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Abstract

The Anderson-Friedman absolute objects project is reviewed. The Jones-Geroch

dust 4-velocity counterexample is resolved by eliminating irrelevant structure. Tor-

retti’s example involving constant curvature spaces is shown to have an absolute object

on Anderson’s analysis. The previously neglected threat of an absolute object from an

orthonormal tetrad used for coupling spinors to gravity appears resolvable by eliminat-

ing irrelevant fields and using a modified spinor formalism. However, given Anderson’s

definition, GTR itself has an absolute object (as Robert Geroch has observed recently):

a change of variables to a conformal metric density and a scalar density shows that the

latter is absolute.
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1 Introduction

James L. Anderson analyzed the novelty of Einstein’s so-called General Theory of

Relativity (GTR) as its lacking “absolute objects” (Anderson, 1967; Anderson, 1971).

Metaphorically, absolute objects are often described as a fixed stage on which the

dynamical actors play their parts. A review of Anderson’s definitions will be useful.

Absolute objects are to be contrasted with dynamical objects. The values of the

absolute objects do not depend on the values of the dynamical objects, but the values of

the dynamical objects do depend on the values of the absolute objects (Anderson, 1967,

p. 83). Both absolute objects and dynamical objects are, mathematically speaking,

geometric objects or parts thereof. Trautman defines geometric objects as follows:

Let X be an n-dimensional differentiable manifold.. . .

Let p ∈ X be an arbitrary point of X and let {xa}, {xa′} be two systems of

local coordinates around p. A geometric object field y is a correspondence

y : (p, {xa}) → (y1, y2, · · · yN ) ∈ RN

which associates with every point p ∈ X and every system of local coordi-

nates {xa} around p, a set of N real numbers, together with a rule which

determines (y1′ , · · · yN ′), given by

y : (p, {xa′}) → (y1′ , · · · yN ′) ∈ RN

in terms of the (y1, y2, · · · yN) and the values of [sic] p of the functions
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and their partial derivatives which relate the coordinate systems {xa} and

{xa′}.. . . The N numbers (y1, · · ·yN ) are called the components of y at p

with respect to the coordinates {xa}. (Trautman, 1965, pp. 84, 85)

Geometric objects were considered with great thoroughness by Albert Nijenhuis (Ni-

jenhuis, 1952).

Before absolute objects can be defined, the notion of a covariance group must

be outlined. Here it will prove helpful to draw upon the unjustly neglected work

of Kip Thorne, Alan Lightman, and David Lee (TLL) (Thorne et al., 1973); a useful

companion paper (LLN) was written by Lee, Lightman and W.-T. Ni (Lee et al., 1974).

According to TLL,

A group G is a covariance group of a representation if (i) G maps [kinemati-

cally possible trajectories] of that representation into [kinematically possible

trajectories]; (ii) the [kinematically possible trajectories] constitute “the ba-

sis of a faithful representation of G” (i.e., no two elements of G produce

identical mappings of the [kinematically possible trajectories]); (iii) G maps

[dynamically possible trajectories] into [dynamically possible trajectories].

(Thorne et al., 1973, p. 3567)

One can now define absolute objects. They are, according to Anderson, objects with

components φα such that

(1) The φα constitute the basis of a faithful realization of the covariance
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group of the theory. (2) Any φα that satisfies the equations of motion of the

theory appears, together with all its transforms under the covariance group,

in every equivalence class of [dynamically possible trajectories]. (Anderson,

1967, p. 83)

Thus the components of the absolute objects are the same, up to equivalence under

the covariance group, in every model of the theory. It is the dynamical objects that

distinguish the different equivalence classes of the dynamically possible trajectories

(Anderson, 1967, p. 84).

