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Abstract.  Bayesian Coherence Theory of Justification or, for short, Bayesian 

Coherentism, is characterized by two theses, viz. (i) that our degree of confidence in 

the content of a set of propositions is positively affected by the coherence of the set, 

and (ii) that coherence can be characterized in probabilistic terms.  There has been a 

longstanding question of how to construct a measure of coherence.  We will show 

that Bayesian Coherentism cannot rest on a single measure of coherence, but requires 

a vector whose components exhaustively characterize the coherence properties of the 

set.  Our degree of confidence in the content of the information set is a function of 

the reliability of the sources and the components of the coherence vector.  The 

components of this coherence vector are weakly but not strongly separable, which 

blocks the construction of a single coherence measure.       

 

 

1. Introduction 

 

Suppose that we have obtained various items of information from independent sources 

that are not fully reliable.  Let an information set be a set containing such items of 

information.  What does it mean to say that our degree of confidence is positively 

affected by the coherence of the information set?  Certainly it need not be the case that 

coherence is the only determinant of our degree of confidence.  For instance, the degree 
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of confidence will also be determined by how reliable we take our information sources to 

be.  Presumably there will be a range of sentences that fit the following schema:  

 

(S) The greater X, the greater our degree of confidence will be that the content of the 

information set is true, ceteris paribus.   

 

The ceteris paribus clause assumes that we keep all the other determinants of the degree 

of confidence of the information set fixed (cf. Bovens & Olsson, 2002).  We will 

investigate what ought to be filled in for X, i.e. what the determinants are of our degree of 

confidence.  It will turn out that one of these determinants is a reliability measure and the 

other determinants are various components of coherence, expressed in a vector of length 

n for information sets of size n. 

 

2. Notation and Technical Preliminaries  

 

(i) Let S(n) be an information set {R1, R2, ..., Rn}.  We construct propositional variables 

R1, R2,..., Rn  whose positive values are the propositions in the information set and whose 

negative values are their respective negations.  In figure 1, we represent a probability 

distribution over the propositional variables R1, R2, R3.  We introduce the parameters ai 

for i = 0,..., n: ai is the probability that n – i of the propositional variables will take on 

positive values and i propositional variables will take on negative values. Clearly, 

.  We stipulate that the information is neither inconsistent nor certain, i.e. a∑ = =n
i ia0 1

)1,0(∈

0 

.  Let’s call <a0, ..., an> the weight vector of the information set S(n).  Let REPRi 
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be the propositional variable whose positive value is that there is a report to the effect that 

Ri and whose negative value is that there is no report to the effect that Ri.  

 

[Figure 1 about here] 

 

(ii) When we are informed that some proposition is true, our source may be more or less 

reliable.  Think of an information source as of a medical test that yields certain 

proportions for false positives and for false negatives.  The reliability of an information 

source with respect to the report in question1 can be readily expressed by the likelihood 

ratio  

 

(1)  xi = 
i

i
p
q  for all sources i = 1,..., n, 

 

                                                           
1 This is different from the reliability of an information source tout court.  To see this 

distinction consider the case in which q = 0.  In this case, r will reach its maximal value, 

no matter what the value of p is.  Certainly a source that provides fewer rather than more 

false negatives, as measured by 1 – p, is a more reliable source tout court.  But when q is 

0, the reliability with respect to the report in question is not affected by the value of p > 

0.  No matter what the value of p is, we can be fully confident that what the source says is 

true, since q = 0—i.e. the source never provides any false positives.  When we speak of 

the reliability of the sources, we will mean the reliability of the source with respect to the 

report in question, rather than the reliability of the source tout court.    
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in which qi = P(REPRi|¬Ri) is the chance of a  false positive and 1 – pi = 1 – P(REPRi|Ri) 

is the chance of a false negative.  For an excellent medical test or information source, xi = 

0/1 = 0, whereas for a test or source that is no better than random, qi = pi and so xi = 1.  

Hence we propose ri = 1 – xi as a measure of reliability.  We exclude fully reliable and 

fully unreliable information sources: r ∈  and make the idealization that all sources 

are equally reliable, i.e. r

)1,0(

i = r for all i = 1, ..., n.2   

 

(iii) The coherence of an information set only affects our degree of confidence when the 

witnesses are at least to some degree independent.  To keep things simple, let us assume 

that the witnesses are independent.  Bovens and Olsson (2000) and Earman (2000) 

provide the following analysis of independence.  To say that witnesses are independent is 

to say that each Ri screens off the report REPRi from all Rjs and all REPRjs for i  j, i.e. 

