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Abstract

This paper is intended as a critical examination of the question of
when the use of computer simulations is beneficial to scientific expla-
nations. This objective is pursued in two steps: First, I try to establish
clear criteria that simulations must meet in order to be explanatory.
Basically, a simulation has explanatory power only if it includes all
causally relevant factors of a given empirical configuration and if the
simulation delivers stable results within the measurement inaccuracies
of the input parameters. If a simulation is not explanatory, it can still
be meaningful for exploratory purposes, but only under very restricted
conditions.

In the second step, I examine a few examples of Axelrod-style
simulations as they have been used to understand the evolution of co-
operation (Axelrod, Schüßler) and the evolution of the social contract
(Skyrms). These simulations do not meet the criteria for explanatory
validity and it can be shown, as I believe, that they lead us astray
from the scientific problems they have been addressed to solve and at
the same time bar our imagination against more conventional but still
better approaches.
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1 Introduction

Computer simulations have become a popular tool in various branches of sci-

ence, including even the social sciences. The reasons are easy to understand:

Computer simulations provide a simple and yet powerful tool to explore the

implications of theoretical assumptions. They are cheaper than experiments

and often easier to construct and to handle than mathematical models. At

the same time they confine the realm of what can be modeled only to what

can be described algorithmically, which gives them a very broad scope. With

this tool at hand it should be possible to bring into the reach of exact treat-

ment even such questions that have traditionally seemed to defy the use of

formal methods.

However, upon closer inspection it becomes apparent that computer sim-

ulations do not always deliver what they promise. Often they remain in the

state of purely theoretical “toy simulations” and never get to the ground of

empirical testability. In the following, I will first try to put forward a few

straight forward criteria for proper explanatory computer simulations. After

that I will analyse some examples of computer simulations that fail to meet

these criteria as well as the bad consequences this failure has.

2 Different aims of computer simulations in

science

Computer simulations can be employed in science not only for generating

eplanations but for various different purposes. They can, for example, be used

to merely express certain theoretical assumptions or concepts. In this sense

they provide a sometimes weaker and sometimes stronger but usually simpler

and more flexible alternative to mathematical modelling. Or they can be used

to prove the “logical possibility” of certain general assumptions such as the

assumption that cooperation is possible among egoists. Or they can be used

to explore the possible consequences or implications of certain assupmtions.

All of these previously mentioned uses of computer simulations will in the

following be subsumed under the general title of exploratory simulations. It is
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the distinctitive mark of this type of simulations that these simulations do not

need to resemble any empirical reality. If there exists any resemblence at all

then it is typically vague and consists in the plausibility of the assumptions.

Another – potentially more important – class of computer simulations are

predictive simulations. The purpose of predictive simulations is to generate

predictions of some empirical process. An example might be simulations in

meteorology that predict how the wheather is going to be in the future. The

assumptions that enter into predictive simulations do not need to be in any

way realistic. As long as the predictions prove to be reliable, it is permissible

to use strongly simplified assupmtions about the modeled process or even

assumptions which are known to be false. This shows that just because a

simulation produces successful predictions it does not necessarily also provide

an explanation for the predicted phenomena, even though successful predic-

tions may be one among several indicators for a simulation to be explantorily

valid.

The most desired case, however, would be that of an explanatory simula-

tion that is a type of computer simulation that actually allows us to explain

the empirical phenomena that are modeled in the simulation. It is this class

of simulations or, rather, the class of simulations that pretend to be explana-

tory but really are not that I will be concerned with in this paper.

3 Criteria for “explanatory” simulations

But in what sense can a computer simulations be explanatory? And what

are the criteria a computer simulation must meet in order to be explanatory?

A computer simulation can be called explanatory if it adaequately models

some empirical situation and if the result of the computer simulation (the

simulation results) coincides with the outcome of the modeled empirical pro-

cess (the empirical results). If this is the case, we can conclude that the

empirical results have been caused by the very factors (or, more precisely,

by the empirical correspondents of the factors) that have brought about the

simulation results in the computer simulation.

To take an example, let us say we have a game theoretic computer simu-
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lation of the repeated prisoner’s dilemma where under certain specified con-

ditions the strategy “tit for tat” emerges as the clear winner. Now, assume

further that we know of an empirical situation that closely resembles the

repeated prisoner’s dilemma with exactly the same conditions as in our sim-

ulations. (The (probably) easiest way to bring this about would be by con-

ducting a game theoretic experiment, where the conditions can be closely

monitored.) And let us finally assume that also in the empirical situation

the “tit for tat” strategy emerges as the most successful strategy. Then we

are entitled to conclude that “tit for tat”was successful in the empirical case,

because the situation was a prisoner’s dilemma with such and such boundary

conditions and because – as the computer simulation shows – “tit for tat”

is a winning strategy in repeated prisoner’s dilemma situations under the

respective conditions.

Now that we have seen how explanations by computer simulations work in

principle, let us ask what are the criteria a computer simulation must fullfill

in order to deserve the title of an explanatory simulation. The criteria should

be such as to allow us to check whether the explanation is valid that is wheter

the coincidence of results is due to the congruence of the operating factors

(in the empirical sitaution and in the computer simulation) or whether it is

merely accidental.

As criteria that a computer simulation must meet in order to be an ex-

planatory model of an empirical process, I propose the following:

1. Adequacy Requirement: All causally relevant factors of the modeled

empirical process must be represented in the computer simulation.

