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When Bayesians set out to model rational constraints on the ways agents’ degrees
of belief evolve over time, they usually start by stipulating that the agents they are
modeling never forget information. But Frank Arntzenius has shown that there can
be substantive constraints on the relation between an agent’s degrees of belief at
two times even if the agent has forgotten some relevant information between those
two times. Consider the following example, adapted from (Arntzenius 2003):

Shangri La: You have reached a fork in the road to Shangri La. The
guardians of the tower will flip a fair coin to determine your path.
If it comes up heads, you will travel the Path by the Mountains; if it
comes up tails, you will travel the Path by the Sea. Once you reach
Shangri La, if you have travelled the Path by the Sea the guardians
will alter your memory so you remember having travelled the Path
by the Mountains. If you travel the Path by the Mountains they
will leave your memory intact. Either way, once in Shangri La you
will remember having travelled the Path by the Mountains.

The guardians explain this entire arrangement to you, you be-
lieve their words with certainty, they flip the coin, and you follow
your path. What does ideal rationality require of your degree of
belief in heads once you reach Shangri La?

According to David Lewis’s Principal Principle (Lewis 1980), when the guardians
initially explain this arrangement to you, at what we’ll call t0, your degree of belief
that the coin will come up tails should be 1/2, as should be your degree of belief
that you will travel the Path by the Sea. Now suppose the coin comes up tails,
and you travel the Path by the Sea. While you are on the Path by the Sea, at
what we’ll call t1, you are certain both that the coin came up tails and that you
are travelling the Path by the Sea. But once you reach Shangri La, at what we’ll
call t2, your memory is erased, and you lose the information that you travelled the
Path by the Sea. Arntzenius argues convincingly that at this point, your degree of
belief that the coin came up tails should revert to what it was before you had any
information about the coin flip’s outcome. That is, your t2 degree of belief in tails
should equal your t0 degree of belief in tails.

A traditional Bayesian modeling approach, based upon a Conditionalization up-
dating rule, is unable to capture this relation between your ideally rational t0 and
t2 degrees of belief. Conditionalization is usually expressed as something like the
following:
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Conditionalization: A rational agent’s degree of belief in x at t2
is her degree of belief in x at t1 conditional on all the information
she learns between t1 and t2.

It has been widely noted that an agent who becomes certain of a particular claim
will remain certain of that claim as long as she updates by Conditionalization.
(This is, for instance, what generates the “Problem of Old Evidence.”) Thus in the
Shangri La story, Conditionalization will require you to be certain at t2 that the
coin came up tails because you were certain at t1 that it did so. But as we have
seen, it is rational for your t2 degree of belief in tails to equal your t0 degree of
belief in tails, which is lower than your t1 degree of belief. Thus Conditionalization
yields an incorrect verdict in a case in which the agent forgets some information.

But the news for Conditionalization is even worse than that. Suppose the coin
lands heads, and you travel the Path by the Mountains. At t1 you are certain that
the coin landed heads and that you take the mountain route. At t2 you retain
memories of the Path by the Mountains, but because you are unsure whether those
are genuine memories or memories implanted by the guardians, you are no longer
certain which path you traveled. Thus your degree of belief at t2 that the coin came
up heads should once agan match your t0 degree of belief. And again, because you
were certain at t1 that the coin came up heads Conditionalization will yield the
wrong verdict, requiring that your t2 degree of belief in heads equal your t1 degree
of belief. But notice that in this case no actual memory loss has occurred: because
you did in fact travel the Path by the Mountains, the guardians have not had to
tamper with your memory at all. As Arntzenius points out, one need not forget
any information for Conditionalization to yield incorrect verdicts; the mere threat
of memory loss can be sufficient for Conditionalization to misfire.

The Shangri La story provides examples in which a relation holds between a
rational agent’s degrees of belief over time and yet in which the presence of a for-
getting episode — or even the threat of such an episode — leaves Conditionalization
unable to capture that relation. We might read these examples as counter-examples
to Conditionalization; we might argue that rationality requires a particular relation
to hold here, that Conditionalization gets that relation wrong, and therefore that
Conditionalization is a mistaken representation of the requirements of rationality.
However, I prefer to think of the Bayesian framework based upon Conditionalization
as a modeling technique, and like any modeling technique it has a limited domain
of applicability. There are a wide variety of cases that are modeled correctly and el-
egantly by a Conditionalization-based modeling framework, and we should feel free
to retain that framework when modeling cases that fall within that domain. How-
ever, the Shangri La story exemplifies a class of cases, involving forgetting or the
threat thereof, that lie outside the domain of applicability of a Conditionalization-
based modeling framework. The goal of this paper is to offer a modeling framework
that extends this domain of applicability, allowing us to capture diachronic relations
between rational degrees of belief in stories like Shangri La. After describing the
framework and some of its applications, we will examine the domain of applicability
of this new, expanded modeling technique.

1. The Modeling Framework

1.1. Elements of the Framework. The goal of our modeling framework is to
produce evaluative verdicts about the degrees of belief of agents in situations I call
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“stories.” A story describes an agent who starts with a particular set of claims of
which she is certain, then becomes certain of particular claims and/or ceases to be
certain of particular claims at various times during the story. (I will describe the
objects of agents’ doxastic states as “claims” so as to remain neutral among views
that take those objects to be propositions, sentences, or something else.) Once we
have a story we intend to model, our modeling process proceeds in six steps:

Step 1: Choose a time sequence and modeling language. We begin by spec-
ifying a time sequence (t1, t2, . . . , tn). The time sequence is a finite set of moments
in the story at which we are going to model the agent’s degrees of belief. We then
determine a modeling language by specifying a finite set of atomic sentences. The
atomic sentences are strings of symbols each of which represents a claim to which
the agent might assign some degree of belief at some point during the story. Atomic
sentences are joined by truth-functional connectives in the usual iterative way to
fill out the modeling language. For example, the sentence x&y represents the claim
that is the conjunction of the claim represented by x and the claim represented by y.

Step 2: Define unconditional and conditional credence functions. An un-
conditional credence function Pk(·) is a function from sentences in the modeling
language to real numbers. It represents the agent’s degree of belief at time tk in
the claim represented by the sentence. A conditional credence function Pk(· | ·) is a
partial function from ordered pairs of sentences in the modeling language to reals,
representing the agent’s degree of belief at time tk in the claim represented by the
first sentence conditional on the supposition of the claim represented by the second
sentence.

Step 3: Determine certainties. The central function of our modeling frame-
work is to determine how the agent’s changing sets of certainties shape her degrees
of belief in claims of which she is uncertain. I am going to presume that we have
available in the background a system of deductive logic that allows us to specify
for every claim represented in the modeling language and every time in the time
sequence whether the agent is required by ideal rationality to be certain of that
claim at that time (if she assigns a degree of belief to the claim at that time at
all). We do this as follows: at any given time, the agent is required to be certain
of any claim the story says she is certain of at that time, any claim she is required
to be certain of at all times (such as “I exist”), and any claim deductively implied
by members of the previous two categories.1 The agent is required to be less-than-
certain of any claim not belonging to one of these three categories.

