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Abstract
Stephen Kdlert (1993) has argued that Laplacean determinism in classica physcsisactudly a
layered concept, where various properties or layers composing this form of determinism can be
peded awvay. Here, | argue that alayered conception of determinism isinappropriate and that we
should think in terms of different deterministic modds gpplicable to different kinds of systems. The
upshot of thisanaysisisthat the notion of sate is more closdy tied to the kind of system being
investigated than is usualy consdered in discussons of determinism. So when investigeting
determinism corresponding changes to the appropriate notion of state-and, perhaps, the Sate space
itself—also need to be considered.

1. Introduction

Determinism is generdly taken to be ametgphysica doctrine about our world. If metaphysica
determinism istrue, then it is reasonable to think that scientific determinism-the determinism studied
in physica theories-would aso be true in some form. However, it is afurther question as to what
properties a theory or modd must have in order to be deterministic.

This latter question usudly is much easier to judge in the case of concrete theories than the
datus of scientific or metgphysicd determiniam in generd. Laplace' s famous characterization of
determinism (1814/1951, p. 4) is an example of scientific determinism based on the paradigm
theory of classcd particle mechanics (CPM). Mark Stone gave aparticularly clear characterization
of Laplacean determinism in CPM, whereits key properties are seen to form jointly necessary and
aufficient conditions for determinism (1989). In contrast, Stephen Kellert more recently andyzed the
properties Stone identifies as representing layers or levels of determinism (1993, chapter 2).

Inthis essay, | examine these two analyses of the properties defining Laplacean
determinism, connecting these properties more closely with the mathematica machinery typicaly
employed in physica theories. There are some subtleties regarding the connection between these
defining properties and states of systems that cal the layered approach into question as away of
conceiving Laplacean determinism, and uncovering these subtleties helps us get clearer about
determinism in physicd theories.



2. Preliminaries

Theoreticd modelsin physics include equations of motion (often referred to as dynamica or
evolution equations) describing the change in time of the relevant variables characterizing the system
in question, a complete specification of the initid sate referred to asthe initid conditions (1Cs) for
the model and/or a characterization of the boundaries for the model known as the boundary
conditions (BCs). A state is taken to be a description of the vaues of the variables characterizing
the system a sometimet. Asasmple example of aclassca modd, suppose we wanted to study
the firing of arubber bal a awal by a cannon. The BC might be that the wall asorbs no kinetic
energy (energy of motion) so that the ball is reflected off the wal with no loss of energy. TheICs
would betheinitid position and velocity of the bal asit left the mouth of the cannon. The equation
of motion would then describe the path of the ball.

It is useful to introduce adigtinction that isimmediately relevant to physical descriptions,
namely the ontic/epistemic distinction. This distinction is applied to states and properties of a
physica system. Roughly, ontic states and properties refer to features of physica systems asthey
are “when nobody islooking,” while episemic states and properties refer to features of physica
systems accessible to empirica observation.! Erhard Scheibe (1964/1973) first introduced this
digtinction and it has been subsequently developed in various versons (Primas 1990 and 1994;
Atmanspacher 1994; d’ Espagnat 1994). An important specia case of ontic states and properties
are those that are deterministic and describable in terms of points in an gppropriate state space;
whereas an important special case of epistemic states and properties are those that are describable
in terms of probability distributions (or density operators) on some appropriate State space.

Much of the andysis of physica systemstakes placein what is cdled state space, an
abstract mathematica space composed of the variables required to fully specify the Sate of a
system. Each point in this space then represents a possible state of the system at a particular time't
through the vaues these variables take on a t. When the state of the system is fully characterized by
position and momentum variables, the resulting space is often called phase space. In typica
dynamica modds, the coordinates of such a space are the generalized momenta and positions
characterizing the possible states. A model can be studied in state space by following its trgjectory
from theinitid gate (g,, p,) to somefind date (g, ;). The evolution equations govern the path-the
hitory of date trandtions—of the system in State space.

