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Abstract

Rodney Brooks’ call for ‘new mathematics’ to revitalize the
disciplines of artificial intelligence and artificial life can be
answered by adaptation of what Adams has called ‘the infor-
mational turn in philosophy’ and by the novel perspectives
that program gives into empirical studies of animal cogni-
tion and consciousness. Going backward from the necessary
conditions communication theory imposes on cognition and
consciousness to sufficient conditions for machine design is,
however, an extraordinarily difficult engineering task. The
most likely use of the first generations of conscious machines
will be to model the various forms of psychopathology, since
we have little or no understanding of how consciousness is
stabilized in humans or other animals.
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INTRODUCTION

Recently MIT’s robotics guru Rodney Brooks raised the
question of whether some ‘new mathematics’ might be neces-
sary for further advances in artificial intelligence and artificial
life (Brooks, 2001). Half a century of treating ‘the brain’ as a
computer, while producing efficient chess-playing automata,
missile guidance systems, search engines, and interesting com-
puter games, has failed to make much progress toward creat-
ing devices which can do the functional equivalent of riding a
bicycle in heavy traffic.

Brooks put it thus (Brooks, 2001):

“The disciplines of artificial intelligence and ar-
tificial life build computational systems inspired by
various aspects of life. Despite the fact that liv-
ing systems are composed only of non-living atoms
there seem to be limits in the current levels of un-
derstanding within these disciplines in what is neces-
sary to bridge the gap between non-living and living
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matter... We may simply not be seeing some fun-
damental mathematical description of what is go-
ing on in living systems and so be leaving it out of
our AI and Alife models... there might be some or-
ganizing principle, some mathematical notion that
we need in order to understand how they work...
What form might this mathematical notion take? It
need not be disruptive of our current view of living
things, but could be as non-threatening as the notion
of computation, just different from anything anyone
has currently thought of. Perhaps other mathemat-
ical principles or notions, necessary to build good
explanations of the details of evolution, cognition,
consciousness or learning, will be discovered or in-
vented and let those subfields of AI and Alife flower.
Or perhaps there will be just one mathematical no-
tion, one ‘new mathematics’ idea, that will unify all
these fields, revolutionize many aspects of research
involving living systems, and enable rapid progress
in AI and Alife. That would be surprising, delightful
and exciting. And of course whether or not this will
happen is totally unpredictable.”

If one seeks “...mathematical principles or notions neces-
sary to build good explanations of the details of evolution,
cognition, consciousness or learning...” then the foundation
for most of what Brooks seeks to do has been in the literature
for some time, what Adams (2003) calls ‘the informational
turn in philosophy’:

“It is not uncommon to think that information
is a commodity generated by things with minds.
Let’s say that a naturalized account puts matters the
other way around, viz. It says that minds are things
that come into being by purely natural causal means
of exploiting the information in their environments.
This is the approach of [the philosopher] Dretske as
he tried consciously to unite the cognitive sciences
around the well-understood mathematical theory of
communication...”
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Dretske himself (1994) wrote, based on work published in
the early 1980’s,

“Communication theory can be interpreted as
telling one something important about the condi-
tions that are needed for the transmission of infor-
mation as ordinarily understood, about what it takes
for the transmission of semantic information. This
has tempted people... to exploit [information the-
ory] in semantic and cognitive studies, and thus in
the philosophy of mind.

...Unless there is a statistically reliable channel of
communication between [a source and a receiver]...
no signal can carry semantic information... [thus]
the channel over which the [semantic] signal arrives
[must satisfy] the appropriate statistical constraints
of communication theory.”

The asymptotic limit theorems of information theory im-
pose necessary conditions on high level mental functions, in-
cluding cognition and consciousness. In the same sense that
the Central Limit Theorem permits construction of statisti-
cal models of real data that often can help cleave the Gor-
dian Knot of scientific inference, so too the Shannon Coding,
Shannon-McMillan Source Coding and the Rate Distortion
Theorems allow development of necessary condition ‘regres-
sion models’ applicable to a great spectrum of experimental
and observational data on high level mental functions. In-
version of such experimentally-derived models – characteriz-
ing them as defining ‘sufficient conditions’ – would appear
to permit manufacture of a vast array of strikingly capable
machines.

We focus on a particular case history, an application of
Dretske’s method to the global neuronal workspace model of
consciousness developed by Bernard Baars in the early 1980’s,
inspired by the blackboard computing model of Alan Newell.

One wishes to think, taking Brooks’ perspective, that the
mathematical model we produce from Baars’ theory by using
Dretske’s approach can be inverted, creating, in the sense of
the Nix/Vose Markov chain model of evolutionary computing
(Nix and Vose, 1992), a mathematical structure that could
serve as a foundation for machine design.

Matters are, however, profoundly complicated by the logi-
cal problem that necessary conditions need not be sufficient
conditions.

THE FORMAL THEORY

The Global Workspace consciousness model Bernard
Baars’ Global Workspace Theory (Baars, 1988, 2005) is
rapidly becoming the de facto standard model of conscious-
ness (e.g. Dehaene and Naccache, 2001; Dehaene and
Changeaux, 2005). The central ideas are as follows (Baars
and Franklin, 2003):

(1) The brain can be viewed as a collection of distributed
specialized networks (processors).

