
Common Causes and The Direction of Causation∗

Brad Weslake†

14 June 2006

∗Forthcoming in aMinds and Machinesspecial issue on “Causality, Uncertainty and Ignorance”.
Thanks to audiences at Konstanz and Sydney, to the Russellian Society Discussion Group, and
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Abstract

Is the common cause principle merely one of a set of useful heuristics for dis-
covering causal relations, or is it rather a piece of heavy duty metaphysics,
capable of grounding the direction of causation itself? Since the princi-
ple was introduced in Reichenbach’s groundbreaking workThe Direction
of Time (1956), there have been a series of attempts to pursue the latter
program—to take the probabilistic relationships constitutive of the princi-
ple of the common cause and use them to ground the direction of causation.
These attempts have not all explicitly appealed to the principle as originally
formulated; it has also appeared in the guise of independence conditions,
counterfactual overdetermination, and, in the causal modelling literature, as
the causal markov condition. In this paper, I identify a set of difficulties
for grounding the asymmetry of causation on the principle and its descen-
dents. The first difficulty, concerning what I call thevertical placementof
causation, consists of a tension between considerations that drive towards
the macroscopic scale, and considerations that drive towards the microscopic
scale—the worry is that these considerations cannot both be comfortably ac-
commodated. The second difficulty consists of a novel potential counterex-
ample to the principle based on the familiar Einstein Podolsky Rosen (EPR)
correlations in quantum mechanics.
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I. INTRODUCTION

In this paper I criticise the view that the principle of the common cause constitutes
the grounds for a metaphysical reduction of the direction of causation to probabili-
ties. The structure of the paper is as follows. In SectionII I make some preliminary
remarks about the history of this project and the philosophical method appropriate
to evaluating it. In SectionIII I describe the principle itself, and show how it needs
to be extended in order to make it a plausible candidate for the proposed reduction.
In SectionIV I argue that the resulting view faces a dilemma concerning what I
call thevertical placementof causation. In SectionV I give a novel potential coun-
terexample to the view in the quantum mechanical context. In SectionVI I make
some concluding remarks about the status of the principle.

II. PRELIMINARY HISTORICAL AND METHODOLOGICAL REMARKS

In The Direction of Time(1956), Hans Reichenbach developed a theory of cau-
sation that included two elements—now unremarkable—that at the time marked
significant departures from philosophical orthodoxy. Firstly, he held causation to
be probabilistic1. Secondly, he attempted to give an explanation of causal asym-
metry in terms independent of temporal order. Central in his account of causal
asymmetry was what he termedthe principle of the common cause—informally, if
”an improbable coincidence has occurred, there must exist a common cause” (p.
157). The temporal orientation of causation is explained by the contingent fact that
common causes tend to lie in (what we call) the past rather than (what we call) the
future of the coincident events in question.

For Reichenbach the principle of the common cause was neither autonomous
nor fundamental, being derived from the second law of thermodynamics and his
hypothesis of the branch structure of thermodynamic systems. However in the
subsequent literature the principle—or at least the key insight it embodies—has
become increasingly detached from this context and developed into independent
reductive grounds for the direction of causation. In addition to direct heirs of Re-
ichenbach such asDowe(2000), the common cause principle has appeared in the
guise of independence conditions (Ehring, 1982; Papineau, 1985a,b, 1993; Haus-
man, 1998), counterfactual overdetermination (Lewis, 1979, 1986c), and, in the
causal modelling literature, as the causal markov condition (Pearl, 2000; Spirtes
et al., 2000). Of course, those developing the causal modelling framework do not
take themselves to be providing an account of the asymmetry of causation. For a
start, they do not standardly take themselves to be pursuing reductive projects in
the first place. Moreover, if you ask a causal modeller about the place of the direc-
tion of causation in their work, they will tell you that temporal orientation is simply

1While Good(1961a,b) is a much ignored early proponent of probabilistic causation, my own
ignorance is for present purposes justified, as he assumes the temporal orientation of causation from
the outset.Suppes(1970), a much more widely known treatment, does likewise.
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assumed2. But—science for the scientists, philosophy for the philosophers—there
have been a number of philosophers who take it that the causal modelling frame-
work provides reductive grounds for the direction of causation after all (seePap-
ineau, 1993; Field, 2003).

Why should we not dismiss these latter views on the grounds that they are
unfaithful to the very theories on which they wish to hang their metaphysics? Since
our best frameworks for causal modelling simply assume a direction of causation,
shouldn’t we expect that thinking about the temporal asymmetry of causation in
light of these frameworks will be at best unfruitful, at worst circular? I think this
is too hasty. Indeed, I think that attention to the issues here is of both independent
and practical interest, for at least two reasons.

Firstly, getting clear about the situations under which one would be prepared
to accept the existence of backwards causation provides a means by which the
concept (or concepts) of causation, so interwoven with other temporal and modal
concepts, can be isolated and clarified. The questions here are those such as, which
temporal facts can be varied without varying causal facts? Likewise, which modal
facts can be varied without varying causal facts? Much recent debate in the philo-
sophical literature on causation revolves around precisely these sorts of questions.
Secondly, and most importantly for the purposes of this paper, is the converse of
the preceding point. This is that taking the various methods of discovering causal
relations on offer, and imagining the features which they detect to exist in the re-
verse temporal direction, allows the exploration of whether these features can be
said to beconstitutiveof the causal relation or justdefeasible heuristicsfor the
causal relation. In the remainder of the paper I examine this latter question with
respect to the principle of the common cause.

