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Abstract. In this paper, I consider how different versions of the similarity account of scientific representation might apply to a simple case of scientific representation, in which a model is used to predict the behaviour of a system. I will argue that the similarity account is potentially susceptible to the problem of accidental similarities between the model and the system and that, if it is to avoid this problem, one has to specify which similarities have to hold between a model and a system for the model to be a faithful representation of that system. The sort of similarity that needs to hold between the model and the system, I argue, is a “second-order” similarity rather than simply a “first-order” similarity. This will not only avoid the problem but hopefully will contribute to dispelling the impression that an account of representation based on similarity is hopelessly vague. 
1. Representation

Most philosophers of science today agree that one of the main functions of scientific models is to represent aspects of the world. R.I.G. Hughes, for one, claims ‘The characteristic—perhaps the only characteristic—that all theoretical models have in common is that they provide representations of parts of the world, or of the world as we describe it’ (Hughes 1997, p.S325). However, there is still much disagreement as to what it means to say that a certain model represents a certain system and even more disagreement concerning in virtue of what it represents that system.

Recently, many accounts of scientific representation have been proposed (Hughes 1997; French and Ladyman 1997; Giere 2004; French 2002; Suárez 2004). The relationships between these accounts are not always clear. In particular, as Mauricio Suárez (2004) has pointed out, there seem to be two notions of representation that need to be accounted for, which I will call respectively representation and faithful representation. A model represents a certain system (for some users) if those users adopt an interpretation of the model in terms of the system such that they can perform surrogative inferences from the model to the system;
 the model represents that system faithfully however only to the extent to which the conclusions drawn from the model about the system are true of the system. It is thus important to distinguish the two questions that an account of how scientific models represent must address. The first is ‘In virtue of what is a certain model a model of a certain system?’ and the second is ‘In virtue of what is a model of a certain system a faithful representation of that system (insofar as it is one)?’

In this paper, I intend to address the second question. Throughout the paper, I will assume that it is a necessary but not sufficient condition for a model to be a faithful representation of a certain system that the model is a representation of the system—i.e. that some user uses the model to draw conclusions about the system. What I am in search of are additional conditions that need to hold for the model to be a faithful representation of the system. Thus, I will not be asking in virtue of what a user can draw conclusions about a system from a model. Rather, I will be asking in virtue of what a user can draw true conclusions about the system from a model insofar as they can.

One of the most prominent accounts of how models represent is the similarity account. In this paper, I will examine how various versions of it apply to a case in which a model is used to make predictions about the behaviour of a certain system. I will argue that the similarity account is potentially susceptible to the problem of accidental similarities between the model and the system and that, if it is to avoid this problem, one has to carefully specify which similarities have to hold between a model and a system for the model to be a faithful representation of that system. The sort of similarity that needs to obtain between the model and the system, I argue, is a “second-order” similarity—which I will call (specific) structural similarity—rather than simply a “first-order” similarity between aspects of the model and aspects of the system, contrary to what the advocates of the similarity account usually seem to assume. This not only will avoid the problem but hopefully will contribute to dispelling the impression that an account of representation based on similarity is hopelessly vague.
2. A Case of Representation

Much of the debate on scientific representation focuses on abstract cases of scientific representation. A typical example of scientific representation is the relation between Bohr’s model of the atom and the hydrogen atom, where the hydrogen atom is usually taken to be not some specific concrete hydrogen atom or other, but a type of system—the hydrogen atom. I suspect that this approach to the problem obscures some crucial of the nature of scientific representation. In this paper, I will therefore focus mainly on a case in which we use a model to represent a specific concrete system for a specific purpose.

Suppose that we want to ensure that a soap-box derby is safe. More specifically, we want to make sure that, when the cars reach the finish line at the foot of the hill, their velocity does not exceed a specific velocity that we deem safe. To perform this task, we can use a very simple model from classical mechanics: the frictionless inclined plane.

In the model, a block lies at the top of a frictionless inclined plane. The only forces acting on the block are the gravitational force and the normal force acting perpendicular to the plane. At the top of the plane, the kinetic energy of the block is 0 (KEi = 0) and its gravitational potential energy is Ui = mgh, where m is the mass of the block, g is the gravitational acceleration and h is the height between the top and the bottom of the plane. The total mechanical energy of the system, E, is thus given by E = KEi + Ui = 0 + mgh = mgh. Since the energy in the system is conserved, when the block reaches the end of the slope, all the potential energy will be converted in kinetic energy. The kinetic energy of the block at the end of the slope will be, therefore, KEf = 1/2 mv2 = mgh. Solving for vf, we can determine that the velocity of the block at the bottom of the slope will be vf = (2gh)1/2. The final velocity of the block, therefore, depends only on h and g.