(2) Consciousness is associated with a global workspace in
the brain – a fleeting memory capacity whose focal contents

are widely distributed (broadcast) to many unconscious spe-
cialized networks.

(3) Conversely, a global workspace can also serve to inte-
grate many competing and cooperating input networks.

(4) Some unconscious networks, called contexts, shape con-
scious contents, for example unconscious parietal maps mod-
ulate visual feature cells that underlie the perception of color
in the ventral stream.

(5) Such contexts work together jointly to constrain con-
scious events.

(6) Motives and emotions can be viewed as goal contexts.
(7) Executive functions work as hierarchies of goal contexts.
Although this basic approach has been the focus of work

by many researchers for two decades, consciousness studies
has only recently, in the context of a deluge of empirical re-
sults from brain imaging experiments, begun digesting the
perspective and preparing to move on.

Currently popular agent-based and artificial neural net-
work (ANN) treatments of cognition, consciousness and other
higher order mental functions, to take Krebs’ (2005) view, are
little more than sufficiency arguments, in the same sense that
a Fourier series expansion can be empirically fitted to nearly
any function over a fixed interval without providing real un-
derstanding of the underlying structure. Necessary condi-
tions, as Dretske argues (Dretske, 1981, 1988, 1993, 1994),
give considerably more insight. Perhaps the most cogent ex-
ample is the difference between the Ptolemaic and Newtonian
models of the solar system: one need not always expand in
epicycles, but can seek the central motion. Dretske’s perspec-
tive provides such centrality.

Wallace (2005a, b) has, in fact, addressed Baars’ theme
from Dretske’s viewpoint, examining the necessary conditions
which the asymptotic limit theorems of information theory
impose on the Global Workspace. A central outcome of this
work has been the incorporation, in a natural manner, of con-
straints on individual consciousness, i.e. what Baars calls
contexts. Using information theory methods, extended by
an obvious homology between information source uncertainty
and free energy density, it is possible to formally account
for the effects on individual consciousness of parallel physi-
ological modules like the immune system, embedding struc-
tures like the local social network, and, most importantly, the
all-encompassing cultural heritage which so uniquely marks
human biology (e.g. Richerson and Boyd, 2004). This em-
bedding evades the mereological fallacy which fatally bedev-
ils brain-only theories of human consciousness (Bennett and
Hacker, 2003).

Transfer of phase change approaches from statistical
physics to information theory via the same homology gen-
erates the punctuated nature of accession to consciousness in
a similarly natural manner. The necessary renormalization
calculation focuses on a phase transition driven by variation
in the average strength of nondisjunctive ‘weak ties’ (Gra-
novetter, 1973) linking unconscious cognitive submodules. A
second-order ‘universality class tuning’ allows for adaptation
of conscious attention via ‘rate distortion manifolds’ which
generalize the idea of a retina. Aversion of the Baars model
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emerges as an almost exact parallel to hierarchical regression,
based, however, on the Shannon-McMillan rather than the
Central Limit Theorem.

Wallace (2005b) recently proposed a somewhat different ap-
proach, using classic results from random and semirandom
network theory (Erdos and Renyi, 1960; Albert and Barabasi,
2002; Newman, 2003) applied to a modular network of cogni-
tive processors. The unconscious modular network structure
of the brain is, of course, not random. However, in the spirit
of the wag who said “all mathematical models are wrong,
but some are useful”, the method serves as the foundation
of a different, but roughly parallel, treatment of the Global
Workspace to that given in Wallace (2005a), and hence as
another basis for a benchmark model against which empirical
data can be compared.

The first step is to argue for the existence of a network of
loosely linked cognitive unconscious modules, and to charac-
terize each of them by the ‘richness’ of the canonical language
– information source – associated with it. This is in some con-
trast to attempts to explicitly model neural structures them-
selves using network theory, e.g. the ‘neuropercolation’ ap-
proach of Kozma et al. (2004, 2005), which nonetheless uses
many similar mathematical techniques. Here, rather, we look
at the necessary conditions imposed by the asymptotic limits
of information theory on any realization of a cognitive process,
be it biological ‘wetware’, silicon dryware, or some direct or
systems-level hybrid. All cognitive processes, in this formu-
lation, are to be associated with a canonical ‘dual informa-
tion source’ which will be constrained by the Rate Distortion
Theorem, or, in the zero-error limit, the Shannon-McMillan
Theorem. It is interactions between nodes in this abstractly
defined network which will be of interest here, rather than
whatever mechanism or biological system, or mixture of them,
actually constitute the underlying cognitive modules.

The second step is to examine the conditions under which
a giant component (GC) suddenly emerges as a kind of phase
transition in a network of such linked cognitive modules, to
determine how large that component is, and to define the rela-
tion between the size of the component and the richness of the
cognitive language associated with it. This is the candidate
for Baars’ shifting Global Workspace of consciousness.

While Wallace (2005a) examines the effect of changing the
average strength of nondisjunctive weak ties acting across
linked unconscious modules, Wallace (2005b) focuses on
changing the average number of such ties having a fixed
strength, a complementary perspective whose extension via
a kind of ‘renormalization’ leads to a far more general ap-
proach.

The third step, following Wallace (2005b), is to tune the
threshold at which the giant component comes into being, and
to tune vigilance, the threshold for accession to consciousness.