However, note that there are important assumptions being made here. Namdly, that a state
of asystem is characterized by the vaues of the crucid variables and that a physica Sate
corresponds to a point in state space through these values. This cluster of assumptions can be caled
the faithful model assumption This assumption alows us to develop mathematical models for the
evolution of these points in state space and such models are taken to represent (perhaps viaan
isomorphism or through a more complicated reation) the physica systems of interest. In other
words, we assume that our mathematica models are faithful representations of physica systems and
the state space is afaithful representation of the physica space of the system in question. Hence, we

Thisis not to say that ontic states have no empirical implications. For example, if there are restrictions on the
evolution of ontic states, then these limitations may very well be reflected in the observable evolutions of
epistemic states.

These generalized coordinates allow for systems to be characterized by variables other than linear momentum
and position (e.g., angles and angular momentum).



have our connection between deterministic physca systems and their deterministic models,
provided the latter arefaithful and have properties rendering them deterministic.

One advantage of working in state space isthat it often dlows us to sudy the geometric
properties of the trgectories of the system in question without knowing the exact solutions to the
dynamica equations. But different kinds of state spaces are of different kinds of usefulness. So one
encounters various kinds of gpaces such as phase space (momentum vs. position), configuration
gpace (pogtion vs. time), “Liouville’ or dengty space (e.g., particle dendity vs. position) aswell as
various kinds of transformed spaces, where, for example, the momentum has been Fourier
transformed into a vector characterizing frequenciesin the system.

3. Laplacean Deter minism

Clocks, cannon balls fired from cannons and the solar system are taken to be paradigm examples of
determinigtic systemsin classcd physics. In the practice of physics, we are ableto give avery
generd and precise description of deterministic systems concelved of onticaly. For definiteness|
will focus on classica particle mechanics (CPM), the inspiration for Laplace’ s famous description.
Suppose thet the physica state of asystem is characterized by the vaues of the postions and
momenta of dl the particles composing the system at sometimet. Furthermore, suppose that a
physica state corresponds to a point in state space in an ontic description through these values
(invoking the faithful modd assumption). We can then develop deterministic mathematical modds
for the evolution of these points in Sate space and three properties have been identified by Stone as
playing acrucid role in such descriptions expressing Laplace’ s vison of determinism (Stone 1989,
Kdlert 1993; Bishop 2002; Bishop 2003):

(DD) Differentid Dynamics. An dgorithm relates a date of a system a any given timeto a date at
any other time and the agorithm is not probabilistic.

(UE) Unique Evolution: A given state is dways followed (preceded) by the same hitory of date
trangitions*

(VD) Vaue Determinateness: Any state can be described with arbitrarily smal (nonzero) error.®

Differentid dynamicsis motivated by actud physica theories expressed in terms of
mathematica equations. These equations, dong with ICs and BCs, are required to be
nonprobabiligtic. This requirement expresses the Lgplacean belief that there are no indeterministic
elementsin CPM like those thought to be present in some versons of quantum mechanics. Such
equations describe the individua trgjectories of states in state space.

3Though the term “differential dynamics’ might lead one to think only differential equations arein view in this
condition, it is actually much more general, alowing difference, integra and integro-differential equations among
other possibilities arising in physical theories.

4Asformulated, UE expresses bidirectional state transitions (future and past). It can easily be recast to allow
for unidirectional state transitions (future only or past only).

SThese descriptions can be ontic or epistemic.



Unique evolution is closdaly associated with DD and expresses the Laplacean belief that
systemsin CPM will repest their behaviors exactly if the sameinitia and boundary conditions are
specified. For example the equations of motion for a frictionless pendulum will produce the same
solution for the motion as long as the same initid velocity and initia position are chosen. Roughly the
ideaisthat every time we return the mathematicd mode to the sameinitid ate (or any saeinthe
higtory of state trangtions), it will undergo the same higtory of trangitions from stete to state and
likewise for the target system. In other words the evolution will be unique with respect to a
particular specification of ICs and BCs®

