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Abstract

In The Comparative Method Ragin (1987) has outlined a procedure of Boolean causal
reasoning operating on pure coincidence data that has meanwhile become widely known as
QCA (Qualitative Comparative Analysis) among social scientists. QCA – also in its recent
form as presented in Ragin (2000) – is designed to analyze causal structures featuring one
effect and a possibly complex configuration of mutually independent direct causes of that
effect. The paper at hand presents a procedure of causal reasoning that operates on the same
type of empirical data as QCA and that implements Boolean techniques related to the ones
resorted to by QCA, yet, in contrast to QCA, the procedure introduced here successfully
identifies causal structures involving both mutually dependent causes, i.e. causal chains,
and multiple effects, i.e. epiphenomena. In this sense, the paper at hand generalizes QCA.

1 Introduction

In The Comparative Method Ragin (1987) has developed a methodology of causal
analysis that has meanwhile become known as QCA (Qualitative Comparative
Analysis) among social scientists. Ragin has introduced QCA as an alternative
to standard quantitative and qualitative methodologies prevalent in social sciences.
Social scientists are often confronted with data sets that are too small and too inho-
mogeneous for a significant statistical analyzability, yet, at the same time, are too
large and too complex for an in depth qualitative analysis. QCA, accordingly, is
thus designed that it occupies a middle ground between the variable-oriented and
the case-oriented tradition. QCA treats single cases in its data sets as complex con-
figurations of dichotomous variables. Cases feature one dependent (effect) variable
and an arbitrary amount of independent (possible cause) variables. By a system-
atic comparison – implementing Boolean techniques – of such configurations con-
junctions of the independent variables can be identified as complex causes of the
dependent variable. Every dependent variable can have several alternative com-
plex causes which are disjunctively concatenated in the output of QCA. Complex
causes are seen as sufficient conditions, disjunctions of alternative causes as neces-
sary conditions of their effects. The Boolean techniques are primarily resorted to
in order to minimize complex conditions involving redundant variables.

Dichotomous variables correspond to conventional crisp sets. In Ragin (2000)
QCA has been adapted for fuzzy sets, yet the fundamental presumptions of QCA
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Fig. 1: Causal chains as depicted in graph (a) and epiphenomena as in (b) cannot be directly ana-
lyzed by QCA. (Edges in these graphs can be seen to represent the relation of direct causal
relevance.)

and, most of all, the form of causal structures uncoverable by QCA have remained
unaltered. QCA is designed to analyze causal structures featuring one effect and
a possibly complex configuration of mutually independent direct causes of that ef-
fect. For brevity, call the assumed singularity of the analyzed effect the singularity
assumption, or (SNG) for short, and the assumed mutual independence of causes
the independence assumption, or (IND) for short. Furthermore, it must be noted
that an application of QCA always presupposes that it be known what variable
within the set of variables to be analyzed is the effect and, accordingly, what vari-
ables are possible causes. I shall refer to the assumed identifiability of causes and
effects as (ICE).1

Certain ubiquitous causal structures violate (SNG) and (IND), most notably
causal chains and epiphenomena. Examples for both of these structures are graphed
in figure 1. Of course, a subdivision of a chain as the one in graph 1(a) into its
separate layers – A ∨ B ⇒ C and C ∨D ⇒ E, respectively2 – yields two causal
substructures that satisfy both (SNG) and (IND). Such a subdivision would thus
render a chainlike structure amenable to a stepwise QCA analysis: First A∨B ⇒
C and then C ∨ D ⇒ E could be uncovered by means of QCA. An analogous
subdivision of the epiphenomenon in 1(b) would render that structure modularly
tractable by QCA. However, such a breaking down of complex structures into
simple ones that satisfy (SNG) and (IND) presupposes that a great deal about the
causal structure under investigation be known prior to its analyzability by QCA –
hence (ICE). The variables involved in the investigated cases must be categorized
into possible causes and possible effects prior to implementing QCA. In the end,
what QCA determines is whether possible causal dependencies in fact exist and

1 It shall not be claimed that these 3 assumptions are logically independent. They are just labelled
here for the purpose of easy reference later on. Moreover, it must be pointed out that (SNG), (IND)
and (ICE) are not explicitly assumed in the context of QCA, rather they are implicitly taken for
granted.

2 The “⇒” operator is given a specific interpretation below. For now, it can just be understood in
terms of the causal relation.
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whether the cause variables constitute complex or alternative causes of the effect
under investigation.

QCA draws on concepts and ideas developed within the regularity theoretic
tradition of the philosophy of causation. Ragin himself sees QCA as a general-
ization and systematization of Mill’s methods of agreement and difference, and
the core of the Boolean techniques to minimize causal conditions implemented in
QCA can be found in Broad (1930), Broad (1944), or Mackie (1974).3 The pa-
per at hand takes on to show that prior knowledge about the causal structure under
investigation does not need to be presupposed against a regularity theoretic back-
ground. The latter allows for causal reasoning without presuming (SNG) and (IND).
Thus, in what follows I shall present a procedure of causal reasoning that processes
the same kind of empirical data as QCA, implements Boolean techniques closely
related to the ones resorted to by QCA, yet, in contrast to QCA, does neither
presuppose (SNG) nor (IND) nor (ICE).

2 The Background

As mentioned above, the theoretical background of the inference procedure to be
developed in this paper is located in the regularity theoretic tradition of the philoso-
phy of causation. The core of this background shall be very briefly reviewed before
the procedure is introduced.4 Regularity theories of causation analyze causes and
effects on type-level, i.e. event types – or factors for short – are seen as the primary
relata of the causal relation. The primary analysans of a regularity theory, hence, is
general causation. A factor that causes another factor is said to be causally relevant
to the latter. Factors are taken to be similarity sets of event tokens. They are sets of
type identical token events, of events that share at least one feature. Contrary to to-
ken events, event types are generic entities. They are not located in time and space
themselves, but they are instantiated in time and space by token events. Whenever
a member of a similarity set that corresponds to an event type occurs, the latter is
said to be instantiated.

Factors are symbolized by italicized capital letters A, B, . . . , H , H1, H2 etc.,
with variables Z, Z1, Z2 etc. running over the domain of factors. An event type
as “peasant revolt” (A) can be defined as the set consisting of all token events in
the extension of the predicate “. . . is a peasant revolt”, i.e. as {x : x is a peasant
revolt }. Factors are negatable. The negation of a factor A is written thus: A. A is
simply defined as the complementary set of A.

Causal analyses are always relativized to a set of investigated factors. This set
is referred to as the factor frame of a causal investigation. Factors are virtually
never causally relevant to their effects in isolation. Rather, they are parts of whole
causing complexes – complex causes. A complex cause only becomes causally

3 Cf. also Quine (1959).
4 For details on the theoretical background resorted to here see Baumgartner (forthcoming),

Baumgartner and Graßhoff (2004) and Graßhoff and May (2001).
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effective if all of its constituents are co-instantiated, i.e. instantiated close-by or
coincidently. Coincidently instantiated factors are termed coincidences. As will be
shown below, coincidences constitute the empirical data processed by the inference
procedure to be developed in this paper.5

Essentially, modern regularity theories analyze causal relevance with recourse
to minimalized regularities among factors. The crucial notion needed in the
definiens of causal relevance is the notion of a minimal theory. Briefly, a min-
imal theory of a factor B is a minimally necessary disjunction of minimally
sufficient conditions of B. A conjunction of coincidently instantiated factors
A1 ∧ A2 ∧ . . . ∧ An, which for simplicity shall be abbreviated by a mere con-
catenation of the respective factors, is a minimally sufficient condition of a factor
B iff A1A2 . . . An is sufficient for B, i.e. A1A2 . . . An → B, and there is no proper
part α of A1A2 . . . An such that α → B. A “proper part” of a conjunction desig-
nates the result of any reduction of this conjunction by one conjunct. Analogously,
a disjunction of factors A1 ∨A2 ∨ . . .∨An is a minimally necessary condition of a
factor B iff A1 ∨A2 ∨ . . . ∨An is necessary for B, i.e. B → A1 ∨A2 ∨ . . . ∨An,
and there is no proper part β of A1 ∨ A2 ∨ . . . ∨ An such that B → β. A “proper
part” of a disjunction designates the result of any reduction of this disjunction by
one disjunct.

