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Abstract: Part of the scientific enterprise is to measure the material world and to 
explain its dynamics by means of models. However, not only is measurability of 
the world limited, analyzability of models is so, too. Most often, computer 
simulations offer a way out of this epistemic bottleneck. They instantiate the model 
and may help to analyze it. In relation to the material world a simulation may be 
regarded as a kind of a “non-material scale model”. Like any other scale model, it 
does not per se give any scientific explanation but is first in itself an object of 
scientific enquiry, a world. Since this world is numerical, it is a priori measurable. 
Its role in scientific explanation will be discussed.  
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1 Introduction  
Part of the scientific enterprise is to explain the dynamics of the material world. The world, or 
a world, in this context may be understood as a system of parts and their relations as it 
develops in time. For explaining its dynamics, parameters that define the state of the system 
must be measured. However, not every scientifically interesting feature of the material world 
turns out to be measurable, be it for principle or for technical reasons. Principle restrictions 
seem to hold in the cases of quantum indeterminacy. According to quantum mechanics, the 
state of a system does not uniquely determine a set of values for all its measurable properties, 
but probability distributions only.1 Related to this on the level of the measurement of the 

                                                
1 A famous thought experiment by Einstein, Podolsky and Rosen was meant to demonstrate that the quantum 
mechanical description of physical reality is incomplete. The results of the proposed experiment were 
anticipated to prove that the restrictions on measurability of pairs of non-commuting variables could be 
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properties of particles is the indeterminacy of position and momentum or any other pair of 
complementary observable quantities. Such principle constraints on measurability may be 
regarded as the expectable limits of the mathematization of the world (though the limits of 
measurability may themselves be described mathematically). They have to be accepted, and 
they have to be reproduced in “realistic” scientific models and computer simulations of the 
phenomena. Technical constraints of measurability, in contrast, need not – usually should not 
– be reproduced by a model. Though it is impossible to overcome in general the limitation of 
the precision of measuring devices, any particular technical constraint may be overcome with 
advances in measuring technology. An example of how technical limitations can be 
misconceived as provably insurmountable is the following statement, which Arnold Eucken 
made in the 1949 edition of his textbook on chemical physics: “The rate of true neutralization 
reactions has proved to be immeasurably fast”. For his PhD student Manfred Eigen this was 
the incentive for his brilliant work on fast kinetics. He comments on this: “I found this 
quotation in Eucken’s Lehrbuch der Chemischen Physik while I was preparing for my 
doctor’s examination. Although as a student of Eucken, this book was for me the ‘bible of 
physical chemistry’, I was then at the age when one accepts practically nothing unquestioned, 
and so I started to reflect on just how fast an ‘immeasurably fast’ reaction might be” (Eigen 
1972). Eigen then developed relaxation methods, by help of which the kinetics of these 
reactions became measurable down to the nanosecond scale. For this he was awarded the 
Nobel price in 1967. 

However, with any methodological progress new questions arise and new constraints come 
up. These may concern not only the question whether the measurement of a certain variable 
of a particular system is possible with the methods available but also whether it is affordable, 
reliable, and quick enough; whether the system itself is manipulable in the desired way; and 
whether it is available or producible in the required quantity (Humphreys 1991); whether the 
relevant time scale is neither too large nor too small (Hartmann 1996); and whether there are 
ethical constraints (Peck 2004), which is most obviously an issue in the biological sciences 
but applies in other fields as well. In the sense of all these constraints not reflecting 
indeterminacy they may be regarded as resembling technical constraints to measurability. So 
there are many respects in which the measurability of the world can be determined only a 

                                                                                                                                                  
overcome by ruling out the other possible outcome that instantaneous long-range interactions of particles occur 
(Einstein et al. 1935). When the experiment was carried out, however, it turned out that the seemingly 
paradoxical results indeed occur, giving strong evidence for the non-locality of quantum states and leaving 
immeasurability untouched (Aspect et al. 1982). Experiments on the so-called quantum teleportation now take 
advantage from the non-locality (Bouwmeester et al. 1997).  
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posteriori, and in which it may fall short from the needs and desires of scientists with respect 
to observation, experimentation, and theory formation.  

