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Abstract

According to a standard view of the second law of thermodynamics, our belief in the second

law can be justified by pointing out that low entropy macrostates are less probable than high entropy

macrostates, and then noting that a system in an improbable state will tend to evolve toward a more

probable state. I would like to argue that this justification of the second law of thermodynamics is

fundamentally flawed, and will show that some puzzles sometimes associated with the second law

are merely artifacts of this incorrect justification.

1 The Standard Story.

If we squirt some colored ink into a closed container of moving water, we are justified in

expecting that the ink will eventually disperse itself evenly through the water. Indeed, if we

prepare any system in a state of low entropy, and then isolatethe system, we are justified in

expecting that the system will experience an increase in entropy. In virtue of what are these

beliefs justified? Such beliefs can, of course, be justified on purely inductive grounds. But

one might also think that such beliefs ought to be able to be justified on the basis of more

fundamental physical and mathematical principles. In thispaper, I would like to discuss

and criticize a common justification of this later sort.

The challenge posed in the last paragraph is to explain why weare justified in believing

the second law of thermodynamics, given only more fundamental physical and mathemati-

cal principles. For our purposes, the second law of thermodynamics states that the entropy

of an isolated system will increase until the system reachesits equilibrium state, which is a

state of maximum entropy. Once in this equilibrium state, the system will remain there (or

at least will remain there for a very long time.)

A standard (though somewhat schematic) argument for the second law is as follows:
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Standard Story: Low entropy macrostates occupy a tiny portion of phase

space, and so it is extremely improbable that a system will find itself in a low

entropy macrostate. High entropy macrostates occupy essentially all of phase

space, and so it is extremely probable that a system will find itself in a high en-

tropy macrostate. If a system has an extremely probable and an extremely im-

probable state, then whenever the system is in the extremelyimprobable state,

it will very likely find itself in the extremely probable state shortly thereafter,

and will likely remain in the extremely probable state for some time. (That,

after all, is just what itmeansto call a state extremely probable.) Thus, a sys-

tem in a low entropy macrostate is overwhelmingly likely to evolve into a high

entropy macrostate, and remain in that high entropy macrostate for some time.

The primary goal of this paper will be to argue that this storyis deeply misguided.

In §2, I argue that the Standard Story rests critically on what I will call a Probability

Principle. A Probability Principle is any claim of the form:

Probability Principle: If we know that a system is in macrostateM, then

we are justified in describing the microstate of the system with the probability

measureµM, whereµM is defined in terms ofM as ...

Different procedures for definingµM correspond to different Probability Principles.

In §3, I argue that no Probability Principle can be correct, and that the Standard Story is

thus fundamentally flawed. In §4, I argue that this sheds light on some problems tradition-

ally associated with statistical mechanics. For instance,one problem, sometimes grouped

together with the Reversibility Objections, is that statistical mechanics tells us that an iso-

lated system in a medium entropy state is much more likely to have had a high entropy past

than a low entropy past, contrary to our experience. Some sort of maneuvering is therefore

needed in order to salvage our ability to reason about the past using statistical mechanics.

Precisely what sort of maneuvers are needed is a subject of some dispute. Even once such

maneuvers are made, however, many accounts leave us having to say that the universe be-

gan its life in an exceedingly improbable state. We are then left wondering precisely what

scientific obligation we are under to explain this initial state. My arguments, however, will

show that there is no clear sense in which statistical mechanics gets the past wrong, and no

clear sense in which we are forced to say that the universe began its life in an exceedingly

improbable state. Indeed, there is no clear sense in which low entropy states are improbable,

and high entropy states probable. Many associated problemsthen largely evaporate.
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In §5, as an ‘appendix’ of sorts, I will discuss a few reasons why some may have felt

tempted to adopt Probability Principles, and will explain why these reasons are misguided.

2 Justifying the Standard Story.

It is well known that fleshing out the details of the Standard Story requires some sort of

ergodicity or mixing hypothesis.1 For the sake of definiteness, we invoke the following:

Mixing Hypothesis: Let Sbe phase space, and letµ be the standard Lebesgue

measure onS, normalized so thatµ(S) = 1. LetM andQ be measurable subsets

of S, and letMt be thet-second evolution ofM. Then:

lim
t→∞

µ(Mt ∩Q) = µ(M)µ(Q).