Step 4: Apply systematic and extrasystematic constraints. There are two
types of constraints on our models. Systematic constraints apply to every model
we construct using this framework, regardless of what story the model represents.
I view these constraints, taken together, as representing a particular set of con-
sistency requirements of ideal rationality. They will be enumerated below. We

1Note that in determining whether the agent is reqiured to be certain of the claim represented

by x at time tk, we may argue that the claim can be deduced from other claims the agent is
required to be certain of, even if those other claims are not represented by sentences in the

modeling language.
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also have extrasystematic constraints. Extrasystematic constraints represent re-
quirements on the agent’s doxastic states derived from the details of the story and
requirements of ideal rationality not reflected in the systematic constraints. For
example, if the agent believes at tk that a particular coin is fair, an extrasystematic
constraint based on the Principal Principle might require her to assign its coming
up heads a degree of belief of 1/2. Most importantly, the set of extrasystematic
constraints includes representations of the determinations about certainty made in
Step 3. For each sentence in the modeling language and each time in the time se-
quence, there will be either an extrasystematic constraint setting an unconditional
credence in that sentence at that time of 1, or an extrasystematic constraint re-
quiring that unconditional credence at that time to be less than 1.

Step 5: Generate histories and model. A history is a set of unconditional
and conditional credence functions containing exactly one unconditional and one
conditional credence function for each time in the time sequence. Our model of
a story is the set of all possible histories whose credence functions meet both our
systematic and extrasystematic constraints.

Step 6: Derive verdicts. An algebraic statement is an equality or inequal-
ity relating two expressions composed arithmetically from credence values and/or
constants. An arithmetic statement contains no variables and no quantifiers. For
example, if x and y are sentences in the modeling language, P1(x)+P2(x | y) = 1/2
will be an arithmetic statement. An arithmetic statement that is true in every
history of a model is called a verdict of that model. The systematic and extrasys-
tematic constraints on a model give rise immediately to verdicts of that model, and
we can derive further verdicts algebraically from those.

Once we have some verdicts in hand, we can use them to evaluate agents’ dox-
astic states. If when we represent an aspect of an agent’s doxastic state (either a
single degree of belief assignment or the relation between multiple degree of belief
assignments) as an algebraic statement in the language of the model, that alge-
braic statement contradicts one of the model’s verdicts, then the agent’s doxastic
state fails to be ideally rational.2 Note that the requirements of “ideal rationality”
are stronger than the requirements of rationality as we use the concept ordinarily.
Ideal rationality forbids agents to assign inconsistent degrees of belief, whereas in
ordinary parlance we may deem an inconsistent agent rational if, for example, she
has not recognized that her beliefs are inconsistent.3 Moreover, the verdicts of our
models represent necessary but not sufficient conditions for ideal rationality. An

2It need not be that the particular aspect of the agent’s doxastic state whose representation
contradicts a verdict fails to be ideally rational. The fact that one aspect of the agent’s doxastic
state, when represented in the model, contradicts one of the model’s verdicts indicates only that

the agent’s doxastic state as a whole fails to be ideally rational. If the verdict involves credences at
multiple times, the contradiction indicates only that the agent’s doxastic state fails to be ideally

rational at at least one moment in the time sequence of the model.
3Ideal rationality does not, however, require logical omniscience — for example, it does not

require the set of claims of which an agent is certain to be closed under deductive implication. Our

evaluative test for ideal rationality involves only those claims to which the agent actually assigns
degrees of belief; it does not negatively evaluate agents for failing to assign degrees of belief to
other claims.
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agent may comply with the verdicts of a model without being ideally rational, as
the model does not attempt to represent all the requirements of ideal rationality.

Before moving on, a quick note on notation: In what follows, an unitalicized
uppercase letter names a model in our framework. An italicized lowercase letter is
an atomic sentence in a modeling language. An italicized uppercase letter is a set
of sentences. And a bold lowercase letter represents a real number.

1.2. Systematic Constraints. The first four systematic constraints of our mod-
eling framework are synchronic constraints, which taken together represent require-
ments of consistency between degrees of belief an agent assigns at the same time.
Given a modeling language L and a time sequence (t1, t2, . . . , tn), these constraints
are:

(1) For any tk ∈ {t1, t2, . . . , tn} and any sentence x ∈ L, 0 ≤ Pk(x).
(2) For any tk ∈ {t1, t2, . . . , tn} and any tautological sentence T ∈ L,

Pk(T) = 1.
(3) For any tk ∈ {t1, t2, . . . , tn} and any mutually exclusive sentences x, y ∈ L,

Pk(x ∨ y) = Pk(x) + Pk(y)

(4) For any tk ∈ {t1, t2, . . . , tn} and any x, y ∈ L, if 0 < Pk(y) then

Pk(x | y) =
Pk(x & y)

Pk(y)

If Pk(y) = 0, the ordered pair (x, y) is not in the domain of the function
Pk(· | ·). (That is, Pk(x | y) is undefined.)

The first three systematic constraints, the Kolmogorov Axioms, require uncondi-
tional credence functions to be probability functions. The fourth constraint relates
conditional credence functions to unconditional credence functions. Since our mod-
eling languages are based on finite sets of atomic sentences, and we are interpreting
a credence of 0 as certainty that a particular claim is false, the traditional re-
lation between conditional and unconditional credences described by Systematic
Constraint (4) is acceptable.

We now need a diachronic constraint, which when combined with our synchronic
constraints will represent requirements of consistency between degrees of belief an
agent assigns at different times. We have already seen that if we want stories
involving forgetting to be in our framework’s domain, Conditionalization will not
suffice as a diachronic constraint. To formulate a better diachronic constraint,
however, it will help to look more closely at why Conditionalization fails.

With the other elements of our modeling framework laid out formally, we can
re-express Conditionalization in a much more precise fashion. To do so, it will help
to have a bit of terminology and a bit more notation in place. First, we will define
a “certainty set.” Given a model with modeling language L and a time ti in its
time sequence, the agent’s certainty set at ti is the set Ci = {x ∈ L : Pi(x) = 1}.
Second, we will define an operation on sets of sentences. Given a set of sentences
S ⊆ L, 〈S〉 is a sentence in L selected as follows: If S is nonempty, 〈S〉 must be
truth-functionally equivalent to the conjunction of all the sentences in S; if S is
empty, 〈S〉 must be a (truth-functional) tautology. Because of the way our modeling
languages are constructed, for any modeling language L and any set S ⊆ L, there
is guaranteed to be an 〈S〉 ∈ L. (In fact, there will often be more than one such
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sentence in L; given our synchronic constraints it will not matter which one serves
as 〈S〉.) We will sometimes refer to 〈S〉 as the sentence “equivalent” to S.

With that terminology and notation in place, we can re-express Conditionaliza-
tion as:

Conditionalization: Given a model defined over modeling lan-
guage L, a sentence x ∈ L, and two times tj and tk in the time
sequence with j < k, Pk(x) = Pj(x | 〈Ck − Cj〉).

Suppose we try to represent the version of the Shangri La story in which you
travel the Path by the Mountains with a model that uses this precisified version
of Conditionalization as a systematic constraint. Our modeling language L will
contain just one atomic sentence, h, representing the claim that the coin comes up
Heads. Our time sequence will consist of t0, t1, and t2 as described above. Among
our extrasystematic constraints will be the algebraic statement P0(h) = 1/2 (by
the Principal Principle) and the algebraic statement P1(h) = 1 (because at t1 you
are certain you are travelling the Path by the Mountains).