Before I proceed, however, some deflationary remarks are in order for those
who suspect that the method I have just sketched sounds a little too much like
conceptual analysis. It has become increasingly frequent in the literature on cau-
sation to claim that what is being attempted isnot conceptual analysis but rather
thea posterioriidentification of what causation is, in the physical world. Such an
approach is explicitly endorsed byMenzies(1996), Kistler (1999), Dowe(2000),
Steel(MS), and, in order to defend his theory against a series of objections formu-
lated in the way I have just described, byPapineau(1988). The idea here is to deny
the link between conceivability and possibility; here isPapineau(1988, p. 524):

I don’t claim that such cases [conceivable counterexamples] are con-

2There are at least two reasons why this is the case. Firstly, the various causal discovery algo-
rithms on offer typically deliver a set of compatible causal models (a so-calledmarkov equivalence
class) rather than a unique causal model for any set of probabilistic data—and so additional infor-
mation is required to select the correct model. Secondly, for any reasonably complex system the
algorithmic search space will be extremely large—and so again, any available information which
could reduce the search space will normally be employed. Temporal order is an obvious candidate in
both cases. On the face of it, the latter poses less of a problem for the metaphysical reductionist, since
the role of temporal information can here be reasonably construed as pragmatic or heuristic. Such a
strategy sits less easily with the former, however; this will be discussed further in what follows.
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ceptually impossible. My claim is simply that my theory identifies the
real nature of the cause-effect relationship.

As a general point, this is undoubtedly true—I can imagine myself flying, and yet
I cannot fly. The general point here is also, I take it, applicable to various of the
more metaphysically speculative thought experiments in the literature (thelocus
classicushere isTooley, 1990)3. Nevertheless, the reply is only available for those
counterexamples which rely on grounds weaker than the theory being criticised. In
general, we should not expect this to be clear-cut; and in particular cases, we can be
confident that the burden of proof is on the proposed theory. That is, we can, with
thea posteriorireductionist, deny the link between conceivability and possibility,
and yet still do thought experiments to assess proposed reductions—if we have
good independent reasons for thinking the situations we have described nomolog-
ically possible. Nobody objected to theEinsteinet al. (1935) thought experiment
concerning the completeness of quantum mechanics; and rightly so, since there
were excellent theoretical grounds for believing it to be possible. Likewise, in this
paper I will not be offering anything controversial by way of thought experiment—
indeed, I will just be describing what goes on in certain cases of actual scientific
and everyday practice. And so this loophole will not be available for those theories
I take as my targets.

III. THE COMMON CAUSE PRINCIPLE

At first glance, the informal expression of the principle of the common cause given
by Reichenbach above (“if an improbable coincidence has occurred, there must
exist a common cause”) cannot be what is intended. Reichenbach is surely not
committing himself to the impossibility of one-off, purely chancy coincidences.
Rather, it is repeated incidences of someprima faciecoincidence that call for
explanation—the improbable correlation of two (or more) events over time. This is
made clear in the formal probabilistic definition of the principle given byReichen-
bach(1956, pp. 157-167). He writes (p. 163):

If coincidences of two eventsA and B occur more frequently than
would correspond to their independent occurrence, that is, if the events
satisfy relation (1), then there exists a common causeC for these
events such that the forkACB is conjunctive, that is, satisfies relations
(5)-(8).

The relations being:

(1) P(A&B) > P(A)×P(B)

(5) P(A&B|C) = P(A|C)×P(B|C)

(6) P(A&B|¬C) = P(A|¬C)×P(B|¬C)

3For example, why should we concede that the conceivability of simple worlds with uninstanti-
ated causal laws as brute simples entails that in our world, causal laws can not be reduced?
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(7) P(A|C) > P(A|¬C)
(8) P(B|C) > P(B|¬C)

That is, conditionalising on the common cause, and on the absence of the com-
mon cause, renders the effects independent (this is often referred to as the common
causescreening offthe effects); and the common cause raises the probability of
both effects individually. In the language of independence, effects of a common
cause are correlated, but causes of a common effect are not. In the language of
overdetermination, there are many distinct effects which individually determine
the occurrence of some cause, but there is only one cause that individually deter-
mines any effect. Obviously, these are rough and ready formulations of the related
principles, and there are significant differences in the way they have been devel-
oped into complete theories of causal asymmetry. It is not the place of this paper to
explore these differences in any detail4. Rather, in what follows I will restrict dis-
cussion to the principle as given above, and indicate where the discussion carries
over to the neighbouring theories.

The principle as stated is not yet sufficient for an analysis of causal asymmetry.
To see this, consider any device which records correlated events. To modify an
example from Reichenbach (p. 158), suppose two nearby geysers (A andB) spout
irregularly, but (nearly always5) in unison—and suppose some geyser-enthusiast
sits nearby, recording every dual spout with a tick in her notebook (D) (see Figure
1). The probabilities of each geyser spouting and the ticks being recorded in the
notebook satisfy (1) and (5)–(8) (p. 162), and yet the tick, which is the screening
off event, occurs later than the correlated geysers, which are the events screened off
(A andB). The events are said, in the jargon, to constitute a conjunctive forkopen
to the past. Reichenbach is thus led to expand on the principle, by claiming that
conjunctive forks open to the past are always matched by conjunctive forks open
to the future, while conjunctive forks open to the future are not likewise matched.
Here, for example, the event establishing the fork open to the future would be
the increased water pressure in the reservoir responsible for the geyser spouts (C).
Reichenbach refers to cases where correlated events are screened off on both tem-
poral ends asdouble forks(p. 159); they are also sometimes calledclosed forks.
The common cause principle thus becomes: all open forks are open to the future.

