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Abstract

We develop a probabilistic criterion for belief expansion that is
sensitive to the degree of contextual fit of the new information to our
belief set as well as to the reliability of our information source. We
contrast our approach with the success postulate in AGM-style belief
revision and show how the idealizations in our approach can be relaxed
by invoking Bayesian-Network models.

∗A slightly revised version of this article appeared in V. Akman et al. (eds.), Modeling
and Using Context, Berlin: Springer 2001, 421–424.
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1 A Parable about Belief Expansion

Suppose that we have acquired various items of information from various

sources and that our degree of confidence in the content of the information set

is sufficiently high to believe the information. Now a new item of information

is being presented by a new information source. Are we justified to add this

new item of information to what we already believe? Consider the following

parable:

“I go to a lecture about wildlife in Greenland which was supposed to be

delivered by an expert in the field. When I arrive, I notice that the expert has

excused himself and that the biology department has sent a newcomer to fill

in for him. I have no beliefs about wildlife in Greenland, but I do have some

beliefs about Greenland’s climate and about the kinds of climate conditions

that various types of wildlife favor. Suppose that our newcomer proclaims

that large colonies of elk roam in a particular valley on the southern tip of

Greenland. Then I would certainly be willing to accept this item of informa-

tion. But suppose that he proclaims that large colonies of armadillos roam

in the same valley. Then I would not be willing to accept this item of infor-

mation. Why do I accept the former but not the latter item of information?

Let us suppose that neither item of information is logically inconsistent with

what I already believe. Clearly, the former item of information is not incon-

sistent. But also the latter item is not: after all, there may be small pockets

of Greenland with special climatological conditions and some Texan sailors

may have set loose a pair of armadillos as a practical joke. But whereas

the former item of information is quite plausible given my previous beliefs,

and the latter item of information is not. And this is what makes for the

difference. Now suppose that our newcomer proclaims that large colonies

of wild boars roam this valley in Greenland. I am not that sure anymore.

Given everything I believe, I find wild boars in Greenland more plausible

than armadillos in Greenland, but certainly less plausible than elk in Green-

land. Had our expert presented the lecture and provided precisely the same

information, then I would have been willing to adopt the belief that there

are wild boars in Greenland, but, with our newcomer delivering the lecture, I

am not willing to do so. It is not that I would believe anything out of the ex-
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pert’s mouth: also he could not have convinced me that there are armadillos

in Greenland. But when it comes to wild boars, the difference between the

expert’s and the newcomer’s credentials simply makes for the difference.”

What we learn from this story is that the question of belief expansion

has something to do with the reliability of the information source as well

as with my background beliefs, i.e. the context of beliefs in which this new

information is supposed to be inserted. Newly presented items of information

have a certain degree of contextual fit: they are more or less plausible given

our background beliefs, they fit in with our background beliefs to a greater or

lesser degree. The more reliable the information source is, the less contextual

fit is required for me to be justified to add the belief to my belief set. The

more contextual fit the new item of information has, the less reliable the

information source needs to be given my context of beliefs, for me to be

justified to add the belief to my belief set. The challenge is: can a precise

account of this relationship be provided?

The problem is not just relevant to epistemology, but also to philosophy of

science. When a scientific community is presented with new data, this does

not occur within a vacuum. As is well-known from Duhem [4] and Quine

[10], these new data are being assessed on the background of a context of

beliefs. Whether these new data will be accepted or not is a question of

the reliability of the sources (e.g. the experimental instruments) as well as

of their contextual fit. Data from equally reliable sources may be accepted

within one scientific community, but not in another, or in one community at

some point in time, but not at another point in time, due to a difference in

their degree of contextual fit. Similarly of course, data with the same degree

of contextual fit may be accepted or not due to a difference in the degree

of reliability of its sources. Also here an account of the precise relationship

between contextual fit and the reliability of the sources is wanting.