There are several ways out of the epistemic bottleneck of limited measurability. In a few 
cases thought experiments might help, but as the EPR example has already shown (footnote 
1) this might not yield reliable results. In other cases, limits of measurability are overcome by 
the investigation of material systems that are supposed to resemble the system of interest in 
relevant respects, like the investigation of the hydro- and aerodynamics of scale models 
instead of real ship bodies and airfoils in water tanks and wind channels. These “naturalistic 
analog simulations” (Trenholme 1994) or “experimental simulations” (Hartmann 1996) will 
not be at issue in my paper. I concentrate on the third way, on computer simulations, which 
are in many cases the way of choice to collect data that cannot be obtained by an 
investigation of a material system. While they are usually performed on a computer, a human 
calculator, e.g., is also a possible “device” for running such simulations, though with limited 
calculating capacity. Consequently, computer techniques applied in simulation are regarded 
by Paul Humphreys as extensions of our computational abilities, comparable to the 
technological enhancement of our sensory apparatus by scientific instruments (Humphreys 
2004).  

My main concern in this paper is to specify what a computer simulation is. After a short 
sketch on scale models, which will later turn out to show some similarities with computer 
simulations, I will specify what theoretical models are and how they are used to predict the 
dynamics of a material system. Next, I will analyze how simulations are related to theoretical 
models on the one hand and to the material world on the other. As examples I will use 
continuous models of a chemical oscillator, the Belousov-Zhabotinsky reaction. Next, the 
question will be addressed what the simulacrum is that is “produced” in a computer 
simulation. Candidates are, e.g., processes (or systems) that mimic the real world, virtual 
worlds, and solutions of theoretical models. All these candidate definientes cover important 
aspects of what a computer simulation is, but none accounts for the whole truth. A synthesis 
is proposed which will finally give some insight into the epistemic role that simulations play 
for scientific explanation and into the way how simulations help to overcome some 
consequences of the technical limitations of measurability.  

2 Material scale models 
Let me start with a naïve concept of a model: a model is an entity that presents characteristics 
of something else. A model car displays, to some extent, the shape of a car and the minimal 
function of turning wheels; a model airplane the aerodynamic characteristics of an airplane 
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but not its size and carrying capacity; the model of the body of a ship in a water tank the 
hydrodynamic properties of the ship; the model of an aircraft wing in the wind channel 
aerodynamic properties of the wing, which holds also for the wing in a water tank if some 
theoretical effort is made to account for the different Reynold’s numbers of the media. These 
concrete scale models are obviously not theoretical models, to which simulations shall be 
related below, but they show some characteristics that will be relevant with respect to 
simulations themselves. A conceptual link is that, if a concrete scale model represents the 
mechanism of the modeled system, it can be regarded as simulating its dynamics by 
providing an analog system (Trenholme 1994).2  

Several things can be learned from scale models about the relation to the entity they are a 
model of. First, that they depict aspects of the modeled entity: what a Ferrari looks like, how 
a wing behaves in laminar and in turbulent flow, which forces water flow exerts on the hull of 
a ship. Second, representation is restricted to selected characteristics of the entity, e.g., not on 
the size, not on being able to drive by own force (in the case of a matchbox car), and it may 
represent them in a simplified way. Third, the entity that is “represented” might not or not yet 
exist. The latter is usually the case when engineers are testing a model to learn for 
constructing an airplane or a ship, and models of spaceships like the Enterprise represent 
something that most probably will never be built in reality. The fourth thing we can learn 
from the example of concrete models is that they may in fact fail to represent the 
characteristics to the desired precision they are meant to represent. A model car may badly 
represent the shape of the modeled car; a model wing that has for example not an adequate 
surface may not represent the aerodynamic properties of the real wing.  

Having the examples in mind, we must specify the naïve concept of a model even with 
respect to material models: the representation relation need not hold in a way of a strict 
mapping, there need not hold a homomorphism (or even an isomorphism) between model and 
modeled entity. The model is conceived as representing particular characteristics of the 
modeled entity, and it is the matter of the quality of the model whether or not it represents 
adequately what it is meant to represent. There are good and bad models (and everything in 
between), and there might not be an absolute quality scale: a model may be good in one 
respect and a bad one in another. It is perhaps most useful in overemphasizing (and thus 
badly representing) a certain trait of the depicted entity.  