That a disjunction of minimally sufficient conditions of a factor B is minimally
necessary for B shall be symbolized by ‘⇒’ which is termed a double-conditional.
Thus, a minimal theory has the following double-conditional form:

AC ∨DE ∨ FGH ⇒ B (1)

Informally, (1) says that whenever AC or DE or FGH are instantiated, B is in-
stantiated as well, and whenever B is instantiated AC or DE or FGH is instan-
tiated as well. In this vein, both the principle of determinism and the principle of
causality are formally captured in a straightforward way: Causes determine their
effects and if no causes are present, the effect is not present either.6 Member-
ship in a minimal theory induces direct causal relevance: A factor A is directly
causally relevant to a factor B iff A is part of a minimal theory of B, i.e. iff A
is a non-redundant part of a minimally sufficient condition of B which, in turn, is
a non-redundant part of a minimally necessary condition of B.7 Hence, (1) rep-
resents a causal structure such that AC, DE and FGH are alternative complex
causes of B.

5 Coincidences correspond to what Ragin (1987) calls configurations.
6 The question as to whether the causal relation in fact is deterministic or not shall be bypassed

here. Whoever holds that there are irreducibly indeterministic causal processes, can simply view
regularity theories as analyses of the deterministic variant of causal processes.

7 In fact, in order for a minimal theory Φ to be causally interpretable, certain relational constraints,
as spatiotemporal proximity, have to be imposed on the events that instantiate the factors in Φ. For
simplicity, these constraints are neglected in the present context. For a detailed presentation of the
logical form of minimal theories cf. Baumgartner (forthcoming). Furthermore, as section 10 below
shows, minimalizing necessary conditions paves the way for an accurate regularity theoretic treat-
ment of epiphenomena, which – on account of Mackie’s (1974) famous Manchester Factory Hooters
counterexample – have often been considered intractable by regularity theories.
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Analyzing the disjunction of alternative causes of B as necessary condition
of B amounts to claiming sufficiency of B for just that disjunction. As is often
done by critics of regularity accounts, the question might thus be raised as to how
the above analysis of causal relevance captures the undisputed asymmetry of that
relation. For if B can be shown to be minimally sufficient for AC ∨DE ∨ FGH
it might be argued that – relative to the above analysis of causal relevance – B is
likewise to be considered causally relevant to its alternative causes. Contrary to first
appearances, however, double-conditionals as (1) are not symmetrical with respect
to the expressions to the left and the right of “⇒”. The instantiation of a particular
disjunct is minimally sufficient for B, but not vice versa. B does not determine
a particular disjunct to be instantiated.8 B only determines the whole disjunction
of minimally sufficient conditions. AC and DE and FGH are each minimally
sufficient for B, the latter however is only minimally sufficient for AC ∨ DE ∨
FGH . Hence, given that an instantiation of AC is observed, it can be inferred that
there also is an instance of B. On the other hand, if an instance of B is observed,
no such inference to an instantiation of AC is possible. The observed instance
of B might well have been caused by DE. This asymmetry corresponds to the
asymmetry of determination.

Accounting for the asymmetry of causal relevance in this vein has an important
implication as regards the minimal complexity of causal structures. A condition
AC, that is both minimally sufficient and necessary for a factor B, cannot be iden-
tified as cause of B, for B would be minimally sufficient and necessary for AC as
well. All empirical evidence such a dependency structure would generate are per-
fectly correlated instantiations of AC and B – both would either be co-instantiated
or absent. Such empirical data could only be causally interpreted if external asym-
metries – as e.g. temporal order – holding among the instances of AC and B would
be available. However, as the procedure of causal reasoning to be presented in this
paper shall infer causal structures on the same empirical basis as QCA, i.e. on the
basis of mere coincidence information, perfect correlations among factors shall be
taken not to be causally interpretable in the present context. In order to distinguish
causes from effects and to orient the cause-effect relation based on coincidence
information alone, at least two alternative causes are needed for each effect.9

Ordinary causal structures far exceed (1) in complexity. Most causally relevant
factors are of no interest to causal investigations or are unknown. That is why
minimal theories either need to be relativized to a given causal background or must
be kept open for later extensions. The latter is achieved by means of variables.
Variables X1, X2, . . . are introduced to stand for an open number of additional
conjuncts within a sufficient condition, while YA, YB, . . . are taken to stand for an
open number of additional disjuncts in a minimal theory. If (1) is in this sense kept

8 Cf. Graßhoff and May (2001), pp. 97-99. Similar analyses of the direction of causation have
been proposed in Sanford (1976), Ehring (1982), and Hausman (1998).

9 QCA does not face the problem of the orientation of causal dependencies, for applying QCA is
taken to be possible only if the effect has been identified within the analyzed factor frame (cf. (ICE)).
As (ICE) shall be given up here, however, a way to orient dependencies among factors is needed.
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open for additional factors, one gets:

ACX1 ∨DEX2 ∨ FGHX3 ∨ YB ⇒ B (2)

However, as will be shown below causal inferences drawn from coincidence data
always must be relativized to the homogeneity of the causal background of that
data. Of course, relative to a given background two or three factors may well
be sufficient for an effect as indicated in (1). Thus, either a minimal theory as
(1) is explicitly relativized to a causal background or it is rendered background
independent by means of variables as in (2). Both ways of doing justice to the
openness of causal structures will be implemented below as convenient.

While direct causal relevance is analyzed with recourse to membership in sim-
ple minimal theories as (1), complex causal structures as causal chains or epiphe-
nomena are represented by complex minimal theories. Simple minimal theories
can be conjunctively concatenated to complex theories: A conjunction of two min-
imal theories Φ and Ψ is a complex minimal theory iff, first, at least one factor in
Φ is part of Ψ and, second, Φ and Ψ do not have an identical consequent.10 The
following are two complex minimal theories:

(AX1 ∨DX2 ∨ YB ⇒ B) ∧ (BX4 ∨GX5 ∨ YH ⇒ H) (3)

(AX1 ∨DX2 ∨ YB ⇒ B) ∧ (DX4 ∨GX5 ∨ YH ⇒ H) (4)

(3) represents a causal chain – B is the effect factor of the first conjunct and a cause
factor in the second conjunct –, (4) stands for an epiphenomenon – D is a common
cause of B and H . In this vein, causal structures of arbitrary complexity can be
represented on regularity theoretic grounds. Accordingly, a factor A can be said to
be indirectly causally relevant to a factor B iff there is a sequence of factors Z1,
Z2, . . . , Zn, n ≥ 3, such that A = Z1, B = Zn, and for each i, 1 ≤ i < n: Zi is
part of the antecedent of a simple minimal theory of Zi+1.

3 The Basic Idea and Input Data

Minimal theories represent causal structures in a transparent way. Conjunctions
in the antecedent of a minimal theory stand for complex causes of the factor in
the consequent, disjunctions for alternative causes. Hence, minimal theories are
directly causally interpretable. Moreover, minimal theories impose constraints on
the behavior of the factors contained in them. For instance, (1) says that when-
ever AC is instantiated, there also is an instance of B. That means, according to
(1) the coincidence ACB does not occur. Correspondingly, information about oc-
curring and non-occurring coincidences allows for conclusions as to the minimal

10 The first constraint guarantees that complex minimal theories represent cohering causal struc-
tures and the second restriction prohibits the conjunctive concatenation of equivalent minimal theo-
ries and thus excludes redundancies. Again, relational constraints – as spatiotemporal proximity –
imposed on the instances of complex minimal theories are neglected here.
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A B C

1 1 1

1 0 1

0 1 1

0 0 0
(a)

A B C

1 1 1

1 1 0

0 1 1

1 0 1

1 0 0

0 1 0

0 0 1

0 0 0
(b)

A B C

1 1 1

0 1 1

1 0 1

1 0 0

0 1 0

0 0 1

0 0 0
(c)

A B C

1 1 1

0 0 0
(d)

Tab. 1: Simple examples of coincidence lists as processed by CA.

theory representing the underlying causal structure. If it is known that AC is never
realized in combination with B, while both ACB and ACB are found to be em-
pirically possible, it follows that AC is minimally sufficient for B. In this sense,
minimal theories constitute the link between the empirical behavior of the factors
in an investigated frame and the causal structure behind that behavior. The empir-
ical behavior of the factors allows for inferring minimal theories that describe that
behavior, and these minimal theories, in turn, are causally interpretable.