2 The Success Postulate

The success postulate is one of the central dogmas of AGM-style belief re-

vision: if new information comes in, then it must be incorporated into our

belief set. In our parable the success postulate was clearly violated. So what
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are we to make of this postulate? Certainly we could defend the postulate

by pointing out that it is an idealization. In AGM-style belief revision we

assume that our information sources are fully reliable and hence when new

information comes in, then we are forced to incorporate it in our belief set.

It is as if our information sources are of a god-like character: When God

told Abraham that Sarah would bear a child, it did not seem to fit in well

with what Abraham knew about Sarah’s age. But since it was God who was

speaking, Abraham had no choice but to incorporate it in his belief set. Sim-

ilarly, if God told us that there are armadillos in Greenland, we would have

no choice but to incorporate this information in our belief set. This is fair

enough as an idealization. But notice that the challenge in AGM-style belief

revision is how we should revise our beliefs once an inconsistency occurs in

our belief set. How is it that an inconsistency can enter into our belief set

when our information comes from fully reliable information sources? What

remains is to phrase the idealization as follows: We assume that, although

our information sources in the past may not have been fully reliable, we can

rest assured that the new information that we are receiving comes from a

fully reliable source. This explains why any inconsistency should be solved

in favor of the incoming new information.

This idealization strikes us as rather contrived, but that is a matter of

taste. More importantly, it is hard to see how a theory of belief revision

that accepts the success postulate can be a truly dynamic theory that tells

us how to revise our beliefs over time: Today, I must consider a new item of

information as if it originated from a fully reliable information source and add

it to my information set at any cost; But tomorrow, when I will be presented

with a new item of information, then today’s item of information will no

longer be sacrosanct: any inconsistency between today’s and tomorrow’s

item of information will need to be resolved in favor of tomorrow’s item of

information. Hence, tomorrow we will need to bracket the assumption that

today’s item of information came from a fully reliable source. But this is

inconsistent: either the information came from a fully reliable source or it

did not, and we cannot have it both ways. The inconsistency can be avoided

if we take belief revision to model just one-shot belief revisions in the face of

a single new item of information. But then it cannot be presented as a model
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of how to revise our beliefs in the face of new items of information coming

in over time: it would fail to be a truly dynamic theory.

The success postulate has been questioned within the belief revision

litarature itself. According to Hansson [6], we may not be willing to ac-

cept the new information because “it may be less reliable . . . than conflicting

old information.” Makinson [7] writes that “we may not want to give top

priority to new information (. . . ) we may wish to weigh it against old mate-

rial, and if it is really just too far-fetched or incredible, we may not wish to

accept it.” Our approach is similarly motivated. However, whereas the pro-

gram of non-prioritized belief revision operates within a logicist framework,

we construct a probabilistic model. The cost of this approach is that it is

informationally more demanding. The benefit is that it is empirically more

adequate, because it is sensitive to degrees of reliability and contextual fit

and to their interplay in belief acceptance. In non-prioritized belief revision,

the reliability of the sources does not enter into the model itself and the lack

of contextual fit of a new item of information with our belief set is under-

stood in terms of logical inconsistency, which is only a limiting case in our

model. Our model has both theoretical and practical virtues: By introducing

some idealizations of our own, we reach some elegant results; At the same

time, these idealizations can be readily relaxed by implementing a Bayesian

Network that is responsive to the particulars of the situation. To introduce

our approach, we address the simple question of belief expansion. We believe

that our model also carries a promise to handle belief revision in general, but

this project is beyond the scope of this paper.

3 Probabilistic Belief Expansion

Under what conditions are we justified to incorporate a new item of infor-

mation in our belief set? We start with a number of idealizations about the

origin of our background information - i.e. the content of my present belief

set - and of our new information. The information sources are relatively

unreliable, one being no more reliable than another, and independent (cf.

[3]).