Note that in order for the arrows to be drawn onto closed forks, there must be
a predominance of forks open to one direction rather than another; otherwise the
temporally reversed interpretation would be equally justified. So, in Figure 1, it
is the (hypothetical) predominance of forks open to the right side of the diagram
that allows us both to say that the direction of causation runs left to right, and

4Unfortunately, I know of no comprehensive survey of the differences and similarities between
the theories, thoughHausman(1998) provides some detailed criticism of each of the others.

5When I presented this paper at Konstanz without this qualification, Chris Hitchcock and Iain
Martel were quick to point out that Reichenbach explicitly disallowed probabilities of unity, since
this prevents the disambiguation of causal asymmetry by the principle of the common cause. The
remainder of the paper should be read with this qualification implicit—it does not alter the structure
of the argument.
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Figure 1: Open and closed forks.

(therefore) that the arrows have been drawn correctly onto the closed fork6. Note
also that if the common cause principle is constitutive of the direction of causation,
we should be licensed by the existence of forks open in the opposite direction to
infer the existence of backwards causation.

As Reichenbach notes, this is an “indirect” solution (p. 162), since it makes
causal asymmetry a function of factors extrinsic to the events in question—and
this is one place where the cluster of theories referred to above diverge. Hausman,
Lewis and Ehring seek to keep the asymmetry intrinsic, while Dowe, Papineau and
Field—after Reichenbach—opt for an extrinsic solution. Each have their problems,
and I will return to the issues this introduces in Section 4. For the moment, note that
the correlation given by (1) is crucial here. Any device which records coincidences
of events—our geyser-enthusiast recording, in another column, the times when the
moon is full and the geysers spout, say—will satisfy the screening off relations
(5)–(8)7. But this doesn’t count as a conjunctive fork in Reichenbach’s sense,
since presumably the frequency of geyser spouts during a full moon is just what
we would expect given the individual frequencies of geyser spouts and full moons
generally. The fact that it is only probabilistically correlated events that stand in
need of causal explanation will become important in what follows.

The existence of closed forks provides one example of a set of events that
satisfy the probabilistic formulation of the principle of the common cause, and yet
cannot form the basis for causal asymmetry—namely, the set of events in a closed

6In fact, Reichenbach appealed to networks of probabilistically related events rather than global
predominance. I will return to this point in what follows.

7Of course (5) and (6) follow trivially, since there was no correlation in need of screening off—
the point here is that any instance of record keeping establishes the probabilistic relations (7) and
(8).
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Figure 3: Screening off in causal chains.

fork comprising the correlated events, and the future screening off event. In this
case the appeal to a past screening off event allows the principle to survive without
appeal to temporally asymmetric facts. However there are other cases where the
probabilistic relationships obtain and yet we do not have a conjunctive fork. One
example is given bySalmon(1980, p. 217) andArntzenius(1999, n. 2). Consider
a case where an eventC is the common cause of eventsA1 andB1, and whereA1

causesA2 andB1 causesB2. In this caseA2 andB2 will be screened off by bothA1

andB1, and yet by stipulation neither is a common cause of their correlation (see
Figure 2).

Likewise for causal chains (Papineau, 1993). The probabilistic relations de-
fined above hold between any three items in a causal chain; whenA causesC
which causesB, or whenB causesC which causesA, C screens offA andB (see
Figure 3). Indeed,Papineau(1989, p. 337) takes screening off of this sort to be in
part definitive of the notion of a causal chain.

This is where the assumption of temporal orientation is standardly introduced.
The assumption of temporal orientation can discriminate between the open con-
junctive fork in Figure 1 and the causal chains in Figure 3, if we know the temporal
order of the events in question, on the assumption that causes precede their effects
in time. That is, if we take time to run from left to right, and assume that the con-
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junctive fork open to the future in Figure 1 correctly represents the temporal order
of the events, then both chains in Figure 3 can be ruled out on the grounds that they
represent a later event (A andB respectively) causing an earlier event (C). Like-
wise, if we assume that either chain in Figure 3 correctly represents the temporal
order of the events, then Figure 1 can be ruled out on the grounds that it represents
a later event (C) causing an earlier event (A andB respectively).

But of course we cannot use this method if it is the direction of causation itself
that we are trying to ground probabilistically. There remains a weaker, symmetric
temporal principle, which Reichenbach is sometimes held to have invoked, where
simultaneouscorrelated events are ruled out as candidates for direct causal con-
nections with each other (see for exampleBerkovitz, 2002, pp. 242ff ; Hausman,
1998, p. 210 n. 2, also takesPapineau, 1989, p. 336, to be flirting with this idea).
The idea here is to appeal to special relativity, which forbids any direct causal con-
nection between simultaneous events8—so if A andB are simultaneous then we
can rule out both chains in Figure 3 on grounds that have invoked temporal order
but not temporal orientation. This principle is far too weak to cover all the cases,
however—often one or more of the effects of a common cause will occur earlier
or later than the others, and intuitively the principle ought to apply to these as
well. Indeed, the only earth-bound correlated events which would fall inside this
constraint would be those occurring within the order of nanoseconds of each other
(Salmon, 1980, pp. 217-218).