The procedure of causal reasoning to be developed here operates on the same
data as QCA: coincidences of the factors involved in a causal process whose struc-
ture is to be revealed. Accordingly, the procedure shall be termed coincidence
analysis or CA for short. Contrary to QCA, however, the data fed into CA is not
required to mark one factor as the effect. Based on its input data, CA simply de-
termines for each factor Zi in the analyzed frame involving, say, n factors which
dependencies hold between Zi and the other n − 1 factors in the frame. Most
of these dependencies will turn out not to be causally interpretable. The possibly
causally interpretable dependencies are subsequently minimalized and expressed
in terms of minimal theories, which, finally, are straightforwardly causally inter-
pretable as shown above. Moreover, CA does not require the n− 1 other factors to
be independent, i.e. to be co-instantiatable in all logically possible 2n−1 combina-
tions.

As in case of QCA, the data processed by CA is listed analogously to truth-
tables. Tables as in 1 are referred to as coincidence lists. The rows in a coincidence
list shall be numbered starting with the first row below the title row. The row
constituted by “1 1 1” in list (a) is row 1 (R1), the row featuring “1 0 1” is row 2
(R2), and so on. In coincidence lists a ‘1’ in the column of, say, factor A represents
an instance of A, a ‘0’ in that same column symbolizes the absence of such an
instance. Columns of coincidence lists thus record instances and absences of the
factor mentioned in the title row, while the rows following the title row specify
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coincidences of the factors in the title row. For example, the first row, R1, of (a)
records the coincidence ABC, the following row, R2, indicates the coincidence
ABC.

List (a) in table 1 clearly manifests dependencies among its factors. For in-
stance, there is no row in (a) featuring ABC. That means the coincidence AB is
sufficient for C. Likewise, there is no row in (a) featuring A in combination with C,
which amounts to the sufficiency of A for C. The sufficient condition AB, hence,
contains a sufficient proper part, A, and, accordingly, is not minimally sufficient.
Analogously it can be shown that BC is minimally sufficient for A in list (a). As
will be shown below, some of these dependencies are causally interpretable, others
are not.

Thereagainst, list (b) contains all 8 logically possible configurations of the 3
factors in its frame. (b) is therefore referred to as a complete coincidence list: A
coincidence list over a factor frame of n factors is complete iff it contains all log-
ically possible combinations of the involved factors, i.e. iff it is constituted by 2n

rows. Complete lists do not feature dependencies among their factors. No combi-
nations of factors are sufficient or necessary for any factor in the respective frame.
Accordingly, complete lists do not need to be analyzed for dependencies to begin
with. Dependencies only emerge in incomplete lists, i.e. in lists that feature less
than 2n coincidences of the n factors in their frame. List (c) in table 1 is incomplete
in this sense. There is no row in that list such that A and B are instantiated without
an instance of C. AB is minimally sufficient for C relative to list (c). Finally,
list (d) is incomplete as well. It is incomplete to such an extent that too many de-
pendencies emerge. According to list (d), every factor is minimally sufficient and
necessary for every other factor in the corresponding frame. Such an abundance
of dependencies is not causally interpretable, for causes and effects cannot be dis-
tinguished. As the previous section has shown, if causal dependencies are to be
oriented on the basis of mere coincidence data – and not, as in case of QCA, by
assumption (ICE) –, at least two alternative causes are required for each effect. All
of this shows, that not all coincidence lists are causally interpretable.

4 Presuppositions

While CA dispenses with assumptions (SNG), (IND) and (ICE), it still rests on
two important presuppositions, the first of which is equally endorsed by QCA
while the second is replaced by another assumption to the same effect in QCA:
First, unambiguous causal inferences are only possible given that the coincidence
data is exhaustive and, second, the causal background of coincidence lists must be
homogeneous. Let us take these presuppositions in turn.

Any procedure of causal reasoning, in some way or another, assumes that its
input data is exhaustive. Probabilistic procedures presume the availability of proba-
bility distributions over all exogenous variables, or QCA relies on the realizability
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of all 2n configurations given n independent causal variables. Nonetheless, as-
sumptions as regards the exhaustiveness of empirical data are hardly ever made
explicit in studies on causal reasoning.11 Such an implicit taking for granted of
the suitability of input data, however, will not do for the present context. As the
previous section has shown, dependencies among n factors emerge only if not all
2n coincidences are contained in an analyzed coincidence list. Of course, however,
coincidences may not only be missing from coincidence lists due to causal depen-
dencies among respective factors. Exhaustive data collection may fail for a host
of different reasons. Financial or technical resources may happen to be limited in
experimental sciences or nature may be found not to provide sufficient data in non-
experimental disciplines. Inexhaustive data is likely to be one of the main reasons
for hampered causal interpretability of that data. Data collection, however, is not
part of causal reasoning, but a precondition thereof. That is why (PEX) is endorsed
in the present context, which is concerned with matters of causal reasoning only.

Principle of Empirical Exhaustiveness (PEX): The collection of empirical data to
be processed by CA faces no practical limitations whatsoever. All coinci-
dences of the analyzed factors that are compatible with the causal structure
regulating the behavior of these factors are in fact observed.

(PEX) guarantees that whenever a coincidence is missing from a CA-processed
list, this is due to underlying causal dependencies. Clearly, (PEX) constitutes a
sweeping idealization with respect to data collection. Such an idealization, how-
ever, may prove to be useful in many practical contexts. It can be implemented as a
gauge by means of which concrete data collections can be measured and thus eval-
uated. (PEX) is not a precondition of causal reasoning per se, but a precondition of
unambiguous causal reasoning. Even inexhaustive data provides some information
as to the underlying causal structure. For instance, in list (a) of table 1, factors A
and B are independent. This independence will remain unaltered irrespective of
further coincidences introduced into list (a). Thus, if (a) violates (PEX), there is
no single causal structure that can be identified as underlying the behavior of the
factors in that list. Nonetheless a set of causal structures can be determined to pos-
sibly underly the coincidences in (a): the set of all causal structures over the factor
frame {A,B, C} such that A and B are causally independent. Still, for reasons of
unambiguity (PEX) shall be presumed in the following.

Apart from (PEX) an application of CA must assume that the causal back-
ground of an analyzed coincidence list is causally homogeneous. A list as (a)
in table 1 could be generated by suitable manipulation of each factor separately.
A causal interpretation of such an ‘artificial’ list, of course, would be fallacious.
Causal relevancies would be attributed to factors in the frame which, in fact, did
not contribute to the behavior of respective effect factors. Such as to forestall
causal fallacies, i.e. in order for a list to reveal the underlying causal structure, it

11 One exception is Ragin (1987, 2000). He discusses at length how limited empirical data nega-
tively affects causal reasoning.
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must be presumed that the behavior of the factors in the investigated frame is not
confounded by causally relevant factors not contained in the frame. Each analy-
sis of a causal process is limited to a small subset of all factors involved in that
process. Causal processes are extremely complex. Ordinarily, only a few factors
are of interest in the course of concrete causal investigations. While Ragin (1987)
nonetheless assumes that a QCA-analyzed coincidence list contains all causally
relevant factors, we shall simply presuppose that CA-analyzed coincidence lists
are generated against homogeneous backgrounds. We thus do not demand that all
causally relevant factors of an investigated structure are contained in a factor frame.
A coincidence list over a frame consisting of Z1, . . . , Zn is assumed to be homoge-
neous with respect to confounders not contained in {Z1, . . . , Zn}. In order to spell
out the notion of a confounder needed for our purposes, the notion of a causal path
is required: A sequence of factors 〈Z1, . . . , Zk〉, k ≥ 2, constitutes a causal path
from Z1 to Zk iff for each Zi and Zi+1, 1 ≤ i < k, in the sequence: Zi is directly
causally relevant to Zi+1. A condition Xi is said to be part of a causal path, if a at
least one conjunct of Xi is contained in the sequence constituting that path. Now
the notion of a confounder can be clarified: If Zn is an effect, a confounder of Zn

is a minimally sufficient condition Xi of Zn such that Xi is causally relevant to
Zn and Xi is part of a causal path leading to Zn not containing any of the factors
Z1, . . . , Zn−1. That means, a factor Zo that is causally relevant to an effect Zn

and that is not contained in the investigated frame {Z1, . . . , Zn} cannot confound
causal reasoning if all causal paths connecting Zo and Zn contain at least one fac-
tor in {Z1, . . . , Zn}, i.e. if Zo is a cause or an effect of a factor in the investigated
frame. A confounder is a factor or a conjunction of factors by means of which the
investigated effect can be manipulated independently of the factors in the frame.