We stipulate that the sources are equally unreliable to simplify our model.
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But why relatively unreliable? If we know that the sources are fully reliable,

then what is there to discuss? Since a fully reliable source is bound to speak

the truth, we have no choice but to accept and retain all the information that

was provided. If we know that the sources are no better than randomizers,

say, they flip coins to determine whether they will inform you that some

propositions or their negations are the case, then we might as well ignore

these sources altogether. So we stipulate that our new information sources

are all relatively unreliable: more reliable than randomizers, but short of

being fully reliable. The independence of the source is another simplification.

Independent sources are sources that gather information by and only by

observing the facts that they report on: they may not always provide a

correct assessment of these facts, but they are not influenced by the reports

of other sources, nor by the facts that other sources report on.

Let us construct a model. Suppose that there are n independent and rela-

tively unreliable background sources and each source i informs us of a propo-

sition Ri, for i = 1, . . . , n, so that the belief set is {R1, . . . , Rn}. Furthermore,

there is one independent and relatively unreliable new source informing us of

a proposition Rn+1, so that the expanded belief set would be {R1, . . . , Rn+1}.
For each proposition Ri (in roman script) in the information set, let us define

a propositional variable Ri (in italic script) which can take on two values, viz.

Ri and R̄i (i.e. not-Ri), fori = 1, . . . , n + 1. Let REPRi be a propositional

variable which can take on two values, viz. REPRi, i.e. after consultation

with the proper source, there is a report to the effect that Ri is the case, and

REPRi, i.e. after consultation with the proper source, there is no report to

the effect that Ri is the case. We construct a joint probability distribution

P over R1, . . . , Rn+1, REPR1, . . . , REPRn+1, satisfying the constraint that

the sources are independent and relatively unreliable.

We model our earlier account of the independence of the sources by stip-

ulating that P respects the following conditional independences:

I({REPRi},M〉|{Ri}) (1)

with

M〉 = {R1, REPR1, . . . , Ri−1, REPRi−1, Ri+1, REPRi+1, . . . , Rn+1, REPRn+1}
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for i = 1, . . . , n, or, in words, REPRi is probabilistically independent

of R1, REPR1, . . . , Ri−1, REPRi−1, Ri+1, REPRi+1, . . . , Rn+1, REPRn+1,

given Ri, for i = 1, . . . , n + 1. What this means is that the probability

that we will receive a report that Ri given that Ri is the case (or is not the

case), is not affected by any additional information about whether any other

propositions are the case or whether there is a report to the effect that any

other proposition is the case.

We make the simplifying assumption that our relatively unreliable

sources are all equally reliable. We specify the following two parameters:

P (REPRi|Ri) = p and P (REPRi|R̄i) = q for i = 1, . . . , n + 1. If the in-

formation sources would be truth-tellers, then q = 0, while if they would

be randomizers, then p = q. Since relatively unreliable information sources

are more reliable than randomizers, but less reliable than truth-tellers, we

impose the following constraint on P :

p > q > 0 (2)

Following a tradition in epistemology that goes back to John Locke, we

let belief correspond to a sufficiently high degree of confidence [5]. The degree

of confidence in the background information before the new report has come

in is the posterior joint probability of this information after all the relevant

reports have come in:

P ∗(R1, . . . , Rn) = P (R1, . . . , Rn|REPR1, . . . , REPRn). (3)

Since it is assumed that we believe this information, we let P ∗(R1, . . . , Rn)

exceed some threshold value t for belief:

P ∗(R1, . . . , Rn) ≥ t. (4)

The degree of confidence in the background information conjoint with the

new information is the posterior joint probability of this information after

the new report has come in as well:

P ∗∗(R1, . . . , Rn+1) = P (R1, . . . , Rn+1|REPR1, . . . , REPRn+1). (5)
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We are justified to expand our belief set from {R1, . . . , Rn} to {R1, . . . , Rn+1}
just in case

P ∗∗(R1, . . . , Rn+1) ≥ t. (6)