To see how the Mixing Hypothesis gives us the second law, letQ be the set of equilibrium

states of the system (so thatµ(Q) ≈ 1), and letM be an arbitrary macrostate (assumed to

have non-zero measure.) Then:

lim
t→∞

µ(Mt ∩Q)

µ(M)
≈ 1 (∗)

This is usually interpreted as saying that almost all microstates inM eventually end up in

Q. It follows that a system in macrostateM is almost certain to end up inQ. Thus, we have

established a version of the second law.

The Mixing Hypothesis (and its close relatives) have been criticized by Sklar [6], Ear-

man and Redei [4], and others. These authors suggest that there is no evidence that such

assumptions hold of realistic physical systems, and that there is perhaps even evidence that

such assumptions fail. I take these criticisms to be persuasive.

I think, however, that there is a more basic error that occursin this justification of the

second law. Suppose we have a system for which the Mixing Hypothesis happens to hold.

Does the Standard Story then give us good reason to suppose that the second law holds for

this a system? I shall argue for a negative answer. Even in thecase of a system known to

obey the Mixing Hypothesis, the Standard Story fails to justify our belief in the second law.

To see the main problem, we ask: does equation(∗) really entail that a system in the

macrostateM is extremely likely to end up inQ at some point in its future? The argument

for an affirmative answer proceeds as follows: suppose our system is in macrostateM at

1See, e.g., Chapter 5 of Sklar [6].
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t = 0. We choose a probability measureµM over the set of all possible microstates that

is uniform overM, and which vanishes elsewhere. (That is to say, ifT ⊂ S, then the

probability that our system is in a microstate inT is given by:

µM(T) = µ(M∩T)/µ(M),

whereµ is the standard Lebesgue measure.) Given any subsetT ⊂ S, and any realr, let Tr

be the set of microstates which,r seconds ago, were elements ofT. Given this notation and

this choice of probability measure, the probability thatt seconds from now our system will

lie in Q is:

µM(Q−t) = µ(M∩Q−t)/µ(M).

Using Louiville’s Theorem,µ(M∩Q−t) = µ(Mt ∩Q). Thus, the probability thatt seconds

from now our system will lie inQ is:

µ(Mt ∩Q)/µ(M).

The Mixing Hypothesis tells us that this quantity approaches a number close to 1 ast

increases. Thus, almost all microstates inM eventually end up inQ at some point in their

futures.

But the cogency of this argument depends on our choice of the measureµM as the

relevant probability measure with which to describe the present state of the system. In

particular, the following principle is being invoked:

Probability Principle 1: If we know a system is in a macrostateM, then we

are justified in describing the present state of the system with the probability

measureµM that is uniform overM, but which vanishes elsewhere.

Note that this is a principle about what we arejustified in believing. Recall that the whole

point of the Standard Story is to explain why we arejustified in making predictions in

accordance with the second law. If our explanation depends on one choice of probability

measure over another (as we shall see it does), then it betterbe the case that we arejustified

in choosing that particular probability measure over the other, or else the Standard Story

will fail to serve its justificatory purpose. This is why we need a principle that tells us that

we arejustifiedin our choice of a particular probability measure.

Without an assumption like Probability Principle 1, we are in no position to interpret

(∗) as stating that a system in the macrostateM is extremely likely to end up inQ in the

future. To see why, letM be a macrostate, and letx∈ M be a microstate which never passes
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through the equilibrium macrostateQ.2 Defineµx to be a probability measure onM which

is supported only onx; i.e., for any subsetT of phase space,

µx(T) =







1 if x∈ T

0 if x 6∈ T

Using this measure of probability, a system in the macrostateM is certainto remain outside

of Q forever, even though(∗) holds. Thus, it is only if we draw some sort of connection

between Lebesgue measure and the actual probability measure pertinent to the present state

of the system, that we can take(∗) to be telling us that a system in the macrostateM is

extremely likely to end up inQ. This sort of connection is explicitly drawn in Probability

Principle 1.