Since at t0 you are certain neither of the claim represented by h nor of its
negation, C0 consists only of the truth-functional tautologies of L. C1 contains not
only these tautologies but also h (as well as various sentences in L implied by h).
At t2, however, you are once more uncertain whether the coin came up heads, so
C2 is identical to C0. Thus if we apply Conditionalization with j = 0 and k = 2,
we have

(1) P2(h) = P0(h | 〈C2 − C0〉) = P0(h | 〈φ〉) = P0(h |T)

where T is some tautology in L. By our synchronic systematic constraints, this
yields

(2) P2(h) = P0(h) = 1/2

But if we apply Conditionalization with j = 1 and k = 2 and then our synchronic
systematic constraints, we have

(3) P2(h) = P1(h | 〈C2 − C1〉) = P1(h | 〈φ〉) = P1(h) = 1

If we take Conditionalization as one of our systematic constraints in a model of
Shangri La, both Equations (2) and (3) will be verdicts of that model. Clearly
any degree of belief you assign to Heads at t2 will contradict at least one of these
verdicts, so according to this model there is no degree of belief you can assign to
Heads at t2 and be ideally rational. We might say that when Conditionalization is
applied to stories like Shangri La, it contradicts itself.

Again, this just demonstrates that stories like Shangri La are not in the domain
to which Conditionalization-based modeling frameworks apply.4 But now we can
pinpoint more precisely where the trouble lies. The application of Conditionaliza-
tion that generates Equation (2) is perfectly acceptable; it generates a verdict that
squares with our intuitions about your degree of belief in Heads at t2. We run into
trouble when we try to apply Conditionalization to relate your t1 and t2 credences.

4You might put this point another way. You might say that Shangri La is within the domain
of applicability of Conditionalization-based modeling frameworks, but that those frameworks rep-
resent a standard of rationality that is violated by any agent who has forgotten information or

believes she might have forgotten. The modeling framework we are about to develop, then, would
represent a looser rationality standard on which agents can forget information without running
afoul of the requirements of ideal rationality.
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But this makes perfect sense. Conditionalization was designed to apply to situ-
ations in which an agent’s store of information either holds fixed or increases. (We
might see these as situations in which the set of possible worlds the agent enter-
tains either remains the same or strictly shrinks.) Conditionalization fails when an
agent loses information, in that she goes from being certain of a particular claim
to being less-than-certain of that claim. This can happen when the agent forgets a
claim, or in subtle situations involving the threat of forgetting. The first occurs in
Shangri La when you travel the Path by the Sea; the second occurs when you travel
the Path by the Mountains. Either way, you go from certainty about the outcome
of the coin flip while you are travelling your path to less-than-certainty when you
reach Shangri La.

Thus Conditionalization should only be applied to pairs of times for which the
agent has not lost any certainties from the earlier to the later. Applying this
restriction to Conditionalization yields our diachronic systematic constraint:

Systematic Constraint (5), Limited Conditionalization (LC):
Given a model defined over modeling language L, a sentence x ∈ L,
and two times tj and tk in the time sequence with j < k, if Cj ⊆ Ck

then Pk(x) = Pj(x | 〈Ck − Cj〉).
Basing our model on (LC) instead of Conditionalization immediately resolves

the problem we had above. In Shangri La, C0 ⊆ C2, so we can conditionalize from
t0 to t2 and Equation (2) remains a verdict of our model. But C1 * C2, so the
antecedent of (LC) is not met when j = 1 and k = 2, we cannot conditionalize from
t1 to t2, and Equation (3) is no longer a verdict. The conflict has been resolved,
and we have retained the verdict that matches our intuitive judgment of what ideal
rationality requires.5

2. Applications

2.1. Generalized Conditionalization. (LC) captures relations between degrees
of belief held by an agent at different times when that agent loses no certainties
from the earlier time to the later time. Despite the fact that in Shangri La you lose
certainties from t1 to t2, we were able to use (LC) to derive verdicts about your t2
degrees of belief by relating them to degrees of belief assigned at t0. But is there
any interesting relation that holds between your degrees of belief at t2 and your
degrees of belief at t1?

Here we can apply a general result obtainable from (LC) and our synchronic sys-
tematic constraints. Suppose we have a story, a model of that story with modeling
language L, and two times tj and tk in the time sequence. As long as there is no
y ∈ L such that y ∈ Cj and ∼y ∈ Ck, we can imagine a time tl later than both tj
and tk at which the agent is ideally rational and her certainty set Cl = Cj ∪ Ck.
Since Cj ⊆ Cl, for any x ∈ L (LC) yields Pl(x) = Pj(x | 〈Cl −Cj〉). Similarly, since

5In their response to (Arntzenius 2003), M.J. Schervish, T. Seidenfeld, and J.B. Kadane (2004)
suggest that it “is already assumed as familiar in problems of stochastic prediction” that one should
update one’s degrees of belief by conditionalizing only when “the information the agent has at t2
includes all the information that she or he had at time t1.” They argue that this rule is not violated

by the Shangri La story; they see the rule as a material conditional that is trivially satisfied when

Shangri La falsifies its antecedent. This paper goes beyond Shcervish, Seidenfeld, and Kadane’s
by showing that a properly limited conditionalizing rule is not only satisfied in forgetting stories

— it can also yield positive verdicts for such stories.
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Ck ⊆ Cl, for any x ∈ L (LC) yields Pl(x) = Pk(x | 〈Cl − Ck〉). Setting these two
equations equal, and applying the fact that Cl = Cj ∪ Ck, we have the following
general rule:

Generalized Conditionalization Principle (GC):
Given a modeling language L, two times tj and tk in the time
sequence, and any x ∈ L,
if there does not exist a y ∈ L such that y ∈ Cj and ∼y ∈ Ck,
then Pj(x | 〈Ck − Cj〉) = Pk(x | 〈Cj − Ck〉).

Note that we argued for (GC) using (LC) and our synchronic systematic con-
straints. Thus (GC) does not need to be added into our modeling framework as
a constraint; it simply highlights a pattern that was already present in the sets of
credence functions consistent with our framework. For example, when j < k and
Cj ⊆ Ck, Cj − Ck is just the empty set, so the verdict yielded by (GC) is

(4) Pj(x | 〈Ck − Cj〉) = Pk(x |T) = Pk(x)

This is just the verdict we would have in this case from (LC).
(GC) also does a nice job of making explicit patterns in degrees of belief in cases

where agents lose information. Suppose j < k and Ck ⊂ Cj ; the agent has lost
some certainties from tj to tk and gained none. Then Ck − Cj is empty, so (GC)
yields

(5) Pj(x) = Pk(x | 〈Cj − Ck〉)
This equation tells us that if at the later time, the agent conditionalizes on all
the certainties she has lost since the earlier time, her degree of belief in the claim
represented by x will be just what it was before those certainties were lost.

We can understand this process as a kind of reverse-temporal conditionalization,
and it is a revealing way to think about what happens when an agent loses infor-
mation. Our modeling framework tracks the changes in an agent’s partial beliefs
driven by changes in her certainty set. When an agent gains information, her cer-
tainty set expands; when she forgets information, it contracts. From the point of
view of her certainty set, one process is just the other happening backwards in time,
and so it is no surprise that the effects of these processes on her degrees of belief
mirror each other precisely.

And this is what is occuring between t1 and t2 in Shangri La. The story is
arranged so that, whichever path you travel, your certainty set at t2 is identical
to your certainty set at t0. Thus the relation between your t2 degrees of belief
and your t1 degrees of belief is identical to the relation between your t0 degrees of
belief and your t1 degrees of belief. If you travel the Path by the Mountains, for
example, your t1 degree of belief in Heads is equal to your t0 degree of belief in
Heads conditional on the information you gain between t0 and t1, represented in
our model by h. But your t1 degree of belief in Heads is also equal to your t2 degree
of belief in Heads conditional on the information you lose between t1 and t2, also
represented in our model by h. (GC) brings out this relation between your t1 and
t2 degrees of belief:

(6) P1(h) = P2(h |h) = 1

2.2. An Application of (GC). One of Conditionalization’s attractive features as
a principle of ideal rationality is that it tells you precisely what to do when you gain
new information; given a full specification of your earlier credence function and of
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the set of certainties gained, you can determine what your entire credence function
should look like after an update by Conditionalization. It might have been hoped
that (GC) would yield a similar recipe for responding to a forgetting episode; given
a full specification of your earlier credence function and of the set of certainties lost,
it would be clear precisely what your new credence function should look like.