It can be shown1 that, for any set of propositions R1, . . . , Rm, given the

constraints on P in (1) and (2),

P ∗(R1, . . . , Rm) =
a0∑m

0 aixi
, (7)

in which the likelihood ratio x := q/p and ai is the sum of the joint prob-

abilities of all combinations of values of the variables R1,..., Rn that have

i negative values and n − i positive values. For example, for an informa-

tion triple containing the propositions R1, R2, and R3, a2 = P (R̄1, R̄2, R3) +

P (R̄1, R2, R̄3)+P (R1, R̄2, R̄3). Figure 1 contains the probability space which

represents a joint probability distribution over the propositional variables

R1 and R2 and the corresponding values for ai, for i = 0 . . . , 2. Note that∑2
0 ai = 1. Suppose that the sources are twenty times as likely to report that

Ri is the case, when it is the case, as then, when it is not the case, so that

x = 1/20. Then our degree of confidence after we have received two reports

is:

P ∗(R1, R2) = P (R1, R2|REPR1, REPR2)

=
.15

.15 · .050 + .5 · .051 + .35 · .052
= .85

Now let us suppose that we receive a third item of information (i) that has

a high degree of contextual fit (figure 2) and (ii) that has a low degree of

contextual fit (figure 3), respectively. In case (i),

P ′∗(R1, R2, R3) = P ′(R1, R2, R3|REPR1, REPR2, REPR3)

=
.15

.15 · .050 + 0 · .051 + .5 · .052 + .35 · .053
= .99

1The proof is straightforward: Apply Bayes Theorem to the right-hand side of (3); sim-
plify on grounds of the conditional independences in (1) and substitute in the parameters
p and q as defined in (2); the resulting expression will be well-defined, since, by (2), p > 0
and q > 0; divide numerator and denominator by pn; substitute in the parameters x and
ai for i = 1, . . . , n as defined underneath.
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whereas in case (ii),

P ′′∗(R1, R2, R3) = P ′′(R1, R2, R3|REPR1, REPR2, REPR3)

= =
.05

.05 · .050 + .3 · .051 + .45 · .052 + .2 · .053
= .76

Suppose that we set our threshold for acceptance at t = .80. Then we

will have a license to expand our belief set given the likelihood ratio x that

characterizes the reliability of our sources in case (i), but not in case (ii).

However, we increase the reliability of the sources, i.e. if we lower the value

of x, then we can boost P ′′∗(R1, R2, R3) above the threshold level, and will

have a license to expand our belief set in both cases.2

4 Bayesian Networks

The theory of Bayesian Networks is a theory of probabilistic reasoning in

artificial intelligence (e.g. [8]). A Bayesian Network allows for an economical

representation of a joint probability distribution over a set of variables. It

organizes the variables into a Directed Acyclical Graph (DAG) which encodes

(conditional) independences. A DAG is a set of nodes and a set of arrows

between these nodes under the constraint that one does not run into a cycle

by following the direction of the nodes. Each node represents a variable. The

node at the tail of an arrow is the parent node of the node at the head and

and the node at the head is the child node of the node at the tail. Root nodes

are unparented nodes and descendant nodes are child nodes, or child nodes of

child nodes etc. There is a certain heuristic that governs the construction of

the graph: there is an arrow between two nodes iff the variable in the parent

node has a direct influence on the variable in the child node. But this is only

a heuristic: the arrows in the graph have a precise probabilistic meaning,

which is expressed by the Parental Markov Condition:

2In this paper we assess the relation of contextual fit that holds between a proposition
and the belief set of a doxastic agent. In [1, 2], we develop a complementary line: we
define a probabilistic measure that assesses the property of the internal coherence of a set
of propositions.
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(PMC) Each variable in a child node in the network is inde-

pendent of all the variables in its non-descendant nodes in the

network, conditional on the variables in its parent nodes. ([9], p.

