 1989)
Hence, we could argue that the original account yields the correct verdict in its
domain.

But this is stretching things. Since S is in our model, it seems we ought to
be able to account for the fact that S = 0. The problem is that our probabilistic
extension must give credence to events (S = 1) that we know did not happen,
making our path appear active when common sense says it was not.

So while we reject Hiddleston’s claim that active path accounts cannot be
made probabilistic, we agree with Hiddleston that these active-path accounts
are limited by failing to attend to causal processes. Consider his deterministic
Antidote example.

Antidote: Fred injects himself with harmless antidote (A = 1) on the false
belief that he has been (or is about to be) poisoned (P ). The model is simple:
P −−I S J−−A, and S = ¬P ∨A. Fred survives when S = 1.

In fact there is no poison (P = 0), so the antidote was irrelevant. However,
because A = 1, the RR includes P = 1. Had there been poison, antidote
would have made a difference, hence the path A −−I S was weakly active. As
Hiddleston says, “That is the wrong answer. H2 [and H3] counts (A = 1) an
‘actual cause’ merely because it would have been a cause if the circumstances
had been different. . . .”

Hiddleston notes that H1 correctly says (A = 1) is not a cause. But it also
says (P = 0) is not a cause, leaving (V = 1) uncaused! That’s the same problem
we had with Matches. As with matches, if we make the example probabilistic,
the difficulties vanish, and any of HP1, HP2, and HP3 can solve it.

But we want an account that can handle this case as it stands. Hiddleston
presents a solution in terms of Cheng-style causation. We offer our own solution
using wounded arcs elsewhere (Korb et al., 2005).
Does Hiddleston’s solution solve P = 0?

In passing we note that if we make this example probabilistic (with no extreme
probabilities), then HP3

4 Conclusion

The active-path approach treats token causation as type causation in a re-
stricted context. The trick is to find the proper context. We have extended the
active-path analyses of deterministic token causation (Halpern and Pearl, 2001,
2004; Hitchcock, 2001) to probabilistic cases, defending that project against im-
possibility claims (Hiddleston, forthcoming 2004). Our solution makes use of a
more general notion of intervention, allowing one to set an arbitrary probability
distribution on a variable (Korb et al., 2004).

Nevertheless, we acknowledge some of Hiddleston’s counterexamples, and
agree with him that a full account must make reference to causal processes. We
hope to present that account in a forthcoming piece.
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