Unfortunately, (GC) does not yield such a recipe. Even given a full specification
of Pj(·) and of Cj − Ck, Equation (5) does not pick out a unique function for
Pk(·). (GC) places restrictions on a number of conditional Pk values, and thereby
on ratios of various unconditional Pk values. However, it will not specify a unique
Pk(x) value for every x ∈ L. And when we move to stories in which an agent both
gains and loses certainties between tj and tk (so that Cj is neither a subset nor a
superset of Ck), the relations between degrees of belief brought out by (GC) are
even less strict.

Nevertheless, the relations captured by (GC) do place substantive and revealing
constraints on how an agent’s degrees of belief can change when she loses informa-
tion. Consider the following example:

The Lottery: Al, Dave, and Frank are the only participants in a
lottery. One of their names will be drawn at random from a hat,
and that first name drawn is the winner’s. However, to heighten
the suspense, the lottery’s organizers will after drawing the name
of the winner draw another name, and announce that that player
is one of the losers. A week later they will announce the name of
the winner.

The organizers draw one name, then draw another. They an-
nounce that Al is one of the losers. Hearing this, Dave is overjoyed
that he is still in the running. In fact, he is so overjoyed that after a
few days’ time he has forgotten entirely which name was announced
as a loser’s; he remembers only that his name was not announced.

Suppose that after a few days’ time, Dave has forgotten so completely whether
Al’s or Frank’s name was announced that he comes to view it as equally likely that
either of them is still in the running with him. The following table describes the
ideally rational development of Dave’s degrees of belief:

Claim P0 P1 P2

Al wins. 1/3 0 1/4
Dave wins. 1/3 1/2 1/2
Frank wins. 1/3 1/2 1/4
“Al” is the name announced. 1/3 1 1/2
“Dave” is the name announced. 1/3 0 0
“Frank” is the name announced. 1/3 0 1/2

Before the name of a loser has been announced, at t0, Dave considers it equally
likely that any of the three players will win, and equally likely that any of the three
will be the one whose named is announced as a loser. After Al’s name is announced,
at t1, Dave is certain that Al is not the winner. But by t2, Dave can only remember
that his name wasn’t announced, and he thinks it equally likely that Al or Frank
was the announced loser. (GC) requires Dave at t2 to retain his confidence of
1/2 that he is the winner, while dividing his remaining credence equally between
victories by Al and by Frank.
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Now imagine that as time wears on after t2 Dave completely loses track of whose
name was announced by the organizers, and comes to view it as equally likely that
any of the three competitor’s names was announced. But suppose that at the same
time he retains the confidence he had at t2 that he is twice as likely to win as either
Al or Frank. In other words, suppose that Dave’s degrees of belief develop by t3 to
these:

Claim P0 P1 P2 P3

Al wins. 1/3 0 1/4 1/4
Dave wins. 1/3 1/2 1/2 1/2
Frank wins. 1/3 1/2 1/4 1/4
“Al” is the name announced. 1/3 1 1/2 1/3
“Dave” is the name announced. 1/3 0 0 1/3
“Frank” is the name announced. 1/3 0 1/2 1/3

The t3 degrees of belief listed above can all be fit into a credence function that
meets our four synchronic systematic constraints. Nonetheless, the development
from t2 to t3 violates (GC). So according to a modeling framework that takes (LC)
as a diachronic constraint, the degree of belief development shown in the table
above violates the requirements of ideal rationality. And I believe this squares with
our intuitions about the case — Dave’s confidence in his chances at t3 is in tension
with his beliefs about the evidence.

Notice that the updating processes deemed ideally rational by our (LC)-based
framework do not commit it to a “foundations” approach to belief revision of the
sort criticized in (Harman 1986).6 Harman objects to updating policies that require
an agent to surrender a belief when she can no longer remember the evidence that
justified that belief in the first place. Our (LC)-based framework yields no negative
verdict concerning the development of Dave’s degrees of belief in The Lottery from
t0 to t1 and then to t2. Yet at t2 Dave is more confident in his chances than he was
at t0 despite the fact that he can no longer remember the piece of evidence (the
announcement of Al’s name) that justified that increase in confidence.

(LC) does, however, require a particular kind of consistency among Dave’s beliefs
over time. While Dave need not remember the piece of evidence that rendered
victory more likely between t0 and t2, he does have to be more confident at t2 that
the organizers’ announcement was evidence of victory than he was at t0. This is
what goes wrong between t2 and t3: at t3, Dave is still more confident of victory
than he was at t0 without assigning a corresponding higher confidence that the
organizers’ announcement supported his chances. (LC) does not require you to
retain the evidence that justified your altering a degree of belief, but it does require
you to assign degrees of belief concerning the evidence in a fashion consistent with
your having made the alteration for good reason.

2.3. Generalizing Reflection. An agent’s supposition that she has made, or will
make, belief changes in a rational fashion is the subject of a well-known rationality
constraint articulated by Bas van Fraasen. van Fraasen’s Reflection Principle says
that an ideally rational agent will, conditional on the supposition that a future
version of herself will assign a degree of belief of r to the claim represented by x,
assign a current degree of belief of r to the claim represented by x.

6I am grateful to John MacFarlane for pressing me to address this point.
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Under certain conditions, the Reflection Principle can be argued for from (LC).
For example, (LC) can be used to argue for Reflection when the following conditions
are met (letting tc be the current time and tf be the future time about which the
agent is making her suppositions):

(1) The agent is certain that at tf she will be ideally rational.
(2) The agent is certain that Cc ⊆ Cf .
(3) The agent is certain that all the sentences in Cf − Cc will be true.
(4) There is a finite set of sentences E such that any pair of sentences in E is

mutually exclusive and the agent is certain that exactly one of the sentences
in E is equivalent to Cf − Cc. (She need not know which sentence in E is
equivalent to Cf − Cc.)

(5) The agent is aware of the degrees of belief she currently assigns conditional
on each of the sentences in E.

When these conditions are met, the agent can reason as follows: The agent
supposes that an ideally rational future self certain of everything she is currently
certain of will assign degree of belief r to the claim represented by x. The agent
can sort through the elements of E and determine a set S ⊆ E such that for each
y ∈ S the agent assigns Pc(x | y) = r. Since (LC) relates Pc(·) to Pf (·), supposing
that Pf (x) = r is tantamount to supposing that Cf −Cc is equivalent to one of the
elements of S. And this, in turn, is tantamount to supposing the disjunction of all
the elements of S. Since the elements of S are mutually exclusive, and since for each
element of S the agent currently assigns a credence of r to X conditional on that
element, by a theorem of the probability calculus derivable from our synchronic
systematic constraints the agent assigns a credence of r to x conditional on the
disjunction of all the elements of S. Thus given the conditions listed above, if the
agent is ideally rational she currently assigns a degree of belief of r to x conditional
on the supposition that her future self will assign an unconditional degree of belief
of r to x.7

We have just used (LC) to argue for van Fraasen’s Reflection Principle under
certain conditions. Just as (LC) applies to updates in which the agent does not
lose any certainties, Reflection applies to suppositions about a future self who is
certain of everything you are. But what about future selves who have lost some
of your current information? Here, we can use (GC) to formulate a generalized
version of Reflection. Reflection involves a supposition about a future self’s uncon-
ditional degree of belief in the claim represented by x. The Generalized Reflection
Principle involves a supposition about a future self’s conditional degree of belief
in the claim represented by x — namely the degree of belief in x conditional on
the set of certainties your future self has lost since the current time. The General-
ized Reflection Principle says that an ideally rational agent will, conditional on the
supposition that a future version of herself certain of everything she is currently
certain of except for F will assign Pf (x | 〈F 〉) = r, assign a current degree of belief
of r to the claim represented by x.