                                                
2 There might be a problem using this term with respect to so-called model organisms in biology, like the mouse 
being used as a “model“ for the immune system of humans. “Scale model”, I admit, would be a strange label. 
However, it needed a longer argument to decide whether or not the use of “model” in this case must be 
reconstructed differently anyway (Keller 2000). 
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3 Theoretical models  
Theoretical models is cartegorically different from a scale model. It is a piece of scientific 
theory and does not depict and mimic the modeled system, as a scale model does, but 
describes it, usually in a formalized way. A theoretical model is a set of assumptions about 
some object or system (Achinstein 1968). Such a model may describe the entity or system in 
a certain state or the dynamics going on in the system, it may be static or dynamic. In the 
context of simulations, we are interested mainly in dynamic models (Hartmann 1996, 82-83), 
especially in those that refer to the internal mechanism that brings the dynamics about. Such 
models may be regarded as not only describing but also as explaining the process under 
consideration. “Dynamic” here does not mean that the model itself has any kinetic properties 
but only that it describes the dynamics of a material system. Regarding computer simulations 
as simulations of the model’s behavior (Hughes 1999) therefore misconceives the relation 
between models and simulations.  

An example of an explanatory dynamic model is the Oregonator, a model of the Belousov-
Zhabotinsky reaction (BZ reaction). This reaction is famous for displaying chemical 
oscillations in space and time, which are observable as periodic color changes of the reaction 
medium. The overall reaction is an oxidation of malonic acid by bromate, yielding formic 
acid, carbon dioxide and bromine. Cerium ions play a catalytic role, and the oscillatory 
change of the different colors of Cerium ions in two different oxidation states accounts for 
the color changes. The complicated chemical reaction can be described by a system of 14 
reactions, known as the FKN (Field-Körös-Noyes) mechanism (Field et al. 1972). A 
simplified set of only 5 reactions could be isolated from this FKN mechanism that is 
sufficient to describe the behavior of the system. It was named the Oregonator, after its 
institution of origin, the University of Oregon (Field and Noyes 1974). These systems are two 
theoretical models, the more detailed FKN model, and the more easily tractable Oregonator. 
The following chemical equations define the Oregonator:  

A + Y   X 
X + Y    P 
B + X    2X + Z 
2X    Q 
Z    fY 

with A for the concentration of BrO3
-
; B, P and Q having been assigned to the concentrations 

of various compounds in the exploration of the model; X, Y and Z being interpreted as the 



 6 

concentrations of the intermediates HbrO2, Br
-
, Ce(IV); and f being a stoichiometric constant. 

Reaction constants must be assigned to each direction of each reaction.3 

After introducing the reaction constants, rate equations can be stated from which ordinary 
differential equations (ODEs) can be deduced for the change in time of each of the three 
intermediates of the reaction. For easier numerical handling, Field and Noyes transformed 
their model into a dimensionless form:4  

dα/dτ = 0 s(η - ηα + α - qα2), 
dη/dτ = s-1(- η - ηα + fρ), 
dρ/dτ = w(α - ρ). 

This system of three ODEs describes the kinetics of the BZ reaction; it is a dynamic model of 
the reaction.5 Unfortunately one cannot calculate the state of the system at time τ from the 
initial conditions, since the equation system cannot be solved analytically. In other words, the 
theoretical description of the BZ reaction by the Oregonator is almost useless for predicting 
the dynamics of the system – as long as mathematical analysis is regarded as the only means 
to integrate the equation system (see, e.g., (Humphreys 1991) for a discussion of the 
mathematical intractability of many continuous theoretical models, and (Hughes 1999) for an 
account of this problem in a discrete model). At least, one can assume from the first 
differential equation or from the autocatalytic third reaction of the mechanism that the model 
yields oscillations within a certain parameter range. This is something, but desired is more, 
and more is achieved by means of numerical integration in computer simulations. I will come 
back to this in the following sections on simulation.  