The importance of UE for determinism will be one of the issues discussed in section 4, so it
isworthwhile to say a bit more about it here. Although a strong requirement, UE isimportant if
physica determinism isto be ameaningful concept. Imagine atypicd physcd sysem masafilm.
Unique evolution means that if we were to dart the film over and over a the same frame (returning
the system to the same initid gtate), then mwould repeet every detal of itstotd history over and
over again and identical copies of the film would produce the same sequence of pictures. So no
matter whether we dways start Jurassic Park at the beginning frame, the middle frame or any other
frame, it plays the same. The T-rex as antihero always saves the day. No new frames are added to
the movie nor is the sequence of the frames changed smply by sarting it & an arbitrary frame.

By way of contrast, suppose it was the case that returning mto the same initid sate
produced a different sequence of state transitions on some of the runs. Consider asystem mto be
like adevice that generates a different sequence of pictures on some occasions when starting from
the same initid picture. Imagine further that such a syslem has the property that smply by choosing
to start with any picture normaly gppearing in the sequence, it is sometimes the case that the chosen
picture is not followed by the usua sequence of pictures or that some pictures often do not appear
in the sequence or that new ones are added from time to time. Such a system would fail to have UE
and would not quaify as adeterminigtic.

Vaue determinateness is motivated by the Laplacean belief that there is nothing in principle
in CPM preventing mathematical descriptions of arbitrary accuracy. For example the models of
CPM dl presuppose precise vaues for the congtants and variables used in the equations of motion.
This, for example, is congstent with the description of ontic states having precise, definite vaues.
Clark Glymour takes VD as a necessary criterion for determinism and cites Peirce and Reichenbach
as examples of philosophers who have included this criterion in their andyses of determiniam (1971,
pp. 744-5). Since CPM is often taken as the paradigm example of adeterministic theory, itis
natura that VD would come to be seen as part of the Laplacean vison for classca physcs. Itis
only with the advent of quantum mechanics that questions were raised about the gpplicability of
vaue determinatenessto al of physics.’

50ne might wonder about the relationship between DD and UE. After all, ordinary differential equations have
theorems guaranteeing the existence and uniqueness of their solutions so that UE looks like a redundant
requirement in these cases. However, by either underdetermining or overdetermining the conditions for such
equations, uniqueness and/or existence may be lost. More generally, DD allows a great ded of freedomin
choosing agorithms, including algorithms lacking uniqueness properties. Hence, UE is far from aredundant
condition.

"Historically afourth property known as absol ute predictability completed the picture of determinism as

conceived by Laplace, but the relationship of predictability to determinism is more subtle than typically realized
and the type of predictability implied by DD, UE and VD is also much weaker than often conceived (Bishop
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The Laplacian vison certainly has the flavor of CPM, but as | have described it so far, it
lacks the same precision. By looking a Bas van Fraassen’'s andysis of determinism (1989 and
1991), we can add precison to the vison as it comes to expresson in CPM, connect it with the
mathemetical tools of physica theories, further mativate this formulation of determinism, and
highlight once again the crucid role UE plays in the definition of determiniam.

Van Fraassen begins his quantitative discusson by consdering the following proposition
(1989, p. 252):

Q) Thereisafunction f such thet, for dl timest and positive numbersb, st + b)
=f(s(t), t, b).

In (1), s(t) isthe Sate of asystem at timet and f is afunction that maps a Sate §(t) into adate that is
b time units to the future. This represents aformaization of DD in terms of functions, where
probability is explicitly excluded. As Russdl pointed out, however, there is a problem with this type
of functiond definition (1953, pp. 401-2). At every ingant in the history of the system, there exists
an infinite number of functions describing the same time-evolution of the system in the padt, but
diverging in their descriptions in the future (after thetimet + b, say). Hence, this definition of
determinism is vacuous because there is never a case where there is a single unique function
describing the evolution.? Russdll’s suggestion for overcoming this difficulty is to characterize
systems by a function making no explicit reference to time. His hope was that such a move would
diminigh, if not totally remove, the number of possible functions that agree with f in their description
of the time-evolution of the syslem up to thetimet.