By plugging in determinate values for g and h, we obtain a determinate value for the velocity of the block at the bottom of the slope. From physics textbooks, we know that 9.8m/s2 is a very good approximation of the gravitational acceleration experienced by a body near the surface of the earth and we can set h so that it is the same as the difference in height between the start-line of the soap-box derby and the foot of the hill, say, 10 metres. The velocity of the block at the bottom of the slope will be approximately 14 m/s or 50.4 km/h.

If the model has to serve our purposes, we have to interpret some of the components of the model as representing the components of the system in question. In particular, we have to interpret the inclined plane in the model as representing the road on which the soap-box derby is run and the block as representing one of the cars. According to this interpretation of the model, if the start-line is 10 meters above the foot of the hill, then we have to conclude that the final velocity of the cars will be approximately 50.4 km/h.

But why should this conclusion be true? Why should what happens to the block in the model tell us anything true about what will happen to the cars in the system? Note that the problem here is not representation but faithful representation. The question is not ‘In virtue of what is the inference from the velocity of the block at the bottom of the slope to the final velocity of the cars valid?’ but ‘In virtue of what is it correct?’. Why is the inference from the velocity of the block in the model to the final velocity of the car in the system correct, if it is correct at all?

Note that this problem is also to be distinguished from the problem of induction. We can assume that we have never used the model before to predict the final velocity of the cars of a soap-box derby or that, in fact, nobody before us has ever thought of using this model for this purpose. The problem is not to determine what reasons we have to believe that the model can be used to represent the target system faithfully but to determine what conditions a model has to satisfy in order to be a faithful representation of a system.

3. Similarity

A very common, though somewhat naïve, view of representation in general is that an object represents another object in virtue of the fact that the former object is similar to the latter. For example, a portrait represents its subject in virtue of the fact that the portrait is similar to the subject.
 It is therefore tempting to suppose that a scientific model represents a certain system faithfully in virtue of the fact that the model is similar to the system. In the specific case, thus, the inclined plane model would represent the soap-box derby in virtue of the fact that the model is similar to the soap-box derby. I will call this the overall similarity account of faithful scientific representation.

Obviously, similarity, by itself, is not a sufficient condition for faithful scientific representation. As Mauricio Suárez (2003) has noted, the representation relation cannot be entirely reduced to a relation of similarity because the similarity relation lacks the distinctive “directionality” of the representation relation. More precisely, the similarity relation is reflexive and symmetric while the representation relation is usually neither reflexive nor symmetric. A model is similar to itself but it does not represent itself: it represents some real system or other; and, if a model is similar to some real system, then, then, by the same token, the real system is similar to the model. However, whereas the inclined plane model may represent the soap-box derby, the latter does not represent the former. As Suárez has correctly pointed out, a model does not represent a system in and of itself. A model represents a system only if some user uses it to represent that system. This set of problems can be avoided by assuming, as I do here, that a model is a faithful representation of a system only if it is a representation of the system. The similarity account, as interpreted here, is not meant to account for what makes of a model a model of a certain system, but for what makes a model a faithful representation of that system.

Another cluster of problems with the overall similarity account focuses on the vagueness of the notion of similarity. Philosophers often assume that the notion of similarity is to be cashed out in terms of the number of properties shared by two objects: the more properties two objects have in common, the more similar they are. According to what has by now acquired the status of a philosophical cliché, on the property conception of similarity, everything is similar to anything else because, with some ingenuity, it is always possible to find some property that any two objects share. That a model is similar to a certain system seems therefore to be either excessively weak or excessively vague. 
Both these sets of problems can be partly avoided by adopting the similarity account of representation proposed and defended by Ronald Giere, which I will now consider.

4. Theoretical Hypotheses

According to Giere, the relations between scientific models and systems in the world are mediated by what Giere calls theoretical hypotheses (cf. Giere 1985, 1988). Theoretical hypotheses according to Giere are part of the theory and have the following general form:

The designated real system is similar to the proposed model in specified respects and to a specified degree (Giere 1985, p.80). 

As an example of a specific theoretical hypothesis, Giere mentions the following hypothesis: 

The position and velocities of the earth and moon in the earth-moon system are very close to those of a two-particle Newtonian model with an inverse square central force (Giere 1988, p.81).