For those seeking a reduction of the direction of causation to probabilities,
there is another solution available, and it invokes essentially the same strategy used
for ordering closed forks as described above. The idea is to find some further event
whose probabilistic relationship with the events in question enables the asymmetry
to be determined. Take, again, Figure 1 and Figure 3, and suppose there is some
further event (E) which satisfies the following probabilistic relationships (follow-
ing Papineau, 1993, p. 240): correlated withC andB; not correlated withA; cor-
relation withB screened off byC; correlation withC not screened off by anything.
If we assume that correlation is essential for causation, we can identify the correct
diagram as the first chain in Figure 3—if Figure 1 or the second chain in Figure 3
were correct we should seeE correlated withA (see Figure 4).

This general strategy also traces to Reichenbach, and has recently been de-
fended byDowe(2000). And as suggested in Section 2, whileSpirteset al. (2000)
do not see themselves as involved in such a project, bothPapineau(1993) andField
(2003) have taken their causal modelling framework to provide a means of draw-
ing the causal arrows onto networks of probabilistic dependence in this way. In the
following section, I examine the prospects for this strategy.

8I leave to one side here issues concerning the possibility of simultaneous causation—even if
simultaneous causation is possible in some circumstances, it certainly isn’t going to apply to all
cases which fall under the principle of the common cause.
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Figure 4: Fixing temporal orientation with further probabilities.

IV. WHERE IN THE WORLD IS CAUSATION?

In order to establish the causal order for any particular set of events, for whom the
probabilistic relationships underdetermine the appropriate causal model, an appeal
is made to the surrounding causal network. Thus, the asymmetry of any particular
causal relation is extrinsically determined. This is not without particular advan-
tages. For a start, those who wish to rest the asymmetry on something like the
common cause principle, and yet keep causal asymmetry intrinsic, are faced with
immediate problems concerning instances of causation which do not appear to form
the right sort of forks. While the common cause principle is plausible as a more
or less intrinsic feature of situations with macroscopically correlated effects, such
as stones dropping into ponds, the sort of forks needed for situations without such
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macroscopic effects do not seem capable of playing the role required of them. For
instance, take an inexpert billiard player shooting a cue ball into an eight ball on
an otherwise empty table, and consider the causal relationship between the colli-
sion, and the eight ball hitting the cushion of the table. ForLewis (1979, 1986c),
whose overdetermination is designed to provide the intrinsic asymmetry in every
particular case of causation, it must be the case that the effects of the collision
overdetermine the collision, while the causes do not. But where is this to be found
in the region of the collision and its consequences? It cannot be in the macroscopic
variables such as momentum, coarsely specified, and so Lewis ends up appealing
to facts that in this case amount to the dissipative friction of the billiard balls on
the table, and the light reflected from their surface (Lewis, 1979, pp. 469-470).
These temporal asymmetries in the collision seem slender grounds for the causal
asymmetry, however. If the collision occurs in the dark, at zero gravity, at zero
temperature, in a soundless vacuum, are we led to doubt the asymmetry of the
case? Rather, it seems plausible to appeal to surrounding macroscopic events—the
person hitting the ball, for example—and to trace out a network that will eventually
exhibit the desired asymmetry.

It might be objected here that the move to the surrounding probabilistic net-
work makes the asymmetry of causationunacceptablyextrinsic9. But since it is
already the existence of the second prong of a fork which gives the asymmetry to
the first, and since it was a further extrinsic move which saved closed forks from
being counterexamples to the principle of the common cause, this in itself will not
be of concern to proponents of the approach. Moreover, if we adopt something like
a frequentist view of probability, the theory is extrinsic right there in the probabilis-
tic foundations (as it were)10. Finally, asPapineau(1989, p. 336) suggests, we are

9Tooley(1987, p. 237;1993, p. 22) has pressed the objection that to rely on causal nets makes
causation unacceptably extrinsic. Appeal to intuitions concerning the intrinsic nature of causation
has also been made by, for example,McDermott(1999, p. 303) andLewis (1986b, pp. 205-207).
A somewhat related concern is raised byPrice(1993). Price points out that in order for temporal
asymmetry not to be smuggled into the account (what he calls disguised conventionalism), the prob-
abilities used must be temporally symmetric. But, he claims, if we use a naı̈ve actual frequentist
interpretation of probability, we become committed to only talking about causation where we have
enough correlation to speak of statistical dependence—committed, that is, to the impossibility of
single-case causation. It seems to me that this is a worry about probabilistic or regularity theories of
causation in general rather than about their prospects for explaining causal asymmetry, however—
Hume’s account of constant conjunction is open to the same sort of objection, after all. The way
out is, obviously, modal, and Price further charges that whatever modal notions are appealed to here
will be as difficult to provide a temporal asymmetry for as the causal asymmetry we are seeking
to ground. But this has no purchase on the theories under consideration, since the probabilities in-
volved are all atemporal— if they were not, we would have been cut short at the very first step in the
proposed reduction.

10On the other hand, if our theory of the causal relation is not itself a probabilistic one, we might
have problems justifying why probabilities should matter for the asymmetry. This point is made by
Dowe(1992b) with respect to the causal process theory of Salmon—the problem is why it should be
that a causal process, which is an intrinsic property of a physical system, should be given its direction
by extrinsic,de factorelations with surrounding causal processes. This point carries over to other
theories which attempt to use the common cause principle as a plug-in solution for causal asymmetry,
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already familiar with the extrinsic explanation of asymmetries, since the thermo-
dynamic and radiative temporal asymmetries are plausibly explained by extrinsic
boundary conditions11.