Apparently van Fraassen interprets Russdll’ s suggestion as an attempt to define determinism
interms of actua trgectories done (no possible trgectories alowed). He reconstructs Russdl’s
suggestion as (1989, p. 252)

2 Thereisafunction f such thet for dl timest and numbers b, st + b) = f(s(t),
b).

On van Fraassen’s andysdis, for (2) to be an adequate definition of adeterministic modd, it must
represent atype of periodicity, but not the functiond type where s(t) = s(t + b) say. Rather, the
type of periodicity he hasin mind is UE, where if a system returnsto the same dynamicd date at a
different time, then it will repeat the same history of state trangitions. In other words, (2) must be
refined to

(2A)  For any two digtinct timest, t, if S(t) = s(tV), then 5t + b) = StV + b)
if it isto be nonvacuous. Suppose our system m evolves in such away that every state in the history

of the trgectory is different. Then it would vacuoudy fulfill (2). An example would be an Epicurean
atom aways moving forward on atrgectory gpproximately along aline from the sun to the North

2003).

8 Evenif thereis asingle function describing the history of the system, such afunction still does not imply
the system is deterministic without the faithful model assumption.
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Star making an occasiond indeterministic swerve. Without the periodicity requirement, (2) would
pick out the Epicurean atom as deterministic which is clearly mistaken.

(2A) dsates explicitly that if a system returns to the same date a a different time, then it will
follow the same history of dtate trangitions and is an attempt to spell out the requirement of UE.
Since (2A) impliesthe use of equations of motion as a prescription for the evolution of asystem and
satisfies VD in the context of CPM, we can understand the question van Fraassen wants to answer
as being whether (2A) represents a sufficiently strong reading of UE to yield determinism. It turns
out that (2A) is ill not enough as there are forma counter examples of models with such periodic
histories that are not determinigtic (Montague 1974, pp. 337-9). Van Fraassen’s concluson is that
we must take possible trgectories serioudy when defining determinism—determinism is a modal
notion (1989, p. 255).

What is needed is for any given state S(t), al possible trajectories issuing forth from thet
date have the same history of dtate transitions. Van Fraassen writes this as (1989, p. 254)

3 If uand v are possible histories, and u(t) = v(t\) then for dl postive
numbers b, u(t + b) = v(t\ + b).

How isthis condition implemented? In CPM it isimplemented by using a group of operators
defined by the operation U, u(t) = u(t + b), where there exists an inverse operator Up'* = U,, for a
one-parameter family, and U,, u(t + b) = u(t). Thistype of evolution operator corresponds to the
three elements of the Laplacean vision described above. First, as the source for the equations of
motion of CPM, it is a prescription for how to go from one state of the system to another (DD).
Second, the State space trgectory governed by these operators is unique given any choice of initial
date in the trgectory’ s history (UE). Third, the group operators and the resulting equations of
motion possess the property of vaue determinateness as exhibited by the uniqueness and existence
theorems for the differentia equations of CPM (VD). Hence, group operators yield a precise
nonvacuous redization of the Lgplacean vison with UE playing a centrd role. By smilar reasoning,
we can see that semigroup operators can be used to achieve aunidirectional version of Laplacean
determinism.®

4. Determinism in Layers?

In Stone' s andysis of Laplacean determinism, DD, UE and VD are taken to be jointly necessary
and sufficient conditions for aCPM modd (or system) to be determinidtic. Thisisintuitively easy to
see: given a st of evolution equations and |Cs and BCs, the state space trgjectories of the model
are uniquely determined by the evolution group U,,. For CPM, DD, UE and VD and look like a
packaged dedl, given the nature of the states involved (point-like), the evolution equations and the
uniqueness and exigtence theorems tying the two together.

In contrast, Kellert attempts to argue that DD, UE and VD are separable, representing
layers of determinism (1993, pp. 50-62). Each property represents a layer of determiniam, like the
layers of an onion, and as we pedl back the layers, we supposedly get closer and closer to the core
of determinism. This andyss of determinism, however, raises questions about logical relations
among dates and the evolution equations in deterministic models as well as misdentifies the core

9Semigroups share all the properties of groups except that they lack an inverse.
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property of determinism as we will see.