The quality and usefulness of a particular theoretical model may be judged differently in 
dependence from the aspects of a material system that shall be explained. I take it here that an 
epistemic goal that is followed with theoretical dynamic models is to predict the dynamics 
under certain conditions and to identify qualitatively discernable structures like singularities, 
limit cycles, or regions of particular dynamical behavior. Though the FKN model gives a 
more realistic description of the BZ reaction than the Oregonator, the Oregonator is much 
better to handle and therefore more useful for an exploration of the behavior of the reaction 

                                                
3 The overall reaction results to: fA + 2B  fP + Q. 
4 For the values assumed for the constants and for the initial conditions as well as and for the definition of the 
dimensionless variables and constants see Fields and Noyes (1974, 1879). 
5 It should be noticed that, in contrast to what model theory calls a model, a scientific model is not just a 
mathematical structure, which is a set of objects and a set of relations defined on the object set (Balzer et al. 
1987). It includes what in the structuralist jargon is called an ‘intended application’, by providing an 
interpretation of the variables (Krohs 2004). 
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system under different conditions. One may have to be satisfied with a qualitative match of 
model and modeled system if otherwise the predictive power would be lost.  

4 Relations of simulations 
A way that allows for predictions even in cases where no analytical solution can be obtained 
from a theoretical model is running simulations. In such a case, the model is instantiated on a 
computer and developed in time, which may yield the desired solutions by numeric 
integration of the equation system. Thus, via simulation, a model may be used as a predictive 
tool despite its analytical intractability. It has often been put forward that simulation could 
therefore be conceived in a way as experimenting with theoretical models and there is a near 
consensus in regarding simulations as “numerical experiments”, a new kind of scientific 
method that lies somewhere in between theory and experiment (Rohrlich 1991; Humphreys 
1994; Hartmann 1996; Winsberg 2003; Peck 2004). The methodological aspects that 
numerical experimentation shares with one and the other method were thoroughly analyzed 
(Winsberg 2003). This, however, does not explain the structural aspect of this relation.  

4.1 Simulations as related to theoretical models 

Simulations provide numerical solutions to theoretical models and are run primarily when 
theoretical models cannot be integrated analytically (Humphreys 1991). They may, of course, 
be helpful also in cases where analytical methods are available (Hartmann 1996, 
acknowledged by Humphreys 2004, 108). Simulations are thus a means of analyzing 
theoretical models. It will shed light on the relationship to look at the Oregonator example, 
which shows that this relationship is not to be described as a faithful instantiation of the 
model by a simulation.  

The Oregonator as described above is a simplified model of the BZ reaction with only three 
intermediates. But three is already too much for an analytic treatment. There are no known 
methods to analytically obtain quantitative and even many qualitative results from such a 
system of ODEs, so Field and Noyes’s integration of the system had to be performed purely 
numerically (Field and Noyes 1974, 1882). This was done by way of stepwise integration, 
using the established Runge-Kutta method. Roughly and simplified, this method may be 
described as reconstructing a trajectory in the phase space as described by a set of ODEs by 
estimating its slope at the beginning of an interval and stepping forward one interval ∆t on a 
straight line defined by the starting point and estimated slope. The endpoint of the line 
segment is taken as the starting point of the next interval, where the procedure starts again, 
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and so forth. The resulting traverse will follow more or less closely the trajectory of the 
system but always shows some deviation. The discretization error is smaller in the actual 
Runge-Kutta method than it appears from this sketch, but it is nevertheless present (Hairer et 
al. 1993).6 The error per step, the local discretization error, depends on the increment ∆t. It 
can be minimized, though never completely eliminated, by decreasing ∆t. Unfortunately, 
there are two restrictions to decreasing ∆t, since this leads to an increase of the number of 
steps that must be performed to simulate a certain interval of the trajectory. First, more steps 
lead to an increase of the required computation time. Second, and even worse, it results in an 
increase of another kind of error: every computation is done with a limited number of digits 
and therefore leads to a rounding error. This numerical error increases with the number of 
steps, so a decrease of the increment ∆t, while decreasing the discretization error, leads not 
only to an increase of required computing power but to an increase of the numerical error. 
This already shows that the simulated system may come close to the system described by the 
theoretical model but nevertheless differs from it. This might be regarded as merely a lack of 
precision of the simulation with respect to the model. The simulation of the Oregonator, 
however, had to face another problem. The system of ODEs turned out to be “stiff”, i.e., to 
show quick relaxation of one variable as compared to the others. For not ending up with 
qualitatively erroneous results, the integration of stiff systems requires special methods 
(Hairer and Wanner 1996). Field and Noyes were aware of this, mentioning that even with 
small increments “the computed values … oscillate wildly about their asymptotic values” 
(Field and Noyes 1994, 1880). The problem was overcome by setting one differential 
quotient = 0 when these wild oscillations began during the integration of the system, i.e. by 
making changes to the system.7  