In this specific theoretical hypothesis, the earth-moon system is a real world system, the two-particle Newtonian model is the model that represents that system; the respects of similarity are the positions and velocities of the relevant objects in the model and the systems and the degree of similarity is said to be very close. 

According to the account of faithful representation implicit in Giere’s earlier works on the issue, a certain model is a faithful representation of a certain system if the theoretical hypothesis that mediates between the model and the system in question is true—i.e. if the model is actually similar to the system in the respects and to degree specified by the theoretical hypothesis. I will call this version of the similarity account the specified similarity account.

The second set of problems is thus avoided by recognising that not just any similarity between the model and the target system is sufficient to have scientific representation. Specified aspects of the model have to be similar to a specified degree to designated aspects of the system in order for the model to represent the system faithfully. But how does this account apply to the case of the soap-box derby?
According to the specified similarity account, the inclined plane model represents the soap-box derby faithfully only if there is a true theoretical hypothesis according to which the model is similar to the system in specified respects and to a specified degree. When it comes to the soap-box derby, however, there seems to be no ready-made theoretical hypothesis to use. In fact, it seems ludicrous to assume that classical mechanics includes a theoretical hypothesis that specifies in which respect and to what degree the model is similar to this specific soap-box derby and it does not seem possible to formulate a hypothesis about to the similarities between the model and soap-box derbies in general, as degrees of similarity between the model and the system are arguably different in different cases. As users, we thus have to formulate a brand new theoretical hypothesis in which we specify in which respects and to which degree the inclined plane model is similar to the soap-box derby. (cf. Giere 2004, pp.747–748).

However, it is far from trivial to determine in which respects and to what degree the model has to be similar to the system in order to represent it faithfully for our purposes. In the soap-box derby case, for example, a lot of the similarities between the model and the system would seem to be irrelevant and unnecessary to the model being a faithful representation of the system for the present purposes. For instance, the angle of inclination of the plane may be similar to the angle of inclination of the road and the mass of the block may be similar to the mass of the car. But these similarities are neither necessary nor sufficient for the model to be a faithful representation of the soap-box derby for our specific purposes.

On the other hand, other similarities seem to be essential if the model is to serve our purposes. In particular, no matter to what degree the model is similar to the system in other respects, the inclined plane model would not represent the system faithfully for the present purpose if the final velocity of the block was not sufficiently similar to the final velocity of the cars. In and of itself, the similarity between some aspects of the model and designated aspects of the system does not seem to warrant similarity between the model and the system in the very aspect that the user is interested in and that similarity seems to be crucial for the model to represent the system faithfully in these circumstances.

5. Relevant Similarity
This suggests that a similarity account of representation should explicitly connect the purposes of the user and the respects and degrees a model has to be similar to the target in order for the model to represent the target faithfully for those purposes. Such an account has been defended by Paul Teller (2001, pp.401–402), who writes:

[...] once the relevant context has been specified, for example by saying what is to be explained or predicted and how much damage will result from what kinds of error, the needs of the case will provide the required basis for determining what kind of similarity is correctly demanded for the case at hand. More specifically, similarity involves both agreement and difference of properties, and only the needs of the case at hand will determine whether the agreement is sufficient and the differences tolerable in view of those needs. There can be no general account of similarity, but there is also no need for a general account because the details of any case will provide the information which will establish just what should count as relevant similarity in that case. There is no general problem of similarity, just many specific problems, and no general reason why any of the specific problems need be intractable. (Teller 2001, p.402)

In fact, I suspect that this version of the similarity account is what Giere had in mind all along. Although in a less explicit form, the connection between respects of similarity and purposes of the user seems to be present also in Giere’s account especially in his more recent works (cf. Giere 2004). If there was no connection between the purposes of the user and the respects of similarity, it would not be possible to explain why a model that represents a system faithfully for certain purposes would not do so if the purposes of the user were different. Consider again the soap-box derby case. This time, however, we want to determine how much space we need to allow after the finish line for the car to come to a halt without using the brakes. With this new problem in mind, the same model could no longer be used to represent the situation at hand despite its similarities with the system, as it does not tell us anything about what happens to the block once it reaches the bottom of the slope. In fact we do not even know what there is at the end of the slope: is there nothing or a flat horizontal plane? Is the plane frictionless? The model simply does not tell us. So, despite its similarities with the system, the inclined plane model does not have the resources to represent it faithfully for all possible purposes.

