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Abstract
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justification since the definition of the KSE does not make reference
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theoretic entropy under certain plausible assumptions. I then discuss
consequences of this equivalence for randomness in chaotic dynamical
systems.
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1 Introduction

For many years, chaos theory has been a hotly debated topic and its methods
have been used to model a great variety of different situations. However, there
is still controversy over the proper characterization of chaotic behaviour. Nu-
merous criteria and indicators for the onset of chaos have been suggested,
but none of these has gained the status of a ‘canonical definition’. Intuitively,
chaos has two faces: Random behaviour and sensitive dependence on initial
conditions. Accordingly, the great majority of proposals for characterizing
chaos fall into one of the following two groups. The first group focuses on the
seemingly random, stochastic, unpredictable or haphazard time evolution of
chaotic systems and consequently tries to flesh out chaos in terms of random-
ness. The second group focuses on sensitive dependence on initial conditions.
This leads to a study of the properties of trajectories in phase space, in par-
ticular their exponential instability: A slight variation in initial conditions
produces significant changes in the long term behaviour of trajectories.

This paper is concerned with the first group of proposals. The problem
with this type of suggestions is that to characterize a system’s behaviour as
random or stochastic is not very illuminating since these notions are as much
in need of analysis as chaos itself. What does it mean to say that a dynamical
system exhibits random behaviour?

Common physical (as well as philosophical) wisdom has it that ergodic
theory fits the bill. More specifically, the claim is that the ergodic hierarchy
provides a set of concepts which allows for an adequate characterization
of random behaviour (see Lichtenberg and Liebermann 1991, 302-12; Ott
1993, 261-2; Reichl 1992, 47-53; Schuster 1988, 203-7; Tabor 1989, 167-74,
to mention just a few). A discussion of the entire hierarchy is beyond the
scope of this paper, and for the present purpose only one ergodic notion is of
importance, the Kolomogorov-Sinai Entropy (KSE, for short). This notion
is crucial because it is generally assumed that the move from zero to positive
KSE marks the transition from regular to chaotic behaviour. More precisely,
the claim is that having positive KSE is a sufficient condition for chaos (Belot
and Earman 1997, 155).

Although, at first glance, this might seem plausible, a closer look at the
definition of the KSE casts doubt on the legitimacy of its use as a criterion
for the presence of chaos. The definition is phrased in terms of the measure
of subsets of the phase space and their time evolution, and does not make
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reference to any notion that is connected to randomness. How can such a
notion be an indicator for random behaviour?

Three suggestions have been made how to bridge this gap. First, connect
the KSE to sensitive dependence on initial conditions (and thereby de facto
reduce it to the second group of proposals), second, take algorithmic com-
plexity to be a measure for randomness and relate the KSE to this notion
and, third, establish a link between the KSE and the information theoretic
notion of entropy. Among these options the third is the most widely used;
the notion of information is almost habitually invoked when the interpreta-
tion of the KSE as measure for random behaviour is discussed. Ironically,
despite its frequent use and its undoubted attractiveness, it is the only one
of these three proposals that has no theoretical grounding. In the first case,
Pessin’s theorem establishes a neat connection between the Lyapunov expo-
nents measuring the divergence of nearby trajectories and the KSE. (Roughly
speaking, the theorem says that the KSE equals the sum over the positive
Lyapunov exponents.) In the second case, Brudno’s theorem can be invoked
which basically says that if the phase space satisfies certain (unproblematic)
conditions then the KSE is equal to the algorithmic complexity of almost all
trajectories.

Surprisingly, there is no theorem which connects the KSE to the infor-
mation theoretic notion of entropy in roughly the same way Pessin’s and
Brudno’s theorems link the KSE with Lyapunov exponents and algorith-
mic complexity, respectively. Mathematically minded authors either do not
discuss the relationship between the KSE and communication theory at all
(Arnold and Avez 1968, Ch.2; Cornfeld et. al 1982, Ch. 10 §6; Rudolph 1990,
Ch. 5; Sinai et at. 1980, Ch. 3); or they pay mere lip service to communica-
tion theory in that they attach the term ‘information’ to purely topological
notions without elucidating how phase space topologies relate to the con-
ceptual framework of information theory (Eckmann and Ruelle 1985, Sec. 4;
Keller 1998, Ch. 3; Nadkarni 1991, 63f.). Others seem to be aware of the fact
that there is a gap to bridge, but then content themselves with some rather
loose and hand waving remarks, mainly based on lax analogies (Billingsley
1965, Ch. 2; Mañé 1983, Ch. 4; Parry 1981, Ch. 2; Petersen 1983, Ch. 5).1

Nowhere in the literature could I find a clear argument connecting entropy in

1Petersen (1983, 229-34) discusses the problem in some detail; but his arguments are
of no help since the expression he gives for the entropy of a source is not correct.
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communication theory to its namesake in dynamical system’s theory, despite
the frequent mention of Shannon.

This raises the question whether the interpretation of the KSE in terms
of information can be vindicated. Is there a way to bridge the gap between
the topological and the information-theoretic understanding of entropy? The
aim of this paper is to provide such an argument for the case of Hamilto-
nian systems. More specifically, I prove that the KSE is equivalent to the
information-theoretic notion of entropy given certain plausible assumptions.
But before I embark on this project it seems worthwhile to appreciate what
the problems are: First, communication theory and dynamical systems the-
ory work with different conceptual frameworks. The former deals with a
finite set of discrete messages and their combinations, while the latter con-
siders a continuous measurable phase space on which an automorphism (a
function mapping the phase space onto itself) is defined. Prima facie these
two setups bear little, if any, similarity to each other. Second, The math-
ematical theories are entirely different. The KSE of an automorphism Φ is
defined as HΦ = supα limk→∞(1/k)H(α ∨ Φα ∨ ... ∨ Φk−1α) and there is not
a single formula in communication theory that bears any similarity to this
expression. For this reason it is not possible to resort to formal analogy and
consider information and topological measures as two interpretations of one
calculus in the same way classical probabilities and actual frequencies are
interpretations of probability calculus, for instance. For these reasons, the
question of how the concepts of entropy in these two disciplines fit together
is not a trivial issue.

Critics might now ask, even if we grant that there is a problem, why we
should bother with it. There are two ways to connect the KSE to unpre-
dictability and randomness, why do we need a third one? Why not just stick
with either Pessin’s or Brudno’s theorem? The answer to this question is
that the different associations bring out different aspects of randomness that
are all captured in the KSE. The connection of the KSE with communication
theory adds to our understanding of these because it brings out some aspects
that are particularly close to our physical intuitions, and which are not made
explicit by either Pessin’s or Brudno’s theorem. More to the point, based on
communication theoretic notions one can make statements about the time
span of unpredictability or the role knowledge of the past history plays in
making forecasts.