2. Stability Requirement: The input parameters of the simulation must be

measurable with such accuracy that the simulation results are stable

within the range of inaccuracy of measurement.

If both criteria are met, we can say that there exists a close fit between

model and modeled reality. The claim I wish to hold is that only if there is a

close fit between model and reality we are entitled to say that the model ex-

plains anything. Even though the first two criteria are very straight forward,
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a little discussion will be helpful for a btter understanding. The motivation

for the third criterion, which might appear a little more obscure at first, will

be explained subsequently.

Regarding the first criterion, it should be obvious that if not all causally

relevant factors are included then any congruence of simulation results and

empirical resutls can at best be accidental. Two objections might be raised

at this point: 1) If there really is a congruence of simulation results and

empirical results should that not allow us to draw the conclusion that the

very factors implemented in the computer simulation are indeed all factors

that are causally relevant? 2) If we use computer simulations as a research

tool to find out what causes a certain empirical phenomenon, how are we to

know beforehand what the causally relevant factors are, and how are we ever

to find out, if drawing reverse conclusions from the compliance of the results

to the relevant causes is not allowed?

As to the first objection: If the simulation is used to generate empiri-

cal predictions and if the predictions come true then this can – with a few

hesitations – indeed be taken as a hint to its capturing all relevant causes

of the empirical process in question. The hesitations concern the problem

that even if a simulation has predictive success it can still have been based

on unrealistic assumptions. Sometimes the predictive success of a simulation

can even be increased by sacrificing realism. Therefore, in order to find out

whether the factors incorporated in the computer simulation are the causally

relevant factors we cannot rely on predictive success alone, but we have to

consult other sources as well, such as our scientific background knowledge

about the process in question.

As to the second objection: If we have a simulation that predicts cor-

rectly than we are – with the hesitations mentioned above – entitled to draw

reverse conclusions conclusions from the compliance of the results to the

exclusive causal relevance of the incorporated factors or mechanisms. How-

ever, this is impermissable if the simulation does not generate predictions,

but is just meant to give an ex-post explanation. For, if we only try long

enough, we are almost sure to find some computer simulation and some set

of input parameters that matches a previously fixed set of output data. The
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task of finding such a simulation amounts to nothing more than finding any

arbitrary algorithm that produces a given pattern. But then we will only

accidently have hit on the true causes that were responisible for the results

in the empirical process. The problem here is in some respects similar to the

problem of curve fitting, where one has to deal with the danger of overftting

a curve. One could try to apply similar tricks here as are often used with

curve fitting. For example, one could try to turn an ex-post explanation

into a quasi-prediction by dividing the data set (that describes the empiri-

cal results) and then designing and calibrating the simulation on only one

part of the divided data set. The thus calibrated simulation is then used

to “predict”, or rather “quasi-predict” the other part of the data set. If the

“quasi-predictions” prove to be true, we have some reason to assume that we

have hit upon the real causes. But, even if we use such methods to create

quasi-predictions, the above mentioned caveats apply.

Therefore, only if we make sure that all causally relevant factors are in-

cluded in the simulation, we can take it as an explanation. And usually we

cannot assure this by relying on the conformance of the simulations results

and the empirical results alone without any further considerations. Summa-

rizing we can say: If the first criterion is not fullfilled, then the computer

simulation does not explain.

The second criterion is even more straight forward. If the model is un-

stable, then we will not be able to check whether the simulation model is

adaequate. For, if it is not stable within the inevitable inaccuracies of mea-

surement, it does not deliver one result, but a range of different results. But

then we cannot say for sure, whether the empirical results are due to the

factors the model captures. Imagine for example, we had a games theoreti-

cal model that tells us whether some actors will cooperate or not cooperate.

Now assume, we had some empirical process at hand where we know that the

actors cooperate and we would like to know whether they do so for the very

reasons the model suggests. In other words: We would like to know whether

our model can explain why they cooperate. If the model is unstable then –

due to measurement inaccuracy – we do not know whether the empirical pro-

cess falls within in the range of input paramters for which the model predicts



6

cooperation or not. But then there is no way to tell whether the actors in

the empirical process cooperated, because of the reasons the model suggests

or, quite the contrary, inspite of what the model would predict.

A special case of this problem of model stability and measurement inac-

curacies occurs when we can only determine the ordinal relations of greater

and smaller of some empirical quantity, but not it’s cardinal value (perhaps,

because it does not have a cardinal value by it’s very nature such as the

quantity of utility in economics for example), even though the simulation

crucially depends on the ordinal value of the respective input parameter.1

Briefly put, the morale of the second criterion is: If condition two is not met,

we cannot know whether the computer simulation explains.

In connection with the first criteria the requirement of model stability

(in relation to measurement inaccuracy) gives rise to a kind of dilemma.

An obvious way to make a model more adequate is by including further

parameters. Unfortunately, the more parameters are included in the model

the harder it becomes to handle. Often, though not necessarily, a model

looses stability by including additional parameters. Therefore, in order to

assure that the model is adequat (first criterion), we may have to lower the

degree of abstraction by including more and more parameters. But then

the danger increases that our model will not be sufficiently stable any more

(second criterion).

There exists no general strategy to avoid this dilemma. In many cases

it may not be possible at all to get around the dilemma. But this should

not come as a surprise. It merely reflects the fact that the use computer

simulations is, of course, limited. With the tool of computer simulations

many scientific problems get into the reach of formal modelling that would be

hard to handle with pure mathematics alone. Still, many scientific problems

remain outside the realm of what can be handled with formal methods, either

because of their complexity or because of the nature of the problem. This

remains especially true for many areas of the social sciences.