According to this version of the similarity account, which I call the relevant similarity account, the purposes of the user are crucial in determining which similarities between the model and the system are relevant in order for the model to be faithful representation of the system for those purposes. On this account, a model represents a system faithfully or fails to do so only when the purposes of its user are fixed.

6. Variants of the Relevant Similarity Account

The adoption of the relevant similarity account, however, does not allow one to avoid the set problems related to the vagueness of the notion of similarity completely. In fact, some could feel it worsens them. What Teller says in the above quotation suggests that the appeal to similarity is a blank to be filled out on a case-by-case basis. Moreover, even among those who accept the relevant similarity account there seems to be room for disagreement as to which aspects are relevant given certain purposes. Here I will only concentrate on those cases in which the purpose of the user is to predict the behaviour of some aspect of the system. According to a first version of the relevant similarity account, the output similarity account, the only relevant similarity is what I shall call the similarity of output—the similarity between the aspects of the system the user wants to predict and the corresponding aspect of the model. For example, the inclined plane model faithfully represents the soap-box derby system if and only if the final velocity of the cars is sufficiently similar to 50.4 km/h, the final velocity of the block. According to this account, the other similarities between the model and the system are neither necessary nor sufficient for the model to faithfully represent the system in these circumstances. The problem with the output similarity account is that it would allow a case in which we plugged in two grossly incorrect values for h and g that happen to give the correct prediction as a case of faithful representation insofar as the yield the right prediction. I will call this problem the problem of accidental similarities.
To avoid this problem, advocates of the relevant similarity account may adopt the input-and-output similarity account. According to this version of the relevant similarity account, some of the other similarities between the model and the system are necessary for the model to represent the system faithfully. In particular, in the case of the soap-box derby, not only the final velocity of the cars has to be similar to the final velocity of the block, but there must be also a similarity between the height of the slope and the height of the start-line and the gravitational acceleration on the block and that on the cars. In other words, in order for the model to represent the system faithfully, input-and-output similarity is both necessary and sufficient, where the inputs of the model are all the aspect of the model that play a role in determining the output, which include not only the height of the slope and the gravitational acceleration on the car but also the initial velocity of the car.
The input-and-output account, however, is vulnerable to another version of the problem of accidental similarities. Suppose, for example, that someone proposes to use a different model to represent the soap-box derby system. According to the model, the final velocity of the cars, vf, is directly proportional to the diameter of their wheels, d. Also, suppose that, all the cars involved in the soap-box derby have wheels of more or less the same diameter and that, according to the wheel-diameter model, the final velocity of the cars in the soap-box derby is going to be more or less 50.4 km/h. According to the relevant similarity account, if faithful, the wheel diameter model and the inclined plane model are equally faithful representations of the system in the specific circumstances.

Yet, we would tend to think that the wheel diameter model is not a genuinely faithful representation of the soap-box derby system. If we fitted on the cars wheels whose diameter is half that of the wheels we actually use, the similarity between the final velocity of the cars in the model and in the system would simply disappear. Nor would have their velocities been similar if we had used the same wheels but we had moved the start-line a few meters downhill. The existence of input-and-output similarity between the wheel diameter model and the system is the result of a completely fortuitous coincidence. Although fortuitous, however, these similarities exist and, if we were to accept the input-and-output similarity account, they would be sufficient for the wheel diameter model to be a faithful representation of the system.

7. The (specific) structural similarity Account

The shortcomings of the two versions of the relevant similarity account that I have considered in the previous section seem to have a common source—they concentrate on similarities between a model and a system that might be accidental. If we are to rule out cases such as the wheel diameter model as cases of faithful representation, a model has to represent a system faithfully not in virtue of the fact that some specific aspects of the model are similar to specific aspects of the system, like advocates of the similarity account usually seem to assume, but in virtue of a “higher-level” sort of similarity, that, for lack of better words, I will call (specific) structural similarity. According to the (specific) structural similarity account, it is not the first-order similarity of the input and output aspects of the model with the corresponding aspects of the system taken individually that is crucial but the similarity of the relation among input and output aspects of the model with the relation among the corresponding aspects of the system. In the soap-box derby case, for example, the model is not a faithful representation of the system in virtue of the fact that the velocity of the car is similar to the velocity of the block, the height of the start-line is similar to the height of the slope, and so on. Rather, the model is a faithful representation of the system in virtue of the fact that the relation between the final velocity of the car, on the one hand, and the height of the hill, the initial velocity of the car, the acceleration of the car on the other hand are similar to the relation between the final velocity of the block, on the one hand, and the height of the slope, the initial velocity of the block and the acceleration on the block, on the other hand.