This gives rise to the following plan. After a short introduction into dy-
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namical systems (Sec. 2), I present the concept of entropy in communication
theory (Sec. 3) and discuss in what sense it can be considered a measure
of random or unpredictable behaviour. Although I thereby follow the spirit
of Shannon and Weaver (1948), the formal presentation differs significantly
from theirs. I present a version of communication theory which is in several
respects a generalization of the original theory. In particular, I consider mes-
sages whose probability of appearance is a function of the entire past history
of the system, while Shannon and Weaver only consider Markov processes.
The purpose of this is to facilitate the establishment of the connection to
entropy in dynamical systems. This is what I do in Sec. 4, where I prove an
equivalence theorem for the KSE and the notion of entropy used in commu-
nication theory, this under the assumption that the measure defined on the
phase space can be interpreted probabilistically. This establishes the sought-
after connection between the two notions. On the basis of this result I give
a precise characterization of the kind of randomness we find in dynamical
systems with positive KSE. I then compare this account to the notions of
randomness we get from Pessin’s or Brudno’s theorems (Sec. 5). In the con-
clusion (Sec. 6) I point out that the main result of this paper has a bearing
on the relation between product and process randomness and I argue that
it casts doubt on the recent claim that chaotic systems exhibit product but
not process randomness.

2 Elements of Dynamical System Theory

An abstract dynamical system is a triple M = (M, µ, Φt) where (M, µ) is a
measure space equipped with a one-parameter group Φt of automorphisms
of (M, µ), Φt depending measurably on t (Arnold and Avez 1968, 7).

It is common to assume that M has manifold structure, but this is not
necessary; in what follows it can be any measurable space. M will be referred
to as ‘phase space’ of the system. Sometimes this term is reserved for sym-
plectic manifolds, but I will use it in a more general sense and refer to every
measurable space on which an automorphism is defined as a ‘phase space’.

The parameter t plays the role of time. As it can easily be seen, the set
of all Φt has group structure. In the sequel I will use the following notational
conventions: Φt(x) is the point in phase space onto which Φt maps the ‘initial
condition’ x after time t has elapsed, and Φt(A) is the image of the subset
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A ⊆ M under Φt. I write Φti→tj(A) to denote the image of A under the time
development starting at ti and ending at tj.

Furthermore I assume, without loss of generality, that M is normalized:
µ(M) = 1. The last clause in the definition (Φt depending measurably on t)
simply means that ΦtA ∩ B is measurable for all t, and for all A, B ∈ M ,
i.e. that µ(ΦtA ∩ B) is a measurable function of t. In what follows, ‘almost
everywhere’ means ‘everywhere except, perhaps, on a set of measure zero’.

As a simple example of a dynamical system in this sense think of the unit
interval endowed with Φt: The shift x → x + t mod 1 where µ is the usual
Euclidean length of an interval.

The above definition is extremely general and in what follows I make the
following restrictions:

(1) The transformation Φt is measure preserving: µ(ΦtA) = µ(A) for all
subsets A of M and all times t. That is, in the sequel I restrict my attention
to Hamiltonian systems. Some may feel a certain unease about this limitation
because they tend to think about chaos in terms of attractors, which cannot
occur in Hamiltonian systems. Those may become reconciled by the follow-
ing two observations. First, important paradigm cases of chaotic systems are
Hamiltonian systems, for instance the three-body problem, the Hénon-Heiles
system, the autonomous double pendulum, and more generally KAM-type
systems. Second, apart from attractors, which are ruled out by the conser-
vation of phase volume, Hamiltonian systems can exhibit all features that
are commonly taken to be distinctive of chaotic systems: Positive Liapunov
exponents, sensitive dependence on initial condition, unpredictable time evo-
lution, continuous power spectra, decaying autocorrelations, aperiodic orbits,
the presence of a stretching and folding mechanism in phase space, and last
but not least positive KSE.

(2) Nothing has been said so far about whether the parameter t is contin-
uous or discrete. To keep things simple I restrict my attention to the discrete
case; that is, I only consider systems in which time evolves in finite steps:
t1, t2, t3, .... Moreover, it is often the case that the Φti , i = 1, 2, ... are gen-
erated by an iterative application of one single automorphism Φ (standard
examples like the cat map or the baker’s transformation belong to this class).
In this case we have Φti = Φi and Φti→tj(A) = Φj−i(A). Furthermore, I drop
the subscript and just write (M, µ, Φ) for a dynamical system of this kind.

In what follows partitions will play an important role. Roughly, a par-
tition of M is a division of M into finitely many measurable sets. More
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precisely, a partition α = {αi | i = 1, ..., n} is a collection of non-empty,
non-intersecting measurable sets that together cover M : The αi are pairwise
disjoint, αi∩αj = ∅ for all i 6= j; and together the αi cover M up to measure
zero, µ(M−⋃n

i=1 αi) = 0. The αi are called ‘atoms’ or ‘cells’ of the partition.
Furthermore notice that if α is a partition of M then its picture under the
automorphism Φt is also a partition. That is, if α = {αi | i = 1, ..., n} is a
partition of M then Φtα := {Φtαi | i = 1, ..., n} is as well.

Given two partitions α = {αi | i = 1, ..., n} and β = {βj | j = 1, ...,m},
their least common refinement α∨β is defined as follows: α∨β = {αi∩βj | i =
1, ..., n; j = 1, ...,m}. Sometimes α ∨ β is also called ‘sum of α and β’. Fig.
1 provides an example illustrating this.

Figure 1: The sum of the partitions α and β.

We are now in a position to state the definition of the Kolmogorov-Sinai
entropy HΦ of an automorphism Φ (Arnold and Avez 1968, 38-40):

HΦ := sup
α

lim
k→∞

(1/k)H(α ∨ Φα ∨ ... ∨ Φk−1α), (1)

where the function on the right-hand side is the entropy of a partition (recall
that α ∨ Φα ∨ ... ∨ Φk−1α is a partition as well) which is defined as follows:
H(β) := −∑m

i=1 z[µ(βi)], z(x) = x log(x) if x > 0 and z(x) = 0 if x = 0;
and supα is the supremum over all possible finite partitions α of the phase
space. I shall discuss this definition in detail later on.

3 Entropy in Communication Theory

Consider the following situation: We have a source S producing messages
which are communicated to a receiver R registering them (on a paper tape,

7



for instance).2 The messages may be of various types: sequences of letters,
numbers, words, ... or any other symbols we might think of. The only
restriction we impose is that the source uses discrete symbols and generates
the message symbol by symbol. The product of this process is a string of
symbols, the message, which can be of finite or infinite length.