REPR

≠

i is probabilistically independent of all Rjs and from all REPRjs given Ri.  What this 

means in ordinary language is that the witnesses are not influenced by the reports of the 

other witnesses, nor by facts others than the fact that they are reporting on.   

 

3. Information Singletons 

 

Let us first consider an information singleton.  Suppose that we are informed by a less 

than fully reliable source that R.  What determines our degree of confidence that the 

                                                           
2  For a justification of the assumption of equal reliability in determining a measure of 

coherence, see Bovens and Hartmann (2003b: 45-7). 
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information is true?  This is just an application of Bayes Theorem.  For notational 

convenience, let ϕ  stand for 1 –ϕ  for any parameter ϕ .   

 

(2)  P*(R) = P(R|REPR) = 
raa

a

00

0

+
 

 

There are two determinants to the degree of confidence for singletons, viz. r and a0.  a0 

can be thought of as a measure of external coherence, i.e. a measure of how well the new 

item of information fits in with our background beliefs.  Hence for information 

singletons, we can fill in the schema in (S): 

 

(Det1) The greater the reliability of the source, i.e. r, the greater our degree of confidence 

will be that the content of the information set is true, ceteris paribus. 

 

(Det2) The greater the external coherence of the new item of information with our 

background beliefs, i.e a0, the greater our degree of confidence will be that the 

content of the information set is true, ceteris paribus. 

 

The ceteris paribus clause in (Det1) requires that we keep a0 fixed, whereas in (Det2) it 

requires that we keep r fixed.   To show that these claims are true, we calculate the partial 

derivatives with respect to the respective measures of reliability and the measure of 

coherence: 
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(3) (R)*P(R)*P 2
2

0a
r

r
=

∂
∂  

 

(4) (R)*P(R)*P 2

0

0

0 a
a

a
=

∂
∂ . 

 

Since a0, r, P*(R) ∈  (0,1), these partial derivatives are both positive, which confirms 

(Det1) and (Det2).  

 

What seems somewhat trivial at this point, but will become highly relevant for larger 

information sets, is that (Det1) and (Det2) both need to be included in (S).  Suppose that 

we would only include (Det1).  Then the ceteris paribus claim would be vacuously true, 

since no other determinants are in play.  But (Det1) by itself would be false: Certainly we 

could imagine that we would be more confident that a new item of information from a 

less reliable source is true than from a more reliable source, when this item has a much 

higher degree of external coherence, i.e. it fits in so much better with our background 

knowledge.  

 

4. Information Pairs 

 

Let us now turn to information pairs.  Suppose that we are informed by two independent 

and less than fully reliable sources that R1 and R2, respectively.  By applying Bayes 
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Theorem and working out the independences, it can be shown3 that our degree of 

confidence that both R1 and R2 are true after receiving the items of information equals  

  

(5)  P*(R1, R2) := P(R1, R2|REPR1, REPR2) = 2
210

0

raraa

a

++
 with a2 = 1–a0–a1  

 

There are three determinants to the degree of confidence for pairs, viz. r and a0 and the 

degree of internal coherence between R1 and R2.  The internal coherence of S(2) = {R1, 

R2} could be measured as follows: 

 

(6) m(S(2)) = 
10

0

21

21

)RP(R

)R,P(R
aa

a
+

=
∨

 

 

m(S(2)) measures the proportional overlap between R1 and R2 in the probability space. 

(This measure is suggested as a possible measure of coherence in Olsson 2002: 250).  

When we keep a0 fixed, the measure increases as the marginal probabilities of P(R1) and 

P(R2) decrease, and hence when R1 and R2 become the more coherent.  When R1 and R2 

are minimally coherent, i.e. when they are mutually exclusive, then the measure equals 0 

                                                           
3 The proof is straightforward: Apply Bayes Theorem; simplify on grounds of the 

independences in the screening off condition and substitute in the parameters p and q; 

divide numerator and denominator by p2; substitute in the parameters r and ai for i = 0, 1, 

and 2. 
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and when they are maximally coherent, i.e. when they are equivalent, the measure equals 

1.  