Wallace’s (2005b) information theory modular network
treatment can be enriched by introducing a groupoid for-
malism which is roughly similar to recent analyses of linked
dynamic networks described by differential equation models
(e.g. Stewart et al., 2003, Stewart, 2004; Weinstein, 1996;
Connes, 1994). Internal and external linkages between infor-

mation sources break the underlying groupoid symmetry, and
introduce more structure, the global workspace and the ef-
fect of contexts, respectively. The analysis provides a founda-
tion for further mathematical exploration of linked cognitive
processes.

Cognition as ‘language’ Cognition is not consciousness.
Most mental, and many physiological, functions, while cog-
nitive in a formal sense, hardly ever become entrained into
the Global Workspace of consciousness: one seldom is able to
consciously regulate immune function, blood pressure, or the
details of binocular tracking and bipedal motion, except to
decide ‘what shall I look at’, ‘where shall I walk’. Nonethe-
less, many cognitive processes, conscious or unconscious, ap-
pear intimately related to ‘language’, broadly speaking. The
construction is fairly straightforward (Wallace, 2000, 2005a,
b).

Atlan and Cohen (1998) and Cohen (2000) argue, in the
context of immune cognition, that the essence of cognitive
function involves comparison of a perceived signal with an
internal, learned picture of the world, and then, upon that
comparison, choice of one response from a much larger reper-
toire of possible responses.

Cognitive pattern recognition-and-response proceeds by an
algorithmic combination of an incoming external sensory sig-
nal with an internal ongoing activity – incorporating the
learned picture of the world – and triggering an appropriate
action based on a decision that the pattern of sensory activity
requires a response.

More formally, a pattern of sensory input is mixed in an un-
specified but systematic algorithmic manner with a pattern of
internal ongoing activity to create a path of combined signals
x = (a0, a1, ..., an, ...). Each ak thus represents some func-
tional composition of internal and external signals. Wallace
(2005a) provides two neural network examples.

This path is fed into a highly nonlinear, but otherwise sim-
ilarly unspecified, ‘decision oscillator’, h, which generates an
output h(x) that is an element of one of two disjoint sets B0

and B1 of possible system responses. Let

B0 ≡ b0, ..., bk,

B1 ≡ bk+1, ..., bm.

Assume a graded response, supposing that if

h(x) ∈ B0,

the pattern is not recognized, and if

h(x) ∈ B1,

the pattern is recognized, and some action bj , k+1 ≤ j ≤ m
takes place.

The principal objects of interest are paths x which trigger
pattern recognition-and-response exactly once. That is, given
a fixed initial state a0, such that h(a0) ∈ B0, we examine all
possible subsequent paths x beginning with a0 and leading
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exactly once to the event h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0

for all j < m, but h(a0, ..., am) ∈ B1. Wallace (2005a) exam-
ines the possibility of more complicated schemes as well, and
concludes that they, like the use of varying forms of distortion
measures in the Rate Distortion Theorem, all lead to similar
results.

For each positive integer n, let N(n) be the number of high
probability ‘grammatical’ and ‘syntactical’ paths of length n
which begin with some particular a0 having h(a0) ∈ B0 and
lead to the condition h(x) ∈ B1. Call such paths ‘meaningful’,
assuming, not unreasonably, that N(n) will be considerably
less than the number of all possible paths of length n leading
from a0 to the condition h(x) ∈ B1.

While combining algorithm, the form of the nonlinear os-
cillator, and the details of grammar and syntax, are all un-
specified in this model, the critical assumption which permits
inference on necessary conditions constrained by the asymp-
totic limit theorems of information theory is that the finite
limit

H ≡ lim
n→∞

log[N(n)]
n

(1)

both exists and is independent of the path x.
We call such a pattern recognition-and-response cognitive

process ergodic. Not all cognitive processes are likely to be
ergodic, implying that H, if it indeed exists at all, is path
dependent, although extension to ‘nearly’ ergodic processes
seems possible (Wallace, 2005a).

Invoking the spirit of the Shannon-McMillan Theorem, it
is possible to define an adiabatically, piecewise stationary, er-
godic information source X associated with stochastic variates
Xj having joint and conditional probabilities P (a0, ..., an) and
P (an|a0, ..., an−1) such that appropriate joint and conditional
Shannon uncertainties satisfy the classic relations

H[X] = lim
n→∞

log[N(n)]
n

=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)
n

.

This information source is defined as dual to the underlying
ergodic cognitive process (Wallace, 2005a).

Remember that the Shannon uncertainties H(...) are
cross-sectional law-of-large-numbers sums of the form
−

∑
k Pk log[Pk], where the Pk constitute a probability dis-

tribution. See Khinchin (1957), Ash (1990), or Cover and
Thomas (1991) for the standard details.

The cognitive modular network symmetry groupoid
A formal equivalence class algebra can be constructed by
choosing different origin points a0 and defining equivalence
by the existence of a high probability meaningful path con-
necting two points. Disjoint partition by equivalence class,
analogous to orbit equivalence classes for dynamical systems,
defines the vertices of the proposed network of cognitive dual
languages. Each vertex then represents a different informa-
tion source dual to a cognitive process. This is not a repre-
sentation of a neural network as such, or of some circuit in
silicon. It is, rather, an abstract set of ‘languages’ dual to the
cognitive processes instantiated by either biological wetware,
mechanical dryware, or their direct or systems-level hybrids.