More precisely, let S1, ..., Sn be the available symbols and let the process
of the composition of a message start at time t0. At that time no symbol
has been produced by S and the tape of R is blank. The first symbol is put
out by S and sent to R at t1, where it is registered; the second symbol is
sent and registered at t2 (we assume that t1 < t2 < t3 < ...), and so on. The
production of one symbol by the source (when it moves from ti to ti+1) will
be referred to as a ‘step’. As a result of this, at tk the tape of R contains
a string of k symbols: St1

l1
St2

l2
...Stk

lk
, where all the li range over 1, ..., n (i.e.

the number of symbols available). The time-superscripts have been added to
indicate the order of reception (Sl1 has been sent and received at t1, and so
on). For instance, assuming that our symbols are letters, ht1et2lt3lt4ot5 means
that the letter ‘h’ has been received at time t1, ‘e’ at t2 and so on.

I now introduce in seven stages the notion of the entropy of a source S,
which will be designed such that it serves as a measure of the receiver’s aver-
age uncertainty about what message the source produces next (that is, it is a
measure for unpredictability - I shall use ‘uncertainty’ and ‘unpredictability’
interchangeably in what follows). Thereby it also is a measure of the amount
of information received. I shall come to that below.

Stage 1: To start with, consider a source which has just two symbols (0
and 1, say) it can send. What is the amount of uncertainty of the receiver
about what message will crop up next? We answer this question by adopting
the convention that the amount of uncertainty of the receiver in this case
equals one. This is a reasonable choice: If we had just one symbol available,
we in fact would know for sure that what the receiver would indicate whenever
we switch it on; there is no uncertainty. The simplest non-trivial situation
is the one considered here where two symbols are available. We then are not
sure about what the next message will be (we could get either of the two
messages) and it seems reasonable to say that the amount of uncertainty in

2In what follows I assume that the channel is noiseless and deterministic, basically
meaning that there is a one-to-one correspondence between the input and the output
messages.
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this case is one because there is one choice to be made.
Before continuing with the development of the theory I would like to make

some remarks about information. It is one of the main insights of Shannon’s
Mathematical Theory of Communication that uncertainty is closely related
to information. If we are sure about what message we receive next, we
do not learn anything by actually receiving it. Therefore the amount of
information transmitted is zero. If, on the other hand, there are several
possibilities (e.g. if we don’t know whether we will obtain 0 or 1), we do
acquire information when we receive either of the two. For those who find
this a bit contrived, consider Lewis Carroll’s remark in Through the Looking-
Glass : ‘It is a very inconvenient habit of kittens (Alice had once made the
remark) that, whatever you say to them, they always purr. “If they would
only purr for ‘yes’ and mew for ‘no,’ or any rule of that sort,” she had said, “so
that one could keep up a conversation! But how can you talk with a person if
they always say the same thing?”.’ (1998, 238) In short, uncertainty about
what comes next and the transmission of information are two sides of the
same coin.

For this reason, devising a measure of the amount of uncertainty about
future events and the quantity of information transmitted amounts to the
same. Consider again the previous example. What is the amount of infor-
mation transmitted when R has registered ‘1’ or ‘0’ on its tape? For the same
reasons as outlined above it is natural to say that the amount of information
transmitted is one (in technical jargon, we get one ‘binary digit’, ‘bit’ for
short, of information). As a consequence, when we in what follows devise
entropy as a measure of the amount of uncertainty it also is a measure of
the amount of information transmitted. However, the focus in the rest of the
paper will be on uncertainty not on information, though I use information
jargon at times if this turns out to be convenient.

Two remarks about this concept of information should be made. First,
contrary to the concept of meaning, which applies to a single message (receiv-
ing ‘S1’, for instance, could mean, ‘I love you’, ‘I hate you’, ‘happy birthday’
... or what have you), information is not concerned with individual mes-
sages, but only with the ensemble of all messages a source could possibly
send. What makes a single message informative is not its meaning but the
fact that it is selected from a set of possible messages. The more (different)
messages the source could in principle send, the higher the information con-
tent of the one we actually get. Second, from what has been said so far it is
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obvious that we are dealing here with a rather idiosyncratic concept of infor-
mation which has little to do with the various senses the term ‘information’
has in ordinary discourse, such as knowledge or propositional content. Infor-
mation in these senses has semantic features such as truth-values, something
the communication-theoretic concept lacks. This has led many to criticize
this concept as misconceived. Be this as it may, my focus in this paper is
uncertainty and not information and for this reason I will not dwell on this
issue here.

Stage 2: How does this generalize to a source which can emit n different
symbols? This question is best answered by looking at the restrictions we
want to impose on a measure of the amount of uncertainty: (a) It must be
a monotonically increasing function of n; the more possibilities there are,
the greater our uncertainty about what comes next. (b) Additivity: When
we add two sources of the same type we want the amount of uncertainty
to double. Informally, let I stand for uncertainty (or information). Then
we require I(source 1+ source 2) = I(source 1)+I(source 2) (see Shannon
and Weaver 1949, 32, for a justification of this assumption). (c) Finally, we
should have I = 1 in the case of only two possibilities (see Stage 1). The only
function which satisfies these criteria is the logarithm to the base 2. Hence,
let ‘I’ stand for the amount of information conveyed by S per step, and ‘log’
for the logarithm to the base 2, then we have I = log(n).

Stage 3: So far we have implicitly assumed that all symbols occur with
equal probability at any step k, i.e. that all Si occur with probability p

k
=

1/n at step k (since the probabilities p
k

do not actually depend on the step k,
I drop the subscript k in what follows). This a perfectly good assumption in
certain cases, but it does not generally hold true. If, for instance, the symbols
are letters of the alphabet, the probability that the next letter the sender
emits is an ‘a’ is much higher than that for an ‘x’, since ‘a’ occurs much more
often in English than ‘x’. So we need a generalization of I to this case. Let
p(S1), ..., p(Sn) (where p(S1)+ ...+ p(Sn) = 1) be the respective probabilities
that S1, ..., Sn occur. Shannon showed that a natural generalization of the
above notion is the following (Shannon and Weaver 1949, 48-53):

Hstep := −
n∑

i=1

z[p(Si)], (2)

where z(x) = x log(x) if x > 0 and z(x) = 0 if x = 0. Hstep is measure of the
uncertainty about what symbol will crop up at the next step; the greater Hstep
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the less certain we are about the outcome. The use of the letter ‘H’ instead
of ‘I’ is motivated by the fact that Eq. (2) has the same structure as the
expression for the entropy in statistical mechanics and for this same reason
we also refer to it as ‘entropy’. Hstep is a natural generalization of I for the
following reasons: First, if all events are equally probable (p(Si) = 1/n for all
i = 1, ..., n) it coincides with the above notion, that is Hstep = log(n), as some
simple algebra immediately reveals. Second, it is continuous in the p(Si).
Third, it has the ‘right’ behaviour: (a) Any change toward equalization of
the probabilities p(S1), ..., p(Sn) increases H. In particular, Hstep is maximal
if all events are equally probable. (b) Hstep = 0 iff all p(Si) but one equal
zero, i.e. if there is in fact no choice (ibid. 51).