 

We can now make a clear statement of the determinants of our degree of confidence for 

information pairs:  

 

(Det1) The greater the reliability of the sources, i.e. r, the greater our degree of 

confidence will be that the content of the information set is true, ceteris paribus. 

 

(Det2) The greater the external coherence of the new items of information, i.e a0, the 

greater our degree of confidence will be that the content of the information set is 

true, ceteris paribus. 

 

(Det3) The greater the internal coherence of the new items of information, i.e m(S(2)), the 

greater our degree of confidence will be that the content of the information set is 

true, ceteris paribus. 

 

These claims are all true: Following the standard procedure, the reader can easily verify 

that the partial derivatives of P*(R1, R2) with respect to the measures of reliability, 

external coherence and internal coherence are always positive.  (The proof follows from a 

general proof that will be provided in section 5.)  

 

[Figure 2 about here.] 
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Furthermore, any proper subset of conditions {(Det1), (Det2), (Det3)} fails to hold, 

because it restricts the reach of the ceteris paribus clause.  The most interesting 

counterexample is a counterexample to the conditions {(Det1), (Det3)}.  Since we do not 

include (Det2), there is no reason to keep a0 fixed.  Consider the following two 

information pairs.  The information pairs S and S’ are characterized by the following 

vectors <a0, a1, a2> = <.20, .70, .10> and <a0’, a1’, a2’> = <.10, .10, .80>.  We plot the 

posterior joint probabilities of S and S’ for different values of r in figure 2.  Note that for 

some values of r, the posterior joint probability of S exceeds the posterior joint 

probability of S’, while for other values of r, the posterior joint probability of S’ exceeds 

the posterior joint probability of S.  Hence, it is false to say that the reliability and the 

internal coherence are the relevant determinants of our degree of confidence.  The ceteris 

paribus clause does not force us to keep the external coherence fixed, i.e. to set a0 = a0’.  

Figure 2 lets us make both a weaker and a stronger objection in response to the claim that 

the set {(Det1), (Det3)} contains the determinants of our degree of confidence.  The 

weaker objection is that it is false to say that the greater the internal coherence, as 

measured by m(S), the greater our degree of confidence, ceteris paribus: m(S’) = 1/2 > 

2/.9 = m(S) and yet, for r  (0, 2/3), the posterior joint probability of S exceeds the 

posterior joint probability of S’.  The stronger objection is that it is false to say that the 

greater the internal coherence, as measured by any probabilistic measure, the greater our 

degree of confidence, ceteris paribus.  A single measure of internal coherence will 

impose an ordering over S and S’, and yet for some values of r, the posterior joint 

∈
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probability of S will exceed the posterior joint probability of S’, while for other values of 

r, the posterior joint probability of S will exceed the posterior joint probability of S’.  

 

5. Generalizing to Information n-Tuples 

 

One might be tempted to think that we have now found the determinants of our degrees 

of confidence, viz. reliability, external and internal coherence. The measure m(S(2)) in (6) 

can be readily generalized to m(S(n)):  

 

(7) m(S(n)) = 
nn

i
i

n

n
a

a

a

a
−

==
∨∨ ∑

=

1)R...P(R

)R,...,P(R 0
1-

0

0

1

1  

Furthermore, it is easy to show4 that the formula in (5) generalizes to 

 

(8) P(R1,..., Rn|REPR1,..., REPRn) = 

∑
=

n

i

i
i ra

a

0

0 . 

We can now rephrase (Det3): 

 

(Det3’) The greater the internal coherence of the new items of information, i.e m(S(n)), the 

greater our degree of confidence will be that the content of the information set is 

true, ceteris paribus. 

 

                                                           
4 See Bovens and Hartmann (2003a: 607-10 and 2003b: 131-3).  
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{(Det1), (Det2), (Det3’)} is then the set of all determinants of our degree of confidence.   

 

[Figure 3 about here.] 

 

This turns out to be a mistake.  To see that this is a mistake, let us assume for a second 

that this were true for information triples.  To show that {(Det1), (Det2), (Det3’)} does not 

hold for information triples, pick any two triples S and S’ with probability distributions 

so that <a0, a1, a2, a3 > = <.05, .3, .1, .55> and <a0’, a1’, a2’, a3’> = <.05, .2, .7, .05>.  