This structure is a groupoid, in the sense of Weinstein
(1996). States aj , ak in a set A are related by the groupoid
morphism if and only if there exists a high probability gram-
matical path connecting them, and tuning across the various
possible ways in which that can happen – the different cogni-
tive languages – parametizes the set of equivalence relations
and creates the groupoid. This assertion requires some devel-
opment.

Note that not all possible pairs of states (aj , ak) can be
connected by such a morphism, i.e. by a high probability,
grammatical and syntactical cognitive path, but those that
can define the groupoid element, a morphism g = (aj , ak)
having the ‘natural’ inverse g−1 = (ak, aj). Given such a
pairing, connection by a meaningful path, it is possible to
define ‘natural’ end-point maps α(g) = aj , β(g) = ak from the
set of morphisms G into A, and a formally associative product
in the groupoid g1g2 provided α(g1g2) = α(g1), β(g1g2) =
β(g2), and β(g1) = α(g2). Then the product is defined, and
associative, i.e. (g1g2)g3 = g1(g2g3).

In addition there are ‘natural’ left and right identity ele-
ments λg, ρg such that λgg = g = gρg whose characterization
is left as an exercise (Weinstein, 1996).

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak.

The isotopy group of a ∈ X consists of those g in G with
α(g) = a = β(g).

In essence a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection by a
meaningful path of an information source dual to a cognitive
process.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

As Weinstein (1996) points out, the morphism (α, β) sug-
gests another way of looking at groupoids. A groupoid over
A identifies not only which elements of A are equivalent to
one another (isomorphic), but it also parametizes the different
ways (isomorphisms) in which two elements can be equivalent,
i.e. all possible information sources dual to some cognitive
process. Given the information theoretic characterization of
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cognition presented above, this produces a full modular cog-
nitive network in a highly natural manner.

The groupoid approach has become quite popular in the
study of networks of coupled dynamical systems which can
be defined by differential equation models, e.g. Stewart et al.
(2003), Stewart (2004). Here we have outlined how to extend
the technique to networks of interacting information sources
which, in a dual sense, characterize cognitive processes, and
cannot at all be described by the usual differential equation
models. These latter, it seems, are much the spiritual off-
spring of 18th Century mechanical clock models. Cognitive
and conscious processes in humans involve neither computers
nor clocks, but remain constrained by the limit theorems of
information theory, and these permit scientific inference on
necessary conditions.

Internal forces breaking the symmetry groupoid The
symmetry groupoid, as we have constructed it for unconscious
cognitive submodules in ‘information space’, is parametized
across that space by the possible ways in which states aj , ak

can be ‘equivalent’, i.e. connected by a meaningful path of
an information source dual to a cognitive process. These
are different, and in this approximation, non-interacting un-
conscious cognitive processes. But symmetry groupoids, like
symmetry groups, are designed to be broken, by internal
cross-talk akin to spin-orbit interactions within a symmet-
ric atom, and by cross-talk with slower, external, information
sources, akin to putting a symmetric atom in a powerful mag-
netic or electric field.

As to the first process, suppose that linkages can fleet-
ingly occur between the ordinarily disjoint cognitive mod-
ules defined by the network groupoid. In the spirit of Wal-
lace (2005a), this is represented by establishment of a non-
zero mutual information measure between them: a cross-talk
which breaks the strict groupoid symmetry developed above.

Wallace (2005a) describes this structure in terms of fixed
magnitude disjunctive strong ties which give the equivalence
class partitioning of modules, and nondisjunctive weak ties
which link modules across the partition, and parametizes the
overall structure by the average strength of the weak ties, to
use Granovetter’s (1973) term. By contrast the approach of
Wallace (2005b), which we outline here, is to simply look at
the average number of fixed-strength nondisjunctive links in
a random topology. These are obviously the two analytically
tractable limits of a much more complicated regime.

Since we know nothing about how the cross-talk connec-
tions can occur, we will – at first – assume they are ran-
dom and construct a random graph in the classic Erdos/Renyi
manner. Suppose there are M disjoint cognitive modules – M
elements of the equivalence class algebra of languages dual to
some cognitive process – which we now take to be the vertices
of a possible graph.

For M very large, following Savante et al. (1993), when
edges (defined by establishment of a fixed-strength mutual
information measure between the graph vertices) are added
at random to M initially disconnected vertices, a remarkable
transition occurs when the number of edges becomes approxi-
mately M/2. Erdos and Renyi (1960) studied random graphs

with M vertices and (M/2)(1 + µ) edges as M → ∞, and
discovered that such graphs almost surely have the follow-
ing properties (Molloy and Reed, 1995, 1998; Grimmett and
Stacey, 1998; Luczak, 1990; Aiello et al., 200; Albert and
Barabasi, 2002):

If µ < 0, only small trees and ‘unicyclic’ components are
present, where a unicyclic component is a tree with one addi-
tional edge; moreover, the size of the largest tree component
is (µ− ln(1 + µ))−1 +O(log log n).

If µ = 0, however, the largest component has size of order
M2/3. And if µ > 0, there is a unique ‘giant component’ (GC)
whose size is of order M ; in fact, the size of this component is
asymptotically αM , where µ = −α−1 ln(1−α)− 1. Thus, for
example, a random graph with approximately M ln(2) edges
will have a giant component containing ≈M/2 vertices.