From this description of the simulation we learn that the simulated system differs from the 
system described by the model at least in the following three respects: (i) is has a discrete 
rather than a continuous time scale; (ii) its results deviate from those to be expected from the 
theoretical model by the sum of discretization and numerical errors; and (iii) it deviates by 
changes that had to be made on the descriptive level in order to overcome the problems that 
the stiffness of the theoretical model poses on numerical integration. While (ii) can be seen as 
being just some imprecision, the theoretical modifications (i) and (iii) show that the model 

                                                
6 The method uses, e.g., not the slope at the beginning of an interval but the average of the slopes at the 
beginning, in the middle, and at the end of an interval 
7 The results were double-checked, using a different integration method, and turned out to be reliable (Field & 
Noyes 1994, 1880). 
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that is the basis of the simulation is not identical with the theoretical model.8 The simulation 
does not strictly show the dynamics of the theoretical model. It shows the dynamics of 
another system, but this dynamics is similar to the dynamics of the model. The theoretical 
model may thus be regarded as a simplified and in the present case non-computable 
description of the simulated model. Seen the other way around, the simulation is an 
instantiation of the theoretical model. From Section 3 this relationship is already known to 
hold as well between theoretical model and material world: the theoretical model is a 
simplified but often not computable description of the world. Since the model explains the 
dynamics of both, the material world processes and the simulation, both are to be regarded as 
instantiations or intended applications of the same model.  

The case is similar for simulations run on an analog computer, though there is no 
discretization error, and though the theoretical model can in many cases simply be “plugged 
together”, without modifying the mathematical structure. The simulation is set up more 
directly from the set of ODEs than in the digital case. However, in this analog case the 
physical system, the analogue computer, introduces deviations from the theoretical model. 
They may be negligibly small in many cases, but the electronic circuit elements are subject to 
limited stability and they introduce systematic errors due to unavoidable nonlinearities, in 
addition to the generally limited precision (Smith and Wood 1959; Mead 1989). Being a 
physical device, the setup analog computer is not and even does not approximate the 
theoretical model but is its –often faithful – instantiation.  

4.2 Simulations as related to the material world 

Before being able to define the concept of a simulation, the other relationship must be 
inquired that holds between simulations and the material world. As Stephan Hartmann 
pointed to, “the most significant feature of a simulation is that it allows scientists to imitate 
one process by another process” (Hartmann 1996, 77). We find this confirmed in the 
Oregonator example, where the simulation is meant to describe and to predict the behavior of 
a material dynamic system, namely the BZ reaction system. The “imitation” usually relies on 
approximations and idealizations but may include even “self-conscious falsifications” 
(Winsberg 2003), which is nicely illustrated in the Oregonator example by the intervention of 
setting one differential quotient = 0 for certain intervals of a simulation. This is not only a 
deviation from the theoretical model but also contradicts the testable expectation that the 

                                                
8 Nevertheless, the theoretical model cannot be replaced by the model that is the basis of simulation, since there 
is no reason to assume that the latter describes the world as good as the further. Besides, the latter is the more 
complicated – though better computable – model. 
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concentrations of the intermediates in the chemical reaction are not constant for longer time 
intervals. It is an accepted misfit between the simulation and the chemical reaction, a 
deviation of the goal to imitate the chemical system, which is accepted in order to avoid 
obviously erroneous results by the numerical integration of the equations. But “imitation” 
comes in degrees anyway.  

