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Abstract

According to a standard view of the second law of thermodynamics, eliefbin the second
law can be justified by pointing out that low entropy macrostates are lebalpeothan high entropy
macrostates, and then noting that a system in an improbable state will terolve ®ward a more
probable state. | would like to argue that this justification of the second laweofnibdynamics is
fundamentally flawed, and will show that some puzzles sometimes atsbeiéh the second law

are merely artifacts of this incorrect justification.

1 The Standard Story.

If we squirt some colored ink into a closed container of mgwivater, we are justified in
expecting that the ink will eventually disperse itself dyghrough the water. Indeed, if we
prepare any system in a state of low entropy, and then isthlateystem, we are justified in
expecting that the system will experience an increase iopytIn virtue of what are these
beliefs justified? Such beliefs can, of course, be justifiegparely inductive grounds. But
one might also think that such beliefs ought to be able to bfied on the basis of more
fundamental physical and mathematical principles. In gaiper, | would like to discuss
and criticize a common justification of this later sort.

The challenge posed in the last paragraph is to explain whgrev@ustified in believing
the second law of thermodynamics, given only more fundaaigysical and mathemati-
cal principles. For our purposes, the second law of thermanhjcs states that the entropy
of an isolated system will increase until the system reaitbesgjuilibrium state, which is a
state of maximum entropy. Once in this equilibrium state,giistem will remain there (or
at least will remain there for a very long time.)

A standard (though somewhat schematic) argument for ttangldaw is as follows:



Standard Story: Low entropy macrostates occupy a tiny portion of phase
space, and so it is extremely improbable that a system wdlifself in a low
entropy macrostate. High entropy macrostates occupy esieall of phase
space, and so it is extremely probable that a system will fgedfiin a high en-
tropy macrostate. If a system has an extremely probable medteemely im-
probable state, then whenever the system is in the extrémelpbable state,

it will very likely find itself in the extremely probable stshortly thereafter,
and will likely remain in the extremely probable state forrsotime. (That,
after all, is just what itmeango call a state extremely probable.) Thus, a sys-
tem in a low entropy macrostate is overwhelmingly likely tolge into a high

entropy macrostate, and remain in that high entropy meate$br some time.

The primary goal of this paper will be to argue that this siergeeply misguided.
In 82, | argue that the Standard Story rests critically ontwhvaill call a Probability

Principle. A Probability Principle is any claim of the form:

Probability Principle: If we know that a system is in macrostdig, then
we are justified in describing the microstate of the systeth thie probability

measurgly, wherepy is defined in terms ol as ...

Different procedures for definingy correspond to different Probability Principles.

In 83, | argue that no Probability Principle can be correat] hat the Standard Story is
thus fundamentally flawed. In 84, | argue that this sheds bghsome problems tradition-
ally associated with statistical mechanics. For instanoe, problem, sometimes grouped
together with the Reversibility Objections, is that stide mechanics tells us that an iso-
lated system in a medium entropy state is much more likelate thad a high entropy past
than a low entropy past, contrary to our experience. Somesaraneuvering is therefore
needed in order to salvage our ability to reason about thieysasy statistical mechanics.
Precisely what sort of maneuvers are needed is a subjectra dspute. Even once such
maneuvers are made, however, many accounts leave us ha\dayg that the universe be-
gan its life in an exceedingly improbable state. We are teéirnondering precisely what
scientific obligation we are under to explain this initiatet My arguments, however, will
show that there is no clear sense in which statistical mechgets the past wrong, and no
clear sense in which we are forced to say that the universanbieglife in an exceedingly
improbable state. Indeed, there is no clear sense in whichthiropy states are improbable,

and high entropy states probable. Many associated prolitemdargely evaporate.



In 85, as an ‘appendix’ of sorts, | will discuss a few reasohy wome may have felt

tempted to adopt Probability Principles, and will explainythese reasons are misguided.