Kélert treats VD as the outermost layer of determinism. Suppose we drop this condition. If
one thinks that determinateness and determinism are closely related—as Glymour (1971)
suggests-then dropping VD would automatically guarantee indeterminism in aphysical description.
Although VD agppears to gpply to CPM, one might worry that quantum mechanicsimplies that
physicd variables do not have sharp or definite values. However, it is possible to revise determinism
to dlow for set- and interva-vaued properties evolving dong uniquely determined paths (Fine
1971; Teler 1979; Earman 1986, 217-8). Properties DD and UE can be applied to the evolution
of interval-valued quantities. So DD, UE and VD, then, do not form a set of jointly necessary and
sufficient conditions for determinism.

Pedling away VD, then, does not gppear to be sufficient to render amode indeterministic
and it looks like Kdlert’sandysis of determinism as alayered concept proceeds straightforwardly
in this respect. However there is a subtlety involved here. Recall that states are typicdly taken to be
vaues of the key variables characterizing the system a sometimet and are represented as pointsin
state space. So a given state §(t,) characterizes a system a the particular timet,, But when we
consder gates in conjunction with the evolution equations governing the history of state transitions,
thereis avery important dependenceignored in Kdlert’s analysis. The three properties DD, UE
and VD are derived from CPM, where states are conceived as points in states space. By dropping
VD, we have actudly introduced a change in the notion of state from that of point-vaued to that of
interval-valued. For states characterized by interva-vaued varigbles, the state trangtions governed
by the evolution operators would no longer be point-valued trgectoriesin state space, but, rather,
“tubes’ connecting an initid interval-vaued sate with some later interval-vaued Sate in some
gopropriate date space. Given the same initid state, DD and UE would still imply that such tubes
exhibit aunique history of state transitions™®, so determinism till holds, but point-vaued states are
no longer elements of the models. So thereisalogica connection between the properties DD, UE,
and VD, on the one hand, and the notion of state on the other. Particular equations of motion (DD)
presuppose particular specifications of the sates they govern (eg., point-like asin VD) in order for
the model s to represent well-posed mathematica problems guaranteeing the existence of unique
solutions (UE). The definition of states, then, in a physical theory are not arbitrary, but tied to the
evolution eguations governing the states. Making a change in the nature of the state entails a
corresponding change in the nature of the evolution equations and modifying the evolution equations
generdly necessitates a corresponding redefinition of the notion of Sate.

The second layer in Kellert' sanadyss of determinism is UE. He argues that UE can be
separated from determinism because chaotic systems can amplify quantum fluctuations due to
senditive dependence leading to violations of UE (1993, pp. 69-75; see also Hobbs 1991, p. 157).
Briefly, the reasoning runs as follows. Given two chaotic sysems of CPM in nearly identicd initid
dates (e.g., Soecification of theinitid pogtions and velodities), they will evolvein radicaly different
waysin ardaivey short time period as the dight differencesin initid conditions are amplified (so-
cdled sengtive dependence). There is no known lower limit to this sengtivity, thus nothing to
prevent the possibility of chaotic macroscopic systems being sensitive to quantum fluctuations. If
chaotic macroscopic systems are sendtive to quantum fluctuations, then such fluctuations would
generate dight differencesin initia conditions for such sysemsyidding different histories of Sate

Recall that probabilities are explicitly disallowed under DD.
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trangtions for chaotic macroscopic systems (Bishop and Kronz 1999). Hence UE must fall for
chaotic moddsin CPM.