This Generalized Reflection Principle can be argued for from (GC) when the
following conditions are met:

(1) The agent is certain that at tf she will be ideally rational.

7In formulating this argument and generating the list of conditions above, I am indebted to

(Weisberg manuscript), which is in turn an analysis of the argument van Fraasseen offers in (van
Fraassen 1995) that the Reflection Principle can be deduced from Conditionalization.
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(2) For some set of sentences F , the agent is certain that Cc − Cf = F .
(3) The agent is certain that all the sentences in Cf − Cc will be true.
(4) There is a finite set of sentences E such that any pair of sentences in E is

mutually exclusive and the agent is certain that exactly one of the sentences
in E is equivalent to Cf − Cc. (She need not know which sentence in E is
equivalent to Cf − Cc.)

(5) The agent is aware of the degrees of belief she currently assigns conditional
on each of the sentences in E.

When these conditions are met, the agent can reason as follows: The agent
supposes that an ideally rational future self certain of everything she is currently
certain of except F will assign Pf (x | 〈F 〉) = r. The agent can sort through the
elements of E and determine a set S ⊆ E such that for each y ∈ S the agent
assigns Pc(x | y) = r. By (GC), Pc(x | 〈Cf − Cc〉) = Pf (x | 〈F 〉). Thus supposing
that Pf (x | 〈F 〉) = r is tantamount to supposing that Cf − Cc is equivalent to one
of the elements of S. And this, in turn, is tantamount to supposing the disjunction
of all the elements of S. Since the elements of S are mutually exclusive, and since
for each element of S the agent currently assigns a credence of r to x conditional on
that element, by a theorem of the probability calculus derivable from our synchronic
systematic constraints the agent assigns a credence of r to x conditional on the
disjunction of all the elements of S. Thus given the conditions listed above, if the
agent is ideally rational she currently assigns a degree of belief of r to x conditional
on the supposition that her future self will assign r to x conditional on F .

The conditions listed above are sufficient to derive our Generalized Reflection
Principle from (GC); I do not know if they are necessary. The point is simply that
(GC) can yield a general principle for how an agent should respond to suppositions
about her future degrees of belief even when she is certain her future self will have
forgotten some information she currently possesses.

3. Domain of Applicability

3.1. Mandated Credences. In Section 1.2 above we saw that stories involving
forgetting and even some stories involving the threat of forgetting lie outside the
domain of applicability of modeling frameworks that use Conditionalization as their
diachronic systematic constraint. In these stories, Conditionalization over-generates
verdicts — its models make demands on agents that do not represent requirements
of ideal rationality. Our next question is whether there are stories for which (LC)
over-generates verdicts, stories that lie outside the domain of applicability of our
(LC)-based modeling framework.

To answer this question, it helps to distinguish two types of situations. The
difference between them can be illustrated by the following story:

Chocolate: We play the following game: I flip a fair coin. If the coin
comes up heads, I decide whether to give you a piece of chocolate.
If the coin comes up tails, I give you no chocolate. After the rules
of the game are explained but before the coin is flipped, what is
your degree of belief that you will receive some chocolate?

The important question about this story is whether there exists a specific degree
of belief that ideal rationality requires you to assign to the claim that you will
receive some chocolate. Most of us would agree that ideal rationality forbids your
assigning a degree of belief of zero, and given the Principal Principle it also forbids
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your assigning 1/2 or greater. But even taking into account everything you know
about me, about human nature, about chocolate, and about how humans feel about
chocolate, is there a precise degree of belief (such as 1/4) that ideal rationality
demands you assign to the prospect of chocolate? Or are there multiple acceptable
degrees of belief, such that if you assigned any one of them your degres of belief
would be consistent with ideal rationality?

There are a few other options for what ideal rationality might require of your
degree of belief that you will receive chocolate in this story. For example, we might
think that instead of assigning a single degree of belief to the claim that you will
receive chocolate it is possible for you to assign a range of degrees of belief to that
claim. We might then conclude that any degree-of-belief range whose minimum
is positive and whose maximum is less than 1/2 is rationally acceptable in this
situation. Or we might conclude that the only ideally rational response is to adopt
the specific degree-of-belief range represented by the interval (0, 1/2). While I think
these ranged options are worth exploring, I am going to set them aside, as they are
not relevant to establishing the domain of applicability of our (LC)-based modeling
framework. I should note, however, that the questions I raise below about the
strength of rational requirements and the domain of applicability of our modeling
framework are just as pressing if you think agents should assign degree of belief
ranges as they are for precise degree of belief cases.

The Chocolate story is just one case in which we might wonder whether the
information contained in the certainty set an agent entertains at a particular time
rationally requires her to assign a specific degree of belief to a specific claim, inde-
pendent of any degrees of belief she may have assigned at other times. To formalize
this question, it helps to have the notion of “synchronically deriving” a verdict.
A verdict can by synchronically derived in a model M just in case it can be alge-
braically derived exclusively from that model’s extrasystematic constraints and its
synchronic systematic constraints. In other words, while our systematic constraints
(1) through (4) can be used in a synchronic derivation, (LC) cannot.8

With the notion of synchronic derivation in hand, we can offer the following
definition:

A set S ⊂ L mandates a credence for x in M just in case:
• for some ti in the time sequence of M, Ci ⊆ S; and
• there exists a real number r such that for every ti in the time

sequence of M for which Ci ⊆ S, the verdict Pi(x | 〈S〉) = r
can be synchronically derived in M.

The important part of this definition is the second bulleted condition. The equation
in that condition uses a conditional credence function so that the set S will mandate
not just the ideally rational degrees of belief of agents whose entire certainty set is
S, but also the ideally rational degrees of belief of agents for whom what they take
for certain and what they are conditionally supposing sums to the set S. The first
bulleted condition is in the definition to keep the universally quantified material

8If we wanted to define “synchronic derivation” strictly in terms of the model itself and not in
terms of how algebra can be used to derive things about it, we could use the following definition:
Given the model M, construct a model Ms with the same modeling language, time sequence, and

extrasystematic constraints. However, let the only systematic constraints on Ms be the synchronic
systematic constraints (1) through (4). Any algebraic statement that is true of all the histories in
Ms will be a verdict that is synchronically derivable in M.
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conditional in the second condition from being satisfied trivially by an S that always
makes that conditional’s antecedent false, as would happen for example if S were
the empty set.9

A set of sentences’ mandating a credence is defined relative to a particular model
of a story. When we build a model, we bring to bear principles of ideal rationality
beyond those represented in our systematic constraints; these additional principles
help determine the model’s extrasystematic constraints. What principles of ideal
rationality we employ in setting the extrasystematic constraints may affect which
sets mandate credences for which sentences in the model. If we build different mod-
els of the same story with the same time sequence and modeling language but with
different principles of ideal rationality reflected in their extrasystematic constraints,
a given set of sentences may mandate a credence for a particular sentence in one
model but the other.