We can reconstruct the imitation relation that holds between a simulation and a process in the 
material world as an indirect one, mediated by the theoretical model of which both, the 
simulation and the material system, are instantiations. The theoretical model describes a 
material system and explains its dynamics. It describes as well the dynamics of the 
simulation. According to Peter Achinstein, one important trait of a model is that it “may 
display an analogy between the object or system described and some other object or system” 
(Achinstein 1968). This is exactly what the theoretical model does with respect to simulation 
and material world. The structural similarity of both systems, of course, is present 
independently of the unifying description by a theoretical model. So the simulation may be 
regarded as a scale model of the modeled system, though an abstract one, that depicts the 
system. But it is not in itself an explanation of any process, as, e.g., the structure of a car of a 
particular brand is not in itself an explanation of the structure of another sort of car, though 
both will be similar in many respects. The explanatory relation that holds between simulation 
and real world involves the detour via the theoretical model.  

However, there are many cases in which there is no material correlate to a simulation; it need 
not be present in reality what is depicted by the image: in engineering at least, and we should 
not exclude simulation in this field from our considerations, the theoretical model is often 
built and simulations run already before the system is constructed. But even being aware of 
such “pre-imitation” is not sufficient to do justice to simulation, it may be used for tackling 
more principle questions. Let me have a look at the predecessors of the Oregonator. Scientists 
had been thinking about theoretical possibilities of realizing chemical oscillations long before 
the FKN reaction scheme of the BZ reaction was established. Two famous models were 
developed to prove the possibility of sustained chemical oscillations in reaction systems far 
from chemical equilibrium, Alfred Lotka’s model from 1920 and the Brusselator, developed 
and analyzed by Ilya Prigogine and his group in Brussels from 1968 on.  

Lotka (1920) develops a set of three hypothetical chemical reactions. The system generates 
sustained oscillation if undisturbed but does not return into or approach its previous state after 
perturbation. It has no limit cycle but assumes on disturbance a new cycle with the same 
frequency and different amplitudes. The Brusselator, in contrast, has a limit cycle and thus 
produces not only sustained but also stable oscillations. It uses a scheme of four chemical 
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reactions, one of which is an autocatalytic step similar to the one in the Oregonator. In 
contrast to the latter, only two and not three chemical intermediates are postulated (Lefever 
1968; Prigogine and Lefever 1968). Two-dimensionality allows for getting at least some 
qualitative results on the behavior of the model. Nevertheless, simulations had to be used 
extensively in the analysis of the theoretical model. It is noteworthy that there is no real 
process known of which these simulations may be regarded as imitations. While a reframed 
version of Lotka’s model was applied to the development of populations of predator and of 
prey and became famous as the Lotke-Volterra model in ecology, the Brusselator still lacks 
application to any material system. One reason for this is that it assumes a third order 
chemical reaction. Such a reaction is highly unlikely to occur because of the improbability of 
an encounter of three molecules in a homogeneous solution. Hence, the Brusselator was often 
accused of being an unrealistic model (see Fields and Noyes 1974) and it might well be that 
no realization of the dynamics of the Brusselator will be possible by any chemical system. So 
we either should not count numerical integrations of the Brusselator as computer simulations 
but, e.g., as pure numerical analysis, or have to admit that the characteristics of simulations to 
imitate one process by another process allows for exceptions and is not a necessary condition 
for a numerical integration being a simulation. The latter seems to be more plausible. The 
variables of the Brusselator are interpreted as concentrations of different molecule species; 
some constants as rate constants, others as stoichiometric factors. The Brusselator was 
developed to demonstrate the possibility of a certain dynamics within a chemical system. If 
“possibility” is interpreted as “thermodynamic possibility”, this goal was achieved, though 
the result might be judged differently with respect to the steric possibility of a third order 
reaction mechanism. At any rate, the numerical integration of the Brusselator is an 
application of numerical methods not to a mathematical problem but to a specific scientific 
problem. This may count as a criterion for judging it as simulation (Humphreys 1991, 502). It 
is the simulation of the dynamics of a material system, though not of a real but only of an 
imagined one (which might hardly count as an instance of imitation).  