It has been asserted that the novel and nontrivial sense in which GTR is generally

covariant is its lack of absolute objects (Anderson, 1967) or “prior geometry” (Misner

et al., 1973, pp. 429-431). John Norton discusses this claim with some sympathy

(Norton, 1992; Norton, 1993; Norton, 1995), though technical problems such as the

Jones-Geroch dust and Torretti constant spatial curvature counterexamples are among

his worries (Norton, 1993; Norton, 1995). Anderson and Ronald Gautreau encapsulate

the definition of an absolute object as an object that “affects the behavior of other

objects but is not affected by these objects in turn.” (Anderson and Gautreau, 1969,

p. 1657) Anderson claims that absolute objects violate what he calls a “generalized

principle of action and reaction” (Anderson, 1967, p. 339) (Anderson, 1971, p. 169).

Norton has argued, rightly I think, that such a principle is hopelessly vague and arbi-

trary and that it should not be invoked to impart a spurious necessity to the contingent
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truth that our best current physical theory lacks them (Norton, 1993, pp. 848, 849).

In Anderson’s framework, an important subgroup of a theory’s covariance group

is its symmetry group (Anderson, 1967, pp. 84-88). One first defines the symmetry

group of a geometrical object as those transformations that leave the object unchanged.

The symmetry group of a physical system or theory—Anderson makes no distinction

between them here—is

the largest subgroup of the covariance group of this theory, which is si-

multaneously the symmetry group of its absolute objects. In particular, if

the theory has no absolute objects, then the symmetry group of the phys-

ical system under consideration is just the covariance group of this theory.

(Anderson, 1967, p. 87)

Finding Anderson’s definition obscure, Michael Friedman amended it in the interest

of clarity (Friedman, 1973; Friedman, 1983). As it turns out, Friedman has made a

number of changes to Anderson’s definitions, not all for the better. First, Friedman’s

equivalence relation, which he calls d-equivalence, comprises only diffeomorphism free-

dom (Friedman, 1983, pp. 58-60), not other kinds of gauge freedom such as local

Lorentz freedom or electromagnetic or Yang-Mills gauge freedom, in defining the co-

variance group. Anderson calls such groups besides diffeomorphisms “internal groups”

(Anderson, 1967, pp. 35, 36), though the term does not always fit perfectly for the

examples available today. Second, Friedman’s mathematical language is less general

5



than Anderson’s and fails to accommodate some useful mathematical entities that An-

derson’s permits. Anderson knows what sorts of mathematical structures physicists

need, while Friedman restricts his attention to that narrower collection of entities that

all modern coordinate-free treatments of gravitation or (pseudo-)Riemannian geome-

try presently discuss, namely tensors and connections, but not, for example, tensor

densities, which are important for two examples below. Tensor densities, even of frac-

tional or irrational weight, are useful or crucial in a variety of applications, the modern

canonical quantum gravity project, the conformal-traceless decomposition in numeri-

cal work in general relativity, and massive theories of gravity. Accidentally restricting

one’s vocabulary also prevents one from using irreducible geometric objects. Fried-

man’s mathematical language also excludes spinors, whether of the usual orthonormal

tetrad formalism or the less common formalism of V. I. Ogievetskĭi and I. V. Polubari-

nov (Ogievetskĭi and Polubarinov, 1965), to be discussed below. A third difference

pertains to the notion of standard formulations of a theory. Anderson (somewhat

confusingly) and TLL require that theories should be coordinate-covariant under ar-

bitrary manifold mappings. Friedman, by contrast, takes as standard a form in which

the absolute objects, if possible, have constant components (Friedman, 1983, p. 60).

Friedman implies that one can always choose coordinates such that the absolute ob-

jects (a) have constant components and (b) thus drop out of the theory’s differential

equations. However, these claims both suffer from counterexamples. Concerning (a),

6



(anti-)de Sitter background metrics of a single value of curvature are absolute but

do not have constant components. Concerning (b), absolute objects can appear al-

gebraically in the field equations, not just differently, so their components need not

drop out even if constant (Freund et al., 1969). Thus the Thorne-Lee-Lightman fully

reduced generally covariant formulation is therefore preferable to Friedman’s standard

formulation. Friedman’s expectation that the components of absolute objects could be

reduced to constants in general, though incorrect, usefully calls attention to the role (or

lack thereof) of Killing vector fields and the like in analyzing absolute objects. TLL’s

additional category of “confined” objects is a useful supplement to absolute objects and

contains various structures that savor of absoluteness without satisfying a definition of

absolute objects.