2 Justifying the Standard Story.

It is well known that fleshing out the details of the Standatornprequires some sort of

ergodicity or mixing hypothesis For the sake of definiteness, we invoke the following:

Mixing Hypothesis. Let Sbe phase space, and jebe the standard Lebesgue
measure 0%, normalized so thai(S) = 1. LetM andQ be measurable subsets
of S, and letM; be thet-second evolution dl. Then:

fim WM N Q) = WM)K(Q)-

To see how the Mixing Hypothesis gives us the second lav@ le¢ the set of equilibrium
states of the system (so thaiQ) ~ 1), and letM be an arbitrary macrostate (assumed to

have non-zero measure.) Then:

iim PMMOQ)

e u(M)
This is usually interpreted as saying that almost all mietes inM eventually end up in
Q. It follows that a system in macrostdteis almost certain to end up @. Thus, we have
established a version of the second law.

The Mixing Hypothesis (and its close relatives) have bedéitized by Sklar [6], Ear-
man and Redei [4], and others. These authors suggest thatisheo evidence that such
assumptions hold of realistic physical systems, and teaetts perhaps even evidence that
such assumptions fail. | take these criticisms to be peigeias

| think, however, that there is a more basic error that ocuthis justification of the
second law. Suppose we have a system for which the Mixing thgsis happens to hold.
Does the Standard Story then give us good reason to supigbdtsecond law holds for
this a system? | shall argue for a negative answer. Even ingke of a system known to
obey the Mixing Hypothesis, the Standard Story fails toifjystur belief in the second law.

To see the main problem, we ask: does equatigrreally entail that a system in the
macrostatéV is extremely likely to end up i at some point in its future? The argument

for an affirmative answer proceeds as follows: suppose aitesyis in macrostats! at

1see, e.g., Chapter 5 of Sklar [6].



t = 0. We choose a probability measyrg over the set of all possible microstates that
is uniform overM, and which vanishes elsewhere. (That is to say] if S, then the

probability that our system is in a microstatelins given by:

v (T) = MO T)/uM),

wherepis the standard Lebesgue measure.) Given any siibse$, and any reat, let T;
be the set of microstates whiahseconds ago, were elementslofGiven this notation and
this choice of probability measure, the probability thagéconds from now our system will
liein Qis:

I (Q-t) = KM N Q1) /U(M).
Using Louiville’s Theorempu(M N Q_t) = u(M; N Q). Thus, the probability thatseconds

from now our system will lie iQ is:

(M NQ)/u(M).

The Mixing Hypothesis tells us that this quantity approachenumber close to 1 ds
increases. Thus, almost all microstatedfreventually end up ilQ at some point in their
futures.

But the cogency of this argument depends on our choice of thasareyy as the
relevant probability measure with which to describe thespng state of the system. In

particular, the following principle is being invoked:

Probability Principle 1: If we know a system is in a macrostdit then we
are justified in describing the present state of the systetim thve probability

measurgly that is uniform oveM, but which vanishes elsewhere.

Note that this is a principle about what we gustifiedin believing. Recall that the whole
point of the Standard Story is to explain why we gustified in making predictions in
accordance with the second law. If our explanation dependse choice of probability
measure over another (as we shall see it does), then it bettee case that we ajustified
in choosing that particular probability measure over tHeentor else the Standard Story
will fail to serve its justificatory purpose. This is why weatka principle that tells us that
we arejustifiedin our choice of a particular probability measure.

Without an assumption like Probability Principle 1, we amend position to interpret
(x) as stating that a system in the macrostdtés extremely likely to end up i in the

future. To see why, le¥l be a macrostate, and beE M be a microstate which never passes
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through the equilibrium macrosta@? Definepy to be a probability measure dn which

is supported only o; i.e., for any subset of phase space,

1 ifxeT
0 ifxgT

(T) =

Using this measure of probability, a system in the macre&tas certainto remain outside
of Q forever, even thougl«) holds. Thus, it is only if we draw some sort of connection
between Lebesgue measure and the actual probability negaeriment to the present state
of the system, that we can take) to be telling us that a system in the macrostéltés
extremely likely to end up ilQ. This sort of connection is explicitly drawn in Probability
Principle 1.