5 The simulacrum of computer simulations  
A simulation is not completely characterized by its relations to theoretical models and, if it 
applies, to the material world. It shows us a simulacrum and this has to be characterized as 
well. The simulacrum is something that appears like something else in particular respects, 
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without having its substance or proper qualities.9 Nevertheless, it is something. So we must 
ask what the simulacra of computer simulations are. We have seen above, in section 4.2, that 
Hartmann’s view of simulations as processes that imitate other processes was matching the 
examples in cases where real processes are simulated. These processes are ‘worlds’ in the 
non-ambitious sense of the term introduced in the first paragraph of this paper. The processes 
that are subject of scientific enquiry are material worlds, the simulacra may be classified as 
virtual ones. And, in fact, talk about systems that are investigated by means of simulation as 
well as talk about simulacra quite commonly refers to worlds in this sense: The simulacrum is 
conceived as mimicking the real world (Winsberg 2001; Peck 2004); it is said that it may 
give us also information about non-real, possible or even impossible worlds (Hughes 1999, 
142), and simulations themselves are regarded as belonging to a virtual world (Winsberg 
2003; Peck 2004).  

How can simulacrum worlds be further characterized, besides being non-real or virtual? First, 
they need not even represent real worlds. This was the case with the examples of the Lotka 
oscillator and the Brusselator where there are no known chemical systems to which these 
models and the respective simulations apply (there may be ecological systems in the case of 
the Lotka model). The simulacrum of the Lotka model is at least a chemically possible world, 
while the one of the Brusselator might even be an impossible world because of the 
involvement of a third order chemical reaction. Some of the simulacra, however, fit well to 
processes in the material world, as is the case with the Oregonator simulations. Such 
simulacra are good abstract scale models. Sometimes they are regarded as accurate 
representations of real systems (Peck 2004), but I dare claim that accuracy of representation 
is for sure not the most relevant criterion and usually does not apply. The primary question, 
with respect to models as well as with respect to simulations, is whether they are adequate, 
not whether they are accurate. Adequacy is to be judged relative to the epistemic goals for 
which simulations are used. A non-accurate simulation – this seems to be the standard case – 
can be of great epistemic value if it sheds light on mechanisms, on qualitative peculiarities, 
on quantitative behavior within a certain parameter space, on the realizability of a certain 
dynamics with a system of a particular sort, etc.  

The relation to the material world therefore does not suffice to characterize the simulacra. 
Referring to one of the rationales for the employment of simulations gives a better clue to 
what the simulacra are. Simulations are run mainly in cases in which models do not yield 

                                                
9 This is the sense in which also Nancy Cartwright uses the term, though with respect to theoretical models, not 
to simulations (Cartwright 1983, 152-153). Applied to simulations only, my use of the term does not commit to 
a Cartwrightian anti-realistic account of scientific explanation but remains neutral in this respect.  
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analytic results that describe interesting states of the modeled system, so that numerical 
solutions were searched for. A characteristic of all computer simulations is thus that all their 
variables and constants are given numerically, in any state the system may assume. The 
numerical values can in principle be read out, for any of the variables. This is equivalent to a 
measurement of the state of the system; so all these simulacra are measurable worlds.10  