2 Jones-Geroch counterexample and Friedman’s

reply

With a clear grasp of absolute objects in hand, one can now consider the Jones-Geroch

counterexample that claims that the 4-velocity of cosmic dust counts, absurdly, as an

absolute object by Friedman’s or Anderson’s standards. Friedman concedes some force

to this objection made by Robert Geroch and amplified by Roger Jones, here related

by Friedman:
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. . . [A]s Robert Geroch has observed, since any two timelike, nowhere-vanishing

vector fields defined on a relativistic space-time are d-equivalent, it follows

that any such vector field counts as an absolute object according to [Fried-

man’s criterion]; and this is surely counter-intuitive. Fortunately, however,

this problem does not arise in the context of any of the space-time theories

I discuss. It could arise in the general relativistic theory of “dust” if we

formulate the theory in terms of a quintuple 〈M,D, g, ρ, U〉, where ρ is the

density of the “dust” and U is its velocity field. U is nonvanishing and thus

would count as an absolute object by my definition. But here it seems more

natural to formulate the theory as a quadruple 〈M,D, g, ρU〉 where ρU is

the momentum field of the “dust.” Since ρU does vanish in some models,

it will not be absolute. (Geroch’s observation was conveyed to me by Roger

Jones, who also suggested the example of the general relativistic theory of

“dust.”. . . ) (Friedman, 1983, p. 59)

Here D is the torsion-free covariant derivative compatible with g. Other sources indi-

cate a qualification to local diffeomorphic equivalence of nonvanishing timelike vector

fields (Jones, 1981, pp. 167, 168) (Trautman, 1965, p. 84), though that qualification

does not matter.

Friedman’s response is nearly satisfactory, though it has two weaknesses as he

expressed it. First, the statement “ρU does vanish in some models” ought to have said
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“ρU does vanish in some neighborhoods in some models” to show that he is considering

only genuine models of GTR + dust (in which dust vanishes in some neighborhoods in

some models), rather than some models with (omnipresent?) dust and some degenerate

models which nominally have dust but actually have no dust anywhere. Clearly some

models with dust have neighborhoods lacking dust, and it is these models which will

prevent the dust 4-velocity from constituting an absolute object. Second, Friedman’s

unfortunate notation ρU suggests that the mass current density (which I will call J µ)

is logically posterior to ρ and an everywhere nonvanishing timelike U µ. If so, then one

has not eliminated the absolute object after all. If a timelike nowhere vanishing U µ

exists in the theory, then it is absolute even if ρU µ vanishes somewhere and so is not

absolute. Thus the significance of Friedman’s use of ρU µ is left obscure. Instead one

can take Jµ to be the fundamental variable, while the timelike U µ is a derived quantity

defined wherever ρ 6= 0. Alternatively, one can take U µ to be meaningful everywhere

(and perhaps primitive), but vanishing where there is no dust. If Friedman had said

that Jµ or Uµ “does vanish in some neighborhoods in some models,” then these two

infelicities would have been avoided. The Jones-Geroch counterexample fails because

there is no physically meaningful everywhere (nonvanishing) timelike vector field in

the set of solutions of GTR + dust, because there is none where the dust has holes in

some models. Not just globally irrelevant fields, but locally irrelevant portions of fields
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should be excluded before testing a theory for absolute objects.1