A view in epistemology that takes the requirements of ideal rationality to be
very strong might hold that for any story, once we understand all the principles of
ideal rationality that apply and represent them in our extrasystematic constraints,
in the model that results any consistent subset of L will mandate a credence for
any sentence in the modeling language. For example, in the Chocolate story any
model that represents the Principal Principle in its extrasystematic constraints will
have your certainty set mandate a credence of 1/2 for the sentence representing
the claim that the coin comes up heads. But a view that takes the requirements of
ideal rationality to be very strong will also hold that whatever you may know about
people, their chocolate preferences, etc., there is a precise degree of belief that ideal
rationality requires you to assign that you will be receiving some chocolate. If in
a particular model the certainty set representing your knowledge doesn’t mandate
a credence for the sentence representing the claim that you will receive chocolate,
that’s just because that model doesn’t represent all the principles of ideal rationality
applying to this case.

A view that takes the requirements of ideal rationality to be somewhat weaker,
however, might hold that however many requirements of ideal rationality we may
discover and codify into principles, we will never come to the conclusion that there is
a precise degree of belief that you will receive chocolate mandated in the Chocolate
story, because the requirements of ideal rationality just aren’t strong enough to
yield that level of precision for that case. On this view, two different agents placed
in the Chocolate story might have identical certainty sets and still assign different
degrees of belief that they were going to receive some chocolate, without either
of them violating the requirements of ideal rationality. In other words, there will
be no model of the Chocolate story representing requirements of ideal rationality
on which your certainty set mandates a credence for the sentence representing the
claim that you will receive chcolate. This isn’t because we don’t know enough
about what ideal rationality requires, but instead because the requirements of ideal
rationality simply aren’t that strong.

3.2. Mandated Credences and (LC). The notion of mandated credences helps
delineate the domain of applicability of our (LC)-based modeling framework. Sup-
pose we are given a model M, its modeling language L, and two times in its time
sequence tj and tk with j < k. If for some x ∈ L, Ck mandates a credence for x in

9I am grateful to Daniel Warren for pointing out the possibility that the second condition

might be satisfied trivially.
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M, any verdict (LC) generates relating tj credences to Pk(x) will be synchronically
derivable in M.

Proof: Suppose that Ck mandates a credence for X in M. Then by the defini-
tion of mandated credences there exists an r such that for every ti in M’s time
sequence for which Ci ⊆ Ck, Pi(x | 〈Ck〉) = r is synchronically derivable in M.
Thus Pk(x | 〈Ck〉) = r is synchronically derivable in M. And since Pk(〈Ck〉) = 1,
we can use our synchronic systematic constraints to show that Pk(X) = r is syn-
chronically derivable in M. Now consider some tj earlier than tk. If Cj * Ck,
(LC) does not generate a verdict relating tj credences to Pk(x). If Cj ⊆ Ck, the
verdict Pj(x | 〈Ck〉) = r can be synchronically derived in M (because Ck man-
dates a credence for x in M). Since Pj(〈Cj〉) = 1, a bit more work with our
synchronic systematic constraints shows that Pj(x | 〈Ck − Cj〉) = r is synchron-
ically derivable in M. And with a final algebraic step, we can synchronically derive
Pk(x) = Pj(X | 〈Ck −Cj〉). This is the verdict (LC) generates relating tj credences
to Pk(x).

We can think of what is going on here in the following way: Suppose there are
principles of ideal rationality we can represent in the extrasystematic constraints of
a model so that in that model Ck mandates a credence for the sentence representing
a particular claim. (Call that sentence x.) We might think of the information in
Ck as giving rise to a sort of probabilistic theory of the world, a theory which
specifies a particular unconditional degree of belief for the claim represented by
x. (Call that degree of belief r.) At tk the agent’s certainty set is Ck, so the
probabilistic theory of the world reflecting her certainties rationally requires her to
assign an unconditional credence of r to x. Now consider an earlier time tj such
that Cj ⊆ Ck. If Cj is a proper subset of Ck, the agent’s probabilistic theory of
the world at tj does not require her to unconditionally assign r to x. But what if
she conditionally supposes the set Ck −Cj? Combining what she actually takes for
certain at tj with what she is supposing to be the case, she is working conditionally
with the probabilistic theory of the world generated by Ck. So ideal rationality
requires her degree of belief in x conditional on Ck −Cj to be r. Thus we have the
rational requirement Pk(x) = Pj(x | 〈Ck − Cj〉).10

Now suppose we have a story for which we are confident that our synchronic
constraints represent requirements of ideal rationality. If we know that there exist
principles of ideal rationality such that in a model of this story representing those
principles in its extrasystematic constraints, the agent’s certainty set at some tk
would mandate a credence for some x, we can be confident that verdicts derived
from (LC) relating Pk(x) to the agent’s earlier credences represent genuine require-
ments of ideal rationality. In other words, as far as relations between Pk(x) and
degrees of belief assigned prior tk go, the story falls within the domain of applica-
bility of our (LC)-based modeling framework. This is because the relevant verdicts
of (LC) can be synchronically derived, and we are confident that the constraints
used in synchronic derivations (the synchronic systematic constraints and our ex-
trasystematic constraints) represent requirements of ideal rationality.

I anticipate that the most suspect systematic constraint of the modeling frame-
work I have proposed will be (LC). You might also be concerned about the sychronic
systematic constraints — for instance, you might worry that in stories involving in-
finite domains, systematic constraint (4) will generate verdicts that do not represent

10I am grateful to Mike Caie for suggesting this line of argument to me.
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requirements of ideal rationality.11 But we are not going to be working with stories
involving infinite domains here, so for the rest of this paper I will set such worries
aside and assume that for any story, synchronically derived verdicts represent re-
quirements of ideal rationality. Given that assumption, any story for which there
exist principles of ideal rationality such that the certainty set Ck mandates a cre-
dence for the claim represented by some x will lie in the domain of applicability of
a modeling framework that includes our synchronic constraints and the verdicts of
(LC) relating credences at times earlier than tk to Pk(x). If for a given story there
exist principles of ideal rationality such that in a model representing them every
consistent set of sentences mandates a credence for every sentence in the model-
ing language, we can simply say that that story lies in the domain of applicability
of our (LC)-based modeling framework. And on a view of rational requirements’
strength which holds that every story is like that, every story will lie in the domain
of applicability of our modeling framework.

Notice that in these situations we can be confident of verdicts derived from
(LC) because (LC) isn’t really adding anything to the framework. The verdicts of
(LC) we are discussing could be derived synchronically, without invoking (LC). Put
another way: even if (LC) weren’t a constraint on the framework, our models would
still yield these verdicts. In these situations, ideal rationality requires the agent
to assign particular degrees of belief (conditional and unconditional) at particular
times based solely on the information the agent takes for certain at that time. These
requirements are independent of any degrees of belief the agent may have assigned at
other times; no relations between past and future degrees of belief influence these
degree-of-belief requirements. Nevertheless, structural aspects of our synchronic
constraints cause these required degrees of belief to fall into simple mathematical
patterns over time, and (LC) captures these mathematical patterns. We might say
that in these situations (LC) does not generate the relations represented by the
diachronic verdicts it yields; (LC) merely draws our attention to patterns already
in the model that might be particularly useful to notice.