The notion of a confounder is to be understood relatively to a corresponding
effect. Basically, any factor in an analyzed frame can be seen as effect of an un-
derlying causal structure. However, as will be shown below, there are several con-
straints due to which a factor can be excluded from the set W of potential effects
contained within a given factor frame prior to causally analyzing that frame. Still,
depending on the specific Zi ∈ W analyzed in the course of a given run of CA,
different factors are to be seen as confounders and, accordingly, must be homoge-
nized. Generally: Input data processed by CA is assumed to be generated against
causally homogeneous backgrounds in the sense of (HC):

Homogeneity (HC): The background of a causally analyzed list of m coincidences
over a factor frame containing the set W of potential effects is causally ho-
mogeneous iff for every confounder Xi of every factor in W: Xi is absent in
the background of one coincidence iff Xi is absent in the backgrounds of all
other m− 1 coincidences.

While only homogeneous coincidence lists are causally analyzable, (HC) does
not guarantee the causal analyzability of coincidence lists. Rather, (HC) prevents
causal fallacies. Therefore, a coincidence list may well be homogeneous in terms of
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A B C

1 1 1

1 0 1

0 1 1

1 1 0
(a)

A B C

1 0 0

0 1 0

0 0 1

0 0 0
(b)

Tab. 2: Two coincidence lists that cannot be causally analyzed, for none of the involved factors can
be interpreted as effect of an underlying causal structure in accordance with (HC).

(HC), even though confounders are instantiated in its background – as long as these
confounders are instantiated in the backgrounds of all coincidences. If confounders
are universally instantiated, effects will be present in all coincidences, irrespective
of whether the other factors in the frame are present or absent. In this case no
dependencies emerge and thus no inferences as to underlying causal structures are
drawn. As a consequence no causal fallacies are committed either.

(HC) excludes a number of coincidence lists from causal analyzability. The
lists fed into CA may well reveal certain backgrounds to be causally inhomoge-
neous. Consider, for instance, the lists in table 2. Assume B to be an effect of the
causal structure generating list (a) in table 2. A comparison of the test situations
recorded in row 1 (R1) and 2 (R2) of that list shows that, if B in fact were the effect
of the underlying structure, the test situations recorded in (a) would violate (HC).
The only factor varying in R1 and R2 is B; no other factor in the frame {A,B, C}
is accountable for that variation of B, therefore it must be due to a varying con-
founder of B in the unknown or unconsidered background of list (a). That means,
assuming B to be an effect contradicts the homogeneity assumption. If B is taken
to be a cause factor of the underlying structure, (HC) is not violated. Thus, assum-
ing (HC) to hold for list (a) implies that B cannot be seen as a possible effect. The
same holds for the other two factors in {A,B, C}. In R1 and R3 A is the only
varying factor, while no other factor, apart from C, varies in R1 and R4. Hence,
there is no factor in list (a) that could possibly be an effect of an underlying causal
structure in accordance with (HC). Analogous considerations apply to list (b). In
R1 and R4 of that list A is the only varying factor, R2 and R4 exclude B from
being interpretable as an effect, and R3 and R4 refuse C admittance into the set of
possible effects due a violation of (HC).

That means, there cannot be a causal structure underlying either list (a) or (b)
that would be compatible with (HC). In neither list there is a factor that could be
seen as an effect in accordance with (HC), i.e. W = ∅. Whenever for every fac-
tor Zi contained in the factor frame of a coincidence list C there are two rows Rk
and Rl in C such that Zi is the only factor varying in Rk and Rl, the background
against which the data in C is collected cannot be homogeneous, for there is no
causal structure that could possibly generate C and accord with (HC). We shall
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in this context speak of inhomogeneous coincidence lists. (HC) excludes all inho-
mogeneous coincidence lists from being processed by CA. It must be emphasized,
however, that the homogeneity of coincidence lists is an assumption to which ev-
ery inference of CA must be relativized. It might well be that a coincidence list
which is not inhomogeneous in the sense defined above, as e.g. list (a) in table 1,
in fact is the result of an uncontrolled variation of background confounders. In
this sense, only a sufficient and no necessary condition for the inhomogeneity of a
coincidence list is given above. Causal inferences drawn by CA will always be of
the form “Given that (HC) is satisfied, such and such must be the underlying causal
structure”. Homogeneity is never beyond doubt. Nonetheless, assembling the the-
oretic preconditions of conclusive causal inferences serves the goal of establishing
standards implementable as a gauge for concrete causal analyses.

5 Identification of Potential Effects

After having clarified the presuppositions on which CA rests, we now proceed to
introduce the inference rules of CA. As anticipated in the previous section, a first
algorithmic step consists in parsing through the factor frame of a coincidence list
in order to determine which of the factors could possibly operate as effects within
the causal structure to be revealed. This step yields a set W of factors whose de-
pendencies on the other factors in the corresponding frame are then successively
determined by CA. The identification of potential effects shall not be considered a
proper part of CA, for any sort of context dependent empirical information or even
prior causal knowledge is allowed to enter the determination of W. For instance, if
a factor Zi is generally instantiated temporally before every other factor in an an-
alyzed frame {Z1, . . . , Zn}, Zi cannot function as an effect within the underlying
causal structure. Or prior causal knowledge could be available that establishes the
members of a proper subset of {Z1, . . . , Zn} as root factors, i.e. as factors that are
causes, but no effects within a causal structure. In both cases there is no need to in-
tegrate respective factors in W. CA does not have to evaluate dependencies among
factors that can be excluded from the set of potential effects to begin with. These
pragmatic circumstances are not systematizable or, at least, a systematization shall
not be attempted here. Accordingly, no recursively applicable or computable rule
can be provided, which essentially is why the determination of W is not seen as a
proper part of CA.

Still, the determination of W is not only regulated by spatiotemporal pecu-
liarities of an analyzed process or by prior causal knowledge. As the previous
section has shown, factors can be excluded from the set of potential effects based
on homogeneity considerations. Backgrounds of coincidences are assumed to be
homogeneous in terms of (HC). Now, if a factor Zi is the only factor varying in
two coincidences contained in an analyzed list and if, moreover, Zi were seen as
a potential effect of the underlying causal structure, (HC) would be violated with
respect to Zi. Therefore, in order for a factor Zi to be a potential effect, it must not
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be the case that the corresponding coincidence list contains two rows such that Zi

is the only varying factor in those rows.
Furthermore, since CA shall be designed to infer causes of both positive and

negative factors, W, in principle, may contain both positive and negative factors.
However, to every minimal theory of a positive factor Zi, there exists an equivalent
minimal theory of Zi, and vice versa.

AC ∨DE ⇒ B (5)

AD ∨AE ∨ CD ∨ CE ⇒ B (6)

(5) and (6) are logically equivalent and one of these expressions is a minimal the-
ory if and only if the other one is too.12 Hence, for simplicity’s sake, CA can
be confined to identify minimal theories of either positive factors or their nega-
tive counterparts. For this reason, we stipulate that positive factors only shall be
included in W.

These considerations taken together yield the following standard as regards the
determination of W. In order to indicate that the non-computable identification of
the set of potential effects is a precondition of launching CA, yet not a proper part
thereof, it shall be referred to as “step 0*”.

Step 0* – Identification of potential effects: Given a coincidence list C over a fac-
tor frame {Z1, . . . , Zn}, identify the subset W⊆ {Z1, . . . , Zn} such that for
every Zi: Zi ∈ W iff

(1) The totality of available information as to the spatiotemporal ordering
of the instances of the factors in {Z1, . . . , Zn} and the available prior
causal knowledge about the behavior of the factors in {Z1, . . . , Zn}
does not preclude Zi to be an effect of the underlying causal structure.

(2) C does not contain two rows Rk and Rl such that Zi is the only factor
varying in the coincidences recorded by Rk and Rl.

(3) Zi is a positive factor.