Stage 4: So far nothing has been said about what the p(Si) are and on
what they depend. In many cases the choice of a symbol at some particular
time tk+1 does not depend on previous choices. However, for a general source,
the probability that a particular symbol is chosen may depend on what has
been chosen beforehand. For example, if the source is producing English
prose, there are a number of limitations due to the orthography and syntax
of the language. The probability of receiving a ‘u’, for instance, will rise
dramatically each time a ‘q’ comes through, and it will be almost zero after
an ‘x’. In short, successive symbols may not be chosen independently and
their probabilities may depend on preceding letters. In the simplest case, a
so-called Markov process, a choice depends only on the preceding letter and
not on the ones before that. However, the choice may in general depend on
the entire previous history of the process; that is, the choice of a symbol
at tk+1 may depend on St1

l1
St2

l2
...Stk

lk
. It is natural to account for this by

using conditional probabilities: The probability of receiving Si at time tk+1 is
p(S

tk+1

i /St1
l1

St2
l2

...Stk
lk

). Since these probabilities may vary with k, the entropy
may have a different value at every step. To make this explicit, I replace the
subscript ‘step’ in Eq. (2) by ‘k’ to emphasise that we are considering the
entropy at the kth step of the process. The expression for the entropy then
reads:

Hk(S
t1
l1

St2
l2

... Stk
lk

) := −
n∑

i=1

z[p(S
tk+1

i /St1
l1

St2
l2

... Stk
lk

)]. (3)

This is a measure for the uncertainty about what symbol will show up at
time tk+1 given that the previous history of the process (recorded on R’s
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tape) is St1
l1

St2
l2

... Stk
lk

.
Stage 5: Now we generalize our question slightly: Instead of asking ‘what

is the uncertainty about the (k + 1)th symbol given that the message pro-
duced so far is St1

l1
St2

l2
... Stk

lk
?’ (to which Eq. (3) is an answer) we now ask

‘what is the uncertainty about the (k + 1)th symbol whatever message has
been produced so far?’. Or in other words: What is the uncertainty at
tk+1 if we do not presuppose that the system has a particular previous his-
tory, namely St1

l1
St2

l2
... Stk

lk
? The answer seems clear: Take the average of

all Hk(S
t1
l1

St2
l2

... Stk
lk

) and, to do justice to the fact that not all histories are
equally likely, weight each term with the probability of the respective history:

H̄k :=
n∑

l1,...,lk=1

p(St1
l1

St2
l2

... Stk
lk

)Hk(S
t1
l1

St2
l2

... Stk
lk

), (4)

where

p(St1
l1

St2
l2

... Stk
lk

) := p(St1
l1

)p(St2
l2

/St1
l1

) ... p(Stk
lk

/St1
l1

...S
tk−1

lk−1
). (5)

Stage 6: On the basis of this we can now define the entropy H̃k of the
entire process of the composition of a message of length k. Since no step is
privileged over the others, this can be effected by simply taking the average
of the entropy at every step of the process:

H̃k :=
1

k

k−1∑
j=0

H̄j (6)

Stage 7: Now we can say that the entropy of the source itself, HS, is the
average of the uncertainty at every step if we let the process go on forever:

HS := lim
k→∞

H̃k. (7)

This is the so-called entropy of the source. It is a measure for the av-
erage uncertainty over the entire process or, to put it differently, the av-
erage amount of information which the source conveys with every symbol
the receiver prints. I will refer to this notion of entropy as ‘communication-
theoretic entropy’, CTE for short.3

3Note that if we assume that all the probabilities are independent (this is the case for
Bernoulli processes, for instance) we have HS = Hstep. This is easy to see: For independent
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From a technical point of view the development of the theory is now
complete. But what is its conceptual import? What does it mean for a source
to have a positive CTE? And in what sense is a positive CTE a measure for
random behaviour? In the remainder of this section I shall discuss these
questions.

Let us start by having a look at the probabilities involved. When prob-
abilities are introduced into the theory they are assumed to be given; there
is no element in the theory that determines what their values are. For this
reason one could also say that the set of possible messages S1, ..., Sn to-
gether with the conditional probabilities of occurrence p(S

tk+1

i /St1
l1

St2
l2

... Stk
lk

),
i = 1, ..., n actually defines the source. Characteristically, these probabilities
are past relative frequencies, and it is assumed that these relative frequencies
will persist.

However, this ‘natural order’ of proceeding can in a certain sense be re-
versed: The entropy can be used to characterize the probabilities involved
even if they are not explicitly known (leaving aside the question of how we
get to know the entropy without knowing the probabilities). The point is
the following. The notion of entropy has been set up in such a way that
it is a measure for the average uncertainty per symbol over the entire pro-
cess. For this reason, HS > 0 expresses the fact that, on average, at every
step there is some uncertainty about what the next symbol printed by the
receiver will be. More precisely, whatever the past history of the system and
whatever our knowledge about it (we may know it all), we are not sure as
to what the next symbol that emerges will be. And this characteristic per-
sists forever, there exists no ‘cut-off time’ tc in the process from which on
the past history of the system allows us to predict with certainty what its
future will be.4 This follows immediately from the definition of the CTE.

events Eq. (4) becomes:

H̄k := −
n∑

l1,...,lk=1

p(Sl1)p(Sl2) ... p(Slk)
n∑

i=1

z[p(Si)], (8)

Now realize that the two sums separate and that the first one is just a sum
over the probabilities of all strings of length k. For this reason we have:∑n

l1,...,lk=1 p(Sl1)p(Sl2) ... p(Slk) = 1. Hence H̄k(S) = −
∑n

i=1 z[p(Si)] and therefore
HS = −

∑n
i=1 z[p(Si)].

4I should note that there is a subtle difference between ‘with probability equal to
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HS = limk→∞(1/k)
∑k−1

j=0 H̄j = limk→∞(H̄0/k + ... + H̄k−1/k) is greater than
zero only if there do not cease to be H̄k greater than zero. Now recall that
H̄k is a measure for the uncertainty about what the message printed at time
k + 1 will be. Hence, if there do not cease to be H̄k > 0 as time goes on,
there will always be times at which we are not sure about what is going to
happen. As a consequence, we cannot predict with certainty what the fu-
ture will be.5 In terms of probabilities this means that as the process goes
on we never reach a stage where p(S

tk+1

i /St1
l1

St2
l2

... Stk
lk

) equals one for some
particular symbol and zero for all the others.