3.3. (GC), Mandated Credences, and Interpersonal Relations. We can also
use the concept of mandated credences to identify a set of situations for which
(GC) is guaranteed to yield verdicts representing requirements of ideal rationality.
If in a given model the set Cj ∪ Ck mandates a credence for x, then the verdict
Pj(x | 〈Ck − Cj〉) = Pk(x | 〈Cj − Ck〉) can be synchronically derived. The proof
is simple. By the definition of mandated credence, there exists an r such that
Pj(x | 〈Cj ∪ Ck〉) = r and Pk(x | 〈Cj ∪ Ck〉) = r can be synchronically derived, so
Pj(x | 〈Cj∪Ck〉) = Pk(x | 〈Cj∪Ck〉) can be synchronically derived. Since Pj(〈Cj〉) =
1 and Pk(〈Ck〉) = 1, our synchronic constraints yield Pj(x | 〈Ck−Cj〉) = Pk(x | 〈Cj−
Ck〉).

For example, in the version of the Shangri La story in which you travel the Path
by the Mountains, the certainty set C1 you possess while on the path includes the
fact that the coin came up heads, and therefore mandates a credence of 1 for the
sentence h. Since the certainty set you possess once you reach Shangri La, C2 is a
subset of C1, the set C1 ∪C2 mandates a credence for h. Thus we can be confident
that the (GC) verdict relating your t1 and t2 degrees of belief in h (Equation (6)
in Section 2.1 above) represents a requirement of ideal rationality. Similarly, if the

11This concern is thoroughly discussed in (Hájek 2003).
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Principal Principle is represented in the extrasystematic constraints on our model,
C2 will mandate a credence of 1/2 for h. Since C0 (your certainty set just after the
guardians explain their plan) is a subset of C2, we can be confident that the (LC)
verdict relating your t0 and t2 degrees of belief in h (Equation (2) in Section 1.2
above) represents a requirement of ideal rationality.

As was the case with (LC), when the relevant credences are mandated for the
application of (GC), (GC) merely highlights mathematical patterns that were es-
tablished already (so to speak) by our synchronic constraints. As a result, the
verdicts yielded by (GC) gain two attractive features in situations in which Cj ∪Ck

mandates a credence for the sentence in question.
First, in these situations we can prove that the verdicts yielded by (GC) represent

requirements of ideal rationality without adding any times into the time sequence.
Our argument from (LC) to (GC) in Section 2.1 above required imagining a time
tl after tj and tk at which the agent’s certainty set is Cj ∪ Ck, then relating her
tj and tk degrees of belief to tl degrees of belief. This might have inspired some
concern, as there is no guarantee that adding an extra time into a story will leave
the agent’s tj and tk degrees of belief unchanged. (The very fact that such a time
will or could exist might alter the agent’s degrees of belief in particular claims.)
The proof offered in the first paragraph of this section, however, works directly with
the agent’s tj and tk credences conditional on Cj ∪Ck, without assuming there is a
time at which the agent assigns that set a degree of belief of 1. Thus in situations
in which Cj ∪ Ck mandates a credence for x, (GC)’s verdicts can be established
without controversial additional stipulations.

Second, in situations with the relevant mandated credences (GC) can be used to
model interpersonal credence relations. When the relevant mandated credences are
in place, the mathematical patterns represented by (GC) are generated in a very
direct way: the information content of the set Cj ∪Ck works directly on conditional
Pj values through our synchronic systematic constraints, then that information
works directly on conditional Pk values in the same way. No prior relation between
Pj and Pk values is assumed in generating the patterns captured by (GC). Thus
those patterns will hold even if Pj and Pk represent the degrees of belief of different
people.

To model such interpersonal credence relations, we build our models just as
before but let each ti in the “time sequence” represent an agent-time pair. So t3
might represent Agent A at 1:35pm, in which case P3 values will represent Agent
A’s degrees of belief at 1:35. In some models, there will be a subset of t-values
that represent different agents at the same time; this allows us to model relations
between different agents’ simultaneous degrees of belief. Some models will also have
a subset of t-values all of which represent the same agent; these t-values allow us
to model a single agent’s degrees of belief developing over time. Or we might just
have a variety of agents’ degrees of belief being modeled at a variety of times.

Even with this new interpretation of the “time sequence,” our synchronic con-
straints remain the same. They now represent requirements of consistency be-
tween the degrees of belief assigned by just one of our agents at a particular
time. The definitions of “certainty set,” “synchronic derivation,” and “mandated
credence” do not change either, so the proof that began this section remains
intact. If Cj ∪ Ck mandates a credence for x, ideal rationality requires that
Pj(x | 〈Ck − Cj〉) = Pk(x | 〈Cj − Ck〉).
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Thus in particular mandated-credence situations, the familiar (GC) equation can
be generalized to express a rationally-required relation between degrees of belief
assigned by two different people, either at the same time or at different times. In
the special case where Cj ⊆ Ck, we can derive an “interpersonal (LC)” equation
Pj(x | 〈Ck−Cj〉) = Pk(x). In another special case, in which tj and tk both represent
the same agent, we have the familiar (GC) equation we have been working with in
our single-agent models, from which we can in turn derive the single-agent (LC).

And once we have interpersonal versions of (LC) and (GC), we can obtain in-
terpersonal versions of the Reflection Principles we saw earlier. Under particular
conditions, an ideally rational agent at tj will, conditional on the supposition that
an agent at tk certain of everything she is currently certain of will assign a degree
of belief to r to the claim represented by x, assign a degree of belief of r to the
claim represented by x. (When I say “an agent at ti will assign a degree of be-
lief. . . ”, I mean that the agent represented by ti will assign that degree of belief
at the time represented by ti.) The relevant conditions will be analogues of the
first five numbered conditions specified in Section 2.3, plus a condition that the
agent at tj is certain that there exist principles of ideal rationality such that in a
model representing those principles in its extrasystematic constraints, the set Ck

mandates a credence for x.
This interpersonal version of the Reflection Principle is what Adam Elga (manu-

script) has called an “expert principle.” The agent at tj views the agent at tk as an
“expert” — someone who is perfectly rational and whose certainty set contains hers
— and the ideally rational response (under particular conditions) to suppositions
about the degrees of belief of an expert is to defer to the expert.

Elga has also described a rational principle for responding to information about
the degrees of belief held by a “guru” — someone who is ideally rational, has cer-
tainties you don’t, but also lacks some certainties you have. Elga’s “guru principle”
is the Generalized Reflection Principle of Section 2.3 applied to the interpersonal
case. Suppose the agent at tj is certain that an agent at tk is ideally rational and
is certain of everything she is except for some F . Under particular conditions, an
ideally rational agent at tj will, conditional on the supposition that the agent at tk
will assign Pk(x | 〈F 〉) = r, assign a degree of belief of r to the claim represented by
x. The relevant conditions are the analogues of the second five numbered conditions
listed in Section 2.3, plus a condition that the agent at tj is certain that there exist
principles of ideal rationality such that in a model representing those principles in
its extrasystematic constraints, the set Cj ∪ Ck mandates a credence for x.

Thus in situations in which the appropriate credences are mandated, (GC) re-
veals both relations between ideally rational intrapersonal degrees of belief and
relations between ideally rational interpersonal degrees of belief. If the information
in a particular certainty set is strong enough to demand a particular rational degree
of belief for a claim, it doesn’t matter who entertains that certainty set or when
he or she entertains it — rationality will require certain particular mathematical
patterns to arise.