Such a phase transition initiates a new, collective, cogni-
tive phenomenon: the Global Workspace of consciousness,
emergently defined by a set of cross-talk mutual information
measures between interacting unconscious cognitive submod-
ules. The source uncertainty, H, of the language dual to
the collective cognitive process, which characterizes the rich-
ness of the cognitive language of the workspace, will grow as
some monotonic function of the size of the GC, as more and
more unconscious processes are incorporated into it. Wallace
(2005b) provides details.

Others have taken similar network phase transition ap-
proaches to assemblies of neurons, e.g. ‘neuropercolation’
(Kozma et al., 2004, 2005), but their work has not focused
explicitly on modular networks of cognitive processes, which
may or may not be instantiated by neurons. Restricting
analysis to such modular networks finesses much of the under-
lying conceptual difficulty, and permits use of the asymptotic
limit theorems of information theory and the import of tech-
niques from statistical physics, a matter we will discuss later.

External forces breaking the symmetry groupoid
Just as a higher order information source, associated with the
GC of a random or semirandom graph, can be constructed
out of the interlinking of unconscious cognitive modules by
mutual information, so too external information sources, for
example in humans the cognitive immune and other physiolog-
ical systems, and embedding sociocultural structures, can be
represented as slower-acting information sources whose influ-
ence on the GC can be felt in a collective mutual information
measure. For machines these would be the onion-like ‘struc-
tured environment’, to be viewed as among Baars’ contexts
(Baars, 1988, 2005; Baars and Franklin, 2003). The collective
mutual information measure will, through the Joint Asymp-
totic Equipartition Theorem which generalizes the Shannon-
McMillan Theorem, be the splitting criterion for high and low
probability joint paths across the entire system.

The tool for this is network information theory (Cover and
Thomas, 1991, p. 387). Given three interacting information
sources, Y1, Y2, Z, the splitting criterion, taking Z as the ‘ex-
ternal context’, is given by
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I(Y1, Y2|Z) = H(Z) + H(Y1|Z)−H(Y1, Y2, Z),

(2)

where H(..|..) and H(.., .., ..) represent conditional and joint
uncertainties (Khinchin, 1957; Ash, 1990; Cover and Thomas,
1991).

This generalizes to

I(Y1, ...Yn|Z) = H(Z) +
n∑

j=1

H(Yj |Z)−H(Y1, ..., Yn, Z).

(3)

If we assume the Global Workspace/Giant Component to
involve a very rapidly shifting, and indeed highly tunable,
dual information source X, embedding contextual cognitive
modules like the immune system will have a set of signifi-
cantly slower-responding sources Yj , j = 1..m, and external
social, cultural and other ‘environmental’ processes will be
characterized by even more slowly-acting sources Zk, k = 1..n.
Mathematical induction on equation (3) gives a complicated
expression for a mutual information splitting criterion which
we write as

I(X|Y1, .., Ym|Z1, .., Zn).

(4)

This encompasses a fully interpenetrating ‘biopsychosocio-
cultural’ structure for individual human or machine conscious-
ness, one in which Baars’ contexts act as important, but flex-
ible, boundary conditions, defining the underlying topology
available to the far more rapidly shifting global workspace
(Wallace, 2005a, b).

This result does not commit the mereological fallacy which
Bennett and Hacker (2003) impute to excessively neurocentric
perspectives on consciousness in humans, that is, the mistake
of imputing to a part of a system the characteristics which
require functional entirety. The underlying concept of this
fallacy should extend to machines interacting with their en-
vironments, and its baleful influence probably accounts for a
significant part of AI’s failure to deliver. See Wallace (2005a)
for further discussion.

Punctuation phenomena As a number of researchers
have noted, in one way or another, – see Wallace, (2005a)
for discussion – equation (1),

H ≡ lim
n→∞

log[N(n)]
n

,

is homologous to the thermodynamic limit in the definition
of the free energy density of a physical system. This has the
form

F (K) = lim
V→∞

log[Z(K)]
V

,

(5)

where F is the free energy density, K the inverse tempera-
ture, V the system volume, and Z(K) is the partition function
defined by the system Hamiltonian.

Wallace (2005a) shows at some length how this homology
permits the natural transfer of renormalization methods from
statistical mechanics to information theory. In the spirit of
the Large Deviations Program of applied probability theory,
this produces phase transitions and analogs to evolutionary
punctuation in systems characterized by piecewise, adiabati-
cally stationary, ergodic information sources. These ‘biologi-
cal’ phase changes appear to be ubiquitous in natural systems
and can be expected to dominate machine behaviors as well,
particularly those which seek to emulate biological paradigms.
Wallace (2002) uses these arguments to explore the differences
and similarities between evolutionary punctuation in genetic
and learning plateaus in neural systems.

Renormalizing the giant component: the second or-
der iteration The random network development above is
predicated on there being a variable average number of fixed-
strength linkages between components. Clearly, the mutual
information measure of cross-talk is not inherently fixed, but
can continuously vary in magnitude. This we address by a
parametized renormalization. In essence the modular net-
work structure linked by mutual information interactions has
a topology depending on the degree of interaction of interest.
Suppose we define an interaction parameter ω, a real positive
number, and look at geometric structures defined in terms
of linkages which are zero if mutual information is less than,
and ‘renormalized’ to unity if greater than, ω. Any given ω
will define a regime of giant components of network elements
linked by mutual information greater than or equal to it.