3 Hiskes’s redefinition of absoluteness, Maid-

ens’s worry, and Rosen’s answer in advance

To address the Jones-Geroch dust counterexample, Anne Hiskes proposed amending

the definition of absolute objects so that no field varied in a theory’s action princi-

ple would be regarded as absolute (Hiskes, 1984). Such a move makes use of what

prima facie seems to be a true generalization about absolute and dynamical objects

(Anderson, 1967, pp. 88, 89) (Thorne et al., 1973; Lee et al., 1974) and is sometimes

presented as a definition (Earman, 2003). Let use call objects “(non)variational” if they

are (not) varied in an action principle (Gotay et al., 2004). We have seen that Hiskes’s

amendment is not necessary to resolve the Jones-Geroch dust counterexample. Anna

Maidens has suggested that there might be some way to reformulate special relativistic

theories such that the flat metric, which surely ought to count as absolute, is varied in

the action principle. If that could be done, then Hiskes’s definition of absolute objects

1While the virtue of eliminating surplus structure seems generally accepted, discussions of the Anderson-

Friedman absolute objects program do not always pay sufficient attention to eliminating ”irrelevant” fields.

The matter is discussed in detail by Anderson (Anderson, 1967), TLL (Thorne et al., 1973) and me (Pitts,

2006).
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would prove to be too strict (the opposite problem from what the Jones-Geroch exam-

ple suggests about Friedman’s), because it fails to count the metric tensor of special

relativity as an absolute object in some formulations. Though Maidens’s claims are

indecisive and not well argued, it is in fact true that one can derive the flatness of a

metric from a variational principle with the help of Lagrange multipliers (Rosen, 1966;

Rosen, 1973; Sorkin, 2002). So Hiskes’s move seems unpromising even for addressing

other counterexamples. However, one might argue that the Lagrange multiplier fields

are irrelevant variables and so should not be used. Given the qualifications that ir-

relevant variables should be excluded, Hiskes’s proposal might yet have some use in

addressing other counterexamples.

Does it follow that Anderson’s and others’ intuition that fields are absolute iff nonva-

riational is vindicated? Before accepting such a claim, one must address parameterized

theories (Sundermeyer, 1982; Kuchař, 1973; Arkani-Hamed et al., 2003; Norton, 2003;

Earman, 2003), in which preferred coordinates are rendered variational. Because the

resulting “clock fields” XA are scalars and their gradients are linearly independent, the

Noether-Bianchi identities ensure that δS
δXA = 0 due to the other fields’ Euler-Lagrange

equations, even if XA are nonvariational. If we stipulate that fields should only be

varied only there is some benefit to doing so, then preferred coordinates usually should

not be varied.
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4 Torretti’s and Norton’s examples have abso-

lute objects

A second long-standing worry concerning the Anderson-Friedman absolute objects

project was suggested by Roberto Torretti (Torretti, 1984). He considered a theory of

modified Newtonian kinematics in which each model’s space has constant curvature,

but different models have different values of that curvature. Because every model’s

space has constant curvature, such a theory surely has something rather like an ab-

solute object in it, Torretti’s intuition suggests. Though contrived, this example is

relevantly like the cases of de Sitter or anti-de Sitter background metrics of constant

curvature that are sometimes discussed in the physics literature, where one often lumps

together space-times with different values of constant curvature. The failure of the met-

rics to be locally diffeomorphically equivalent for distinct curvature values entails that

the metric tensor does not satisfy Anderson’s or Friedman’s definition of an absolute

object (or TLL’s, for that matter). But it seems intuitively clear to Torretti that his

theory has an absolute object, so Friedman’s analysis is wrong.

It is not widely appreciated that Anderson’s analysis, when applied to Torretti’s

example, actually does yield a very specific and reasonable conclusion involving an

absolute object. Though the spatial metric is not absolute, the conformal spatial metric

density, a symmetric (0, 2) tensor density of weight − 2

3
(or its (2, 0) weight 2

3
inverse)
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is an absolute object. This entity, when its components are expressed as a matrix, has

unit determinant. It appears routinely in the conformal-traceless decomposition used in

finding initial data in numerical studies of GTR. It defines angles and relative lengths of

vectors at a point, but permits no comparison of lengths of vectors at different points.