Notice that the external coherence of both information sets is held fixed, i.e. a0 = a0’.  We 

plot the posterior probability of these two information sets for different values of r in 

figure 3.  Again, we can make a weaker objection and a stronger objection. The weaker 

objection is that it is false to say that the greater the internal coherence, as measured by 

m(S), the greater our degree of confidence, ceteris paribus: m(S) = .05/.45 > .05/.95 = 

m(S’) and yet, for r ∈  (.8, 1), the posterior joint probability of S’ exceeds the posterior 

joint probability of S.  The stronger objection is that it is false to say that the greater the 

internal coherence, as measured by any probabilistic measure, the greater our degree of 

confidence, ceteris paribus.  A measure of internal coherence will impose an ordering 

over S and S’, and yet for some values of r, the posterior joint probability of S will 

exceed the posterior joint probability of S’, while for other values of r, the posterior joint 

probability of S will exceed the posterior joint probability of S’. 

 

So what can be done for information triples?  Note that for information singletons, there 

is a unary vector of coherence determinants of the posterior probability, viz. <a0>; for 
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information pairs there is a binary vector of coherence determinants, viz. <a0/(a0+a1), a0>.  

We can make the following generalization.  The vector of coherence determinants for 

information n-tuples contains the following n components: the ratio of the joint 

probability a0 over the probability that at least i of the n propositions are true for i = n – 

1, this same ratio for i = n – 2, ..., this same ratio for i = 0.  For singletons, this is the 

vector <a0>.  For pairs this is the vector <a0/(a0+a1), a0>.  For triples, this is the vector 

<a0/(a0+a1), a0/(a0+a1+a2), a0>.  For n-tuples, this is the vector <a0/(a0+a1),..., 

a0/(a0+a1+...+an-1), a0>.  This can be represented by means of the following shorthand.  

Let  

 

(9) ck = 

∑
=

k

i
ia

a

0

0    for k = 1,..., n. 

 

We can define a vector that contains the internal coherence determinants, 

 

(10) intcr  = <c1, ..., cn-1>, 

 

and an encompassing vector that contains both the internal coherence determinants and 

the external coherence determinant c  = cext
n = a0: 

 

(11)  = <c cr 1, ..., cn> = < c > extint c ,r
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Does this generalization for n-tuples hold?  We will follow the standard procedure and 

show that the partial derivatives of P*(R1, ..., Rn) with respect to r, and all cks (for k = 

1,..., n) are all positive.  First we present a representation of P*(R1, ..., Rn) in (12) that is 

more convenient to calculate the partial derivatives (proof omitted): 

 

(12) P*(R1,..., Rn) = 

∑
=

+
1-

0

1
n

i n

n

i

i

c
r

c
rr

   

 

We calculate the partial derivatives:  

 

(13) 
r

n
∂

∂ )R,...,(R*P 1  = )R,...,(R*P11
1

21-

1 1
n

i
n

i ii
r

cc
i∑

= −








−   

 

(14) 
nc∂

∂ )R,...,R(*P n1  = )R,...,(R*P 1
2

2 n
n

n

c
r   

 

(15) 
kc∂

∂ )R,...,R(*P n1  = )R,...,(R*P 1
2

2 n
k

k

c
rr  for k = 1,..., n – 1 

 

Since  r, P*(R1, ..., Rn)  ∈  (0,1) and ci > 0 for i = 1, ..., n, these expressions are all greater 

than 0.  This confirms that the following are the determinants for our degree of 

confidence that the content of an information n-tuple is true are (Det1), (Det2) and for all i 

= 1, ..., n – 1, 
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(Det2+i) The greater the component of the internal coherence of the new items of 

information that is measured by ci, the greater our degree of confidence will be 

that the content of the information set is true, ceteris paribus. 

 

Note that ck = P(R1,...,Rn|at least n – k propositions true). Note further that an expression 

similar to eq. (15) holds if ck is replaced by tk = ck /a0. tk is the ratio measure which is a 

common way to measure how well the information set {R1,...,Rn} is supported by the 

evidence that at least n – k propositions are true. Dietrich and Moretti (forthcoming) have 

already pointed out that there is an interesting relation between coherence and 

confirmation. We plan to elaborate on this in future work in the context of our criterion 

for a coherence quasi-ordering (Bovens and Hartmann: 2003a, 2003b). 