Even if the Mixing Hypothesis holds, the Standard Storyvadas to infer the second
law only if we assume something like Probability PrincipleBut is Probability Principle 1
correct? The answer is no. Ligtbe a non-equilibrium macrostate of a system, and suppose
we know that our system is il. Almost all microstates ivl have a higher entropy past.
If we are justified in describing the microstate of the systeith the probability measure
v described by Probability Principle 1, then we are justifiedb&lieving that our system
almost certainly had higher entropy in the recent past. Buhave strong inductive grounds
for believing that our system did not have higher entropyhia tecent past. Therefore,
Principle 1 is false. (Essentially this line of argument éveloped in Chapter 4 of Albert
[1])

The natural thing to do at this point is modify Probabilityrieiple 1. Here is a proposal

that circumvents the problem:

Probability Principle 2: If we know a system is in a macrostatke then we are
justified in describing the microstate of the system withghabability measure
v+ that is uniform oveM*, but which vanishes elsewhere, whéfé is the

set of microstates € M such thai's entropy was lower in the recent past.

(Here, by the ‘recent past’, we mean the interval of time, 0] over which we have good

reason for believing that our system has been isolatedg idemother proposal:

Probability Principle 3: Same as Probability Principle 2, excéyt is now

2For instance, in the case of hard spheres scattering in a closed rdataswntainer (one of the few cases for
which the Mixing Hypothesis may be proved to hold), Xebe a microstate in which all particles have velocities

parallel to a fixed wall of the container, and in which no collisions betweeticfes ever occur.



the set of microstatesc M compatible with the early universe being in some

particular macrostate at some particular time.
And here is another:

Probability Principle 4: Same as Probability Principle 2, excéyt is now
the set of microstatesc M that behave in a way that is compatible with all our

justified expectations about the past and future of the Byste

Regardless of which of these principles is chosen, we caredrgm the Mixing Hypothesis

that
- HMNQ)
lim ———¢
toe (M)

This tells us that almost all microstatesMi eventually end up ifQ. Using the relevant

~1 0 (kx)

Probability Principle, it follows that a system in macrdstil is very likely to end up in
Q. Thus, we are justified in predicting that our system will &ahin accordance with the
second law.

But are any of Probability Principles 2, 3 or 4 true? | clairattthey are not. In fact, |

claim that all principles of the form:

Probability Principle: If we know a system is in macrostalté, then we are
justified in describing the microstate of the system withghabability measure

v, wherepy, is defined in terms dil as ...

are false.

But without a Probability Principle of this sort, it is diffitt to see how the Standard
Story can explain why we are justified in predicting that atesyswill obey the second
law, even when it is known that the system obeys the Mixing dtlgpsis. | move to my

argument for the falsehood of Probability Principles now.

3 Aagainst Probability Principles.

The main problem with any Probability Principle is that, @wing to such a principle,
knowing the current macrostaké of a system is sufficient for us to have a justified belief
about the probability with which our system lies in any segion of phase space. But
it is perfectly possible — and indeed, almost always the eafee us to know the current

macrostate of a system, without being in the position to farjastified belief about the



probability measure with which to describe the microstdtéhe system. Therefore, all
Probability Principles are false.

Consider the following situation. Suppose a scientistdsim a glass box, which we
observe to be filled with a gas in its equilibrium macrostteSuppose the scientist tells us

that 10 minutes ago the gas was in equilibrium, and at tha timmade a choice between:
Option A. Leaving the gas undisturbed, in its equilbrium macrostate,

Option B. Forcing the gas out of its equilibrium macrostate, into a#jzemacrostate that

typically takes 10 minutes to relax back into equilibrium.

The scientist will not tell us which option he chose, and kmgythat the system is presently
in its equilibrium macrostate does not help us deduce whidiice was made. The scientist
does tell us, however, that 1 hour ago he selected a real muambith 0 < o < 1 (by some
unknown procedure) and that he then devised some randoredanaewhich guaranteed
that he chose Option A with probability, and Option B with probability + a.

For no value ofo are we justified in believing that was the probability chosen by
the scientist. We may assume that we know nothing about tkatist, and nothing about
the procedure by which he choae We do not even whether his selectioncofvas truly
random, so we are not entitled to claim a uniform probabdistribution fora.