In three dimensions, conformal flatness of a metric is expressed by the vanishing of

the Cotton tensor (Aldersley, 1979; Garcia et al., 2004), not the Weyl tensor, which

vanishes identically. That the conformal metric density is an absolute object is shown

in the following way. Every space with constant curvature is conformally flat (Wolf,

1967). For conformally flat spatial metrics, manifestly the conformal parts are equal in

a neighborhood up to diffeomorphisms. The conformal part just is the conformal metric

density. Concerning Norton’s modification of Torretti’s example to Robertson-Walker

space-time metrics (Norton, 1993, p. 848), analogous comments could be made: these

space-times are conformally flat (Infeld and Schild, 1945) and so have as an absolute

object the space-time conformal metric density.

5 Tetrad-spinor: Avoiding absolute object by

eliminating irrelevant fields

One potential counterexample to the Anderson-Friedman example that seems not to

have been noticed arises from the use of an orthonormal tetrad formalism, in which
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the metric tensor (or its inverse) is built out of four orthonormal vector fields e
µ
A

by the formula gµν = e
µ
AηABeν

B or the like. Four vector fields have among them 16

components, rather more than the 10 components of the metric, so there is some

redundancy that leaves a new local Lorentz gauge freedom to make arbitrary position-

dependent boosts and rotations of the tetrad. It is unnecessary to use a tetrad instead

of a metric as the fundamental field when gravity (as described by GTR) is coupled

to bosonic matter (represented by tensors, tensor densities or perhaps connections).

However, it is widely believed to be necessary to use an orthonormal tetrad to couple

gravity to the spinor fields that represent electrons, protons, and the like (Weinberg,

1972; Deser and Isham, 1976). The threat of a counterintuitive absolute object then

arises. Given both local Lorentz and coordinate freedom, one can certainly bring the

timelike leg into the component form (1, 0, 0, 0) at least in a neighborhood about any

point. Unlike the dust case, there cannot be any spacetime region in any model such

that the timelike leg of the tetrad vanishes. Thus GTR coupled to a spinor field

using an orthonormal tetrad gives an example of a Gerochian vector field: nowhere

vanishing, everywhere timelike, gauge-equivalent to (1, 0, 0, 0), and (allegedly) required

to couple the spinor and gravity and thus not irrelevant. Like clock fields, the timelike

tetrad leg also appears to be both variational and absolute. If it is true that coupling

spinors to gravity requires an orthonormal tetrad and that an orthonormal formalism

for GTR yields an absolute object, then the intuitively absurd conclusion that GTR
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+ spinors has an absolute object follows. Though Anderson discusses spinors coupled

to a curved metric (Anderson, 1967, pp. 358-360), his treatment is unsatisfactory for

various reasons.

The tetrad-spinor example seems rather more serious a problem for definitions of

absolute objects than the Jones-Geroch cosmological dust example was, because the

spinor field is surely closer to being a fundamental field than is dust or any other per-

fect fluid. Spinors (actually vector-spinors for spin 3

2
) are also required in supergravity,

where internal and external symmetries are combined, not to mention (super)string

theory. On another occasion I expect to explain in more detail how to remove irrel-

evant variables here and thus avoid this unexpected absolute object. This removal

is achieved using the alternative spinor formalism of V. I. Ogievetskĭi and I. V. Pol-

ubarinov (Ogievetskĭi and Polubarinov, 1965) to eliminate “enough” of the orthonormal

tetrad as irrelevant that the timelike nowhere vanishing vector field disappears from the

theory. A brief summary suffices here. Their formalism’s “square root of the metric”

resembles an orthonormal tetrad gauge-fixed to form a symmetric matrix by sacrificing

the local Lorentz freedom while preserving diffeomorphism freedom. The square root

of the metric has only ten components rather than sixteen and can be computed using

a binomial series expansion. This work was followed among high energy physicists with

further discussion of nonlinear group representations.
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6 Geroch’s Scalar density example and unimod-

ular GTR: Does GTR lack absolute objects?