A more specific concern about the appeal to extrinsic facts in fixing the direc-
tion of causation is that it may threaten the possibility of backwards causation—
and since the theories under consideration are motivated in large part by the desire
to make the existence of backwards causation ana posteriorimatter, this ought
to be particularly worrying. For example, there have been some suggestions for
fixing causal asymmetry by indexing it to the temporal asymmetry of the neutral
kaon, or the global entropy gradient provided by the second law of thermodynam-
ics12. Given that these strategies fix the direction of causation globally, however,
there can be no room for local instances of backwards causation—indeed, given
this fact, it is hard to see how these strategies are an improvement over simply
identifying causal order with temporal order. But the appeal to the probabilistic
network does not have this particular problem. As we have seen, the probabilistic
relationships definitive of open forks are defined atemporally, and so it remains a
possibility that there exist situations with forks open to the past, even in the context
of a network where the majority of forks are open to the future. So rather than
ruling out the possibility of backwards causation, the theories under consideration
provide the means of identifying when we have it—namely, anywhere there is a
fork open to the past. Unfortunately, as I will argue in Section 5, this consequence
of the approach is open to counterexample.

Before setting out the counterexample, however, there is a further issue for the
causal modelling approach, related to extrinsic concerns, which bears examination.
We can think of the issues discussed so far in this section as concerning where
to place causal asymmetry. Is it an intrinsic property of causal relations, or is it
determined extrinsically? So far, we have been concerned with how widely we
need to cast the net. It turns out, unsurprisingly, that in order to carry out the
reduction, we need nothing less than every relevant variable in the whole universe
(Papineau, 1993)—or at least all those in the causal network in which we find
ourselves. This follows, trivially, from the fact that what we consider a direct causal
relation might in fact be one governed by a common cause of which we haven’t
taken account; and the fact that, as we have seen, the selection of the correct model
from a series of candidates is achieved by appeal to further variables. The appeal to
ever-wider networks has been a point of criticism (see for exampleHausman, 1998,
pp. 219-221), but it seems to me that the criticism relies on metaphysical intuitions

but needn’t concern us here
11While this is correct, the analogy shouldn’t be pressed too hard. While we have a clear idea of

what it would take for thermodynamic and radiative asymmetries to be reversed, it is less clear what
criteria we should use to adjudicate cases of backwards causation. So for the former asymmetries, we
have clearly defined asymmetric phenomena which stand in need of explanation; while in the latter
case I take it that we are still attempting to explain the sense in which the phenomena is asymmetric
in the first place.

12Dowe (1992a) suggests both strategies in the context of process theories, whileCollins et al.
(2004) suggest the entropic strategy for fixing counterfactual dependence.
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of precisely the sort Papineau wishes to resist (see Section 2). There are, however,
issues not just regarding thehorizontalplacement of the asymmetry of causation,
but also regarding what we can think of as thevertical placement of causation—
concerning where the explanation of causal asymmetry lies on the scale from the
microscopic to the macroscopic.

The worry here is raised byPrice(1992), who notes that the fork asymmetry is
absent at the microscopic level, given the time-symmetric determination of funda-
mental physics. It is for this reason thatField (2003) emphasises what he calls the
salience condition:

The salience condition needs emphasis: if the universe is two-way
deterministic as in classical physics, one can find very unnatural vari-
ables for which the temporal orientation [in causal graphs] is reversed
[...] And with “exact” variables in the sense explained above [that is,
variables specifying a complete physical description], the asymmetry
completely disappears in classical physics.

BothPapineau(1993) andField (2003)—exemplary in their commitment toa pos-
teriori reduction—just bite the bullet here, and claim as an empirical discovery the
fact that causation is much less widespread than we had thought, holding only at the
level of those variables we find salient. I think a strategy endorsed byDowe(1992a)
is perhaps preferable here, where we instead have the microscopic asymmetry de-
termined by the macroscopic asymmetry which it composes, or with which it is
probabilistically connected. But in either case, the absence of the fork asymmetry
at the microscopic level is kept at bay by taking causation to be a relation that only
holds amongst the sort of macroscopic variables that we ordinarily take an interest
in13. At this point we may begin to wonder how objective a reduction this is turn-
ing out to be, appealing as it does to the anthropocentric notion of salience. And
there is a more serious problem lurking around the corner.

In order to introduce the problem, it bears mentioning the form in which the
common cause principle has made it into the methods used in causal modelling.
Spirteset al. (2000), Pearl(2000) andWoodward(2003) adopt a restricted version
of the common cause principle as an axiom in the procedure for inferring causal
relations from statistical data, in the form of thecausal markov condition. As
Hausman and Woodward(1999, p. 524) observe, this can be usefully considered
as the conjunction of two claims:

(1) If X andY are probabilistically dependent, then eitherX causesY
or Y causesX or X andY are effects of some common causeZ.

(2) Conditional on its direct causes,X is probabilistically independent
of everything except its effects.

13This consequence of the approach ought to appear striking to those philosophers used to formu-
lating causal exclusion arguments premised on causation being the province of fundamental physics.
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The causal markov condition is superior to the original formulation of the principle
of the common cause in many respects, though we can safely set these aside for
present purposes14. Here we can note firstly that the use of causal concepts in the
characterisation makes it clear that it is not intended to be reductive, and secondly
that it does nevertheless retain the claim that there is no probabilistic dependence
without causal dependence (1), and that the effects of common causes are screened
off by those common causes (2). A counterexample to (2) has been proposed by
Salmon; my counterexample will be to (1).