Even if the Mixing Hypothesis holds, the Standard Story allows us to infer the second

law only if we assume something like Probability Principle 1. But is Probability Principle 1

correct? The answer is no. LetM be a non-equilibrium macrostate of a system, and suppose

we know that our system is inM. Almost all microstates inM have a higher entropy past.

If we are justified in describing the microstate of the systemwith the probability measure

µM described by Probability Principle 1, then we are justified in believing that our system

almost certainly had higher entropy in the recent past. But we have strong inductive grounds

for believing that our system did not have higher entropy in the recent past. Therefore,

Principle 1 is false. (Essentially this line of argument is developed in Chapter 4 of Albert

[1].)

The natural thing to do at this point is modify Probability Principle 1. Here is a proposal

that circumvents the problem:

Probability Principle 2: If we know a system is in a macrostateM, then we are

justified in describing the microstate of the system with theprobability measure

µM∗ that is uniform overM∗, but which vanishes elsewhere, whereM∗ is the

set of microstatesx∈ M such thatx’s entropy was lower in the recent past.

(Here, by the ‘recent past’, we mean the interval of time[−s,0] over which we have good

reason for believing that our system has been isolated.) Here is another proposal:

Probability Principle 3: Same as Probability Principle 2, exceptM∗ is now

2For instance, in the case of hard spheres scattering in a closed rectangular container (one of the few cases for

which the Mixing Hypothesis may be proved to hold), letx be a microstate in which all particles have velocities

parallel to a fixed wall of the container, and in which no collisions between particles ever occur.
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the set of microstatesx∈ M compatible with the early universe being in some

particular macrostate at some particular time.

And here is another:

Probability Principle 4: Same as Probability Principle 2, exceptM∗ is now

the set of microstatesx∈ M that behave in a way that is compatible with all our

justified expectations about the past and future of the system.

Regardless of which of these principles is chosen, we can argue from the Mixing Hypothesis

that

lim
t→∞

µ(M∗
t ∩Q)

µ(M∗)
≈ 1 (∗∗)

This tells us that almost all microstates inM∗ eventually end up inQ. Using the relevant

Probability Principle, it follows that a system in macrostate M is very likely to end up in

Q. Thus, we are justified in predicting that our system will behave in accordance with the

second law.

But are any of Probability Principles 2, 3 or 4 true? I claim that they are not. In fact, I

claim that all principles of the form:

Probability Principle: If we know a system is in macrostateM, then we are

justified in describing the microstate of the system with theprobability measure

µM, whereµM is defined in terms ofM as ...

are false.

But without a Probability Principle of this sort, it is difficult to see how the Standard

Story can explain why we are justified in predicting that a system will obey the second

law, even when it is known that the system obeys the Mixing Hypothesis. I move to my

argument for the falsehood of Probability Principles now.

3 Against Probability Principles.

The main problem with any Probability Principle is that, according to such a principle,

knowing the current macrostateM of a system is sufficient for us to have a justified belief

about the probability with which our system lies in any sub-region of phase space. But

it is perfectly possible – and indeed, almost always the case– for us to know the current

macrostate of a system, without being in the position to forma justified belief about the
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probability measure with which to describe the microstate of the system. Therefore, all

Probability Principles are false.

Consider the following situation. Suppose a scientist brings in a glass box, which we

observe to be filled with a gas in its equilibrium macrostateM. Suppose the scientist tells us

that 10 minutes ago the gas was in equilibrium, and at that time he made a choice between:

Option A. Leaving the gas undisturbed, in its equilbrium macrostate,or

Option B. Forcing the gas out of its equilibrium macrostate, into a specific macrostate that

typically takes 10 minutes to relax back into equilibrium.

The scientist will not tell us which option he chose, and knowing that the system is presently

in its equilibrium macrostate does not help us deduce which choice was made. The scientist

does tell us, however, that 1 hour ago he selected a real number α with 0 < α < 1 (by some

unknown procedure) and that he then devised some random procedure which guaranteed

that he chose Option A with probabilityα, and Option B with probability 1−α.

For no value ofα are we justified in believing thatα was the probability chosen by

the scientist. We may assume that we know nothing about the scientist, and nothing about

the procedure by which he choseα. We do not even whether his selection ofα was truly

random, so we are not entitled to claim a uniform probabilitydistribution forα.