Suppose, however, that some Probability Principle tellthaswe are justified in de-
scribing the present state of our system with a probabilieasureu*. Let N be the set
of microstates which, 10 minutes ago, were in the particoidrof equilibrium macrostate
refered to in Option B. From the fact that we are justified imgghe probability measure
p*, it follows that we are justified in inferring that = p*(N). But we are not justified in
believing thaio = p*(N). Therefore, the Probability Principle is false. And so nolfwbil-
ity Principle can be correct — and it is worth noting that ikiso even when the macrostate
M is an equilibrium macrostate.

The general lesson here is that the correct probability oreasith which to describe
the present state of a system is, in general, determined byré of facts about the past
of the system — including, for instance, the way in which thgtem was prepared. Such

facts about the past of the system need not be known by us,eearwe be in a position

30ne can easily generate similar examples in which the final macrdgtateot an equilibrium macrostate. For
instance, perhaps the scientist presents us with a glass of water with a thirf iienon the surface, and tells us that
1 hour ago, he either placed 6 ice cubes in a glass of water at room tomegiwith probabilitya) or 7 slightly less

cold ice cubes in a glass of water at room temperature (with probabiity.}



to form justified beliefs about such facts. Because of thesyul generally not be justified
in making claims about the correct probability measure wiklich to describe the present
state of the systerh.
Of course, this is not to deny that there might be cases intwhigzcan have a justified
belief about which probability measure describes the curstate of a systefn nor it is
to deny that we can always make anjustifiedclaim or conjecture about the probability
measure describing the current state of the system. Alehthto deny is that there is some
sort of effective procedure that can be used to reliably nfimra knowledge of the present
macrostate of a system to a justified probability measureritésg the state of the system.
One might think that the problem here is that we need to adpghaiple that includes

information about the past of the system. For instance,idens

Historic Probability Principle: Suppose we know that a system has been iso-
lated during the interval of time from= —r tot = 0. Suppose also that at any
time sin this range, the system is known to have been in macrostatd@hen

we are justified in describing the microstate of the systeth thie probability

measurey, wherept is defined in terms of M;|t € [—r,0]} as follows ...

This is not a Probability Principle as defined earlier, nthaless, it is worth mentioning
two of its serious defects. First, in general we do not knogvglast macroscopic history
of systems of interest, and so relying on a Historic Proltgtirinciple severely limits the
sorts of situations in which we are justified in expecting stegn to obey the second law. It
is for this reason that we have focused on Probability Rplesihaving the form described
earlier.

But second, let us suppose the Historic Probability Priediglls us that we are justified
in describing the present microstate of a system with pritibatmeasurey, where we take
the system to have been isolated over the period of timngd]. Let i, be the probability
measure that evolves infpover anr second period. We are then justified in describing

the state of the system at= —r with the probability measurg_,. But in general, we

4This phenomenon also arises in the case of non-Markovian dynamére, the future behaviour of a system
depends not only on the present state of the system, but also on thg bistoe system. If we know the present
macrostate of such a system, but do not know its history, we will generatllye in a position to specify a probability

measure over all possible present microstates.
SFor instance, we might have strong inductive grounds for describmmgtttte of a coin tossed in the air with a

probability measure that is uniform over the set of all possible angulamtations.



need not be in a position to form a justified belief as to whidsbability measure correctly
describes the initial microstate of the system. Just agégiae correct probability measure
may depend on things completely unkown to us, such as theheagystem was prepared
at the moment of isolation. We should therefore be suspsoddany Historical Probability
Principle. Although a more detailed analysis of Historieabbability Principles would be
welcome, we will not pursue this here, but will focus on thassl of Probability Principles

defined earlier.

4 Conseguences

4.1 Entropy and Probability

What effect does all this have on our understanding of thergklzmv, and in particular, the
Standard Story? According to the Standard Story, becauseritropy macrostates occupy
a tiny portion of phase space, they should be assigned lobapility. But it is difficult
to see how this claim can be justified, other than with a PritibalPrinciple. Because
Probability Principles are incorrect, the Standard Stafgfinto jeapordy.