Salmon(1980, p. 223) describes a case where our inexpert billiard player, in
the same situation as described earlier, has only a half chance of sinking the eight
ball. But suppose the case is such that for all the ways in which the eight ball might
be sunk, the cue ball will certainly sink as well. Call the shooting of the cue ballC,
the cue ball sinkingA, and the eight ball sinkingB. Here we haveP(B|A) > P(B),
and therefore a correlation which stands in need of causal explanation. But the only
prima faciecandidate for a common cause—the shooting of the cue ball—doesn’t
screen off the correlation, sinceP(B|C) = 1

2 while P(B|A&C) = 1. Somewhat
remarkably, given the line of argument for salience given above, the stock reply
here, given by bothSpirteset al. (2000, p. 63) and byHausman and Woodward
(1999, pp. 528-529), is to appeal to a more complete specification of the physical
system in question. Indeed, Hausman and Woodward explicitlydisavowsalience:

The claim that is defended in the response is that [...] there must exist
some set of screening-off common causes. [...] this is very different
from saying that even the full set of variables that people ordinarily
describe as common causes will screen off their joint effects or that
it will be possible to specify a set of screening-off common causes in
terms of any particular framework or vocabulary for dividing up the
world [...].

It may be reason enough to suspect the general validity of the causal markov condi-
tion, that it doesn’t hold among the variables we find salient (indeed, it was enough
for Salmon to reject it). At the very least, it necessitates some substantial theoret-
ical maneuvering on the epistemological side of the theory—in this example, how
do we know that the cue ball sinking isn’t a direct cause of the eight ball sinking,
or vice versa, given that we don’t have access to the precise physical details of the
case? But the real problem here is that, as we have already seen, reasoning from the
bottom up tells us that the causal markov condition will in fact cease to track the
direction of causation as we move to more fundamental, less inherently statistical
levels of description. There is pressure here, then, from both above and below—the
reformulation of the causal markov condition as a commitment to the existence of
someset of variables for which it holds has all the flavour of a promissory note that
cannot be cashed.

To reiterate the point here, we can look at Hausman and Woodward replying

14SeeHausman and Woodward(1999) for the details.
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to another counterexample, given byArntzenius(1993). Arntzenius observes that
in a gas moving to thermodynamic equilibrium, there will be correlations between
the temperature and pressure in different regions of the gas without there being a
common cause. Again,Hausman and Woodward(1999, p. 530) revert to the “com-
plicated causal story [...] involving huge numbers of molecules [...] that, because
it is deterministic, must conform to the Markov Condition”—assuming determin-
ism, they say, the “full set of determining causes” is such as to function as the
required common cause. But notice that once we have zoomed down to this level,
the full set of microscopic variables atany timeslice will suffice to perform this
function—if we ignore temporal ordering, the probabilistic information radically
underdetermines the choice of causal model, even if (in fact, preciselybecause) we
can assume what Hausman and Woodward termcausal sufficiency(the assumption
that we have taken account of all the relevant variables)15. Given determinism,
that is, any time slice of the system will, on some model, fulfill the causal markov
condition for any other time slice of the system (seeArntzenius, 1993, 1999). So
what we have here is really, rather than the failure of the causal markov condition
to apply to the case, a situation where the causal markov condition fails to pick
out one causal model among many—and in a set where the direction of the causal
relation can vary freely with respect to the direction of time.

What considerations of vertical placement show, then, is that the causal markov
condition cannot provide necessary and sufficient conditions for the identification
of the direction of causation. If the variables in terms of which Salmon’s example
is expressed are the right ones, then it is not necessary. But if we move to the
more precisely specified variables of a complete physical description, then it is not
sufficient16.

V. YET ONE MORE EPR COUNTEREXAMPLE

In the preceding section the focus was on the screening off property of common
causes, captured by claim (2) of the Hausman and Woodward definition of the
causal markov condition. In this section I give a potential counterexample to claim
(1) of the condition, which was:

(1) If X andY are probabilistically dependent, then eitherX causesY
or Y causesX or X andY are effects of some common causeZ.

It is well known that quantum mechanics raises a number of difficulties for this
claim, and in what follows I focus on the famous EPR cases (Einsteinet al., 1935),
and in particular the constraints on their interpretation provided by Bell’s Theorem

15Hausman himself makes essentially this point when he points out that in the deterministic case,
“the probability of y conditional on the direct causes of x will be the same as the probability of y
conditional on x and all the direct causes of x” (1998, p. 215)

16I am indebted to an anonymous referee for prompting me to make this conclusion explicit.
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(Bell, 1964)17. I will not rehearse the experimental arrangements or the theorem
itself here, as both have received extensive treatment elsewhere. Rather, I will
describe a consequence of the theorem for the principle of the common cause that
to my knowledge has not yet been noticed.

Recall the geyser-enthusiast from Section 3, who by recording correlated geyser
spouts created future screening-off events; and recall Reichenbach’s claim that
this is not a case of backwards causation so long as there exists a corresponding
screening-off event in the past. Now, suppose that our geyser-enthusiast becomes
an EPR enthusiast, recording in her notebook the measurement outcomes from a
series of EPR experiments. Here we have a set of future screening off events, as in
the geyser case. But in the EPR case, Bell’s Theorem rules out the existence of any
past screening off event (so-called hidden variables) with which to close the fork,
and so we have aprima faciecase of forks open to the past. If such cases (for EPR
correlations are recorded all the time) in fact provide forks open to the past, then
we have a set of clear counterexamples to the principle of the common cause18.