The fundamental conceptual trick at this point is to invert
the argument : A given topology for the giant component will,
in turn, define some critical value, ωC , so that network ele-
ments interacting by mutual information less than that value
will be unable to participate, i.e. will ‘locked out’ and not
be consciously perceived. We hence are assuming that the
ω is a tunable, syntactically-dependent, detection limit, and
depends critically on the instantaneous topology of the giant
component defining the global workspace of consciousness.
That topology is, fundamentally, the basic tunable syntactic
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filter across the underlying modular symmetry groupoid, and
variation in ω is only one aspect of a much more general topo-
logical shift. More detailed analysis is given below in terms
of a topological rate distortion manifold.

Suppose the giant component at some ‘time’ k is character-
ized by a set of parameters Ωk ≡ ωk

1 , ..., ωk
m. Fixed parameter

values define a particular giant component having a particular
topological structure (Wallace, 2005b). Suppose that, over a
sequence of ‘times’ the giant component can be characterized
by a (possibly coarse-grained) path xn = Ω0,Ω1, ...,Ωn−1 hav-
ing significant serial correlations which, in fact, permit defini-
tion of an adiabatically, piecewise stationary, ergodic (APSE)
information source in the sense of Wallace (2005a). Call that
information source X.

Suppose, again in the manner of Wallace (2005a), that a
set of (external or else internal, systemic) signals impinging
on consciousness, i.e. the giant component, is also highly
structured and forms another APSE information source Y
which interacts not only with the system of interest globally,
but specifically with the tuning parameters of the giant com-
ponent characterized by X. Y is necessarily associated with
a set of paths yn.

Pair the two sets of paths into a joint path zn ≡ (xn, yn),
and invoke some inverse coupling parameter, K, between the
information sources and their paths. By the arguments of
Wallace (2005a) this leads to phase transition punctuation
of I[K], the mutual information between X and Y, under
either the Joint Asymptotic Equipartition Theorem, or, given
a distortion measure, under the Rate Distortion Theorem.

I[K] is a splitting criterion between high and low proba-
bility pairs of paths, and partakes of the homology with free
energy density described in Wallace (2005a). Attentional fo-
cusing then itself becomes a punctuated event in response to
increasing linkage between the organism or device and an ex-
ternal structured signal, or some particular system of internal
events. This iterated argument parallels the extension of the
General Linear Model into the Hierarchical Linear Model of
regression theory.

Call this the Hierarchical Cognitive Model (HCM).
The HCM version of Baars’ global workspace model, as we

have constructed it, stands in some contrast to other current
work.

Tononi (2004), for example, takes a ‘complexity’ perspec-
tive on consciousness, in which he averages mutual informa-
tion across all possible bipartitions of the thalamocortical sys-
tem, and, essentially, demands an ‘infomax’ clustering solu-
tion. Other clustering statistics, however, may serve as well
or better, as in generating phylogenetic trees, and the method
does not seem to produce conscious punctuation in any nat-
ural manner.

Dehaene and Changeux (2005) take an explicit Baars global
workspace perspective on consciousness, but use an elaborate
neural network simulation to generate a phenomenon analo-
gous to inattentional blindness. While their model does in-
deed display the expected punctuated behaviors, as noted
above, Krebs (2005) unsparingly labels such constructions
with the phrase ‘neurological possibility does not imply neu-

rological plausibility’, suggesting that the method does little
more than fit a kind of Fourier series construction to high
level mental processes.

Here we have attempted a step toward a central motion
model of consciousness, focusing on modular networks defined
by function rather than by structure.

Cognitive quasi-thermodynamics A fundamental ho-
mology between the information source uncertainty dual to
a cognitive process and the free energy density of a physi-
cal system arises, in part, from the formal similarity between
their definitions in the asymptotic limit. Information source
uncertainty can be defined as in equation (1). This is quite
analogous to the free energy density of a physical system,
equation (5).

Feynman (1996) provides a series of physical examples,
based on Bennett’s work, where this homology is, in fact,
an identity, at least for very simple systems. Bennett argues,
in terms of irreducibly elementary computing machines, that
the information contained in a message can be viewed as the
work saved by not needing to recompute what has been trans-
mitted.

Feynman explores in some detail Bennett’s microscopic ma-
chine designed to extract useful work from a transmitted mes-
sage. The essential argument is that computing, in any form,
takes work, the more complicated a cognitive process, mea-
sured by its information source uncertainty, the greater its
energy consumption, and our ability to provide energy to
the brain is limited. Inattentional blindness emerges as an
inevitable thermodynamic limit on processing capacity in a
topologically-fixed global workspace, i.e. one which has been
strongly configured about a particular task (Wallace, 2006).

Understanding the time dynamics of cognitive systems
away from phase transition critical points requires a phe-
nomenology similar to the Onsager relations of nonequilib-
rium thermodynamics. If the dual source uncertainty of a
cognitive process is parametized by some vector of quanti-
ties K ≡ (K1, ...,Km), then, in analogy with nonequilibrium
thermodynamics, gradients in the Kj of the disorder, defined
as

S ≡ H(K)−
m∑

j=1

Kj∂H/∂Kj

(6)

become of central interest.
Equation (6) is similar to the definition of entropy in terms

of the free energy density of a physical system, as suggested
by the homology between free energy density and information
source uncertainty described above.