Furthermore, once we free ourselves from the shackles ofriect Probability Princi-
ples, the situation for the Standard Story get even worsel &laim that the low entropy
states actually found in nature need not be improbable .atfddiw entropy states are not
necessarily improbable, then it cannot be correct to sayttiegasecond law of thermody-
namics is just an expression of the fact that a system witl termove from an improbable
to a more probable state. The key intuition behind the Stah8tory thus disintegrates.

How might a low entropy state turn onbtto be improbable? In order to address this

question, let us first consider the following counter-argain

We shouldthink of low entropy states as improbable, because it isediogly
unlikely that an isolated system, in a high entropy statd, fluictuate out of

that state and into a lower entropy state shortly thereafter

There is, | think, something profoundly irrelevant abowg tentral observation of this ar-
gument; for although it is possible for a system in equilibrito flucuate out of equilbrium
and into a lower entropy state, very few systems we actualtyifi low entropy states are
in such states as a result of such a fluctuation. Most of thédisaglasses of ice-water,

for instance, are the products of very deliberate intevastin which ice and water end up



mixed, and are not the result of random thermal fluctatioaslibgin with an isolated glass
of water. In what sense, then, is the glass of ice-water tleaagtually find in nature in
an improbable state? There is simply no straightforwardeeém which this is so, as the
following examples help to make clear.

Suppose we live in a world in which, by government fiat, all gaitizens must do
everything they can to keep all glasses of water half fullogf, iand that the citizenry is
largely successful at this. Suppose we find a glass of wathrnai ice in it. We will be
justified in believing that one hour ago, the glass of watebpbly had ice in it, because
experience suggests that most glasses of water almostsalveay ice in them. The state
of the glass of water in which it contains ice is thus highlghmble, even though it has low
entropy? In this world, when a glass of ice-water melts, it moves fropr@bable state to
an improbable state.

By contrast, consider a world in which, by government fidtgabd citizens must do
everything they can to keep all glasses free of ice, andhieatitizenry is largely successful
at this. Suppose we find a glass of water with no ice in it. Welvgljustified in believing
that one hour ago, the glass of water probably had no ice imeitause most glasses of
water almost never have ice in them. The state of the glasatefrin which it contains ice
is thus highly improbablé.In this case, when a glass of ice-water melts, it moves from an
improbable state to a probable state.

The lesson here is that whether a low entropy state of a sysasrtow probability, and
whether a high entropy state of a system has high probghikfyends on the environment
in which the system exists, and the sorts of interactionssyfstem is likely to undergo.
There is no straightforward, a-priori connection betwemm éntropy and low probability.
It cannot then be the case that the second law of thermodgsadmjust an expression of
the fact that a system will tend to move from an improbable tiwoae probable state.

To all this, a critic might reply that the universe is destinie undergo heat death, and
so in the long run, low entropy states end up being very raré hence improbable. But
this point is surely irrelevant. If we want to inductivelysfify statements about the way
that sub-systems of the universe will behave when the wdvisrin a particular far-from-
equilibrium state, then we will focus on our experience @& tmiverse while it is in that

particular far-from-equilibrium state. The fact that, arsmic time scales, that particular

6A principle such as Probability Principle 1 gets this case wrong.
A principle such as Probability Principle 2 gets this case wrong.
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far-from-equilibrium state occupies the mere blink of ag &yirrelevant to the justification
of statements about what happens when the eye is in facitink

An interesting corollary should be noted. There has beeredderature (see, for in-
stance, [2]) on the question of whether an especially imgibtbinitial state of the universe
is the sort of thing that requires explanation. This disimrsis motivated by the fact that
the universe is thought to have started in an extremely lowmopy state. If we take ex-
tremely low entropy states to be extremely improbable state are then forced to say
that the universe started in an extremely improbable state;we must decide how to re-
act to this. But once we abandon the idea that low entropy mbsm probability, there
remains no clear sense in which the universe began in ameadfiyémprobable state. In-
deed, once we abandon all Probability Principles, we arengdr even required to take
probabilistic claims about the universe’s initial statdotomeaningful This is not to deny
that such claims could be meaningful, nor is it to deny thatuhiverse may turn out to
have originated in an extremely improbable state. Howaeither the meaningfulness nor
the truth of the claim that the universe originated in an ioaible state follow from the
mere fact that the universe started in an extremely low pgtspate. The burden rests on
someone who nevertheless believes that the universedsiaran extremely improbable

state to demonstrate otherwise.