The question of whether such sensitivity arguments do not run afoul of DD’ s redtriction on
no probabilities is a delicate matter. However, these kinds of sengtivity arguments depend crucialy
on how quantum mechanicsitself aswell as measurements are interpreted (Bishop and Kronz
1999). Furthermore, athough in the abstract sengtivity arguments do correctly lead to the
conclusion that the smalest of effects can be amplified, applying such arguments to concrete
physical systems shows that the amplification process may be severely congtrained. For example
investigating the role of quantum effectsin the process of friction in diding surfaces indicates
quantum effects might be amplified by chaosto produce a difference in macroscopic behavior only
if the fluctuations are large enough to bresk molecular bonds and are amplified quickly enough
(Bishop forthcoming).

These questions aside, what would it mean for the concept of determinism if UE were
dropped? | offered reasonsin section 3 asto why UE is crucia for any conception of determinism.
The crucid question, then, iswhether by dropping UE determinism would be logt if dl we now have
is the concept of an evolution equation (i.e., only DD remains). To seethis, we can build what van
Fraassen cdls a set of “indeterministic counterparts’ to the group operators mentioned above that
explicitly lack UE (van Fraassen 1991, p. 51). Let S be a subset of the state space and b a positive
number. Then

T, (S) ={x: for some possible” trgjectory u, timet, and statey in S, ut) =y and u(t + b) =

X};
T, (S) ={y: for some possible” trgjectory u, timet, and state xin S, u(t) =y and u(t + b) =
X},

where atrgjectory u(t) ispossible” relative to v(t) exactly when u(t) = v(t) for dl t # t,, but may
disagreefor dl t > t;. The operation T, T, '(S) does not return the origind statein S.** Furthermore
these operators require a change in the notion of possibility from the standard one used in groups
and semigroups. The operators T yield a structure on state space defining a set of possible”
trgjectoriesthat can act as continuations of u beyond timet;. Any one of the candidates is apossble
continuant and no one is guaranteed to be the continuant.

Thus UE islogt with no explicit introduction of probability into any equations, hence, thereis
no immediate revison to DD which explicitly rules probabilities out. However, clearly if UE is
dropped, then the dgorithm in DD is either vacuous (recal (2) and (2A) above) or one-to-many:
given the same state S(t) for any t < t;, the dgorithm can map into any possible” state S(tN) for tN >
t;. If the key intuition isthat deterministic evolution must eschew probabilities-as seemsto be
Kdlert'sview (1993, p. 75)-then that intuition is certainly preserved by dropping UE and keeping
DD. However, the remaining conception of determinism turns out to be smply a methodologica
injunction to use differentid equations, say, without any inherent stochastic e ements, an gpproach
that has its own problems (cf. Bishop 2002, pp. 26-28). Even if DD remains unmodified, we have
peded the crucia layer of determinism away by dropping UE (compare Earman 1986, pp. 12-13).
Asillugrated and argued above in section 3, UE is the core of determinism, representing an anvil on

UThey form a semigroup of operators (see Bishop 2002, pp. 13-14)
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which we fashion our physica theories and models.

Suppose, in contrast to Kelert, we drop DD’ s redtriction on probabilities, while maintaining
UE asthe core of determiniam (our anvil). Determinism as UE is dill preserved sinceit is il
possible to have evolution equations that govern the trangitions of probabilities such that Sarting with
the same initid probability digtribution (initid sate), we have the same history of trandtionsto a
unique find probability digribution (find state). An example of such a stuation would be Satigtica
mechanics. But notice again that this would involve a further revison to the nature of the Sates
composing the state space: the states are now probability distributions, rather than point-valued or
interva-vaued quantities. So UE holds whether or not we have evolutions equations for point-
vaued dtates or for probability distributions. The different kinds of evolutions equations represent
the various kinds of theories or models we can fashion on the anvil of UE, ensuring that such
theories and modds are determinitic.

The interplay between the notion of state and the types of equationsin DD dso helpsto
dleviate aworry for UE raised by Robert Batterman (1993). He notes that UE is“ generdly fase
for so-cdled time-dependent Hamiltonian systems’ (1993, p. 50). | take it that the worry hereis
with behaviors such as hysteress effects, where physical variables become multivalued. Again, what
isimportant to note here is that the notion of state corresponding to these equations. In this case the
date is such that it never takes on multiple values of avariable (the velocity, say) at the sametimet.
The notion of gateis, perhaps, more sophigticated than in Newtonian dynamics, but there is nothing
in principle that prevents enriched notions of state and state space, aong with the corresponding
evolution eguations, from fulfilling UE in these cases.