Apart from the two criteria listed above it is important that the output

1This is a well known restriction for modelling in economics, but it seems to have fallen
into oblivion when computer simulations hit the scene.
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of the computer simulation should reflect the empirical results with all the

details that are regarded as scientifically important, and not just – as it is

sometimes happens – merely a much sparser substructure of them. 2 For

example, we may want to use game theoretical models like the prisoner’s

dilemma to study the strategic interaction of states in politics. The game

theoretical model will tell us whether the states will cooperate or not, but

most probably it will say nothing about the concrete form of cooperation

(diplomatic contacts, trade agreements, international contracts etc.) or non

cooperation (embargos, military action, war etc.). Therefore, even if the

model or simulation really was predictively acurate, it does at best provide

us with a partial explanation, because it does not explain all aspects of the

empirical outcome that interest us. In the worst case it’s explanatory – or, as

the case may be, it’s predictive – power is almost as poor as that of a horo-

scope. The prediction of a horoscope that, for example, tomorrow“something

important” will happen easily becomes true, because of its vagueness. Simi-

larily, if a game theoretical simulation predicts that the parties of a political

conflict will stop cooperating at some stage, but does not tell us whether

this implies, say, war or just the breakup of diplomatic relations then it only

offers us comparatively unimportant information. We could also say that if

the simulation results fail to capture all important features of the empirical

outcome then the computer simulation “misses the point”.

Summing it up: Only if a computer simulation closely fits the simulated

reality – that is if it adequately models the causal factors involved, if it is

stable and if it is descriptively rich enough to “hit the point” – it can claim

to be explanatory.

4 Simulations that fail to explain

In the following I will to discuss two examples of computer simulations that

were designed by its authors to explain certain empirical phenomena but

ultimately fail to do so. But it is not only the failure to explain that I am

2This requirment could also be regarded as a second adequacy criteria, but to keep
things simple it has been left out from the list of criteria above.
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interested in. What concerns me more is the consequences these failures

had. In the one case it lead scientists away from the relevant questions and

made them indulge into the study of computer simulations that remained

almost completely useless for scientific explanation. In the other case it had,

as it seems, the effect of limiting the imagination so that some of the most

important features of the respecitve subject matter got overlooked.

Admittedly, both examples are examples of bad simulations. Why bother

looking at bad simulations? Because, in these cases the failures are just the

more obvious and they help us understand what to avoid. Also, at least

the type of simulations described in the first example has been immensely

popular for a long time.

4.1 Axelrod style simulations of the “evolution of co-
operation”

4.1.1 Typical features of Axelrod style simulations

My first example is concerned with the sort of computer simulations of “the

evolution of cooperation” that have become very popular after the publica-

tion of Robert Axelrod’s book Axelrod (1984) with the same title. Robert

Axelrod’s book is a surprising phenomenon for two reasons: First of all, be-

cause of the extraordinary success it had as far as its impact on the scientific

community is concerned. It spawned virtually miriads of subsequent studies

on the repeated prisoner’s dilemma (the model Axelrod used) and the“evolu-

tion of cooperation”that went more or less along the same lines and employed

similar methods as Axelrod. An annotated biography from 1994 (ten years

after the first publication of “The Evolution of Cooperation”) lists more than

200 articles that directly relate to Axelrod’s study. But Axelrod’s approach

is also surprising for a second reason: The almost complete uselessness his

and his follower’s computer simulations of the reiterated prisoner’s dilemma

proved to have for the empirical research in the field.

How did Axelrod arrive at his results about cooperation and why did it

prove so difficult to support them empirically? In order to find out, if and

how cooperation can emerge among egoistic agents, Axelrod started off with
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a game theoretical model of a certrain type of cooperation dilemma, the well

known prisoner’s dilemma. Since the one shot prinsoner’s dilemma does not

offer many strategic opportunities (no rational player will ever cooperate in

the one shot prisoner’s dilemma, and any player who does fares worse than

if he or she did not), Axelrod built his simulation on top of the repeated

prisoner’s dilemma. He conducted his famous computer tournaments of the

repeated two player prisoner’s dilemma with strategies that he had got from

many different participants. On top of the computer tournament he built an

“evolutionary simulation” simulating a population dynamical process among

these strategies by using the payoffs they gained in the tournament to calcu-

late their fitness values.3 Already at this point we may notice that the setup

of Axelrod’s simulation does not resemble any empirical situation whatso-

ever. The prisoner’s dilemma itself provides a concise abstract description

of the essential features of many dilemma situations that occur in reality,

but nowhere in this world we find an arrangement that really corresponds to

Axelrod’s computer tournament that is built on top of it. How are we then

to draw conclusions from the computer tournament with respect to empirical

cooperation dilemmas?

The way Axelrod proceeded was to examine the simulations results and to

draw generalizing conclusions from them. This is how Axelrod arrived at such

conclusions as that the strategy Tit For Tat is generally a very good strategy

in the repeated prisoner’s dilemma, that a strategy should be friendly in the

sense that it should not start to defect, that a strategy should punish defec-

tion but not be too unforgiving, that the evolution of cooperation depends

crucially on the continuation of interaction and the like. Unfortunately, sub-

sequent research showed that none of these conclusions was generally true.