6 Identification and Minimalization of Sufficient Conditions

Upon having identified a non-empty set of potential effects, CA proper sets in. In a
first stage, sufficient conditions for each member of W are identified and minimal-
ized. In order to illustrate this first stage, let us look at a concrete example. Assume
the coincidence list depicted in table 3 to be our input data. None of the factors
in our exemplary frame {A,B, C, D, E} shall be excluded from effect position by
prior causal knowledge or additional information as to the spatiotemporal ordering
of the instances of these factors. Nonetheless, the set of potential effects does not
correspond to the factor frame of table 3, i.e. W 6= {A,B, C, D, E}. For reasons of

12 For a detailed proof of the existence of an equivalent minimal theory of a negative factor to every
minimal theory of a positive factor cf. Baumgartner (forthcoming), ch. 3.
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A B C D E

1 1 1 1 1

1 1 1 0 1

1 0 1 1 1

1 0 1 0 1

0 1 1 1 1

0 1 1 0 1

0 0 0 1 1

0 0 0 0 0

Tab. 3: Exemplary coincidence list to be analyzed by CA.

compatibility with (HC), factors A, B, and D cannot be effects. For each of these
factors there is a pair of rows in table 3 – 〈R1,R5〉 for A, 〈R1,R3〉 for B, 〈R1,R2〉
for D – such that the respective factor is the only varying factor. Thus, interpreting
one of these factors to be an effect of the underlying causal structure would contra-
dict CA’s homogeneity assumption. C and E, thus, are the only potential effects
of the causal structure generating table 3, i.e. W = {C,E}. For each of the factors
in W minimally sufficient conditions are now identified. This is done in four steps:
(1) a factor Zi ∈ W is selected, (2) sufficient conditions of Zi are identified, (3)
these sufficient conditions are minimalized, (4) the procedure is restarted at (1) by
selecting another Zj ∈ W, until all factors in W have been selected. Let us take a
detailed look at these four steps.

Step 1 – Selection of a potential effect: Randomly select one factor Zi ∈ W such
that Zi has not been selected in a previous run of steps 1 to 4. Zi is termed
effect*, the factors in {Z1, . . . , Zi−1, Zi+1, . . . , Zn} are referred to as re-
mainders.13

Step 2 – Identification of sufficient conditions: Identify all sufficient conditions of
the effect* Zi according to the following rule:

(SUF) A coincidence Xk of remainders is sufficient for Zi iff the input list C
contains at least one row featuring XkZi and no row featuring XkZi.

The order of selecting effects* in step 1 does not matter, as long as it is guar-
anteed that eventually all members of W are selected. According to (SUF), a co-
incidence of remainders can only be sufficient for an effect* if it is instantiated at

13 Selected factors are labelled effects* to indicate that they possibly are the effects of the causal
structure generating the input list. Effects* do not necessarily turn out to be (actual) effects of the
underlying causal structure at the end of a CA-analysis. For instance, the set of effects* contained in
list (d) of table 1 contains all factors in the frame – provided no further information is available that
distinguishes among causes and effects. Yet, none of these effects* is identified as actual effects by
CA.
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least once. Moreover, a coincidence of remainders contained in the input list is
not sufficient for a selected effect* if it is also instantiated in combination with the
absence of that effect*.

Let us perform these two steps on our example of table 3 by first selecting C as
effect*. Step 2 identifies three sufficient conditions of C, i.e. there are six coinci-
dences of remainders that conform to (SUF): ABDE, ABDE, ABDE, ABDE,
ABDE, ABDE. The first row (R1) of table 3 features the coincidence ABDE
in combination with C and there is no row such that ABDE is contained therein
in combination with C. ABDE, thus, is a sufficient condition of C according
to (SUF). Analogous considerations apply to the other sufficient conditions men-
tioned above: R2 is constituted by ABDE, R3 by ABDE, R4 by ABDE, R5
by ABDE, and R6 features ABDE without either of these conditions being con-
tained in combination with C in table 3. Thus, each coincidence of remainders
listed in the six rows featuring an instance of C constitutes a sufficient condition
of C.

Before sufficient conditions of the remaining effect* E are identified, we pro-
ceed to minimalize the sufficient conditions of C.

Step 3 – Minimalization of sufficient conditions: The sufficient conditions of Zi

identified in step 2 are minimalized according to the following rule:

(MSUF) A sufficient condition Z1Z2 . . . Zh of Zi is minimally sufficient iff nei-
ther Z1Z2 . . . Zh nor Z1Z2 . . . Zh nor . . . nor Z1Z2 . . . Zh are suffi-
cient for Zi according to (SUF).

Or operationally put:

(MSUF’) Given a sufficient condition Z1Z2 . . . Zh of Zi, for every Zg ∈
{Z1, Z2, . . . , Zh}, h ≥ g ≥ 1, and every h-tuple 〈Z1′ , Z2′ , . . . , Zh′〉
which is a permutation of the h-tuple 〈Z1, Z2, . . . , Zh〉: Eliminate
Zg from Z1Z2 . . . Zh and check whether Z1 . . . Zg−1Zg+1 . . . ZhZi

is contained in a row of C. If that is the case, re-add Zg to
Z1 . . . Zg−1Zg+1 . . . Zh and eliminate Zg+1; if that is not the case, pro-
ceed to eliminate Zg+1 without re-adding Zg. The result of performing
this redundancy check on every factor contained in Z1Z2 . . . Zh is a set
of minimally sufficient conditions of Zi.

(MSUF) is nothing but an adaptation of the notion of a minimally sufficient con-
dition as defined in section 2 to the context of coincidence lists. (MSUF’), on
the other hand, can be seen as an operational expression of the analysans of the
notion of a minimally sufficient condition implemented in (MSUF). That means,
(MSUF) might be rephrased as follows: A sufficient condition Z1Z2 . . . Zh of Zi

is minimally sufficient iff it results from an application of (MSUF’). At the price
of high computational complexity, the formulation of (MSUF’) is kept as sim-
ple as possible above. The order in which factors are eliminated from sufficient
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conditions matters as to the minimalization of such conditions – thus the system-
atic permutation of elimination orders.14 In many cases, however, it is not nec-
essary to completely perform that permutation. For instance, assume an h-tuple
T1 = 〈Z1, . . . , Zd, Zd+1, . . . , Zh〉 has been minimalized by means of (MSUF’)
up to element Zd, that minimalization of T1 can be taken over for all h-tuples
T2 = 〈Z1, . . . , Zd, Zd+1′ , . . . , Zh′〉 that coincide with T1 up to element Zd without
reapplying (MSUF’) to T2. Or suppose it has been found that X1 = Z1 . . . Zd

is a minimally sufficient condition of an investigated effect and a sufficient con-
dition X2 = Z1Z2 . . . Zh containing Z1 . . . Zd is to be minimalized by means of
(MSUF’). In that case, it is not effective to minimalize X2 by first eliminating the
factors not contained in X1, for this elimination order would just yield X1 again.

Further optimizations of (MSUF’) are conceivable, yet are not going to be dis-
cussed in the present context. More importantly, the intuition behind (MSUF’) can
be more colloquially captured: Every factor contained in a sufficient condition of
Zi is to be tested for redundancy by eliminating it from that condition and check-
ing whether the remaining condition still is sufficient for Zi or not. A sufficient
condition of Zi is minimally sufficient iff every elimination of a factor from that
condition results in the insufficiency of the remaining condition.

Performing step 3 on our exemplary case is straightforward. Step 2 yielded six
sufficient conditions of C. For simplicity’s sake, I only illustrate the minimaliza-
tion of these six conditions by means of two examples. First, take ABDE. That
this sufficient condition is not minimally sufficient for C is seen by removing, say,
D and finding that ABE itself is sufficient for C, for table 3 does not contain a
row featuring ABEC. ABE still is not minimally sufficient. For instance, both
B and E can be removed without sufficiency being lost. There is no row in 3 fea-
turing AC, which induces that A is sufficient and, since it is a single factor that
does not contain proper parts, minimally sufficient for C. There are other ways to
further minimalize ABE: A removal of A and E still yields a sufficient condition
of C. There is no row in 3 featuring BC. Therefore B is minimally sufficient for
C. Second, let us look at the second sufficient condition of C identified by (SUF).
ABDE is not minimally sufficient because AB can be removed without suffi-
ciency for C being lost. There is no row in 3 featuring CDE, which induces that
DE is sufficient for C. If DE is further reduced, sufficiency is lost. R7 features
CE and R8 CD, which amounts to neither E nor D being sufficient for C. DE,
hence, is minimally sufficient for C. Minimalizing the other sufficient conditions
of C by analogously implementing (MSUF’) does not yield any further minimally
sufficient conditions. All in all, therefore, minimalizing the sufficient conditions of
C generates the following three minimally sufficient conditions: A, B, and DE.