Asafind st of remarks, the connection between the properties of determinism and the
notion of state often appears to be neglected. A recent example is David Albert’s (2000) discussion
regarding determinism and time-reversa invariance. Albert (2000, pp. 9-11) advocates a view that
gtates should be considered logicaly, conceptudly, and metaphyscaly independent. Thisisto say
that the information encoded in the state S(t,) does not determine or imply anything about any other
dates at any other timesif we consder states in and of themselves. If one considers Newtonian
particle mechanics, specifying just indantaneous particle postions fulfills this criterion fine. If, in
addition, one specifies ingantaneous particle momenta as well, then this independence is violated,
because the definition of instantaneous velocity involves infinitesma differencesin pogtion a
different times, Snce momentum in Newtonian mechanics is defined as velocity—the derivative of
position with respect to time-multiplied by mass. As John Earman has pointed out, physcists usudly
particle postion and mv is particle momentum, such astate is not independent of dl the other Sates
in some specified time interva, namely it failsin just the way needed to define v as an ingantaneous
velocity (Earman 2002, p. 246). Still, merdly specifying the state s(x(t,), mv(t,)) does not determine
the values of dl other states in state space for dl times, but only those in asmal neighborhood about
s. On the other hand, if one congders the Hamiltonian formulation of CPM, where the generdized
momentum is defined as a derivative of the sysem'’s Lagrangian (roughly a function specifying the
total energy of the system), then the generdized momentum need not be of the same form as
Newtonian momenta, SO one may be able to specify both the generaized coordinates and the
generdized momenta such that states maintain the conceptud independence Albert intends.

Itisaso logicdly possible that a sysem might have the same state in two different worlds,



but not have the same history of gate trangtions. This, perhaps, is the notion of logical
independence that Albert hasin mind. However, in physicaly possible worlds where the laws are
determinidtic, the states would not be logicaly independent. In particular, under the Laplacean vison
of determinism for CPM, the states are not logically independent of the laws governing their history
of trandtions (DD), and, consequently, they are not strictly logicaly independent of each other,
being linked via the rlevant evolution equations, whether the Newtonian or the Lagrangian
formulation is used. The specification of one of these sates plus the dynamical equations of motion
would fix the entire history of Sate trangtions so long as the definition of sate includes the
ingantaneous position and momentum. So the fact that particular forms of determinism presuppose
particular notions of state undermines the kind of strong form of independence Albert advocatesin
contrast to the typicd view of physcigs.

The importance of this interdependency of states and equations of motion for determinism
can be seen in an example given by van Fraassen (1989, p. 256). Consider a pendulum whose
motion is constrained to a plane and whose states s are only characterized by bob position in order
to enforce dtrict independence of states. Suppose that the bob has a particular location at some
time, whose coordinates are (1,1), say. Since the pendulum is a periodic system, we know it will
return to thislocation again and again in regular fashion. Characterizing bob positions as afunction
of (discrete) time §(t), then 5(10) = (1,1). Suppose that 5(20) = (1,1). Doesit follow from this that
S(11) = 5(21)? No, because whether the bob is traveling in the same direction at these two timesis
indeterminate. Given atime sequence of positions 5(10), 5(20), S(30),...thereis no way of
determining the values of the other positions. The pendulum, then, is periodic, but not deterministic if
the state space is smply configuration space (x(t)). Of course, when we examine the pendulum’s
equation of motion, we see that it presupposes states characterized by (x(t), mv(t)). So the state
gpace that alows full pecification of the Sate of the pendulum bob is phase space, requiring both
position and momentum, and determinism is restored.