 

6. Separability 

 

So where did things go wrong in the attempt to measure coherence?  There seems to be a 

focus on finding a single measure of coherence.  This is a mistake.  First, we need to have 

both external and internal measures of coherence, already when the information sets that 

are being compared are just pairs.  One might argue that an external coherence measure is 

really not a coherence measure but rather a measure of how plausible or expected the new 

information is.5  But this is just a verbal dispute and it is certainly not entirely implausible 

                                                           
5 See Bovens and Hartmann (2003a: 605 and 2003b: 10).  
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to say that a0 is a coherence measure, because it measures how well the new information 

coheres with our background beliefs.  What is important is that we can characterize a0, 

which we have dubbed “a measure of external coherence”, as the last entry in a vector of 

measures that are governed by a common mathematical structure.  Second, as the 

information set grows, we need multiple complementary internal measures of coherence.  

The posterior probability of the information set of size n is determined by a reliability 

measure and a vector of n coherence determinants.   

 

Borrowing from preference theory, there is a very concise way of spelling out the point 

that we have made in this paper, viz. the probabilistic determinants of our degrees of 

confidence are weakly, but not strongly separable.  What does this mean?6 Let us 

construct a simple illustration in preference theory.  Suppose that I have two baskets with 

wine, vodka and cheese.  When my preferences are weakly separable, then the following 

holds:   

 

(Weak Separability) Take any two pairs of baskets {B1, B2} and {B1’, B2’}.  For all 

commodities i, the following holds true.  Let B1 and B1’ contain the same amount 

of a particular commodity i and similarly for B2 and B2’.  Furthermore, let B1 and 

B2 contain the same amounts of all other commodities j ≠  i and similarly for B1’ 

and B2’. Then B1  Bf 2 iff B1’  Bf 2’. 

 

When my preferences are strongly separable, then the following holds true: 

                                                           
6 For an introduction to separability, see Broome (1991: 60-89). 
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(Strong Separability) Take any two pairs of baskets {B1, B2} and {B1’, B2’}.  Let C be 

the set of types of commodities.  For all proper subsets of types of commodities c 

 C, the following holds true.  Let B⊂ 1 and B1’ contain the same amounts of all 

types of commodities in a particular c and similarly for B2 and B2’.  Furthermore, 

let B1 and B2 contain the same amounts of all types of commodities in the 

complement of c and similarly for B1’ and B2’.  Then B1   Bf 2 iff B1’ f  B2’. 

 

How is it that my preferences over commodities could be weakly but not strongly 

separable?  To be weakly separable it is sufficient that if one basket contains more of 

some commodity than another basket, ceteris paribus (i.e. keeping the amounts of all 

other commodities fixed), then I prefer the former to the latter.  If there is no distinction 

between the amounts of any of the other items, then a basket with more wine is better 

than a basket with less wine.  And similarly for vodka and for cheese.  But strong 

separability imposes a stronger requirement.  Let c be the commodities wine and vodka.  

Let B1 and B1’ contain the same amounts of wine and vodka, viz. lots of wine and little 

vodka, and let B2 and B2’ contain the same amounts of wine and vodka, viz. lots of vodka 

and little wine.  Furthermore, let B1 and B2 contain the same amounts of cheese, viz. lots 

and let B1’ and B2’ contain the same amounts of cheese, viz. little.  Considering that wine 

and cheese mix better than wine and vodka, one might expect that B1  Bf 2 and B2’  

B

f

1’.  This is a violation of strong separability.   
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When our preferences are weakly separable, we can construct utility functions ui over 

each commodity so that our preferences over baskets can be expressed by a function U of 

the utility functions over each commodity.  In addition, Debreu (1960) (as cited in 

Broome, 1991: 70) has shown that there exist functions ui so that U is an additive 

function if and only if our preferences are also strongly separable.  So if our preferences 

are strongly separable, then we could construct a preference ordering over the baskets 

only with respect to their liquid content - i.e. their content of wine and vodka: We could 

simply take the sum of the additive utility values for wine and vodka to reflect such an 

ordering.  But this is not possible when our preferences are only weakly separable: There 

will be some pairs of baskets which we cannot order with respect to their liquid content, 

since the direction of the ordering is contingent on the amount of cheese.  

 

Let us now turn back to the probabilistic determinants of our degrees of confidence.  