After having identified the minimally sufficient conditions of a first factor
Zi ∈ W, the same needs to be done for all other effects*. We thus need a loop

14 This is an important deviation from the minimalization of sufficient conditions as performed by
QCA. QCA only eliminates conjuncts of a sufficient condition if the latter reduced by the respective
conjunct is actually contained in the coincidence list. I take this restriction to be a serious limitation
of the minimizability of sufficient conditions.
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that brings CA back to step 1, if not all factors in W have been assigned minimally
sufficient conditions yet.

Step 4 – (MSUF)-Loop: If all Zi ∈ W have been selected as effects* proceed to
step 5, otherwise go back to step 1.

Applying this loop to our example yields seven sufficient conditions of E. Each
row featuring E comprises a sufficient condition of remainders: ABCD, ABCD,
ABCD, ABCD, ABCD, ABCD, ABCD. For example, R2 of table 3 is consti-
tuted by ABCD and there is no row featuring ABCD along with E, or R3 com-
prises ABCD and no row in 3 contains ABCD in combination with E. The suf-
ficiency of the other conditions is analogously demonstrated. Employing (MSUF)
or (MSUF’) to minimalize these conditions brings forth four minimally sufficient
conditions of E: A, B, C, and D. The list in table 3 contains no rows featuring
either AE, BE, CE, or DE.

As an overall result of performing the first stage (steps 1 to 4) of CA on our ex-
emplary case, we have thus identified the following minimally sufficient conditions
of the factors in W.

Result after 4 steps:

Zi ∈ W minimally sufficient
conditions

C A, B, DE

E A, B, C, D

7 Identification and Minimalization of Necessary Conditions

As the famous Manchester Hooters counterexample against Mackie’s (1974)
INUS-theory of causation15 demonstrates and as articulated in our analysis of
causal relevance given in section 2, minimally sufficient conditions are not gener-
ally causally interpretable. Only minimally sufficient conditions that are moreover
non-redundant parts of minimally necessary conditions are amenable to a causal
interpretation.16 After having identified minimally sufficient conditions, we thus
now proceed to first form necessary conditions of the effects* from their mini-
mally sufficient conditions and then minimalize these necessary conditions. Since
factor frames processed by CA are incomplete with respect to underlying causal
structures, i.e. there supposedly will always be many causally relevant factors not
contained in input lists, effects* can only be assigned necessary conditions relative
to the homogeneous backgrounds of corresponding coincidence lists. This is eas-
ily accomplished by disjunctively combining the minimally sufficient conditions

15 Cf. Mackie (1974), Baumgartner and Graßhoff (2004), ch. 5.
16 How a minimalization of necessary conditions solves the Hooters-Problem is illustrated in sec-

tion 10.
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of each effect*, yielding one necessary condition relative to an input list C and its
background for each factor Zi ∈ W.

Step 5 – Identification of necessary conditions: Identify a necessary condition of
each effect* Zi by disjunctively concatenating Zi’s minimally sufficient con-
ditions according to the following rule:

(NEC) A disjunction X1∨X2∨ . . .∨Xh of minimally sufficient conditions of
Zi is necessary for Zi iff C contains no row featuring Zi in combination
with ¬(X1 ∨X2 ∨ . . . ∨Xh), i.e. no row comprising X1X2 . . . XhZi.

Performed on our example, step 5 issues A ∨ B ∨ DE and A ∨ B ∨ C ∨ D
as necessary conditions of C and E, respectively. That means, there is no row
in 3 featuring C in combination with neither A nor B nor DE. Whenever C is
instantiated, there is also an instance of at least one of its minimally sufficient
conditions. Similarly for E: No row of 3 records a coincidence of E with neither
an instance of A nor B nor C nor D. E is always instantiated in combination with
one of its minimally sufficient conditions.

Such as to determine whether the minimally sufficient conditions assigned to
the effects* at the end of the previous section in fact are non-redundant parts of
necessary conditions, these necessary conditions have to be minimalized.

Step 6 – Minimalization of necessary conditions: The necessary conditions of ev-
ery Zi ∈ W identified in step 5 are minimalized according to the following
rule:

(MNEC) A necessary condition X1∨X2∨ . . .∨Xh of Zi is minimally necessary
iff neither X2 ∨X3 ∨ . . . Xh nor X1 ∨X3 ∨ . . . Xh nor . . . nor X1 ∨
X2 ∨ . . . ∨Xh−1 is necessary for Zi according to (NEC).

Or operationally put:

(MNEC’) Given a necessary condition X1 ∨X2 ∨ . . .∨Xh of Zi, for every Xg ∈
{X1, X2, . . . , Xh}, h ≥ g ≥ 1, and every h-tuple 〈X1′ , X2′ , . . . , Xh′〉
which is a permutation of the h-tuple 〈X1, X2, . . . , Xh〉: Eliminate Xg

from X1∨X2∨. . .∨Xh and check whether there is a row in C featuring
Zi in combination with ¬(X1 ∨ . . . ∨Xg−1 ∨Xg+1 ∨ . . . ∨Xh), i.e. a
row comprising X1 . . . Xg−1Xg+1 . . . XhZi. If that is the case, re-add
Xg to X1 ∨ . . . ∨ Xg−1 ∨ Xg+1 ∨ . . . ∨ Xh and eliminate Xg+1; if
that is not the case, proceed to eliminate Xg+1 without re-adding Xg.
The result of performing this redundancy check on every minimally
sufficient condition contained in X1 ∨ X2 ∨ . . . . . . ∨ Xh is a set of
minimally necessary conditions of Zi.

In analogy to (MSUF), (MNEC) is nothing but an adaptation of the notion of a
minimally necessary condition as defined in section 2 to the context of coincidence
lists. (MNEC’), on the other hand, can be seen as an operational expression of
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the analysans of the notion of a minimally necessary condition implemented in
(MNEC). That means, (MNEC) might be rephrased as follows: A necessary con-
dition X1∨X2∨. . .∨Xh is minimally necessary iff it results from an application of
(MNEC’). The formulation of (MNEC’) has been kept as simple as possible at the
expense of its computational complexity. Analogous optimizations as in case of
(MSUF’)17 are possible with respect to (MNEC’). The intuition behind (MNEC’)
can also be more colloquially captured: Every minimally sufficient condition con-
tained in a necessary condition of Zi is to be tested for redundancy by eliminating it
from that condition and checking whether the remaining condition still is necessary
for Zi or not. A necessary condition of Zi is minimally necessary iff every elimi-
nation of a minimally sufficient condition from that necessary condition results in
the loss of necessity of the remaining condition.

Let us illustrate the minimalization of necessary conditions by first perform-
ing step 6 on the necessary condition A ∨ B ∨ DE of C. That disjunction is not
minimally necessary for C, because it contains a necessary proper part: A ∨ B.
Whenever C is instantiated in table 3, there is an instance of either A or B. 3 does
not contain a row featuring ABC. DE does not amount to a non-redundant part
of a minimally necessary condition, for whenever DE is instantiated in combina-
tion with C, there also is an instance of A ∨ B. The same results from applying
(MNEC’) to A∨B∨DE. Upon eliminating A we find that the rest is no longer nec-
essary for C, because R3 of table 3 features BDEC, or more specifically BDEC.
Hence, A is re-added. The same is found upon removing B. R5 features ADEC
or ADEC, respectively. Removing DE, however, does not result in a loss of ne-
cessity. Therefore, DE is not re-added. A ∨ B ∨ C ∨ D neither amounts to a
minimally necessary condition of E. A ∨ B ∨ C ∨ D not only contains one but
two necessary proper parts: C ∨D and A ∨B ∨D. There is no row in 3 featuring
CDE or ABDE. Whenever E is instantiated, there is an instance of C∨D and of
A∨B ∨D. These two ways to minimalize A∨B ∨C ∨D stem from the fact that
there are biconditional dependencies among the minimally sufficient conditions of
E. Within the homogeneous background of table 3, C is instantiated if and only if
A ∨B is instantiated.