Summing up, we can characterize a system with positive entropy as one
in which the past history never conveys certainty onto what will happen at
the next step and more generally in the future. Or to phrase it differently,
even given the entire past history we are not able to predict with certainty
what will happen in the future. It is in this sense that a process with positive
entropy is random, and the magnitude of the entropy is a measure of how
random it is.

If, on the other hand, HS equals zero, then, on average, there is no uncer-
tainty and we can predict what the future will look like. There is a subtlety,
however. Zero entropy does not imply that the process is deterministic (by
which I here simply mean that given the state of a process at time tk, there
is exactly one state in which it can be at tk+1). It is true that for a determin-
istic process HS = 0 holds. But the converse is false: HS = 0 does not imply
that the process is deterministic, it just means that on average there is no
freedom of choice. This does not preclude that the process is indeterministic
at some particular instants of time.

4 Entropy in Dynamical System Theory

To repeat, the KSE of an automorphism is defined as HΦ = supα limk→∞(1/k)H(α∨
Φα∨ ...∨Φk−1α) and it is commonly used as a measure for the unpredictabil-

one’ and ‘certainty’. The latter implies the former but not vice versa. However, since
this subtlety does not play any role in what follows, I shall use these two expressions
interchangeably.

5This does not mean that there are no instants of time for which this is possible. As
the above formula shows, HS > 0 is compatible with there being some particular H̄k = 0
from time to time. The point is just that as k, i.e. time, goes on we never reach a point
after which all H̄k equal zero; and this is all we need to render the future unpredictable.
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ity of the dynamics. But as I explained in the introduction, it is prima facie
not clear whether this is legitimate or not. In this section I show that it is
by proving, under plausible assumptions, that the KSE is equivalent to the
CTE.

Wanting to prove this equivalence we face the following problem: the
messages we have been dealing with so far are discrete entities, whereas the
phase space of a dynamical system is continuous. These two things do not
seem to go together. This mismatch can be removed if we coarse grain the
phase space, i.e. if we work with a partition instead of the ‘whole’ phase
space. Then it is no longer difficult to associate a dynamical system M
with an information source of the type discussed above. This association is
achieved as follows. Let α = {α1, ..., αn} be a partition of the phase space
and assume that the state of the system at t0 is x (more needs to be said
about the choice of a partition; I come back to this issue below at stage 8).
Then trace the trajectory Φti(x) of x and take down on a paper tape at each
time ti, i = 1, 2, ..., in what cell αj, j = 1, ...., n, of the partition Φti(x) is.
That is, write down αt1

j if Φt1(x) ∈ αj at time t1 and so on. If we do that up

to time tk this generates the string αt1
l1
αt2

l2
...αtk

lk
, which is structurally identical

to St1
l1

St2
l2

...Stk
lk

. This is illustrated in Fig. 2.

Figure 2: The generation of the string αt1
8 αt2

1 αt3
2 αt4

9 αt5
16α

t6
18α

t7
6 αt8

10.

Now we need to find something in M corresponding to the probability
p(Si) of choosing a particular symbol Si. This is not too hard to get. By
assumption, there is a normalised measure µ on M (that is µ(M) = 1) and it
is a straightforward move to interpret this measure as a probability measure.
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More precisely, let µ reflect our ignorance about the real state of the system,
and interpret µ(αi) as the probability of finding the system’s state in αi.
Note, however, that although this move is quite natural, the interpretation
of µ as the probability of finding the system’s state in a particular cell is
by no means compulsary. Not all measures reflect our ignorance about the
system’s real state; it could also simply be the spatial volume. However, this
interpretation is perfectly possible and it allows us to connect what happens
in dynamical systems to communication theory as outlined above, and that
is all we need for the time being.

Then, the following associations are made to connect dynamical systems
to communication theory:

(a) The atoms of the partition αi correspond to the symbols (messages)
Si of the source.

(b) The measures of an atom µ(αi), interpreted as the probability of
finding the system’s state in cell αi, corresponds to the probability p(Si) of
obtaining symbol Si.

(c) The automorphism Φt corresponds to the source S, since they both
do the job of generating the strings αt1

l1
αt2

l2
...αtk

lk
and St1

l1
St2

l2
...Stk

lk
respectively.

With these associations at hand it is now possible to carry over the notions
introduced in the last section to the present context.

Stage 1: To begin with, consider a partition consisting of two atoms,
α = {α1, α2}, and assume that the state of the system at t0 is x. Then
trace the trajectory Φti(x) and take down at each time step in what cell αj,
j = 1, 2, Φti(x) is. This generates a string of exactly the same sort as the
one we obtain from a source which can send only two symbols.

As in the case of the source, we are generally not sure about what cell
the system’s state will be in next. Due to restrictions on the precision of the
specification of initial conditions we normally cannot know precisely what
the system’s initial state is and this uncertainty is then propagated, or even
amplified, by the dynamics of the system as time evolves. Therefore we gain
information, i.e. remove uncertainty, when we learn that the system’s state
is in α1 rather than α2, say. Adopting the same convention as in the case
of sources, we can say that the amount of uncertainty of the observer about
what cell the system’s state will be in at the next step is one bit.

Stage 2: Replacing this partition by one consisting of more than two
atoms is the analogue to the transition from a source with two symbols to
one with any number of symbols. The considerations concerning the general
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properties of information then carry over one-to-one. The more possibilities
we have (i.e. the more cells the partition consists of), the greater the un-
certainty about what happens next becomes. Combining two systems of the
same sort should result in the doubling of the amount of uncertainty; and in
the case of a partition with only two cells the uncertainty must be unity in
order to be consistent with stage 1. So, as in the case of the source, we set
I = log(n).

Stage 3: By assumption, the measure µ(αj) is interpreted as the prob-
ability that at the next step the system will be in cell αj; that is, we have
p(αj) = µ(αj). This allows us to carry over Eq.(2) to the present context.
We immediately obtain Hstep = −∑n

i=1 z[µ(αi)], which is commonly called
the ‘entropy of the partition α’. To be in accord with the notation commonly
used in the literature I write ‘H(α)’ instead of ‘Hstep’:

H(α) := −
n∑

i=1

z[µ(αi)], (9)

Stage 4: In general, also in dynamical systems the previous history affects
future probabilities. Therefore Eq. (3) carries over to the present context:

Hk(α; αt1
l1
αt2

l2
... αtk

lk
) := −

n∑
i=1

z[p(α
tk+1

i /αt1
l1
αt2

l2
... αtk

lk
)], (10)

Now we have to express the probabilities occurring in this expression in
terms of µ. To this end, first spell out the conditional probability in terms
of unconditional ones:

p(α
tk+1

i /αt1
l1
αt2

l2
... αtk

lk
) = p(α

tk+1

i & αt1
l1
αt2

l2
... αtk

lk
)/p(αt1

l1
αt2

l2
... αtk

lk
) (11)