4.2 Does Statistical M echanics Get the Past Wrong?

Another conceptual problem with statistical mechanich& tt can appear to give us in-
formation about the past at odds with our experience. Fdaig, suppose we adopt
Probability Principle 1. We are then forced to claim that ategn in a medium entropy
state most likely had higher entropy in the recent past. Weweve surely have strong
inductive grounds for thinking that the system had loweramt in the recent past, and so
we have a problem.

The problem, of course, is with our choice jof Suppose a probability distributiqn
that we use to describe the present state of a system ertaiks gropositiorX about the
past of our system, whed¢is at odds with our experience. The correct conclusion twdra
is simply that we are not justified in usipgo describe the present state of the system — for
if we were, we would then be justified in believiixg which we are not.

In general, any choice of probability measure to describeptiesent state of a system

must be justifiable on inductive grounds. So, for instanicegi are justified in describing
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the present state of a system with a probability meaguor which p(X) ~ 1 (for some
propositionX), then it must be the case that we have strong inductive giofor believing
thatX is true. The only case in which statistical mechanics cdmsgio believe something
about the past that is inconsistent with our best indugtif@med expectations is if we use
an unjustified probability measupe Only in this relatively uninteresting sense is statidtica
mechanics capable of getting the past wrdhg.

It will be instructive to apply these considerations to tekeptical catastrophe’ dis-
cussed by Albert in Chapter 6 of [2]The problem is this: suppose | only have knowledge
of the present macrostate of a small portion of the univensd that | am presented with a
50 year old photograph of my grandmother. Experience suggjest this photograph was
probably formed in a less ragged state (i.e., in a lower egtsiate) some time ago, as
the result of an interaction of a camera with my grandmottighowever, we describe the
microstate of a closed subsytem of the universe with a piibtyalmeasure that is uniform
over its present macrostate, then it turns out to be excglydimlikely that the photograph
had such a past. Instead, it is much more likely that the mgaph is the result of some
sort of fluctuation from equilibrium of a piece of photograppaper. There is nothing
special about photographs here — essentially the sameqaoirtie made aboatl records
of the past, including our memories. And so we must conclbdé pretty much all our
knowledge about the past, insofar as it rests on recordsamesmand relics, is unreliable
at best, and false at worst. This is a skeptical catastrophe.

Albert resolves this catastrophe by adopting his ‘Past lhygsis’, but a much simpler
solution is available. On one hand, the Probability Prilecipn which the argument is
based is false. The skeptic, however, may reply that oncdaee purselves in the position
in which we only have knowledge of the present, we then havgroundsfor thinking
that the relevant Probability Principle is false. Ignorihg question of whether there is
an unfair shift in the burden of proof here, this reply quyjcgkts the skeptic in even more
trouble. For suppose we only have knowledge of the preseatasiate of some chunk of
the universe. A probability measure can only be justifiedratuctive grounds, and so if
all our knowledge is knowledge of the present, then we havgaual inductive grounds
with which to justifyany probability measure. But without a justified probability asere,

statistical mechanics yields fastifiedbeliefs about the past. And if statistical mechanics

8Although Albert appears to draw a similar conclusion, he then goes orogt adProbability Principle of the

sort criticised earlier.
9The phrase ‘skeptical catastrophe’ is taken from p. 116 of [1].
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yields no justified beliefs about the past, then statisticathanics has no consequences

capable of conflicting with common sense. Thus, there is eptital catastrophe.

5 Defenses of Probability Principles.

Before finishing, it will be of interest to consider some argnts that might be given
for various Probability Principles. We will consider argemts based on the Principle of
Indifference, arguments based on the stipulation that balitity measure be stationary,

and arguments based on ergodicity/ frequentist considesat

5.1 ThePrincipleof Indifference.

What sorts of arguments might be given to support Probal#ityiciple 1? Perhaps the
most straightforward way to justify this choice of probdlgilddistribution is to invoke the
Principle of Indifference, according to which we should ase a uniform probability mea-
sure over a set of possibilities whenever we lack a reasdmdose a non-uniform probabil-
ity measure over that set of possibilities. This sort of oeasgy can also be used to justify
Probability Principles 2, 3 and 4, and even certain HistdiRrobability Principles.