Result after 6 steps:

Zi ∈ W minimally necessary
conditions

C A ∨B

E A∨B ∨D, C ∨D

8 Framing Minimal Theories

Step 6 of CA yields a set of minimally necessary disjunctions of minimally suffi-
cient conditions for each Zi ∈W. We have thus come close to assigning a minimal

17 Cf. p. 16 above.
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theory to the list in table 3. The result of step 6 allows for framing one simple min-
imal theory for C and two for E. Relative to the homogeneous background of table
3, these minimal theories can be straightforwardly expressed thus: A ∨ B ⇒ C,
A∨B∨D ⇒ E, C∨D ⇒ E. However, apart from the specific causal background
of table 3, it must not be the case that A and B are themselves sufficient for C or C
and D for E. Moreover, there may well be further minimally sufficient conditions
of both C and E. Therefore, suspending the relativization to the background of
3 and expressing these dependencies in their general and background independent
form leads to:

AX1 ∨BX2 ∨ YC ⇒ C (7)

AX1 ∨BX2 ∨DX3 ∨ YE ⇒ E (8)

CX1 ∨DX2 ∨ YE ⇒ E (9)

C and E have a non-empty intersection of minimally sufficient conditions.
Correspondingly, the simple minimal theories of C and E share a number of com-
mon factors. The causal structure regulating the behavior of E is not independent
of the structure behind the behavior of C. The behavior of the factors in table 3,
thus, is regulated by a complex causal structure. In order to determine what that
structure looks like, the simple minimal theories of C and E are to be conjunc-
tively combined to form a complex theory. Here an interesting ambiguity emerges:
(8) and (9) – if causally interpreted – identify different direct causal relevancies
for E. While according to (8) A and B are directly causally relevant to E, (9)
instead holds C to be directly relevant to E. The coincidences in table 3 are either
generated by a causal chain, such that A and B are parts of alternative causes of C
while C and D are contained in alternative causes of E, or they are generated by an
epiphenomenon, such that A and B are parts of alternative causes of C while A, B,
and D are contained in alternative causes of E. The two causal structures possibly
underlying the list in table 3 are graphed in figure 2. Thus, the minimalization of
E’s necessary condition is ambiguous.18

The list in table 3 is underdetermined as to whether its coincidences are the
result of a chain or an epiphenomenon. This is not a specific anomaly of list 3.
Rather, to any causal chain there exists an epiphenomenon that generates the same
coincidence list as the chain – accordingly, call the chain and the corresponding
epiphenomenon c-equivalent causal structures. That means, any coincidence list
that could be the result of a chain could also be the result of c-equivalent epiphe-
nomenon.19

Epiphenomena with a coincidence frame matching the coincidence frame of a
causal chain have a very specific structure: All factors that are part of a minimally

18 That the minimalization of necessary conditions can be ambiguous is not taken into account
in the context of QCA. Both in Ragin (1987) and Ragin (2000) the minimalization of necessary
conditions is assumed to be unproblematic. For another ambiguity with respect to minimalizing
necessary conditions cf. Quine (1959) and Kim (1993).

19 For a proof of this general underdetermination of lists that are compatible with causal chains cf.
Baumgartner (forthcoming), ch. 4.
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Fig. 2: A causal chain and an epiphenomenon that both could underly the coincidences in list 3.

sufficient condition of one effect – e.g. C in graph (b) of fig. 2 – are also contained
in the minimally sufficient conditions of the other effect – E in case of (b). Two
factors satisfying this structural pattern such as C and E shall be referred to as
entangled factors. Entangled factors are not only contained in epiphenomena as
(b), but notably in chains. C and E are entangled in graph (a) of figure 2 as well.
Two factors are entangled iff every conjunct of a minimally sufficient condition
of one of the two factors is also a conjunct of at least one minimally sufficient
condition of the other factor.

Every epiphenomenon that shares its coincidence frame with a causal chain
features at least two entangled factors. That means, at most one effect of such
an epiphenomenon has causally relevant factors that are not part of a minimally
sufficient condition of the other effect. For the purpose of an easy reference to such
epiphenomenal structures, I shall in this context speak of entangled epiphenomena.

There thus exists an entangled epiphenomenon to every causal chain such that
the epiphenomenon and the chain generate the same coincidence list. The con-
verse, however, does not hold. The epiphenomenon (b) of figure 1, for instance,
which is not entangled, is easily distinguishable from a chain as (a). The causal
structure behind the behavior of two factors A and B cannot be a chain if the fol-
lowing conditions hold: Among the minimally sufficient conditions of A there is a
condition containing at least one factor Z1 which is not part of any minimally suf-
ficient condition of B; and among the minimally sufficient conditions of B there
is a condition containing at least one factor Z2 which is not part of any minimally
sufficient condition of A. If A and B, furthermore, have at least one minimally
sufficient condition in common, their behavior must be regulated by an epiphe-
nomenal structure. All of these ‘ordinary’ epiphenomena are identifiable via the
coincidences they generate.

As long as causal inference methodologies exclusively analyze coincidence
information, an unambiguous inference to causal chains is excluded in principle.
Based on such pure coincidence analyses every causal process which is commonly
assumed to be structured in terms of a chain could just as well be modeled as an
entangled epiphenomenon. This, of course, is a finding that heavily conflicts with
common intuitions. The fact that causes and effects are ordinarily concatenated in
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chains is one of the core features of our understanding of the causal relation. The
inability of pure coincidence analyses to distinguish between chains and epiphe-
nomena thus is a serious problem. I call it the chain-problem.

Several solutions to the chain-problem can be thought of. The chain-problem
might be taken to demonstrate that apart from coincidence information inferring
complex structures requires further empirical information as e.g. a temporal order-
ing of the instances of causally related factors or information as to the direction
of energy transfer among these instances. In Baumgartner (forthcoming) (ch. 4),
however, I show that such further empirical information merely narrows down the
amount of epiphenomena that are c-equivalent to chains, but does not prevent there
being a c-equivalent epiphenomenon to every chain. The chain-problem cannot
be solved on purely empirical grounds. Rather, it must be solved on pragmatic or
conventional grounds. Modelling the behaviour of the factors in table 1 in terms
of a chain or an epiphenomenon is empirically equivalent, but the two causal mod-
els highly differ with respect to explanatory power and empirical content. First,
modelling the structure behind table 1 in virtue of a chain explains the entangle-
ment of C and E. If C is determined to be sufficient for E, it immediately follows
from the transitivity of sufficiency that whatever is sufficient for C is also suffi-
cient for E. Thus, the entanglement of C and E is a structural necessity of the
chain model. Moreover, modelling the behaviour of the factors in table 1 in terms
of a chain stipulates that the entanglement of C and E will subsist regardless of
what other factors are subsequently identified as further causes of C or E. The
epiphenomenal model, on the other hand, not only fails to explain why C should
be entangled with E, it furthermore is completely indifferent as to the subsistence
of this entanglement across later expansions of the model. This is why preference
shall always be given to a causal interpretation of entanglements, i.e. to the chain
model. Accordingly, the causal structure behind coincidence lists that could stem
both from a chain and an entangled epiphenomenon shall always be modelled in
terms of a chain.20

That means, complex minimal theories are to be built up from simple theories
such that for every i, 1 ≤ i < n, in a sequence of entangled factors Z1, . . . , Zn,
n ≥ 2: Zi is contained in the antecedent of the simple minimal theory of Zi+1.
Hence, of (10) and (11) only (10) constitutes a complex minimal theory.

(A ∨B ⇒ C) ∧ (C ∨D ⇒ E)
(AX1∨BX2∨YC⇒C)∧(CX3∨DX4∨YE⇒E)

(10)

(A ∨B ⇒ C) ∧ (A ∨B ∨D ⇒ E)
(AX1∨BX2∨YC⇒C)∧(AX1X3∨BX2X3∨YCX3∨DX4∨YE⇒E)

(11)

20 For a detailed discussion of the chain-problem and its solution cf. Baumgartner (forthcoming),
ch. 4.
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All in all, in the remaining step of CA minimal theories are framed from the
minimally necessary disjunctions of minimally sufficient conditions identified for
each Zi ∈ W in step 6. This is done by means of a twofold procedure:

Step 7 – Framing minimal theories: The minimally necessary disjunctions of min-
imally sufficient conditions of each Zi ∈W identified in step 6 are assembled
to minimal theories as follows:

(1) For each Zi ∈W and each minimally necessary disjunction X1∨X2∨
. . . ∨ Xh, h ≥ 2,21 of minimally sufficient conditions of Zi: form a
simple minimal theory Ψ of Zi by making X1 ∨ X2 ∨ . . . ∨ Xh the
antecedent of a double-conditional and Zi its consequent: X1 ∨X2 ∨
. . . ∨Xh ⇒ Zi.