= p(αt1
l1
αt2

l2
... αtk

lk
α

tk+1

i )/p(αt1
l1
αt2

l2
... αtk

lk
). (12)

The latter equality follows immediately from the definition of a string.
Realize that for any two instants of time ti and tj (where ti < tj) and any

two subsets A and B of M the following holds:

p(AtiBtj) = µ[Φti→tj(A) ∩B]. (13)

The validity of this equation becomes transparent from Fig. 3.
The generalisation of this equality to any number of sets and instants of

time is straightforward. Applying this to the above expressions yields:

p(αt1
l1
αt2

l2
... αtk

lk
) = µ(αlk ∩ Φtk−1→tkαlk−1

∩ ... ∩ Φt1→tkαl1), (14)
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and

p(αt1
l1
αt2

l2
... αtk

lk
α

tk+1

i ) = µ(αi ∩ Φtk→tk+1
αlk ∩ ... ∩ Φt1→tk+1

αl1). (15)

Hence (10) becomes:

Hk(α; αt1
l1
αt2

l2
... αtk

lk
) := −

n∑
i=1

z
[

µ(αi ∩ Φtk→tk+1
αlk ∩ ... ∩ Φt1→tk+1

αl1)

µ(αlk ∩ Φtk−1→tkαlk−1
∩ ... ∩ Φt1→tkαl1)

]
.

(16)

Figure 3: The probability of AtiBtj equals µ[Φti→tj (A) ∩B].

Stage 5: Similarly, Eq. (4) carries over to dynamical systems easily:

H̄k(α) :=
n∑

l1,...,lk=1

p(αt1
l1
αt2

l2
... αtk

lk
)Hk(α

t1
l1
αt2

l2
... αtk

lk
), (17)

which is the entropy of the kth step relative to the partition α. Inserting
probabilities in terms of the measures we obtain

H̄k(α) :=
n∑

l1,...,lk=1

µ(αlk ∩ Φtk−1→tkαlk−1
∩ ... ∩ Φt1→tkαl1) (18)

n∑
i=1

z
[

µ(αi ∩ Φtk→tk+1
αlk ∩ ... ∩ Φt1→tk+1

αl1)

µ(αlk ∩ Φtk−1→tkαlk−1
∩ ... ∩ Φt1→tkαl1)

]
.

Stage 6: The entropy of the process of the composition of a string of
length k is:
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H̃k(α) :=
1

k

k−1∑
j=0

H̄j(α). (19)

Stage 7: On the basis of this we define the entropy of an automorphism
as follows:

HΦt(α) := lim
k→∞

H̃k(α), (20)

This is the entropy of the automorphism Φt with respect to the partition α.
Stage 8: At the beginning of this section I mentioned in passing that

more needs to be said about the choice of a partition. The reason for this
is that there is an important disanalogy between a source and a dynamical
system. In the case of a Source S, the set of possible messages (S1, ..., Sn) is
a part of the definition of the source and hence it is no longer an issue later
on. This is not so with the partition α, which is no constitutive part of the
dynamical system M. Rather it has been ‘imposed’ on the system.

This is a problem because the values we obtain for HΦt(α) essentially
depend on the choice of the partition α. If we choose α conveniently enough
(which we always can, no restrictions having been imposed on α), there will
be no uncertainty left, whatever the properties of Φt (this can be achieved,
for instance, by choosing the trivial partition, i.e. the partition whose only
atom is M itself). Hence, prima facie HΦt(α) tells us more about our choice
of α than about the properties of the automorphism Φt.

This may pose no problem if the partition α is what we are ultimately
interested in. But for the most part we are interested in the automorphism
Φt itself rather than the partition, which merely is an auxiliary device. For
this reason we have to eliminate the dependence on α and get to a notion of
entropy which does no longer dependent on any particular partition.

This can be achieved by defining the entropy of the automorphism as the
supremum of HΦt(α) over all finite measurable partitions (Arnold and Avez
1968, 40):

HΦt = sup
α

HΦt(α). (21)

The choice of the supremum is motivated by the following considerations.
From the point of view of the dynamical system there is no privileged parti-
tion, one is just as good as any other. Therefore it is interesting to discuss
how HΦt(α) behaves as a function of α, when α ranges over all finite mea-
surable partitions. As I just observed, one can always find a partition such

19



that HΦt(α) = 0; and from the definition of HΦt(α) it follows that it cannot
be negative. Hence zero is a infimum of HΦt(α). However, This is not a very
informative result if we want to know something about the automorphism Φt,
since this holds true regardless of what Φt is. So what about the supremum?
This is an interesting question because the supremum really depends on Φt.
Some automorphisms are so such that we simply cannot find a partition with
respect to which there is much uncertainty, while with others things get as
unpredictable as we may want. For this reason the supremum of HΦt(α),
unlike the infimum, tells us a great deal about the automorphism. More
specifically, it informs us about the maximal magnitude of uncertainty we
can encounter in a system governed by Φt.

But there is a problem: The expression in Eq. (21) does not bear any
resemblance whatsoever to the standard definition of the KSE. I now solve
this problem by proving that, HΦt as defined above, is equivalent to the
standard definition.

To this end, I first have to introduce a technical device, the so-called
conditional entropy. Let α and β be two partitions. The conditional entropy
of α with respect to β is defined as follows (Arnold and Avez 1968, 37):

H(α/β) :=
m∑

j=1

µ(βj)
n∑

i=1

z
[
µ(αi ∩ βj)

µ(βj)

]
(22)

Then realize that the standard definition of the KSE assumes that the
flow is generated by the iterative application of the same automorphism Φ.
So we have Φti = Φi and Φti→tj(A) = Φj−i(A) (see Sec. 2). Given this, I
prove in the Appendix

Theorem 1
H̄k(α) = H(α/Φα ∨ Φ2α ∨ ... ∨ Φkα). (23)

Then the entropy of the process as given in Eq. (19) reads:

H̃k(α) =
1

k

[
H(α) + H(α/Φα) + ... + H(α/Φα ∨ ... ∨ Φk−1α)

]
(24)

This can be considerably facilitated by using

Theorem 2

H(α∨Φα∨ ...∨Φkα) = H(α)+H(α/Φα)+ ...+H(α/Φα∨ ...∨Φkα). (25)
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Hence,

H̃k(α) =
1

k
H(α ∨ Φα ∨ ... ∨ Φk−1α) (26)

Inserting this first into (20) and then (21) we obtain

HΦ = sup
α

lim
k→∞

(1/k)H(α ∨ Φα ∨ ... ∨ Φk−1α), (27)

and this is the definition of the entropy of an automorphism towards which
we were aiming. Gathering the pieces together, we have proven the

Equivalence Theorem

HΦ = sup
α

lim
k→∞

(1/k)H(α ∨ Φα ∨ ... ∨ Φk−1α)

= sup
α

lim
k→∞

−1

k

k−1∑
j=0

n∑
l1,...,lk=1

p(αt1
l1
αt2

l2
... αtk

lk
)

n∑
i=1

z[p(α
tk+1

i /αt1
l1
αt2

l2
... αtk

lk
)]. (28)

Since, by construction, the last term in this equation is equivalent to the
CTE, the sought-after connection between the notion of entropy in dynamical
system theory and in information theory is established.