Measurability is a property that distinguishes simulations not only from material systems but 
also from many theoretical models. Models that are not analytically integrable are not 
measurable, and since simulations are based on systems that are more or less deviating from 
the theoretical models they are not themselves made measurable by the simulations. But there 
are also theoretical models that can be integrated by analytic methods. For example, the 
dynamics of many different physical systems is modeled as a harmonic oscillation, and the 
harmonic oscillator can be integrated by the sinus function. These theoretical models define 
measurable worlds as well. But there is an important difference with respect to the 
measurability of simulations: the analytic solvability of a theoretical model depends in part 
on the state of the art in mathematics. And, more important, one needs first to state the model 
before one can decide whether or not it can be integrated analytically.11 Especially, one 
cannot read from the system that shall be modeled – as long as no preconception with respect 
to the complexity of the dynamics allowed for the model is accepted – whether the model will 
be analytically integrable. This turns out only a posteriori. With simulations the situation is 
different: again, the available tools are highly dependent on the state of the art. One cannot 
say for once and ever what a simulation of a system will look like. But we know even before 
starting any simulation that any tool that may be used to integrate a model numerically will 
yield only numerical, i.e., measurable states. Simulations are a priori measurable worlds. 
Though I have developed this for the case of discrete simulation of continuous models only, 
this holds for discrete models as well and even for simulations that are run on an electronic 
analog computer. There, all variables are represented by electric potentials within an easily 
measurable range on a device that provides in itself the capacity of tracking the potentials. 
The precision of the simulation is more restricted than in the digital case due to the noise 
level and depends on factors like the constancy of temperature, speed of simulation, etc. 
(Smith and Wood 1959; Mead 1989). But with the given precision and reliability all 

                                                
10 The numerical values are defined even if they are not read out, so one might tend to speak of measured 
worlds instead. However, for counting as measured the values had to be not only defined but recorded, by an 
observer or by the computer, which need not be the case, so measurability is all that can be claimed.  
11 In many cases it may be possible for an experienced modeler to “see” this “immediately”, but this means 
nothing more than that one is able to conceive the model without writing it down.  
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parameters are measurable, and non measurable parameters of the machine the simulation is 
run on do by definition not belong to the simulation.  

Initially, I have discerned principle and technical restrictions to the measurability of the 
material world. We now may relate the measurability of simulations to these two kinds of 
restrictions. We have seen that there is no principle restriction to the measurability of 
simulations (while there are restrictions to setting up simulations with respect to the available 
numeric tools). Therefore, some principle restrictions to measurability of the material world 
may be overcome with simulations. This, of course, makes a particular simulation not 
realistic in this very aspect. It depends on the rationale of the research whether this may be 
aimed for, e.g., in investigating how the material world would behave if physics would be 
different. Of more general interest in using simulations is that they overcome technical 
limitations to measurability, which does not make the simulation unrealistic. It helps, in 
contrast, to collect information about the material system that could not be acquired 
experimentally.  

6 Conclusion: epistemic virtues of measurable simulacra 
Let me conclude with some considerations on the benefits that science draws from the a 
priori measurability of simulations or, more precise, of the a priori measurability of the 
simulacra. It was already mentioned that the main benefit can be seen in overcoming 
technical restrictions to measurability, but it must be discussed how the measurements taken 
from a simulation can help to explain material world processes. Let me assume 
contrafactually that in the BZ reaction the kinetics of some intermediate, say, HbrO2, was not 
measurable in the 1970s for technical reasons, though the intermediate itself was chemically 
identified. This intermediate is represented by one of the intermediates in the theoretical 
model of the Oregonator, X. The Oregonator describes the kinetics of the intermediate X 
which is supposed to be analog to the kinetics of HbrO2 in the chemical oscillator of the BZ 
reaction. But since the Oregonator is not integrable by analytic means, this leads neither to 
predictions about the behavior of HbrO2, nor is the theoretical model testable in this respect 
when the assumed technical limitations of measurability of the kinetics of HbrO2 cease to 
apply. Both epistemic restrictions can be overcome by means of simulation, since the a priory 
given measurability of the simulation helps to collect the missing data. First, predictions 
about the dynamics of the intermediate can be derived from measurements of the parameter 
in the simulacrum, under the assumption that the theoretical model is an adequate description 
of the reaction and the simulacrum an adequate instantiation of the theoretical model. 
Secondly, the theoretical model becomes testable by relying on simulations as soon as the 
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kinetics of the intermediate is measurable: experimental data may then be compared with data 
obtained from the simulation which again are assumed to give a reliable picture of what the 
model describes. A model like the Oregonator, which is not solvable analytically, can be used 
as a predictive tool and tested adequately only if it is instantiated by a system that allows for 
numerical output. Computer simulations allow exactly for this, due to the measurability of the 
simulacra.  
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