19)

A Bayesian Network contains a probability distribution for the variable

in each root node and a probability distribution for the variable in each child

node, conditional on any combination of values of the variables in their parent

nodes. It is a central theorem in the theory of Bayesian Networks that this

information is sufficient to (re)construct the joint probability distribution

over all the variables in the network. Considering that the joint probabil-

ity distributions for n binary variable contains 2n entries, it is easy to see

that a Bayesian Network is an economical representation of the joint proba-

bility distribution. When implemented on a computer, a Bayesian Network

performs complex probabilistic calculations with one key stroke.

Let us first focus on the fact-variables R1, . . . , Rn+1 in figure 4. We rep-

resent the joint probability distribution over the fact-variables by means of

the gray subgraph so that this DAG respects the parental Markov condition

and we add a probability distribution for the variables in the root nodes and

a conditional probability distribution for the variables in the child nodes.

The nodes in dotted print represent the report variables

REPR1, . . . , REPRn+1. Each report is directly influenced by and only by the

fact variables that it reports on: we draw an arrow from each fact-variable Ri

to its corresponding report-variable REPRi. Considering the conditional in-

dependences in (1), these arrows respect the parental Markov condition, since

each child variable REPRi is indeed independent of all its non-descendants

R1, REPR1, . . . , Ri−1, REPRi−1, Ri+1, REPRi+1, . . . , Rn+1, REPRn+1, con-

ditional on the parent variable Ri. We introduce the following conditional

probability distribution for the variables REPRi in the dotted child nodes:

P (REPRi|Ri) = p and P (REPRi|R̄i) = q.

Finally, we add the white child node with the variable R1& . . . &Rn which

is parented by the nodes with the variables R1, . . . , Rn. The conditional

probability of R1& . . . &Rn equals 1 given that R1, . . ., and Rn are the case

and equals 0 otherwise (e.g. given that and ). The white child node with

the variable R1& . . . &Rn is parented by the nodes R1& . . . &Rn and Rn+1.
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The conditional probability of R1& . . . &Rn equals 1 given that R1, . . ., and

Rn and Rn+1 are the case and equals 0 otherwise.

This simple Bayesian Network permits us to read off the posterior prob-

ability of R1& . . . &Rn: we instantiate REPR1, . . . , REPRn, let this evi-

dence propagate through the network and read off the posterior probability

of R1& . . . &Rn. Subsequently, we instantiate REPRn+1, let the evidence

propagate through the network and read off the posterior probability of

R1& . . . &Rn+1. We assume that the posterior probability of R1& . . . &Rn

exceeds the threshold value, since R1, . . . , Rn are contained in our belief set.

We may expand our belief set with Rn+1 just in case the posterior probability

of R1& . . . &Rn+1 exceeds the threshold value as well.

The advantage of bringing in Bayesian Networks is that it readily permits

us to relax the idealizations. Suppose that there are more and less reliable

sources in play: it is easy to adjust the P (REPRi|Ri) and P (REPRi|R̄i) for

particular values of i. Suppose that two or more propositions came from

the same source: we can let one source-variable parent more than one fact-

variable. Suppose that the sources are not fully independent: If a source

is influenced in its report by other facts than the one that it is meant to

report on, we can add arrows from these other fact variables to the source

variable in question and define the appropriate conditional probabilities; If a

source is influenced by what other sources have to report, we can add arrows

from these source variables to the source variables in question and define the

appropriate conditional probabilities.

5 Conclusion

In AGM-style belief revision, the success postulate states that new infor-

mation must be integrated in our belief set. This postulate is at best an

extremely strong idealization. In reality, the following is the case: whether

we integrate new information in our belief set is typically determined by the

degree of contextual fit of this new information, i.e. by how plausible this

new item of information, is given what we already believe, and by our as-

sessment of the degree of reliability of the information sources. Similarly,

in philosophy of science, the question whether new data are accepted or not
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within a scientific community is a function of its contextual fit as well as

of the reliability of the sources for these data. We construct a probabilistic

model for belief expansion that incorporates both types of considerations.

Although our model is also subject to certain idealizations, we show how

these idealizations can readily be relaxed by invoking Bayesian Networks.
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