Note that this result is stronger than is usually claimed by those who see the
EPR cases as refuting the principle. Normally the claim is simply that we have in
these cases a set of correlations which are not (perhaps cannot) be screened off—
and therefore a counterexample to the universality of the principle. If this were
the only problem, however, it could be easily evaded by making the formulation
conditional:if there is a screening-off event,thenthe direction of causation is given
by the principle of the common cause. After all, the principle of the common cause
is a principle governingcausation, and—paceReichenbach—it need be no part of
such a theory that all correlations permit causal explanation. This is the attitude
taken, for example, byPapineau(1989), who—referring to the EPR correlations
as “unscreenable-off” (p. 336)—writes: “I don’t claim that all correlations are
causal, just that if there is a screener-off it is the cause” (ibid). The EPR enthusiast
shows that this is false, by providing an example of forks open to the past which

17I use the phrase for the time being to refer not only to the specific theorem first given by Bell,
but to the family of theorems inspired by Bell that purport to prevent any local-realistic interpretation
of quantum mechanics. Later in the paper I will focus on one particular theorem.

18A brief comment here on a recent series of papers (Hofer-Szab́o et al., 2000; Szab́o, 2000; Rédei,
2002; Hofer-Szab́o et al., 2002) claiming that Bell’s Theorem does not in fact rule out a common
cause explanation of the EPR correlations, but rather only a common common cause, namely, an
event that functions as the common cause of each set of measurement outcomes. Once we allow
that a different common cause may be operating for different measurements, it is claimed, we can
construct a common cause explanation for the correlations after all. In my view this is an ignoratio
elenchi. Suppose such uncommon common causes are operative in the EPR case. The complete set
of these uncommon common causes forms a common common cause, and is therefore ruled out by
Bell’s Theorem. But if there is only an incomplete set of uncommon common causes, then the only
way to recover the correlations is via dependency of this incomplete set on measurement choices, that
is by violating autonomy. Either way we do not have an explanation that escapes Bell’s Theorem (this
is effectively conceded bySzab́o (2000, p. 910)). I do not mean to discourage work on constructing
uncommon common cause models of the EPR correlations, but merely to point out that such models,
like all hidden variable theories, must violate one of the Bell-Wigner premises. Thanks to Iñaki San
Pedro Garcia for prompting me to address this literature.
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are clearly not instances of backwards causation—if they were, we would be able
to manipulate past measurement results by writing in notebooks19.

At this point it may seem as if something must have gone wrong—if Bell’s
Theorem shows that there cannot be a common cause of the EPR measurement
results, why does it not apply equally well to the records taken by the EPR enthu-
siast?20 And yet surely the case we have imagined is possible; for one, the EPR
correlations are perfectly analogous to the Geyser correlations from the perspective
of the EPR enthusiast; and of course, EPR measurement results are recorded with
unremarkable frequency by experimental physicists the world over. This apparent
tension is resolved by considering more carefully what Bell’s Theorem rules out,
and what the EPR enthusiast must write down in her notebook in order for her
records to screen off the measurement results. Since there is a family of theorems
which fall under the Bell moniker, and what is ruled out differs from theorem to
theorem, I focus here for definiteness on the version due independently toWigner
(1970) andBelinfante(1973).

As catalogued byvan Fraassen(1982, p. 31), the premises of the Bell-Wigner
argument arecausality, locality andautonomy. Causality is simply the common
cause requirement: that the hidden variables function as a common cause of the
measurement results, so that the joint probabilities of measurement results for the
two particles are just the product of the probabilities of the individual measurement
results, conditional on the hidden variables. Locality and autonomy are restrictions
on how the requirement of causality may be satisfied, and so strictly are premises
that go beyond the principle of the common cause21. Locality dictates that the mea-
surement result for a particular particle depends only on the hidden variables and
the apparatus measuring that particular particle, or to put it conversely, measure-
ment results for a particular particle are independent of measurements performed
on the other particle. Autonomy is the requirement that the hidden variables are sta-
tistically independent of the type of measurements performed on either particle—
that is, hidden variables do not influence the selection of which measurements to
perform, and measurements do not influence the values of hidden variables. To-
gether, the assumptions capture the intuitive EPR view according to which pre-

19A different strategy for criticising the conditional formulation of the principle is to attempt to
provide causal models of the EPR correlations, showing that there can be causal explanations in the
absence of common causes in the sense discussed in this paper. There is a large literature evaluating
the prospects for projects of this sort, and as an anonymous referee pointed out, the consensus seems
to be that it has shown that the conditional formulation fails. Nevertheless, the EPR enthusiast
provides a far more direct path to this conclusion, and has the advantage of not requiring any specific
proposals about how the correlations are to be explained. For a sample of this literature seeRedhead
(1986, 1987, 1989, 1990); Cartwright and Jones(1991); Elby (1992); Healey(1992a,b); Chang and
Cartwright(1993).

20I owe this observation to Huw Price.
21This bears noting in this context sincevan Fraassen(1982, p. 32) takes a failure of autonomy to

entail a failure of the principle of the common cause in general. The availability of backwards causa-
tion models of quantum mechanics in the context of common cause theories of causation shows this
to be false—see for exampleDowe(1997), clearly a coherent if in my view untenable interpretation.
SeeSúarez(2004) for further discussion.
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existing elements of reality determine measurement results; we are free to choose
what to measure; and our measurements do not have non-local or backwards-in-
time effects. The view is often referred to aslocal realism, and the violation of
the Bell-Wigner inequality by quantum mechanics shows that at least one of the
cluster of commitments that make it up must be discarded.