(2) Conjunctively combine two simple minimal theories Φ of Zi and Ψ of
Zj to the complex minimal theory Φ ∧ Ψ iff Φ and Ψ conform to the
following conditions:
(a) at least one factor in Φ is part of Ψ;
(b) Φ and Ψ do not have an identical consequent;
(c) for every i, 1 ≤ i < n, in a sequence of entangled factors Z1,

. . . , Zn, n ≥ 2: Zi is contained in the antecedent of the simple
minimal theory of Zi+1.

Applied to our example, step 7 assigns the following complex and background
independent minimal theory to the coincidence list in table 3:

Result after 7 steps:

Zi ∈ W minimal theory

C (AX1∨BX2∨YC ⇒ C)∧(CX3∨DX4∨YE ⇒ E)
E

9 Causal Interpretation

After having assigned a minimal theory to a coincidence list, the by far most in-
tricate hurdles on the way to uncovering the causal structure behind that list have
been overcome. As we have seen in section 2, there exists a straightforward syntac-
tical convention as regards the causal interpretation of minimal theories. Minimal
theories render causal structures syntactically transparent:

Step 8* – Causal interpretation: Disjuncts in the antecedent of simple minimal
theories are to be interpreted as alternative (complex) causes of the factor

21 The constraint as to a minimum of two alternative minimally sufficient conditions for each ef-
fect* does justice to the minimal complexity of a causal structure required such that its direction is
identifiable (cf. section 2).
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in the consequent. Conjuncts constituting such disjuncts correspond to non-
redundant parts of complex causes. Triples of factors 〈Zh, Zi, Zj〉, such that
Zh appears in the antecedent of a minimal theory of Zi and Zi is part of a
minimal theory of Zj , are to be interpreted as causal chains.

This interpretation rule is not to be seen as part of CA proper. Nonetheless, it
fulfills an essential function on the way to a causal inference. For this reason, the
rule concerning causal interpretation is starred.

CA thus determines the coincidences in our exemplary table 3 to be the result
of a causal chain: A and B are parts of alternative causes of C while C and D
are contained in alternative causes of E. Thereby, A and B are moreover ren-
dered indirectly causally relevant to E. Steps 0* to 7 assign a minimal theory to a
coincidence list and step 8* causally interprets that theory.

10 A Further Example

After having completely laid out CA and after having tested its performance with
respect to a first concrete coincidence list, CA shall now be applied to another
example. Consider the list in table 4. It covers the same factor frame as table
3 and only differs from the latter as regards to four rows: R2, R4, R6, R7. In
order to determine the set W of potential effects, it again is assumed that no factor
in {A,B, C, D, E} is excluded from effect position by prior causal knowledge
or spatiotemporal constraints. For reasons of compatibility with (HC), however,
factors A, B, and C cannot be effects. For each of these factors there is a pair of
rows in table 4 – 〈R1,R5〉 for A, 〈R1,R3〉 for B, 〈R1,R2〉 for C – such that the
respective factor is the only varying factor. D and E, thus, are the potential effects
of the causal structure generating table 4, i.e. W = {D,E}.

Performing steps 2 and 3 on D and E yields the following:

Sufficient conditions of D: ABCE, ABCE, ABCE, ABCE, ABCE, ABCE.

A B C D E

1 1 1 1 1

1 1 0 1 1

1 0 1 1 1

1 0 0 1 0

0 1 1 1 1

0 1 0 1 1

0 0 1 0 1

0 0 0 0 0

Tab. 4: A second exemplary coincidence list over the same factor frame as the list in table 3.
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Minimally sufficient conditions of D: A, B, CE.

Sufficient conditions of E: ABCD, ABCD, ABCD, ABCD, ABCD,
ABCD.

Minimally sufficient conditions of E: B, C, AD.

After having identified minimally sufficient conditions, CA proceeds to first
form and then minimalize necessary conditions for each effect*.

Necessary condition of D: A ∨B ∨ CE.

Minimally necessary condition of D: A ∨B.

Necessary condition of E: B ∨ C ∨AD.

Minimally necessary condition of E: B ∨ C.

The minimally sufficient conditions CE of D and AD of E are not part of mini-
mally necessary conditions of D and E, for whenever they are instantiated, there
is an instance of another disjunct in the corresponding necessary conditions. The
two conditions thus are redundant within their necessary conditions. Finally, CA
frames one simple minimal theory for D and E each:

AX1 ∨BX2 ∨ YD ⇒ D (12)

BX3 ∨ CX4 ∨ YE ⇒ E (13)

(12) and (13) have one factor in common – B – while none are entangled. Hence,
the two simple minimal theories can unambiguously be conjunctively joined to
constitute a complex theory representing the causal structure generating table 4.

(AX1 ∨BX2 ∨ YD ⇒ D) ∧ (BX3 ∨ CX4 ∨ YE ⇒ E) (14)

Accordingly, this input list is the result of an epiphenomenon such that B is the
common cause of D and E.

It should be pointed out that this epiphenomenal structure coincides with the
causal structure behind Mackie’s Manchester Factory Hooters. Mackie (1974) can-
not adequately account for such epiphenomenal structures by means of his INUS-
theory of causation. This defect of the INUS-theory stems from the fact that
Mackie does not minimalize necessary conditions. The example in table 4 now
shows that minimalizing necessary conditions in terms of (MNEC) and (MNEC’),
respectively, solves the Hooters-Problem, as it makes structures of the Hooters
kind amenable to an adequate causal interpretation. This finding demonstrates that
epiphenomenal structures are properly causally analyzable on regularity theoretic
grounds – notwithstanding the widespread opinion to the contrary among critics of
regularity accounts.
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11 Summary

This paper has introduced a procedure of causal reasoning embedded in the reg-
ularity theoretic framework and mainly implementing Boolean techniques. Coin-
cidence analysis (CA) differs from QCA essentially in three respects: First, CA
does not assume there to be a singular effect in every causally analyzed factor
frame, second CA does not presuppose the mutual independence of the causes of
that effect, and third, as to CA it must not be known prior to applying CA what
factor within the analyzed frame is the effect and, accordingly, what factors are
possible causes. Thus, CA abandons the three QCA-assumptions (SNG), (IND),
and (ICE). We have shown that these causal assumptions made in the context of
QCA are not indispensable for causal inferences drawn from mere coincidence
information. Thus, homogeneity (HC) turns out to be the only causal assumption
needed for causal reasoning based on pure coincidence data.

As an immediate consequence thereof, CA is not limited to uncovering causal
structures layer by layer. While QCA is only applicable provided that prior causal
knowledge separates analyzed factor frames in a subset consisting of causally in-
dependent (possible) cause factors and a subset consisting of a single effect, CA
is applicable even without any prior causal knowledge concerning the underlying
structure. CA is capable of analyzing causal structures from scratch and in their
whole complexity. Due to limited space, of course, the two examples discussed
here are simple and purposefully tailored thus that the performance of CA with re-
spect to the two complex causal structures that are critical for QCA is illustrated. In
principle, however, CA is capable of analyzing structures of arbitrary complexity.
Considerably more complex examples can be found in Baumgartner (forthcoming).

Apart from generalizing QCA, CA fills a gap left open by the probabilistic al-
gorithms of causal reasoning as presented in Spirtes, Glymour and Scheines (2000
(1993)). These algorithms only generate informative outputs provided that ana-
lyzed conditional probabilities are lower than 1, i.e. provided that causes do not in
a strict sense determine their effects. CA, thereagainst, is custom-built to determin-
istic causal dependencies and properly uncovers such dependencies.

As shown in sections 3 and 4, not every coincidence list is causally analyzable.
Accordingly, CA cannot be seen as a complete inference procedure in the sense
that it assigns a causal structure to a coincidence list whenever the coincidences in
that list are in fact the result of such a structure. Empirical data may be insufficient
to uncover its causal regularities. However, CA is a correct causal inference pro-
cedure in the sense that whenever CA assigns a causal structure to a coincidence
list, that list is in fact generated by that structure. CA unambiguously assigns a
minimal theory and thereby a causal structure to every causally interpretable coin-
cidence list.
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