Certainly these determinants are weakly separable: The partial derivatives show that if 

one information set scores higher on some determinant than another information set, 

ceteris paribus—i.e. keeping all the other determinants fixed—then the posterior 

probability of the former will be higher than of the latter.  What our counter examples 

show is that strong separability between these measures does not hold.  To see this, 

consider the pairs of information sets S and S’ with their associated weight vectors 

<a0,...,an> and <a0’, ..., an’> in our counter examples.  It was not possible to order these 

vectors so that P*(R1,..., Rn) is greater than P*(R1’,..., Rn’) (or vice versa) for all values of 

r.  Hence, it is impossible to order the coherence vectors <a0/(a0+a1),..., 

a0/(a0+a1+...+an-1), a0> and <a0’/(a0’+ a1’),..., a0’/(a0’+a1’+...+an-1’), a0’> so that 
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P*(R1,..., Rn) is greater than P*(R1’,..., Rn’) (or vice versa) for all values of r.  This is a 

violation of strong separability.   

 

Let us return to our example from economics now to see what the lack of strong 

separability means for our assessment of coherence.  If my preferences over commodities 

are not strongly separable, then there are certain pairs of baskets that I cannot order 

according to their liquid content, ceteris paribus—i.e. under the assumption that their 

cheese contents are held fixed: It depends on the amount of cheese in these baskets 

whether I will prefer one basket over the other.  We have shown that the determinants of 

my degree of confidence in the content of an information set are not strongly separable.  

If coherence is the property of an information set that increases my degree of confidence 

in the content of the information set, ceteris paribus, then the following holds. There are 

certain pairs of information sets that I cannot order according to their coherence.  Some 

pairs are such that my degree of confidence in one information set will be greater for 

some degrees of reliability, while my degree of confidence in the other information set 

will be greater for other degrees of reliability.   

 

On the other hand, there are certain pairs of baskets which I can order according to their 

liquid content: I don’t need to see how much cheese there is to know that I prefer the 

basket with lots of wine and vodka to the basket with little wine and vodka, as long as 

both baskets contain the same amounts of cheese.  Similarly, there are certain pairs of 

information sets S and S’ that I can order according to which one is more coherent: I 

don’t need to know how reliable the informers are to know that my degree of confidence 
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in the content of S will exceed my degree of confidence in the content of S’, as long as 

they are equally reliable.  Hence, just like we can construct a quasi-ordering over the 

baskets according to their liquid content, we can construct a quasi-ordering over the 

information sets according to their coherence.  Under what conditions we can and cannot 

impose an ordering on a pair of information sets is an interesting question, but beyond the 

scope of this paper.7, 8 

                                                           
7 Note that our procedure is different than in Bovens and Hartmann (2003a and 2003b) 

and that it will not yield the same coherence quasi-ordering.  The reason is that we 

conceive of coherence here as covering both external and internal coherence, whereas, in 

Bovens and Hartmann (2003a: 605-6 and 2003b: 10-1), we distinguish between the 

expectedness of the information—which corresponds to the external coherence—and the 

coherence—which corresponds to the internal coherence.  The term coherence is 

ambiguous in ordinary language.  Suppose that one is told that AIDS is caused by 

malnutrition and that AIDS is due to a vitamin-B deficiency.  Is this information 

coherent?  Well, yes and no.  Yes, because one might say that, though the information is 

implausible, given my background knowledge about AIDS, this does not stand in the way 

of proclaiming that the information is coherent.  This is the notion of coherence that is 

analyzed in (2003a, 2003b).  No, because one might say that this information coheres 

very poorly with one’s background knowledge.  Granted, the information items cohere 

well between themselves, but this internal coherence is not sufficient to make us proclaim 

that the information is coherent.  This is the notion that is analyzed in this paper.   
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8 Our research was supported by the Alexander von Humboldt Foundation through a 

Sofja Kovalevskaja Award, the Federal Ministry of Education and Research, and the 

Program for Investment in the Future (ZIP) of the German Government.   

 20



 
 

  .10 

R1 R2 

R3 

.15  .10 .15 

 .05 

 .15 .20 

 .10 

a0=.05 
 
a1=3 ×10=.30 
 
a2=3 ×15=.45 
 
a3=.20 

 

Fig. 1  A diagram of the joint probability distribution over the variables R1, R2, and R3
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Fig. 2  The posterior probability for information pairs with vectors <a0, a1, a2> = 
<.20, .70, .10> and <a0’, a1’, a2’> = <.10, .10, .80> as a function of the reliability 
parameter r 
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Fig. 3  The posterior probability for information triples with weight vectors <a0, a1, a2,
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