As a consequence, everything that has been said at the end of Sec. 3
about the unpredictable behaviour of a source can be carried over to dy-
namical systems one-to-one. However, a proviso with regard to the choice
of a partition must be made. The exact analogue of the CTE is HΦ(α) and
not HΦ, which is defined as the supremum of HΦ(α) over all partitions α.
For this reason, the characterization of randomness devised in the context
of communication theory strictly speaking applies to HΦ(α) rather than HΦ.
However, there is a close connection between the two: Whenever HΦ > 0,
there trivially is at least one partition for which HΦ(α) > 0. In this case, Φt

is random in precisely the way described above with respect to this partition,
and more generally with respect to all partitions for which HΦt(α) > 0. For
this reason, statements about HΦ and HΦ(α) naturally translate into one
another.

This said, we obtain the following characterization: If an automorphism
has positive KSE then, whatever the past history of the system, we are on
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average not able to predict with certainty in what cell of the partition the
system state will lie next. And this will be the case forever: There is no
‘cut-off time’ after which we have gathered enough information to predict
what will happen in the entire future. We can collect as much knowledge
about the system’s past as we like and we are still left uncertain about its
future. On average, we are just never sure about what happens next, since
the past history does not convey certainty onto what will happen in the
future (however, we may be certain of what happens at the next step at some
isolated instants of time). For short, the past history does not determine the
future.

Moreover, the magnitude of the KS entropy is a measure for how great
our failure to predict the future will be; the greater the entropy the more
uncertain we are about the future.

From this it follows immediately that the dynamics obeys the so-called
0-1 law of probability theory. This law states that even if we have complete
knowledge of the process’ behaviour in the past, the only events which we can
predict with certainty at the next step are those which have either probability
0 or 1 independently of the past history (see Batterman 1993, 60).

5 Comparison With Other Accounts

In the last section I have presented a discussion of the unpredictability we find
in systems with positive KSE. This characterization is, to a large extent at
least, not new (similar characterizations, though less detailed, can be found
in Earman 1986, Ch. 9, or Batterman 1993, Sec. 3). However, it is only
the link between the KSE and the information theoretic notion of entropy
which allows for a justification of this characterization. In other words, it is
the result obtained in the previous section that puts this characterization on
firm ground. In this section I briefly show why this is so.

As I have mentioned at the beginning, there are two other methods to
link the KSE with unpredictability or randomness: (1) Use Pessins theo-
rem which relates the KSE to positive Lyapunov exponents or (2) invoke
Brudno’s theorem which connects it to algorithmic complexity. I will now
briefly discuss these options and explain where the differences between these
and an approach based on the CTE lie.

(1) Lyapunov exponents: Sensitive dependence on initial conditions is a
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distinguishing feature of chaotic behaviour. Initially arbitrarily close points
in the phase space produce markedly different trajectories. For this rea-
son, the slightest vagueness in the specification of the initial state renders
long term predictions impossible because two initially indistinguishable states
will evolve into two distinguishable ones. Characteristically, trajectories in
chaotic systems diverge exponentially and Lyapunov exponents (LE) proved
a good quantitative measure for the average rate of exponential divergence
of two trajecotries. Hence, positive LE are indicative of unpredictable be-
haviour. For this reason it is desirable to link the KSE to positive LE. And
this is what Pessin’s theorem achieves by stating that H(Φ) is basically equal
to the sum of the positive LE of the system (see for instance Eckmann and
Ruelle 1985, 394, or Lichtenberg and Liebermann 1991, 304).

This is a valid argument. But it does not take us as far as we can go.
Nothing is said about the time span of the unpredictablity (will it last for-
ever?), nothing has been said about how quickly predictions break down
(after one time step? after two? ... after ten?), and no mention of the
past history is made (how does knowledge of the past history influence our
predictive abilities?). But these are of great interest in a physics context.

(2) Algorithmic complexity: An important account defines randomness in
terms of algorithmic complexity. Roughly speaking, the algorithmic com-
plexity (AC) of a sequence (here αt1

l1
αt2

l2
...αtk

lk
) is the length of the shortest

computer program we have to provide in order to get a universal Turing ma-
chine to reproduce (compute) the sequence. We then define a sequence to
be random if the shortest program of this sort has essentially the length of
the sequence itself (that is, the program basically says ‘print αt1

l1
αt2

l2
...αtk

lk
’).

(For details see Cover and Thomas 1991, Ch. 7; summaries can be found in
Batterman 1993, Sec. 4; Belot and Earman 1997, Sec. 2; and Earman 1986,
Ch. 8).

This notion of randomness can be connected to the KSE by invoking
Brudno’s theorem which states that for almost all trajectories (i.e. sequences
αt1

l1
αt2

l2
...αtk

lk
) the AC of the trajectory equals the KSE of the system (Brudno

1978; for discussions see Alekseev and Yakobson 1981, Batterman and White
1996). Hence we can say that the KSE is a measure of random behaviour in
the sense AC.

This is a very elegant way to interpret the KSE in terms of randomness.
But is it really what we need? I think that this account is less attractive
than it initially appears. The term ‘randomness’ may refer to many different
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things in different contexts and it is beyond the scope of this paper to discuss
the variety of options. However, in the context of dynamical systems, what
we mean by ‘random behaviour’ is unpredictable behaviour. At the most
basic level, we say that an event is random if there is no way to predict its
occurrence with certainty. Likewise, a random process is one for which we
are not able to predict what happens next. That is, what we have in mind
when we call the behaviour of a dynamical system ‘random’ is our inability
to predict its future behaviour, and any definition of randomness we employ
in this context must somehow do justice to this intuition. But this is not the
case with AC. It does not make reference to prediction and it is not clear
how a connection between AC and predictability might be established since
it is concerned only with the reproduction of a previously given sequence.

6 Conclusion

I would like to conclude this paper by discussing a consequence of the above
result for the notion of randomness characteristic of chaotic systems. Two
basic types of randomness have been distinguished, namely process and prod-
uct randomness (see Earman 1986, 137-8). First, we are faced with process
randomness (also referred to as genesis randomness) if we are faced with a
process which operates without a hard and fast principle. A process involving
genuine chance, for instance, belongs to this category. Second, the output of
a process exhibits product randomness (also called performance randomness)
if it is lacking a discernible pattern or if it simply is ‘out of shape’ in some
sense or another. It is clear that product randomness is not an absolute con-
cept. Like in the case of simplicity, we have strong and pervasive intuitions,
but it is difficult to cash out in an objective sense what these amount to;
what we consider as patternless depends (to some extent at least) on our
point of view.