Suppose, however, that some Probability Principle tells usthat we are justified in de-

scribing the present state of our system with a probability measureµ∗. Let N be the set

of microstates which, 10 minutes ago, were in the particularout of equilibrium macrostate

refered to in Option B. From the fact that we are justified in using the probability measure

µ∗, it follows that we are justified in inferring thatα = µ∗(N). But we are not justified in

believing thatα = µ∗(N). Therefore, the Probability Principle is false. And so no Probabil-

ity Principle can be correct – and it is worth noting that thisis so even when the macrostate

M is an equilibrium macrostate.3

The general lesson here is that the correct probability measure with which to describe

the present state of a system is, in general, determined by all sorts of facts about the past

of the system – including, for instance, the way in which the system was prepared. Such

facts about the past of the system need not be known by us, nor need we be in a position

3One can easily generate similar examples in which the final macrostateM is not an equilibrium macrostate. For

instance, perhaps the scientist presents us with a glass of water with a thin filmof ice on the surface, and tells us that

1 hour ago, he either placed 6 ice cubes in a glass of water at room temperature (with probabilityα) or 7 slightly less

cold ice cubes in a glass of water at room temperature (with probability 1−α.)
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to form justified beliefs about such facts. Because of this, we will generally not be justified

in making claims about the correct probability measure withwhich to describe the present

state of the system.4

Of course, this is not to deny that there might be cases in which wecanhave a justified

belief about which probability measure describes the current state of a system5; nor it is

to deny that we can always make anunjustifiedclaim or conjecture about the probability

measure describing the current state of the system. All I intend to deny is that there is some

sort of effective procedure that can be used to reliably movefrom knowledge of the present

macrostate of a system to a justified probability measure describing the state of the system.

One might think that the problem here is that we need to adopt aprinciple that includes

information about the past of the system. For instance, consider:

Historic Probability Principle: Suppose we know that a system has been iso-

lated during the interval of time fromt = −r to t = 0. Suppose also that at any

time s in this range, the system is known to have been in macrostateMs. Then

we are justified in describing the microstate of the system with the probability

measureµ, whereµ is defined in terms of{Mt |t ∈ [−r,0]} as follows ...

This is not a Probability Principle as defined earlier, nevertheless, it is worth mentioning

two of its serious defects. First, in general we do not know the past macroscopic history

of systems of interest, and so relying on a Historic Probability Principle severely limits the

sorts of situations in which we are justified in expecting a system to obey the second law. It

is for this reason that we have focused on Probability Principles having the form described

earlier.

But second, let us suppose the Historic Probability Principle tells us that we are justified

in describing the present microstate of a system with probability measureµ, where we take

the system to have been isolated over the period of time[−r,0]. Let µ−r be the probability

measure that evolves intoµ over anr second period. We are then justified in describing

the state of the system att = −r with the probability measureµ−r . But in general, we

4This phenomenon also arises in the case of non-Markovian dynamics. Here, the future behaviour of a system

depends not only on the present state of the system, but also on the history of the system. If we know the present

macrostate of such a system, but do not know its history, we will generallynot be in a position to specify a probability

measure over all possible present microstates.
5For instance, we might have strong inductive grounds for describing the state of a coin tossed in the air with a

probability measure that is uniform over the set of all possible angular orientations.
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need not be in a position to form a justified belief as to which probability measure correctly

describes the initial microstate of the system. Just as before, the correct probability measure

may depend on things completely unkown to us, such as the way the system was prepared

at the moment of isolation. We should therefore be suspicious of any Historical Probability

Principle. Although a more detailed analysis of HistoricalProbability Principles would be

welcome, we will not pursue this here, but will focus on the class of Probability Principles

defined earlier.

4 Consequences

4.1 Entropy and Probability

What effect does all this have on our understanding of the second law, and in particular, the

Standard Story? According to the Standard Story, because low entropy macrostates occupy

a tiny portion of phase space, they should be assigned low probability. But it is difficult

to see how this claim can be justified, other than with a Probability Principle. Because

Probability Principles are incorrect, the Standard Story falls into jeapordy.