It suffices to change the simulation setup but a little bit and it pays to be

a cheater, or to be unforgiving (as is the case when the simulation is run

with all two state automata as a base strategy set). And, of course, Tit

For Tat does not always win the race. The general finding that cooperative

3The details are not important here. There exist many descriptions the best of which
is probably still Axelrod’s own book Axelrod (1984). Simulations of the repeated pris-
oner’s dilemma similar to Axelrod’s computer tournament can easily be found on the web.
(Google for “CoopSim” and you will find one of them.)
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strategies can be successful in the repeated prisoner’s dilemma as such is just

a trivial consequence of the game theoretical folk theoreme (Binmore, 1998,

p.???). And all other generalizing conclusions Axelrod drew were simply not

warrented.

Nonetheless, Axelrod’s pioneering work triggered off a multitude of similar

computer simulations of the prisoner’s dilemma or other games. Most of their

author’s were too cautious to draw such sweeping conclusions as Axelrod did.

Still, regarding their design and the kind of reasoning they rely on, many of

these simulations follow the pattern that was set by Axelrod’s role model.

In order to classify this type of simulation, we may speak of Axelrod style

simulations.

Generally speaking, Axelrod style simulations are computer simulations

that share the following typical features:

1. They are constructed from a set of plausible assumptions or on top

of a common mathematical model. In many cases they are derived

from existing Axelrod style simulations by adding new parameters or

changeing other boundary conditions. The concrete shape of the model

remains largely arbitrary and at the descretion of the scientist who

builds it.

2. They are not related to any particular empirical situation. (And most

certainly there exists no close fit to empirical reality in the sense ex-

plained before.) Thus they remain a primarily theoretical endeavour.

3. If any conclusions are drawn from the simulation, they are usually

drawn by means of inductive generalizations from the simulation re-

sults. The simulation is thus used to establish very general points or

rules of thumbs about its subject matter.

4.1.2 How Axelrod style simulations

Let us look in more detail on a typical exponent of this tradition of simu-

lation based research to see how Axelrod-style simulations work in practice.

An in many respects good example for this tradition is provided by Rodolf
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Schüßler’s “Kooperation unter Egoisten” (Schüßler, 1990). Schüßler called

into question Axelrod’s assumption that continued interaction is a necessary

precondition for the evolution of cooperation. Quite the contrary to Axel-

rod’s thesis, Schüßler wanted to show that cooperation can even emerge on

“anonymous markets”. In order to do so he set up is own Axelrod-style sim-

ulation where agents are free to break up the cycles of interaction whenever

they want. This encourages a kind of hit and run tactic where agents do not

cooperate in the last round before stopping the interaction on their behalf

and take away the benefit of single sided non cooperation without being pun-

ished. With the help of his computer simulation Schüßler could demonstrate

that even in this case cooperative strategies could – under certain specific

simulation conditions – outcompete the cheaters. The reason for this as-

tonishing phenomenon is quite easy to understand: When the interaction is

broken up, the previous parnters of interaction are forced to pick their new

partner from the pool of free players. As the cooperative players tend to

be bound in partnerships by other cooperative players, the pool is made up

mainly of cheaters. Therefore a cheater has only a small chance to find a new

partner that can be exploited.

As can be seen, Schüßler started off with some arbitrary and at best plau-

sible assumptions about an “anonymous market” that are in no way related

to any specific empirical situation (points one and two in the above list of

features of Axelrod-style simulations). But Schüßler also had a deeper mo-

tivation for his simulation experiments, which brings us to the third point:

the general conclusion that are derived from the simulation results. With his

simulation that showed that cooperation could even emerge on “anonymous

markets” Schüßler wanted to provide arguments against sociological norma-

tivism. Sociological normativism is by Schüßler understood as the thesis

that social order cannot be upheld without social cohesion and the appeal

to common norms. The classical proponents of sociological normativism are

– among others – Ferdinand Tönnies with his distinction of “Gesellschaft”

and “Gemeinschaft” and Emile Durkheim, who greatly emphasized the im-

portance of social bonds. By some modern sociologists (including Schüßler

himself) this question is linked with what they call Hobbe’s problem, the
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problem whether and to what degree social order and coordinated action is

possible without central authority. Schüßler’s simulation is linked with the

problem of sociological normativism in so far as it proves the “logical possi-

bility” (Schüßler) of norm conformant behaviour (if cooperation is taken as

normatively desired in this case) even under abscence of authority or other

previously fixed coordination mechanisms such as cohesion. But does the

prove of this “logical possibilites” really establish a strong point against so-

ciological normativism? This is not at all the case. The fact that something

is logically possible does not even remotely imply that it is possible in real-

ity. When sociological normativists speak for the importance of social bonds

they usually do not mean to assert that it is by logical necessity that the

social order requires some level cohesion to function properly. Rather they

draw on the social character of human nature. Therefore, in order to refute

them, one has to show why their conception of human nature is wrong or

that the empirical support for their claims is inconclusive and could be inter-

preted otherwise. Claims about mere logical possibilities as they appear in

the highly stylized and artificial setting of agent based simulations are noto-

riously weak arguments in sociological discussions. Not the least so because

it would probably be easy to draw up Axelrod-style computer simulations

where under different but equally plausible boundary conditions cooperation

is bound to break down when social ties are weakend.