The Principle of Indifference as thus stated has been mitttect; see especially Chap-
ter 12 of Van Fraassen’s [#f. Some critics have pointed out that the Principle of Indiffer
ence fails to deliver a unique probability distributionisthas become known as ‘Bertrand’s
Paradox’, and is a serious problem for the Principle. An égeampelling, but separate,
concern is that the absence of a reason for choosing a néorunprobability measure
surely does ngustify the choice ofiny probability measure, let alone a uniform probabil-

ity measure. A similar point has also been made by Sklar; pe&18-120 of [6].

5.2 Stationarity Arguments.

Let us focus on the case in which our system is in equilibridrat p be the probability
measure which is uniform over all phase space. Tjnkas the property that it is ‘station-
ary’; that is to say, it remains invariant under evolutiortime. Furthermore, if the system
is ergodic, themu s theonly stationary probability distribution that assigns proliab0 to

sets of measure .

10For a defense of the Principle of Indifference, see [3].
11For a discussion of this point, see pp. 159-161 of Sklar [6].
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Given that we expect the properties of a system in equilibrio remain constant over
time, and given the reasonableness of assigning probabiltb sets of measure 0, we
should conclude that when an ergodic system is in equilibrithenp is the probability
measure with which to describe the microstate of the system.

This Probability Principle is quite modest, for it is onlyémded to apply to an ergodic
system in equilibrium. Nevertheless, it is false. While weenhatrong inductive grounds
for thinking that the properties of an isolated system inildzrium will not change in the
future, we have no grounds for thinking that such a systenopgrties did not change in the
past. Many isolated systems presently in equilibrium weogked in an out-of-equilibrium
state. If we know that an isolated system was prepared in &oferquilibirum state, or
if we are not in a position to judge whether a system was owepiilibrium when first
isolated, then we are not justified in employing a statiomaiopability measure to describe

the present microstate of the systém.

5.3 Ergodicity and Frequentism.

Finally, suppose a system is ergodic. Fix a sub-redton S of phase spac§, and let
o = u(R)/U(S). Then, for almost all pointg of phase space, the proportion of time that a
system beginning in microstatewill spend inRis justa. If we identify the probability of a
system being iR with the proportion of time it spends R as a frequency interpretation of
probability might suggest, then we must conclude that tiebalility of our system being
found inRis a. Thus, sub-regions of phase space with equal volume musssigned
equal probability. And this means that, given no additidnedrmation about the system,
we ought to describe the present microstate of the systemanirobability distribution
that is uniform over all of phase space.

But similar problems arise. Typically, we dwt know nothing about a system; the
additional knowledge we have about a system will generdltynvaus to argue that the
system ismore likely to be in one sub-region of phase space than anothallgagized
subregion. A simple example goes back to Reichenbach [5theifveather has been hot
for the last few days, it is more likely that the weather wéliwot tommorow than that it will
be cold, even if it is assumed that, in the long run, hot and tainperatures are equally

frequent. In this way, information about the recent pastieare a bearing on our choice of

12pnother serious problem is that it is not clear why we should assign pilitg to a set of measure 0. See pp.

182-188 of Sklar [6] for a discussion of this point.
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probability measures for the present state of a sysfem.

This is not to concede, however, that we are justified in usinmiform probability
measure in cases in which we have absolutely no grounds fkinmany claims about the
past of a system. For if we truly have no grounds for making@aims about the past of
a system, then we are surely not justified in describing tbegnt state of the system with

any probability measure.

5.4 Conclusion

Although there are undoubtedly other arguments for PrdibaBrinciples, | conjecture that
they all fail for similar reasons. There is no way to accoumtthe variety of knowledge
we might or might not have about the past of a system with alsinappriori principle that

focuses solely on the present macrostate of the system. tBisds realized, some (though

not all) of the conceptual problems associated with stasistnechanics disappear.
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