Furthermore, once we free ourselves from the shackles of incorrect Probability Princi-

ples, the situation for the Standard Story get even worse. For I claim that the low entropy

states actually found in nature need not be improbable at all. If low entropy states are not

necessarily improbable, then it cannot be correct to say that the second law of thermody-

namics is just an expression of the fact that a system will tend to move from an improbable

to a more probable state. The key intuition behind the Standard Story thus disintegrates.

How might a low entropy state turn outnot to be improbable? In order to address this

question, let us first consider the following counter-argument:

Weshouldthink of low entropy states as improbable, because it is exceedingly

unlikely that an isolated system, in a high entropy state, will fluctuate out of

that state and into a lower entropy state shortly thereafter.

There is, I think, something profoundly irrelevant about the central observation of this ar-

gument; for although it is possible for a system in equilibrium to flucuate out of equilbrium

and into a lower entropy state, very few systems we actually find in low entropy states are

in such states as a result of such a fluctuation. Most of the world’s glasses of ice-water,

for instance, are the products of very deliberate interactions in which ice and water end up
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mixed, and are not the result of random thermal fluctations that begin with an isolated glass

of water. In what sense, then, is the glass of ice-water that we actually find in nature in

an improbable state? There is simply no straightforward sense in which this is so, as the

following examples help to make clear.

Suppose we live in a world in which, by government fiat, all good citizens must do

everything they can to keep all glasses of water half full of ice, and that the citizenry is

largely successful at this. Suppose we find a glass of water with no ice in it. We will be

justified in believing that one hour ago, the glass of water probably had ice in it, because

experience suggests that most glasses of water almost always have ice in them. The state

of the glass of water in which it contains ice is thus highly probable, even though it has low

entropy.6 In this world, when a glass of ice-water melts, it moves from aprobable state to

an improbable state.

By contrast, consider a world in which, by government fiat, all good citizens must do

everything they can to keep all glasses free of ice, and that the citizenry is largely successful

at this. Suppose we find a glass of water with no ice in it. We will be justified in believing

that one hour ago, the glass of water probably had no ice in it,because most glasses of

water almost never have ice in them. The state of the glass of water in which it contains ice

is thus highly improbable.7 In this case, when a glass of ice-water melts, it moves from an

improbable state to a probable state.

The lesson here is that whether a low entropy state of a systemhas low probability, and

whether a high entropy state of a system has high probability, depends on the environment

in which the system exists, and the sorts of interactions thesystem is likely to undergo.

There is no straightforward, a-priori connection between low entropy and low probability.

It cannot then be the case that the second law of thermodynamics is just an expression of

the fact that a system will tend to move from an improbable to amore probable state.

To all this, a critic might reply that the universe is destined to undergo heat death, and

so in the long run, low entropy states end up being very rare, and hence improbable. But

this point is surely irrelevant. If we want to inductively justify statements about the way

that sub-systems of the universe will behave when the universe is in a particular far-from-

equilibrium state, then we will focus on our experience of the universe while it is in that

particular far-from-equilibrium state. The fact that, on cosmic time scales, that particular

6A principle such as Probability Principle 1 gets this case wrong.
7A principle such as Probability Principle 2 gets this case wrong.
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far-from-equilibrium state occupies the mere blink of an eye is irrelevant to the justification

of statements about what happens when the eye is in fact blinking.

An interesting corollary should be noted. There has been some literature (see, for in-

stance, [2]) on the question of whether an especially improbable initial state of the universe

is the sort of thing that requires explanation. This discussion is motivated by the fact that

the universe is thought to have started in an extremely low entropy state. If we take ex-

tremely low entropy states to be extremely improbable states, we are then forced to say

that the universe started in an extremely improbable state;and we must decide how to re-

act to this. But once we abandon the idea that low entropy means low probability, there

remains no clear sense in which the universe began in an extremely improbable state. In-

deed, once we abandon all Probability Principles, we are no longer even required to take

probabilistic claims about the universe’s initial state tobemeaningful. This is not to deny

that such claims could be meaningful, nor is it to deny that the universe may turn out to

have originated in an extremely improbable state. However,neither the meaningfulness nor

the truth of the claim that the universe originated in an improbable state follow from the

mere fact that the universe started in an extremely low entropy state. The burden rests on

someone who nevertheless believes that the universe started in an extremely improbable

state to demonstrate otherwise.