Pursuing the homology further, the generalized Onsager
relations defining temporal dynamics become
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dKj/dt =
∑

i

Lj,i∂S/∂Ki,

(7)

where the Lj,i are, in first order, constants reflecting the
nature of the underlying cognitive phenomena. The L-matrix
is to be viewed empirically, in the same spirit as the slope and
intercept of a regression model, and may have structure far
different than familiar from more simple chemical or physi-
cal processes. The ∂S/∂K are analogous to thermodynamic
forces in a chemical system, and may be subject to override by
external physiological driving mechanisms (Wallace, 2005c).

Imposing a metric for different cognitive dual languages
parametized by K leads quickly into the rich structures of
Riemannian, or even Finsler, geometries (Wallace, 2005c).

One can apply this formalism to the example of the giant
component, with the information source uncertainty/channel
capacity taken as directly proportional to the component’s
size, which increases monotonically with the average number
of (renormalized) linkages, a, after the critical point. H(a)
then rises to some asymptotic limit.

As the system rides up with increasing a, H(a) increases
against the ‘force’ defined by −dS/da. Raising the cognitive
capacity of the giant component, making it larger, requires
energy, and is done against a particular kind of opposition.
Beyond a certain point, the system just runs out of steam.
Altering the topology of the network, no longer focusing on
a particular demanding task, would allow detection of cross-
talk signals from other submodules, as would the intrusion of
a signal above the renormalization limit ω.

We propose, then, that the manner in which the system
‘runs out of steam’ involves a maxed-out, fixed topology for
the giant component of consciousness. As argued above,
the renormalization parameter ω then becomes an informa-
tion/energy bottleneck. To keep the giant component at op-
timum function in its particular topology, i.e. focused on a
particular task involving a necessary set of interacting cogni-
tive submodules, a relatively high limit must be placed on the
magnitude of a mutual information signal which can intrude
into consciousness.

Consciousness is tunable, and signals outside the cho-
sen ‘syntactical/grammatical bandpass’ are often simply not
strong enough to be detected, accounting for the phenomena
of inattentional blindness (Wallace, 2006). This basic focus
mechanism can be modeled in far more detail.

Focusing the mind’s eye: the simplest rate distor-
tion manifold The second order iteration above – analogous
to expanding the General Linear Model to the Hierarchical
Linear Model – which involved paths in parameter space, can
itself be significantly extended. This produces a generalized
tunable retina model which can be interpreted as a ‘Rate Dis-
tortion manifold’, a concept which further opens the way for
import of a vast array of tools from geometry and topology.

Suppose, now, that threshold behavior in conscious reac-
tion requires some elaborate system of nonlinear relationships
defining a set of renormalization parameters Ωk ≡ ωk

1 , ..., ωk
m.

The critical assumption is that there is a tunable ‘zero order
state,’ and that changes about that state are, in first order,
relatively small, although their effects on punctuated process
may not be at all small. Thus, given an initial m-dimensional
vector Ωk, the parameter vector at time k + 1, Ωk+1, can, in
first order, be written as

Ωk+1 ≈ Rk+1Ωk,

(8)

where Rt+1 is an m×m matrix, having m2 components.
If the initial parameter vector at time k = 0 is Ω0, then at

time k

Ωk = RkRk−1...R1Ω0.

(9)

The interesting correlates of consciousness are, in this de-
velopment, now represented by an information-theoretic path
defined by the sequence of operators Rk, each member having
m2 components. The grammar and syntax of the path de-
fined by these operators is associated with a dual information
source, in the usual manner.

The effect of an information source of external signals, Y,
is now seen in terms of more complex joint paths in Y and
R-space whose behavior is, again, governed by a mutual in-
formation splitting criterion according to the JAEPT.

The complex sequence in m2-dimensional R-space has,
by this construction, been projected down onto a parallel
path, the smaller set of m-dimensional ω-parameter vectors
Ω0, ...,Ωk.

If the punctuated tuning of consciousness is now charac-
terized by a ‘higher’ dual information source – an embedding
generalized language – so that the paths of the operators Rk

are autocorrelated, then the autocorrelated paths in Ωk rep-
resent output of a parallel information source which is, given
Rate Distortion limitations, apparently a grossly simplified,
and hence highly distorted, picture of the ‘higher’ conscious
process represented by the R-operators, having m as opposed
to m×m components.

High levels of distortion may not necessarily be the case for
such a structure, provided it is properly tuned to the incoming
signal. If it is inappropriately tuned, however, then distortion
may be extraordinary.
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Let us examine a single iteration in more detail, assum-
ing now there is a (tunable) zero reference state, R0, for the
sequence of operators Rk, and that

Ωk+1 = (R0 + δRk+1)Ωk,

(10)

where δRk is ‘small’ in some sense compared to R0.
Note that in this analysis the operators Rk are, implic-

itly, determined by linear regression. We thus can invoke a
quasi-diagonalization in terms of R0. Let Q be the matrix of
eigenvectors which Jordan-block-diagonalizes R0. Then

QΩk+1 = (QR0Q−1 + QδRk+1Q−1)QΩk.