To do Schüßler justice it must be mentioned that he is fully aware of the

just mentioned explanatory limits of his computer simulations and that he

discusses them frankly and with great intellectual honesty. It is only that

doing so he makes the reader wonder why he did care to fill a whole book

with computer simulations that demonstrate so little. The same questions

could be asked for many of the simulations that have been carried through

on the topic of the “evolution of cooperation”. Most later authors were, like

Schüssler, more carful in drawing sweeping conclusions from their computer

simulations than Axelrod. But if no conclusions can be drawn from them, the

question inevitably arises what these computer simulations are good for after

all. It is this question that has become crucial in the case of Axelrod style-

simulations. In order to answer it, let us see how Axelrod-style simulations
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fare when it is attempted to employ them in the context of an explanation

of some real world phenomenon.

4.1.3 The explanatory irrelevance of Axelrod-style simulations in
social sciences

The probably most dramatic example for Axelrod’s theory of the “evolution

of cooperation” is given in his chapter on the trench war on the western front

in the First World War. During the long phases when no great battle took

place, a rather surprising phenomenon occured on many parts of the front

in this war: Hostilities lost in intensity and the number of casualties was

reduced to a figure that is suprisingly small given the fact that the soldiers

virtually eyeballed their opponents on the other side. The phenomenon has

been extensively studied by the historians of the epoch, among others by the

sociologist Tony Ashworth Ashworth (1980), who found out that it was due to

a kind of “live and let live” system that emerged on many (roughly one third)

of the quieter parts of the front line: The soldiers hoped that if they weren’t

taking too hard on their enemies then the enemies would do the like to them.

Thus, contrary to standing military orders, a kind of cooperation between the

opposing front soldiers emerged on the basis of an unspoken“live and let live”

agreement. Axelrod draws heavily on the description of Tony Ashworth as a

source and he fully acknowledges Ashworth’s achievements. Axelrod treats

the “live and let live” system in trench war as an execellent confirmation

case for his theory. But would his theory really be able to explain the “live

and let live” system? In order to find this out, let us see, whether Axelrod’s

computer simulations can add anything to the explanation of the “live and

let live” system that goes beyond the explanation that is already given in

Ashworth’s historical narrative. To do so we first have to briefly reconstruct

the explanation that is given by Ashworth and then check whether there exist

aspects of the phenomenon that Axelrod can explain better.

Ashworth, in historical treatment, identifies the following causes for the

“live and let live” system:

1. The strategical deadlock. It was virtually impossible to move the front-

line for either side.
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2. The natural desire of most soldiers to survive the war.

3. The unpersonal, “bureaucratic structure of agression” (Ashworth, 1980,

p. 76ff.).

4. Empathy with the soldiers on the other side of the front.

5. Whether elite troops or non elite troops were fighting on either side.

“Live and let live” was much less frequent where elite troops were in-

volved. (According to Ashworth this was the most decisive factor of

all.)

6. The “esprit de corps” that can, however, become either conductive or,

in the case of elite troups, impedimental to the emergence of the “live

and let live” system.

7. The branch of service. Infantry soldiers had to face a much greater

danger and consequently had a greater interest in “live and let live”

than artillery soldiers.

8. The limited means of the military leadership to supress “live and let

live”. (Only later they found an effective way to do so by organizing

raids on the enemy trenches.)

9. Initial causes such as christmas truces, bad wheather periods when

fighting was impossible, coincidental temporary ceasefire due to similar

daily routines on both sides (mealtimes).

At first sight it would seem quite obvious that Axelrod’s computer model

hardly captures any of these causes. If at all then only the first cause, the

strategical deadlock situation the soldiers were caught in, could roughly be

interpreted as a repeated prisoner’s dilemma. But then, this is only one in

a long list of causes, which means that Axelrod’s model is far from fullfilling

the adequacy requirement. It would therefore mean to strongly distort the

historical situation if we were to maintain that the soldiers cooperated in the
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“live and let live” type fashion, because they were caught in a repeated pris-

oner’s dilemma situation and because – as computer simulations demonstrate

– “tit for tat” often is a good strategy in such situations.

However, if the model helps to give us a deeper or more precise under-

standing of one of the different factors that contributed to the “live and let

live”-system, Axelrod’s model would still have some explanatory value, even

if only as a partial explanation. Also, we could still try to link some of the

other causes to Axelrod’s model by assuming that they determine the pref-

erences of the soldiers and thereby the payoff parameters of the repeated

prisoner’s dilemma that – according to Axelrod’s interpretation – they play

with their enemies. Thus, it is not unplausible to assume that the status of

the troop (elite troop or non elite troop) had a bearance on how the soldiers

valuated the situation they were in. While a non elite soldier would prefer

to be a coward and live an elite soldier might prefer to fight and risk death.

Consequently, elite soldiers might not even face a prisoner’s dilemma. Quite

in harmony with Axelrod’s model this could help to explain why “live and

let live” appeared only in one third of all cases.

The way Axelrod proceeded when determining the payoff parameters was

to asses by plausible reasoning the ordinal relations between the different al-

ternatives for soldiers according to their assumed preferences. Unfortunately

this is not enough, because the outcome of Axelrod’s simulation is strongly

sensitive to the cardinal values of the payoff parameters. This violates the sta-

bility requirement. Therefore we cannot know whether the soldiers followed

the “live and let live” strategy, because of what Axelrod’s model suggests, or

whether the opposite is true.

More generally, the difficulty of applying Axelrod style simulations to

political or historical science results from the problem that the values of

the required input parameters cannot be found ready made in the historical

records. They must be reconstructed through a complicated and error-prone

interpretation process. It is therefore hard to see, how the stability require-

ment can be fullfilled at all for simulations that are not extremely robust

right from the beginning. As we shall see later, a similar problem applies for

the application of Axelrod-style simulations in biology. Only that there we
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have more reason to hope that it can be overcome by simulations that are

more closely knit to the measurable quantities of the empirical processes.