4.2 Does Statistical Mechanics Get the Past Wrong?

Another conceptual problem with statistical mechanics is that it can appear to give us in-

formation about the past at odds with our experience. For instance, suppose we adopt

Probability Principle 1. We are then forced to claim that a system in a medium entropy

state most likely had higher entropy in the recent past. However, we surely have strong

inductive grounds for thinking that the system had lower entropy in the recent past, and so

we have a problem.

The problem, of course, is with our choice ofµ. Suppose a probability distributionµ

that we use to describe the present state of a system entails some propositionX about the

past of our system, whereX is at odds with our experience. The correct conclusion to draw

is simply that we are not justified in usingµ to describe the present state of the system – for

if we were, we would then be justified in believingX, which we are not.

In general, any choice of probability measure to describe the present state of a system

must be justifiable on inductive grounds. So, for instance, if we are justified in describing

11



the present state of a system with a probability measureµ for which µ(X) ≈ 1 (for some

propositionX), then it must be the case that we have strong inductive grounds for believing

thatX is true. The only case in which statistical mechanics can tell us to believe something

about the past that is inconsistent with our best inductively formed expectations is if we use

an unjustified probability measureµ. Only in this relatively uninteresting sense is statistical

mechanics capable of getting the past wrong.8

It will be instructive to apply these considerations to the ‘skeptical catastrophe’ dis-

cussed by Albert in Chapter 6 of [1].9 The problem is this: suppose I only have knowledge

of the present macrostate of a small portion of the universe,and that I am presented with a

50 year old photograph of my grandmother. Experience suggests that this photograph was

probably formed in a less ragged state (i.e., in a lower entropy state) some time ago, as

the result of an interaction of a camera with my grandmother.If, however, we describe the

microstate of a closed subsytem of the universe with a probability measure that is uniform

over its present macrostate, then it turns out to be exceedingly unlikely that the photograph

had such a past. Instead, it is much more likely that the photograph is the result of some

sort of fluctuation from equilibrium of a piece of photographic paper. There is nothing

special about photographs here – essentially the same pointcan be made aboutall records

of the past, including our memories. And so we must conclude that pretty much all our

knowledge about the past, insofar as it rests on records, memories and relics, is unreliable

at best, and false at worst. This is a skeptical catastrophe.

Albert resolves this catastrophe by adopting his ‘Past Hypothesis’, but a much simpler

solution is available. On one hand, the Probability Principle on which the argument is

based is false. The skeptic, however, may reply that once we place ourselves in the position

in which we only have knowledge of the present, we then haveno groundsfor thinking

that the relevant Probability Principle is false. Ignoringthe question of whether there is

an unfair shift in the burden of proof here, this reply quickly gets the skeptic in even more

trouble. For suppose we only have knowledge of the present macrostate of some chunk of

the universe. A probability measure can only be justified on inductive grounds, and so if

all our knowledge is knowledge of the present, then we have nogood inductive grounds

with which to justifyanyprobability measure. But without a justified probability measure,

statistical mechanics yields nojustifiedbeliefs about the past. And if statistical mechanics

8Although Albert appears to draw a similar conclusion, he then goes on to adopt a Probability Principle of the

sort criticised earlier.
9The phrase ‘skeptical catastrophe’ is taken from p. 116 of [1].
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yields no justified beliefs about the past, then statisticalmechanics has no consequences

capable of conflicting with common sense. Thus, there is no skeptical catastrophe.

5 Defenses of Probability Principles.

Before finishing, it will be of interest to consider some arguments that might be given

for various Probability Principles. We will consider arguments based on the Principle of

Indifference, arguments based on the stipulation that a probability measure be stationary,

and arguments based on ergodicity/ frequentist considerations.