Unimodular GTR was invented by Einstein, was discussed by Anderson along with

David Finkelstein (Anderson and Finkelstein, 1971), and is rather well known today

(Earman, 2003). Still it turns out that consideration of unimodular GTR helps one to

reach the startling conclusion that not only it, but GTR itself, has an absolute object

on Friedman’s definition. (While serving as a referee, Robert Geroch proposed this

counterexample, though using different mathematical variables.) Unimodular GTR

comes in two flavors: the coordinate-restricted version in which only coordinates that

fix the determinant of the metric components matrix to −1, and the weakly generally

covariant version that admits any coordinates with the help of a nonvariational scalar

density (usually of weight 1 or 2, but any nonzero weight suffices) and a dynamical

conformal metric density, which is a (0, 2) tensor density of weight − 2

n
or a (2, 0) tensor

density of weight 2

n
in n space-time dimensions. As Anderson and Finkelstein observe,

a metric tensor as a geometric object is reducible into a conformal metric density and

a scalar density. They have in mind an equation along these lines:

gµν = ĝµν

√−g
2

n (1)

As usual, g is the determinant of the matrix of components gµν of the metric tensor in

a coordinate basis; g is a scalar density of weight 2 and takes negative values because
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of the signature of the metric tensor. ĝµν is the conformal metric density. The new

variables ĝµν (or its inverse) and
√−g (or any nonzero power thereof) are those of An-

derson and Finkelstein or are relevantly similar. They further observe that this scalar

density is an absolute object in unimodular GTR. This observation seems unremark-

able because that scalar density is not variational. For comparison, recall that one can

write the Lagrangian density for GTR in terms of the conformal metric density and a

scalar density (Peres, 1963). Surely the result is still GTR and not some other theory.

To my knowledge, no one (prior to Geroch, in effect) has ever considered whether the

scalar density, even if variational, might still count as an absolute object. Once the

question is raised about GTR with the Peres-type variables, a positive answer seems

obvious: GTR has an absolute object, on Friedman’s definition of local diffeomorphic

equivalence. This absolute object is a scalar density of nonzero weight, because every

neighborhood in every model space-time admits coordinates (at least locally) in which

the component of the scalar density has a value of −1. Thus variationality and abso-

luteness by Friedman’s standards have come apart for GTR. Thus either Anderson’s

claim that GTR’s novelty lay in its lack of absolute objects, or his analysis of absolute

objects (as modified by Friedman to require only local diffeomorphic equivalence), is

flawed.
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7 Conclusion

Reviewing the Anderson-Friedman absolute objects program and various possible coun-

terexamples yields several lessons. First, Anderson’s and TLL’s demand that irrelevant

descriptive fluff be removed needs even more attention that they gave it. This demand

as written helps to address the tetrad-spinor case. Irrelevance comes in even more

varieties than they imagined, such as local irrelevance for the Jones-Geroch dust case

and irrelevant variationality for clock fields. Second, one’s mathematical vocabulary

should be chosen by the demands of physics, not the accidental fashions of contempo-

rary differential geometry. Thus spinor fields and tensor densities should be considered.

Otherwise it is difficult or impossible to discuss the tetrad-spinor and Geroch scalar-

density examples, while the Torretti counterexample is greatly overestimated. Third,

reducible geometric objects such as metric tensors should be expressed as concomi-

tants of irreducible ones such as certain scalar and tensor densities. Finally, the scalar

density counterexample, which arguably is the only serious problem for the Anderson-

Friedman framework, shows that either GTR has an absolute object or the Friedman

definition of absolute objects is flawed.
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