What then are we left with? Since Axelrods simulation as applied to the

“live and let live” system of the first world war violates the both the adequacy

requirement and the stability requirement (the latter is the case even, if we

treat it as a merely partial explanation), it cannot claim to be explanatory.

At best it delivers us an alternative metaphorical description for the strate-

gical situation the soldiers found themselves in in terms of game theoretical

concepts. Offering no more than that it has hardly anything to add to the

detailed explanations Ashworth offers within his historical narrative.

The example shows how difficult it is to make any good use of Axelrod

style simulations in the social sciences. Partly this has to do with typical

difficulties that all formal approaches face in the social sciences outside eco-

nomics. There are two main reaons for the limited success of formal methods

in social sciences. First of all, social processes do often result from an intri-

cate set of intervoven causes (see the example above), for only some of which

we have a formal description ready at hand. But if we cannot single out the

causes that can be described formally then any accuracy that is gained by

the formal description inevitably gets lost when we reintegrate the formally

described causes with the other causes in a comprehensive explanation. The

second reason is that measurement is difficult in social sciences and that only

few quantities can be measured with accuracy. (In the above example, how

would you measure the empathy the soldiers felt for the likes of them on the

other side of the fontline?) It is not only true for computer simulations that

our formal modelling is just as good as our measurement capabilities. Partly,

however, the reason why Axelrod style simulations fare so badly is due to the

fact that it is just a very incautious type of modelling.

4.1.4 Do Axelrod-style simulations do any better in biology?

The sceptical conclusion about Axelrod-style simulations the last section

closes with becomes even more inevitable when we look at examples from

biology, a field were the obtacles agains formal modelling are much smaller

than in social sciences. Being not a biologist myself, it would of course be
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difficult for me to estimate the usefulness of Axelrod style simulations for

the explanation of cooperative behaviour in biology. Luckily, there exists a

comprehensive survey by the biologist Lee Allen Dugatkin on “Cooperation

among Animals” (Dugatkin, ???) that pays some particular attention to the

manyfold of game theoretical computer simulations that have come up in the

aftermath of Axelrod’s “Evolution of Cooperation”. In the beginning of his

book Dugatkin list a whole number game theoretical computer simulations

and their results, which – being the results of computer simulations alone

– are purely theoretical of course. The major part of his book consists of

a survey of the empirical reasearch on the various instances of cooperative

behaviour that can be found in the animal kingdom. Interestingly, there

exists not a single instance of cooperative behaviour in the animal kingdom

to which any (!) of these computer simulations could be applied in a strict

sense.

This is not to say that biologists did not try to do so. The attempt

has been made, for example, to apply Axelrod’s and Hamilton’s theory of

the evolution of cooperation to the behaviour of predator inspection that is

found among various types of shoal fishes. In an early paper by Manfred

Milinski on the topic (Milinski, 1987), Milinski tries to find out – with the

help of an inventive experimental setup – whether pairs of inspecting fishes

play “Tit for Tat” like Axelrod and Hamilton postulated it for the repeated

prisoner’s dilemma. In order to do so Milinski also asesses (or rather esti-

mates) the payoff parameters of Axelrod’s model as applied to this particular

case. Like Axelrod in the case of the “live and let live” system in the trench

war of th First World War, he confines himself to an assessment of the or-

dinal relations between the payoff parameters. But unfortuantely Axelrod’s

model is sensitive to the cardinal values of the payoff parameters. In later

studies on the topic of predator inspection the attempt to explain this type

of behaviour with Axelrod’s theory of the “evolution of cooperation” seems

to have been completely dropped. In a paper that appeared ten years later

(Milinski und Parker, 1997) than the first study, Milinski and Parker, even

leave the question open, whether pairwise predator inspection is an instance

of cooperative behaviour at all, although this still appears likely. A major
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methodological problem is that – despite some very ingenious experiments

– it is very difficult to measure or to estimate reliably both the risk a fish

runs when inspecting a predator and the fitness relevant payoff a fish receives

from inspecting. (The former has to some degree been achieved by Milinski

and Parker, but the latter remains an open riddle).

As Dugatkin summarizes the situation in the concluding chapter of his

book, there exists, with one exception, no case of cooperative animal be-

haviour where the payoff parameters required as input for the game theo-

retical computer models could be measured. Therefore it is no surprise that

none of the many Axelrod style simulations of the evolution of cooperation

could be applied strictly to any of the empirical instances of cooperation in

biology. It is therefore very doubtful whether this type of simulations (which

remains remote from concrete empirical research and rest purely on “plausi-

ble”assumptions) is of any use for biologists at all. Another leading exponent

of the game theoretical approach in biology puts it the following way: “Why

is there such a discrepancy between theory and facts? A look at the best

known examples of reciprocity shows that simple models of repeated games

do not properly reflect the natural circumstances under which evolution takes

place. Most repeated animal interactions do not even correspond to repeated

games.” (Hammerstein, 2003, p. 83) And after a long discussion of problems

that the study of cooperative behaviour of animals faces the same expert

concludes: “Most certainly, if we invested the same amount of energy in the

resolution of all problems raised in this discourse, as we do in publishing

of toy models with limited applicability, we would be further along in our

understanding of cooperation.” (Hammerstein, 2003, S. 92)

One might object that maybe some of the models can be further devel-

oped so that they actually fit some of the empirical examples of reciprocity.