(11)

If QΩk is an eigenvector of R0, say Yj with eigenvalue λj ,
it is possible to rewrite this equation as a generalized spectral
expansion

Yk+1 = (J + δJk+1)Yj ≡ λjYj + δYk+1

= λjYj +
n∑

i=1

aiYi.

(12)

J is a block-diagonal matrix, δJk+1 ≡ QRk+1Q−1, and
δYk+1 has been expanded in terms of a spectrum of the eigen-
vectors of R0, with

|ai| � |λj |, |ai+1| � |ai|.

(13)

The point is that, provided R0 has been tuned so that this
condition is true, the first few terms in the spectrum of this
iteration of the eigenstate will contain most of the essential
information about δRk+1. This appears quite similar to the

detection of color in the retina, where three overlapping non-
orthogonal eigenmodes of response are sufficient to character-
ize a huge plethora of color sensation. Here, if such a tuned
spectral expansion is possible, a very small number of ob-
served eigenmodes would suffice to permit identification of a
vast range of changes, so that the rate-distortion constraints
become quite modest. That is, there will not be much dis-
tortion in the reduction from paths in R-space to paths in
Ω-space. Inappropriate tuning, however, can produce very
marked distortion, even inattentional blindness.

Reflection suggests that, if consciousness indeed has some-
thing like a grammatically and syntactically-tunable retina,
then appropriately chosen observable correlates of conscious-
ness may, at a particular time and under particular circum-
stances, actually provide very good local characterization of
conscious process. Large-scale global processes are, like hy-
perfocal tuning, another matter.

Note that Rate Distortion Manifolds can be quite formally
described using standard techniques from topological mani-
fold theory (Glazebrook, 2005). The essential point is that a
rate distortion manifold is a topological structure which con-
strains the ‘stream of consciousness’ much the way a river-
bank constrains the flow of the river it contains. This is a
fundamental insight.

DISCUSSION AND CONCLUSIONS

Application of Dretske’s communication theory perspec-
tive on necessary conditions for mental phenomena to Baars’
global workspace picture of consciousness gives an empirical
model of high level cognitive process recognizably similar to,
if much richer than, a regression structure. Necessary con-
ditions are, however, not sufficient conditions. The Nix/Vose
Markov chain model of evolutionary computing can be shown,
in the presence of a nonzero mutation rate, to always converge
to an equilibrium distribution. This distribution is, in fact,
the ‘solution’ to the computing problem.

No such simple outcome is possible for higher level mental
function in the model we have outlined here. The best one
can do is specify the initial topology of the manifold which
constrains consciousness. What then happens is self-driven
within the structure defined by that topology, which may it-
self be tunable. This suggests that the final topology of the
rate distortion manifold, along with its occupation point, in
fact, constitutes the answer to the computing problem, sim-
ilar to the manner that the equilibrium distribution is the
answer to a Nix/Vose evolutionary computing problem with-
out, however, the possibility of a global optimization strategy
defined by some maximizable fitness measure. Relating global
topology to local properties is, of course, the meat and drink
of topological manifold theory. Answering general topological
questions – is it a torus or a sphere, and where are we on it?
– is, however, not at all like a ‘Deep Blue’ win at chess.

Two critical, intertwined, and likely competing, difficulties
intrude:

(1) How does one specify the best initial cognitive or rate
distortion topology for a conscious machine, given some par-
ticular problem of interest? This is a kind of generalized pro-
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gramming question. For the usual computing architecture,
of course, the program carries the solution within it, modulo
a set of logical operations to be performed by the machine
which, hopefully, then stops. For intelligent machines, as we
have defined them, the question is the final topology, which
will be driven by self-dynamic processes. Since these are nec-
essary conditions machines, unlike ergodic Markov or ‘logical’
devices, there can never be a guaranteed convergence, (hence,
perhaps, the ‘stream of consciousness’, as it were). This am-
biguity intersects with a second problem:

(2) How does one ensure, if some ‘best’ initial problem-
topology program has been specified, that the machine ac-
tually remains constrained by it, and does not go entirely
off the rails? Raising the probability of such compliance may
place significant limits on possible starting topologies and sub-
sequent developmental pathways, and may indeed preclude
many paths which might well constitute the most computa-
tionally efficient attacks on the underlying problem of interest.

Biological and, more recently, cultural, evolution have
taken several hundred million years to work out this trade-
off, and the result is not at all well understood. Failure of
consciousness in humans causes various forms of debilitating
mental disorder or inattentional blindness, both of which re-
main poorly characterized (Wallace, 2005b, 2006).

Brooks’ ‘new mathematics that will unify the various fields
of AI and Alife’ has, in fact, been around for some decades,
masquerading as Dretske’s interpretation of communication
theory. Designing reliable intelligent machines based on nec-
essary conditions principles, however, is going to be a difficult
engineering task. Our emerging understanding of conscious-
ness and cognition suggests that Pandora’s new box is going
to be very, very hard to open.

Perhaps the most fruitful outcome of a program to pro-
duce conscious machines would be the insight that difficulty in
making and operating them could provide regarding the struc-
ture of consciousness in higher animals. The failure modes of
the first generations of conscious machines would likely give
new and important perspectives on psychopathology in hu-
mans.
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