5.1 The Principle of Indifference.

What sorts of arguments might be given to support ProbabilityPrinciple 1? Perhaps the

most straightforward way to justify this choice of probability distribution is to invoke the

Principle of Indifference, according to which we should choose a uniform probability mea-

sure over a set of possibilities whenever we lack a reason to choose a non-uniform probabil-

ity measure over that set of possibilities. This sort of reasoning can also be used to justify

Probability Principles 2, 3 and 4, and even certain Historical Probability Principles.

The Principle of Indifference as thus stated has been much critized; see especially Chap-

ter 12 of Van Fraassen’s [7].10 Some critics have pointed out that the Principle of Indiffer-

ence fails to deliver a unique probability distribution; this has become known as ‘Bertrand’s

Paradox’, and is a serious problem for the Principle. An equally compelling, but separate,

concern is that the absence of a reason for choosing a non-uniform probability measure

surely does notjustify the choice ofanyprobability measure, let alone a uniform probabil-

ity measure. A similar point has also been made by Sklar; see pp. 118-120 of [6].

5.2 Stationarity Arguments.

Let us focus on the case in which our system is in equilibrium.Let µ be the probability

measure which is uniform over all phase space. Thenµ has the property that it is ‘station-

ary’; that is to say, it remains invariant under evolution intime. Furthermore, if the system

is ergodic, thenµ is theonlystationary probability distribution that assigns probability 0 to

sets of measure 0.11

10For a defense of the Principle of Indifference, see [3].
11For a discussion of this point, see pp. 159-161 of Sklar [6].
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Given that we expect the properties of a system in equilibrium to remain constant over

time, and given the reasonableness of assigning probability 0 to sets of measure 0, we

should conclude that when an ergodic system is in equilibrium, thenµ is the probability

measure with which to describe the microstate of the system.

This Probability Principle is quite modest, for it is only intended to apply to an ergodic

system in equilibrium. Nevertheless, it is false. While we have strong inductive grounds

for thinking that the properties of an isolated system in equilibrium will not change in the

future, we have no grounds for thinking that such a system’s properties did not change in the

past. Many isolated systems presently in equilibrium were isolated in an out-of-equilibrium

state. If we know that an isolated system was prepared in an out-of-equilibirum state, or

if we are not in a position to judge whether a system was out-of-equilibrium when first

isolated, then we are not justified in employing a stationaryprobability measure to describe

the present microstate of the system.12

5.3 Ergodicity and Frequentism.

Finally, suppose a system is ergodic. Fix a sub-regionR⊂ S of phase spaceS, and let

α = µ(R)/µ(S). Then, for almost all pointsx of phase space, the proportion of time that a

system beginning in microstatex will spend inR is justα. If we identify the probability of a

system being inRwith the proportion of time it spends inR, as a frequency interpretation of

probability might suggest, then we must conclude that the probability of our system being

found in R is α. Thus, sub-regions of phase space with equal volume must be assigned

equal probability. And this means that, given no additionalinformation about the system,

we ought to describe the present microstate of the system with a probability distribution

that is uniform over all of phase space.

But similar problems arise. Typically, we donot know nothing about a system; the

additional knowledge we have about a system will generally allow us to argue that the

system ismore likely to be in one sub-region of phase space than another equally sized

subregion. A simple example goes back to Reichenbach [5] – ifthe weather has been hot

for the last few days, it is more likely that the weather will be hot tommorow than that it will

be cold, even if it is assumed that, in the long run, hot and cold temperatures are equally

frequent. In this way, information about the recent past canhave a bearing on our choice of

12Another serious problem is that it is not clear why we should assign probability 0 to a set of measure 0. See pp.

182-188 of Sklar [6] for a discussion of this point.
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probability measures for the present state of a system.13

This is not to concede, however, that we are justified in usinga uniform probability

measure in cases in which we have absolutely no grounds for making any claims about the

past of a system. For if we truly have no grounds for making anyclaims about the past of

a system, then we are surely not justified in describing the present state of the system with

anyprobability measure.

5.4 Conclusion

Although there are undoubtedly other arguments for Probability Principles, I conjecture that

they all fail for similar reasons. There is no way to account for the variety of knowledge

we might or might not have about the past of a system with a simple, a-priori principle that

focuses solely on the present macrostate of the system. Oncethis is realized, some (though

not all) of the conceptual problems associated with statistical mechanics disappear.
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