These two notions of randomness do not generally coincide. On the one
hand, a sequence that is random in the product sense need not necessarily
be the output of a genuinely random process. So-called ‘random number
generators’ in digital computers are a point in case. They are programs that
are set up in a way that the sequences they produce look random, but all the
program performs are simple arithmetical manipulations of numbers which do
not involve any stochastic element. On the other hand, process randomness
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is no sure guarantee for performance randomness, though it leads to strong
expectation of a random product. It is in principle possible that a random
process accidentally produces a highly ordered sequence. For instance, it is
possible that if we flip a coin 1000 times we obtain 1000 heads.

For this reason it is interesting to notice that in the case of a system with
positive KSE the extensions of these two notions coincide as a consequence
of the above theorem. The argument runs as follows: First, AC is commonly
taken to be a notion of product randomness, because it defines randomness
in terms of the computational power needed to reproduce a given sequence.
Second, my discussion of the CTE shows that it is a notion of process ran-
domness: The focus is on the process in that we ask at every step what the
uncertainty about the next step is. Third, Brudno’s theorem states that the
KSE is equivalent to the AC. The above theorem states that the CTE is
equivalent to the KSE. Hence, AC is equivalent to the CTE. The punch line
of this is that the last equivalence equates notions of process and product
randomness. This means that whenever a dynamical system behaves ran-
domly in a process sense (cashed out in terms of CTE) then its trajectories
exhibit product randomness (in the sense AC), and vice versa. In short,
product and process randomness are extensionally equivalent.

This has a bearing on the type of randomness we find in chaotic systems.
It has been claimed recently , for instance that chaotic systems exhibit only
product but not process randomness: ‘If there is to be randomness in chaotic
models, it must be randomness in the product sense - since, by hypothesis,
we are there dealing with models with thoroughly deterministic dynamics
(the “processes” are entirely non-random).’ (Smith 1998, 149) However, if
we grant that K-systems are chaotic6, then this casts doubt on this claim
since K-systems exhibit both product and process randomness.

Proponents of the argument in question might now counter that the un-
derlying dynamics is thoroughly deterministic and for this reason there can-
not be any process randomness at the very ‘basic level’. True, at the level
of ‘mathematical’ trajectories and exact initial conditions there is no ran-

6I am somewhat cautious here because though I take it that being a K-system is
sufficient for chaos, it is clearly not necessary; that is, not all chaotic systems are K-
systems. KAM-type systems, for instance, exhibit chaotic beaviour but they are not
K-systems. In fact, they are not even ergodic due to the presence of invariant tori in the
phase space. Furthermore, dissipative systems, to which the notion of being a K-system
as defined in this paper does not apply, clearly can be chaotic.
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domness. But this reply is besides the point: Chaos and randomness only
become an issue in dynamical systems once the dynamics is discussed at the
coarse-grained level; as long as we assume that unlimited precision is avail-
able, there is no unpredictability or any other symptom of chaos. But once
we go to the coarse-grained level, then the system exhibits both, product and
process randomness.
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Appendix: Proofs of Theorems 1 and 2.

In order to prove the two main theorems five lemmas are needed. The proof
of Lemmas 1 and 3 can be found in Arnold and Avez (1968, 38), the other
proofs are trivial.

Lemma 1: H(α ∨ β) = H(α) + H(β/α).

Lemma 2: H(α) = H(Φtα)

Lemma 3: Φ(α ∨ β) = Φα ∨ Φβ.

Lemma 4: H(α ∨ β) = H(β ∨ α).

Lemma 5: ∨ is associative: α ∨ β ∨ γ = (α ∨ β) ∨ γ = α ∨ (β ∨ γ).

Proof of Theorem 1:
For the case of an automorphism generated by a mapping we have
Φti→tj(A) = Φj−i(A) (see above). Then (18) becomes:

26



H̄k(α) = −
n∑

l1,...,lk=1

µ(αlk ∩ ... ∩ Φk−1αl1)
n∑

i=1

z
[
µ(αi ∩ Φαlk ∩ ... ∩ Φkαl1)

µ(αlk ∩ ... ∩ Φk−1αl1)

]
,

(29)
Using the fact that Φ is area preserving we get µ(αlk ∩ ... ∩ Φk−1αl1) =
µ(Φαlk ∩ ...∩Φkαl1). Plugging this into Eq. (29) and taking the associativity
of set intersection into account we obtain:

H̄k(α) = −
n∑

l1,...,lk=1

µ(Φαlk ∩ ... ∩ Φkαl1)
n∑

i=1

z
[
µ(αi ∩ {Φαlk ∩ ... ∩ Φkαl1})

µ(Φαlk ∩ ... ∩ Φkαl1)

]
,

(30)
Now realize that what the first sum effectively does is sum over all elements
of a partition consisting of all intersections Φαlk ∩ ... ∩ Φkαl1 . This par-
tition, however, is just Φα ∨ ... ∨ Φkα. Furthermore, compare Eq. (30)
with the definition of the conditional entropy in Eq. (22). We then obtain:
H̄k(α) = H(α/Φα ∨ ... ∨ Φkα). QED.

Proof of Theorem 2 by weak induction on k:
Base case:
H(α ∨ Φα) = H(α) + H(α/Φα).
Proof:
H(α∨Φα) = H(Φα∨α), by Lemma 4, and H(Φα∨α) = H(Φα)+H(α/Φα)
by Lemma 1. Now use Lemma 2 and get H(Φα) + H(α/Φα) = H(α) +
H(α/Φα). QED.
Inductive step:
H(α ∨ Φα ∨ ... ∨ Φk+1α) = H(α) + ... + H(α/Φα ∨ ... ∨ Φk+1α)
Proof:
Consider H(α ∨ Φα ∨ ... ∨ Φk+1α). With Lemmas 5 and 4 this is H([Φα ∨
... ∨ Φk+1α] ∨ α), and now applying Lemma 1 yields H(Φα ∨ ... ∨ Φk+1α) +
H(α/[Φα ∨ ... ∨ Φk+1α]). Lemmas 2 and 3 together with the fact that Φ is
measure preserving give: H(α∨ ...∨Φkα)+H(α/[Φα∨ ...∨Φk+1α]). With the
induction hypothesis this is H(α∨Φα∨ ...∨Φk+1α) = H(α)+ ...+H(α/[Φα∨
... ∨ Φk+1α]). QED.
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