In contrast to the view presented here, Albert advocates viewing determinismin CPM asa
“connection between dl the states of the world at dl times and dl the states of the world throughout
any arbitrarily smdl time-interva” (Albert 2000, p. 11). This means that one must specify the states
sS(x(t)) a sometimet, and the “rates at which those postions are changing [momentum]| in the
immediate vicinity of that time’ in order to have a determinigtic connection with the positions of the
particles at any other time”’ (Albert 2000, p. 11). In thisway one could overcome the problem of
determinism in the previous pendulum example, because the equation of motion requires a
specification of both an initid pogtion and arate of change of that podtion a sometimet; in order
for determinism to hold for the system. So, on Albert’s view, since the CPM equations of motion
require both initid position and ve ocity information, and since the s(x(t,)) contains no veocity
information, one must dso specify how s(x(t,)) is changing in asmal neighborhood in time abot L.

As noted above, however, states are not srictly logicaly independent of each other, being
related to one another via the equations of motion, so the drive to formulate CPM in such away
that particle states have the dtrict independence Albert wants lacks mativation. It is aso the case
that on Albert’s proposdl, given a state s(x(t,)) one could not say whether it represented a particle
datein motion or at rest, whereas on the usua physicist’s account this can be read off the state.
With respect to determinism, however, the greatest difficulty with Albert’s proposd isthat if the
date isrestricted to s(x(t,)) and only S(t,) is specified dong with the equations of motion, then the
system is not determinigtic (as in the example above). Under this proposa, determinism does not
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have the properties DD, UE and VD fdling out of the kinds of laws we take to govern CPM.
Rather, one must decide what additiona information is needed beyond (1) in order to restore
determinism for CPM, but this renders the specification of determinism ad hoc, whereas the usua
physicig’ sway of specifying sates |leaves the question of determinism internd to the theory or
modd in question and well-motivated.

5 Concluding Comments

From this brief exploration of Laplacean determinism, we can see that the notion of determinism as
alayered concept is more problematic than first meetsthe eye. DD, UE and VD might be jointly
necessary and sufficient conditions for models of CPM to be determinigtic. To drop either DD or
VD might be appropriate for other kinds of models—so these three conditions cannot be necessary
for Laplacean determinism smpliciter—bout this dso implies that the underlying notion of Sate
changes in a corresponding way. For example, dropping VD leads to a change in state from point-
vaued to interva vaued. This might be appropriate for particular kinds of meteorologica models,
where variables like temperature and pressure for atmospheric states are pecified over some
interval due to measurement limitations and these interval-valued states are then evolved forward in
time. While dill being determinidtic, this epistemic description could be related to an underlying ontic
description in terms of microscopic point-valued states (Atmanspacher and Kronz 1999).12 As
ancther example, in gatistical mechanics, dropping DD might mean probability dengities are being
used in an appropriate coarse-grained macroscopic description of the system tied to the precison
of our observations. While still being determinigtic, this epistemnic description could be related to an
underlying ontic description in terms of microscopic point-vaued sates. Alternatively, there might
be cases where an ontic description in terms of probabilities is appropriate when underlying point-
vaued states are undefinable. Hence, we have a different conception of determinism suited for
modding physica systems other than those of CPM.

In contrast, dropping UE does not appear to imply a corresponding change to the notion of
gate. For example, whether one uses point-valued or interva-va ued quantities-corresponding to
maintaining or dropping V D—specifying the sameinitid sate does not guarantee evolution to a
unique find state because the mapping between states is now one-to-many. Determinism is no
longer valid for such modes. Spesking picturesquely, UE represents an anvil and different
combinations/modifications of DD and VD represent different properties relevant for different
modd s we might fashion on this anwil.

These observations suggest that alayered conception of determinism isinappropriate.
Rather, we should think in terms of different deterministic modes gpplicable to different kinds of
sysems dl sharing the core property UE. Further, the notion of state is more closdly tied to the kind
of sysem being investigated than is usualy consdered in discussons of determinism. So when
investigating determinism by adding or dropping such properties as DD and VD, corresponding
changes to the gppropriate notion of state-and, perhaps, the state space itself—a so need to be
considered.
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