But how is (specific) structural similarity different from input-and-output similarity? The difference is that (specific) structural similarity entails input-and-output similarity but the reverse is not true. In other words, input-and-output similarity is necessary but not sufficient condition for (specific) structural similarity. By hypothesis, there is input-and-output similarity between the wheel-diameter model and the system in these specific circumstances. The diameter of the wheel in the model is similar to the diameter of the wheels of the cars in the system (input similarity) and the final velocity of the car in the model is similar to the final velocity of the cars in the system (output similarity). But, the relation between the diameter of the wheel and the final velocity of the car in the model is not similar to the relation between the diameter of the wheel and the final velocity of the car in the system.
To see why, we should consider the reason that led us to regard as spurious the apparent faithfulness of the wheel diameter model in the first place. Even if the relevant similarities between the model and the system existed, they were entirely accidental. If the cars had significantly wider wheels and the relevant parameter in the model was suitably modified, the input-and-output similarity between the wheel diameter model and the system would disappear. So, whereas there is input-and-output similarity between the model and the system, there is no (specific) structural similarity between them—i.e. there is no similarity between the relation of the diameter of the wheels and final velocity of the car in the model and the relation between wheel diameter and final velocity in the system. 
(specific) structural similarity claims are true only if the corresponding first-order similarities are conserved when changes that the model can accommodate take place in the system. For example, the (specific) structural similarity between the inclined plane model and the system holds because, if we move the start-line downhill and change the relevant parameters in the model accordingly, the final velocity of the block will be still similar to that of the car. If we fit wider wheels on all cars and change the relevant parameter in the model accordingly, however, the input-and-output similarity between the wheel diameter model and the system disappears. In general, if the fist-order input-and-output similarity obtains before a certain change in the system and the change can be accommodated by modifying a value of a parameter of the model, then the (specific) structural similarity obtains between a model and a system only if the input-and-output similarity persist after the change.

8. Conclusions
In this paper, I have argued that, if our purpose is the prediction of the behaviour of a certain aspect of the system, then a certain sort of (specific) structural similarity between inputs and outputs of the model and corresponding aspects of the system is necessary if the model is to be a faithful representation of the system. This sort of similarity is somewhat different from the lower level sort of similarity the advocates of the similarity account seem to have in mind, but it is the only way to avoid spurious cases of faithful representation.
References

French, Steven and James Ladyman (1999). ‘Reinflating the Semantic Approach’, International Studies in the Philosophy of Science 13, 103–121.

Giere, Ronald N. (1985). ‘Constructive Realism’ in P.M. Churchland and C. Hooker (eds.), Images of Science. Essays on Realism and Empiricism with a Reply from Bas C. van Fraassen. Chicago: University of Chicago Press, 75–98.

Giere, Ronald N. (1988). Explaining Science: A Cognitive Approach, Chicago, University of Chicago Press.

Giere, Ronald N. (2004). ‘How Models are Used to Represent Reality’, Philosophy of Science, 71, 742–752.

Goodman, Nelson (1968). The Languages of Art: An Approach to a Theory of Symbols, Indianapolis: Hackett.

Hughes, R.I.G. (1997). ‘Models and Representation’, PSA 1996: Proceedings of the 1996 Biennial Meeting of the Philosophy of Science Association, 2, S325–S336.

Suárez, Mauricio (2003). ‘Scientific Representation: Against Similarity and Isomorphism’ International Studies in the Philosophy of Science, 17, 225–244.

Suárez, Mauricio (2004). ‘An Inferential Conception of Scientific Representation’, Philosophy of Science 71, 767–779.

Swoyer, Chris (1991). ‘Structural Representation and Surrogative Reasoning’, Synthese, 87, 449–508.

Teller, Paul (2001). ‘The Twilight of the Perfect Model Model’ Erkenntnis 55, 393–415.

� The notion of surrogative reasoning is due to Chris Swoyer (1991). 


� I owe this very nice example to Bernard Nickel.


� I do not mean to endorse this general view of representation, which has his most prominent critic in Nelson Goodman (1962, Ch. 1).


� To my knowledge, no philosopher of science has ever defended an intrinsic similarity account of scientific representation. This account however has been discussed at length by Mauricio Suárez (see is criticisms of [sim] in Suárez 2002 and 2003), who is also one of its staunchest critics.
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