With the premises made explicit, it can be seen immediately which one is avail-
able for the purposes of our hypothetical EPR enthusiast—namely, correlations be-
tween the measurements performed and her notebook records, amounting to a fail-
ure of autonomy. The reason why this has been unattractive as a premise to give up
for the purpose of making sense of the EPR experiments is that if we are consid-
ering a set of hidden variables as a potential common cause prior to measurement,
to give up autonomy means either having the hidden variables dictate the selection
of which measurement to perform, in violation of free will (and conspiratorially
thwarting randomised experimental arrangements), or alternately having the se-
lection of measurements determine prior values of hidden variables by backward
causation—options which have been largely ignored by interpreters of quantum
mechanics22. But if we consider a future screening off event, such as a record not-
ing the type of measurement and the outcome, we can unproblematically appeal to
the second of these options, since like any other recording device, what we have is a
quite mundane case of forward causation. The reason why Bell’s theorem does not
rule out the possibility of an EPR enthusiast, then, is that the only possible record
that would screen off the measurement results from each other is one which in-
cluded both the measurement settings and the results for both measurements—and
this amounts to a violation of autonomy23.

The defence of the principle of the common cause at this point turns on finding
some past screening off event to close the fork, and I will make some brief com-
ments on two options for doing so. One option is to take the EPR enthusiast to
demonstrate the existence of a past common cause, and Bell’s Theorem to show
that such a past common cause must entail a violation of locality or autonomy—
and therefore seek to develop a model consistent with these constraints. The upshot
of the EPR enthusiast, however, is that such a model cannot simply consist in find-
ing an event that bears to the measurement outcomes the probabilistic relationships
definitive of a common cause—in our recording device, we already have such an
event, so we must be looking for somethingmorethan just this correlational struc-

22The most plausible development of the former option appeals to variable detector efficiency,
first proposed by byPearle(1970) and most fully developed in the so-called prism models ofFine
(1982a,b). The latter option dates back to O. Costa de Beauregard and has been physically most
highly developed byCramer(1997), and philosophically most developed by Huw Price—seePrice
(1984, 1994, 1995, 1996b); Price(1994) is criticised byDowe(1996), with a reply byPrice(1996a).
See alsoDowe(1997).

23As Arif Ahmed pointed out to me, the conjunction ofany two effects of the two measurement
results respectively would provide a screening off event. The advantage of localising these effects
together in a single recording event serves to avoid appeal to such gerrymandered alternatives. We
could easily construct a recording device to cause one distinct event for each possible combination
of measurement outcomes.
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ture. For example, it is not sufficient for the development of a backwards causation
model of the EPR correlations to merely identify some past event which is corre-
lated both with the measurement settings and measurement outcomes—some addi-
tional property of this event must serve to differentiate it from the recording device.
The suggestion byDowe(1997) that a backwards causation model consistent with
the principle of the common cause demands hidden variables set by forks open to
the past (that is, not just by correlation with measurement settings) is one way this
can be achieved.

A second option is defended byHausman and Woodward(1999, pp. 565-567).
They propose that the two EPR measurements are not distinct events, on the basis
that there is no means of independently manipulating the individual measurement
results. They accept that this is controversial, but here rather than challenging this
step of their argument I will concentrate on the implications. While it is a possibil-
ity that the measurements at some level form a single event, clearly the measure-
ment outcomes as recorded macroscopically—computer readouts, dials moving,
and so on—are all paradigmatically distinct events. Since these latter events are
correlated, the common cause principle demands a screening off event; and as be-
fore, our EPR enthusiast can happily provide one. Since, as before, this is clearly
not a case of backwards causation, what this entails is that Hausman and Woodward
are committed to the measurement event being the common cause of the measure-
ment records. While they claim that their model avoids “causal pathologies” (p.
267), it is unclear that a spatially distributed event of this sort playing the role of an
instantaneous common cause (instantaneous since the earliest distinct events will
be spacelike separated) does any better—in fact, it seems that this really amounts
to a kind of violation of locality.

The central point to make, regardless of the merits of any of these options, is
that it is not an option for those who subscribe to the principle of the common
cause to rule out the EPR cases as not falling under the principle, or not being the
kind of correlations that call for a causal explanation. To the extent it is attractive
to think of quantum mechanics as not permitting causal explanation of any sort at
all, this is not a position that can consistently be held together with the principle of
the common cause. Whether this is a reason to give up the principle, or rather to
seek the proper causal explanation, I leave to the commitments of the reader.

VI. CONCLUDING REMARKS

The principle of the common cause needs to be placed in the world both horizon-
tally, via extrinsic networks of probabilistic relations; and vertically, by locating
at what scale the variables satisfying the principle are to be found. Moreover, it
demands that a causal explanation be given for the EPR cases in quantum mechan-
ics. I have shown that these are tough demands to meet, by identifying a tension
threatening the possibility of vertical placement, and giving an EPR counterexam-
ple which showed that ignoring these cases is not an option. Both of these problems
suggest that the principle is insufficient to establish the direction of causation, and
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so cannot provide the basis for the metaphysical reduction of the direction of cau-
sation to probabilities—that it is, at best, a defeasible heuristic for tracking causal
asymmetry24.

While I did not raise problems with horizontal placement in this paper, it bears
noting in conclusion that there are other lessons to be drawn here. One of the ini-
tial attractions of the principle of the common cause is that it promises to provide
something like a local reduction of the direction of causation. As it turns out, those
wishing for a probabilistic reduction of the direction of causation via the princi-
ple end up requiring a wealth of extrinsic relations, so that the causal asymmetry
between any two variables turns out to depend on their relationship to many more
variables. The upshot is that those seeking such an objective reduction for the
asymmetry of causation should not be hostile to rival views which also propose
extrinsic accounts. In particular, they should not be over-hostile to agency views
of causal asymmetry, which can in this light be seen simply as a different form of
extrinsic account of the direction of causation.
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