This is of course true: It does not matter whether one starts constructing a

model with a certain empirical application case in mind and builds it around

measurable quantities (bottom up approach) or whether one starts with ar-

bitrary plausible assumptions and only later on tries to adjust the model to

specific empirical situations (top down approach). But the one way or the

other, our the models and the empirical processes they are related to should
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be brought together. For, just because we have a model that shows us that

for this or that reason cooperation evolves or breaks down, we cannot con-

clude when we find some empirical example where cooperation evolves or

breaks down that it did so by virtue of the very same causes for which it

did in the model. It could also have been the effect of quite different causes.

Unless there is a close fit between model and reality we will never know.

But instead of seeking to achieve a fit between model and reality, the

tradition of Axelrod-style modeling of the “evolution of cooperation” largely

proceeded a different course. Computer simulation followed after computer

simulation, each of them changeing the basic configuration in some way or

other or trying the addition of new and different parameters. But most

of these simulations never got to the ground of empirical testability. This

way, however, computer simulations only lead away from the real scientific

problems.

4.2 Can we simulate the “Social Contract”?

But it is not just because it leads us scientifically astray that too much

indulgence into pure model research is bad. The other problem is that it

may prevent us from seeing the most obvious, because our imagination is

limited by the narrow lense of our own models. This is what seems to have

happened to some of the modern game theoretical interpretations of social

contract philosophy.

Such a game theoretical interpretation has been put forward, among

others, by Brian Skyrms in two books, “Evolution of the Social Contract”

and “The Stag Hunt and the Evolution of Social Structure” (Skyrms, 1996)

(Skyrms, 2004), in both of which he presents computer simulations to deal

with classical questions of social contract philosophy. The theory of the social

contract is rooted in the philsophy of the 17th and 18th century with Thomas

Hobbes’“Leviathan”being the most famous work dedicated to social contract

philosophy and Skyrms believes that we can raise the discussion to a higher

level by applying the modern tools of game theoretical computer simulations

to it. It is as a stag hunt game that Skyrms presents the central question of
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the social contract in the latter of the two works (though he acknowledges

that the prisoner’s dilemma usually is the more common candidate): “How

do we get from the hunt hare equilibrium to the stag hunt equilibrium? We

could approach the problem in two different ways. We could follow Hobbes

in asking the question in terms of rational self-interest. Or we could fol-

low Hume by asking the question in a dynamic setting. We can ask these

questions using modern tools - which are more than Hobbes and Hume had

available, but still less than we need for fully adequate answers.” (Skyrms,

2004, p. 10)

Skyrms is by no means alone with his belief in the superiority of the

“modern tools” when it comes to social contract philosophy. His belief is

shared by many analytic philosphers. Thus we read in a recent introduction

to philosphy: “It would be interesting and important if we could make more

precise the sort of argument Hobbes offered, so that we could say just why

it is that the advantages of civil society over the state of nature ought to

appeal to anyone.” Appiah (2003) The author goes then on to introduce the

prisoner’s as a “modern tool” which – as the reader is to believe – allows to

“make more precise the sort of argument Hobbes offered”.

Is it really possible to “make more precise the sort of argument Hobbes

offered” by translating the metaphoric langauge of 17th and 18th century

philosophers (e.g. Hobbe’s state of nature, Rousseau’s stag hunt metaphor)

into precise game theoretic models? In order to answer this question, let’s

first see what kind of problems the social contract theories of the 17th and

18th century philosophers deal with and then examine Skyrm’s treatment of

these problems. Social contract philosophy is traditionally concerned with

two different questions:

1. Normative social contract philosphy is concerned with justification of

political order and, furthermore, with the requirements a political order

must fullfill in order to be just.

2. Descriptive social contract philosophy tries to answer the question how

political order evolves out of anarchy and how just (or democratic)

order evolves from authoritarian oder.
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It is primarily the descriptive question of social contract philosophy that

Skyrm’s game theoretical discussion is addressed to. For that matter Skyrms

presents a number of simple game theoretical models, including his simulation

of the stag hunt game. His simulation of the stag hunt game is a territorial

simulation, where players on a two dimensional plane play a (one shot) stag

hunt game pairwise with their neighbours. They change their strategy (to

cooperate or not to cooperate) depending on to the most successful strategy

in their neighbourhood. Skyrms then examines the effects of the respective

sizes of the interaction and reproduction neighbourhood. He summarizes his

results as follows:

How much progress have we made in addressing the funda-

mental question of the social contract: “How can you get from

the noncooperative hare hunting equilibrium to the cooperative

stag hunt equilibrium?” The outlines of a general answer have

begun to emerge. Over time there is some low level of experi-

mentation with stag hunting. Eventually a small group of stag

hunters comes to interact largely or exclusiveley with each other.

This can come to pass through pure chance and the passage of

time in a situation of interaction with neighbors. ... The small

group of stag hunters prospers and can spread by reproduction

and imitation. The process is facilitated if reproduction or imi-

tation neighborhoods are larger than interaction neighborhoods.

(Skyrms, 2004, p. 123)

As far as the stag hunt game goes Brian Skyrms is surely right, but if this

model is to tell us anything about how political order evolves from anarchy,

Brian Skyrms completely misses the point. If Skyrms computer simulations

of the stag hunt game really was an adequate model for the evolution of the

social contract then we would have to conclude that political order could,

if only the neighbourhood structure were favorable enough, evolve from an-

archy even without the institution of a Leviathan, merely by the gradual

propagation of cooperation through neighborhoods. This is of course a most

delightful prospect, though, sadly, one for which there exists not a single
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precedence in history. Other than Skyrm’s simulations suggest and as the

authors of the 17th and 18th century well knew, there is no way to bring

about political order without a Leviathan of some kind. Apart from this

lapse, which obviously the “modern tools” could not prevent, there is another

omission that must appear striking to anyone who has ever wasted a thought

on what the requirements and conditions of political order are: Nowhere in

the various game theoretic models Skyrms presents in his two books is the

phenomenon of rulership (Herrschaft) and submission (Beherrscht werden)

reflected, even though this is probably the most basic phenomenon of politics

and a condition that surely any serious theory about the evolution of political

order must take account of.

Surprisingly, this blunder went largely unnoticed in the lively discussion

following the publication of Skyrm’s first book. Only Philipp Kitcher points

out that dominance hierarchies play an important part in evolution and that

the sort of symmetric games Skyrms looks at do not properly reflect these

(Kitcher, 1999). Kitcher’s remark leads in the right direction, but it does not

hit the point, because dominance hierachies as they exist among animals as

well as among humans are not the same as rulership, which is an exclusively

human phenomenon. The decisive difference is that a ruler can order a

subject to do something, while dominance merely means that the others

will give way to the dominant person (or animal), which is much less than

carrying out orders.

But what caused this rather grave oversight? How come that Skyrms

offers an answer to the fundamental question of the social contract that

is obviously wrong? What Skyrms and other analytical philsophers seem

to forget when they seek to make arguments from 17th and 18th century

philsophers more precise by reformulating them in game theoretical terms, is

that metaphors (like the state of nature metaphor or the stag hunt metaphor)

do not get any better if one makes them more precise only on the side of the

metaphorical image without paying due attention to the relation between the

metaphor and its object. If the relation between the formal model that is

to replace the metaphor and the object of the metaphor is not made more

precise (in terms of adequacy, stability and descriptive appropriateness) the
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epistemological strength of the model is not any greater than that of the

metaphor.4 Or, to put it briefly: A metaphor remains a metpahor even

if it employs a formal model as its object of comparison. For this reason

it is also a fairly irrelevant question whether the state of nature is better

described as a prisoner’s dilemma or as a stag hunt game or as some other

game. As the failure of Skyrms to provide a sound argument for either of

the questions of social contract philosophy shows, the miscarried attempt to

translate metaphoric descriptions into formal models may even disrupt the

whole argument.

In the case of the Axelrod-style simulations of the “evolution of the social

contract”discussed in the previous section it seemed that too much attention

was spend on the construction of models and too little attention on whether

the models are adequate. But when looking at Skyrms treatment of the social

contract one may easily get the impression that he has never thought about

the subject matter in question at all. At this point, however, it might be

asked if Skyrms really wanted to tell us anything about the social contract,

or if just wanted to show how some of the metaphors from the political

philosophy of elightment could be represented by game theoretical models

without any specific claim about their applicability in any (including the

original) context. But then, he explicitly relates his models to the social

contract. If this is to be taken serious then the severe misunderstandings

that result can only be due to the fact that he perceives his subject matter

exclusively through the narrow lense of his own models. To give a name to

the narrowing of perception or, rather, imagination as a result of the exclusive

occupation with the technical aspects of formal modelling, I propose to call

it “model think”. “Model think”occurs when we conceive reality only through

one specific brand of models and when we let other possibilities of conceiving

reality escape our attention just because they cannot properly be represented

with this brand of models.

4This is not to say that it is never useful to replace metaphors by models, for the
epistemological strength of a model can – if the subject matter in question permitts – be
increased, while that of a literal or poetical metaphor cannot.
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5 Conclusions

Quite a few lessons that can be learned from the previous examples of fail-

ures of computer models. Some of them are truisms, but as they are often

neglected they are important nontheless.

First of all, if our models are to be explanatory then the establishment of a

close fit between model and reality is at least as important as the construction

of the model itself. The biological examples such as Milinski’s and Parker’s

studies on predator inspection suggest that establishing this fit may even be

much harder and more time consuming than constucting the model itself.

Secondly, when there is no close fit between model and reality, then the

model has approximately the epistemological status of a metaphor. The re-

sults of such non explanatory simulations are hardly more than computer

generated metaphors. Therefore, one must be very careful when drawing

conclusions from them. At best one can regard these conclusions as mere hy-

potheses that still require an independent empirical confirmation. It should

be clear that explanations based on non explanatory computer simulations

amount to nothing more than model based story telling. Im am introducing

these terms, because I believe that we need some negative catch phrases to

characterise the misuses of formal models and, specifically, computer simula-

tions.

Finally, we should be aware of the fact that although the ease and power of

formal modelling has been greatly increased with the advent of the computer,

there still remain scientific areas where the advantages of formal modelling are

doubtful or where it is not possible at all. Computer simulations are just one

scientific tool among others, which is helpful in some situations but useless

in others. In my opinion the employment of the tool of computer simulations

should be seen as something that requires justification. Apart from the aim

to proof logical possibilities or to produce predictions it can be justified when

there exists a close fit to the sort of empirical situation the simulation models

or there is at least a realistic prospect of developing the simulation further

so that a close fit can be established. Where computer simulations cannot

not go beyond a merely metaphorical resemblance of empirical reality they
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are probably not worthwhile.
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