3.4. Beyond Mandated Credences. We have seen that in situations in which
particular credences are mandated by particular certainty sets, verdicts generated
by (LC) and (GC) are guaranteed to represent requirements of ideal rationality.
Thus we can designate some situations as definitely within the domain of applica-
bility of our (LC)-based modeling framework. But what about situations in which
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the relevant credences are not mandated? Are any such situations within the do-
main of applicability of our modeling framework?

We have been working under the assumption that our synchronic systematic
constraints represent requirements of ideal rationality. Under that assumption,
synchronically derived verdicts represent requirements of ideal rationality, so such
verdicts will be reliable even in situations in which mandated credences are absent.
For example, if we can synchronically derive a verdict of the form 0.7 < P (x) < 0.9,
that verdict will represent a requirement of ideally rationality even if no credence is
mandated in our model for x. If a model yields only synchronically derived verdicts
(for example, if the model contains only one time in its time sequence), we can be
confident that those verdicts represent requirements of ideal rationality.

But clearly it is the diachronic verdicts, those derived from (LC) and (GC), that
we are most worried about in situations lacking the relevant mandated credences.
Take our Chocolate story, for example. Let’s refer to the time just after the game
has been explained to you as t0, and let’s represent the claim that you will receive
a piece of chocolate as c. Now suppose that no matter how many principles of
ideal rationality we discover, there will never be a model representing requirements
of ideal rationality in which C0 mandates a credence for c. That is, suppose that
there is no specific degree of belief that ideal rationality requires you to assign to
the prospect of receiving chocolate.

Now consider a time t1, shortly after t0, at which you learn that the coin came
up heads (the outcome consistent with the possibility of chocolate). A model that
incorporates the Principal Principle in its extrasystematic constraints will restrict
P0(c) to the interval (0, 1/2), but will leave the entire (0, 1) interval available for
P1(c). However, if (LC) is among the model’s systematic constraints, it will yield
a verdict that P1(c) = 2·P0(c). The question is whether this verdict represents a
requirement of ideal rationality.

It seems intuitively that learning the coin came up heads should require you to
double your degree of belief that you will receive chocolate, whatever that degree
of belief might previously have been. But why is this? We are working under
the assumption that no principles of ideal rationality mandate a credence for c at
either t0 or t1; at each time the most ideal rationality can require of you is that
your degree of belief fall within the prescribed range. Under this assumption, ideal
rationality considers it perfectly consistent with what your certainty set at t0 for
you to assign a degree of belief of 0.4 at that time to the prospect of receiving
chocoloate. Similarly, it is rationally consistent with your certainty set at t1 for
you to assign a degree of belief of 0.3 at that time to the prospect of receiving
chocolate. So why should ideal rationality forbid you from assigning P0(c) = 0.4
and P1(c) = 0.3?

We might draw an analogy here to an interpersonal case. Suppose the Chocolate
game is described to both Jen and Ken. Let’s suppose that initially, Jen and
Ken have identical information about the world, but then it is secretly revealed
to Ken that the coin came up heads. Under the assumption that no credences
are mandated for c in this situation, I think it’s clear that neither Jen nor Ken is
violating a requirement of ideal rationality if Jen assigns a credence of 0.4 to c and
Ken assigns a credence of 0.3. So why should the situation be any different when
these two credences are held by the same person at different moments in time? If
ideal rationality requires diachronic consistency among degrees of belief even when



20 MICHAEL TITELBAUM

neither of those degrees of belief is strictly mandated by the agent’s certainties at a
particular moment — that is, if ideal rationality requires future degrees of belief to
respect current degree of belief assignments even when those current assignments
are admittedly “judgment calls” that go beyond what ideal rationality requires —
where might such a requirement come from?

One answer might be that the act of assigning specific degrees of belief at a
particular time is a doxastic action involving a set of commitments on the agent’s
part. Among those are commitments to set future degrees of belief in particular
ways should you receive various sets of information. For example, an ideally rational
agent in the Chocolate story might come to assign P0(c) = 0.3 by assigning P0(h) =
0.5 and P0(c |h) = 0.6. Assigning that particular conditional degree of belief might
involve a commitment to assign a degree of belief of 0.6 to the prospect of chocolate
should the agent become certain that the coin has landed heads. In general, we
might read the verdicts yielded by (LC) as expressing the diachronic commitments
an agent makes when she assigns various degrees of belief. And if such diachronic
commitments can give rise to requirements of ideal rationality even when the degrees
of belief in question are not mandated by the relevant certainty set, we will be able
to rely on (LC) to generate verdicts representing requirements of ideal rationality.

3.5. Commitments and Forgetting. If degree of belief assignments do involve
commitments yielding requirements of ideal rationality, that will expand the domain
of applicability of our modeling framework well beyond the bounds of credence-
mandating situations. Certainly our (LC)-based framework will apply to stories in
which the agent never forgets any information, even if those stories do not involve
the relevant mandated credences. But how do doxastic commitments interact with
forgetting episodes?

I think that ultimately, that question should be answered by a substantive theory
of doxastic commitments, and this is hardly the place to develop such a theory. So
the rest of this section will be fairly speculative. I will suggest some questions
such a theory might attempt to answer, offer intuitive guesses about what the right
answers might be, and then outline how our (LC)-based modeling framework could
yield verdicts in line with those answers.

Let’s continue working under the assumption that no principles of ideal rational-
ity mandate a credence in c for you in the Chocolate story. Suppose I describe the
Chocolate game to you today at t0, and you assign a degree of belief of 0.3 to the
claim that you will receive some chocolate. At t1 I tell you that the coin has come
up heads, and you adjust your degree of belief that you will receive chocolate to
0.6. Now suppose that my final decision about whether to give you the chocolate
isn’t to be made until tomorrow, so you turn in for the night. When you wake up
tomorrow morning, at t2, you have forgotten how the coin flip came out. What
does ideal rationality require of your degree of belief at t2 that you will receive some
chocolate?12

Intuitively, it strikes me that the answer here should be 0.3. That intuition is
backed up by a strong parallel to the Shangri La case in which you travel the Path
by the Sea. In that case, you start at t0 with an initial degree of belief of 0.5

12To make matters simple, let’s imagine that you knew at t0 that I would reveal the outcome

of the coin flip to you at t1 no matter how the coin flip came out. That way your knowledge at
t2 that you were told the flip’s outcome at t1 does not provide you with any evidence in favor of

a particular outcome.
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that the coin comes up tails. You receive evidence that the coin has come up tails,
which boosts your t1 degree of belief up to 1, but then you forget that evidence.
So at t2 when you reach Shangri La, ideal rationality requires your degree of belief
in tails to revert to what it was at t0. If we’d like to make the analogy stronger,
we could imagine that at t0 the guardians tell you not that they will flip a fair
coin to determine your path, but that they will flip a biased coin whose degree
and direction of bias they refuse to reveal. Your t0 degree of belief in tails would
then not be mandated by your t0 certainty set, but whatever judgment you made
about the likelihood of tails, ideal rationality would require you to revert to that
judgment at t2. Similarly in the Chocolate story, whatever degree of belief in the
prospect of chocolate you settle on at t0, ideal rationality requires you to revert to
that degree belief at t2 when you have forgotten the results of the flip.

This suggests that doxastic commitments made at an earlier time can rationally
bind an agent at a later time even when that agent has both gained and lost
information between the two times. Clearly not all doxastic commitments hold
across a forgetting episode: In the Chocolate story, when you believed at t1 that
the coin had come up heads, that belief presumably carried with it a commitment
to go on believing in heads unless you received evidence otherwise. Forgetting the
coin outcome between t1 and t2 leaves you in violation of that commitment, and
yet we don’t judge you irrational at t2 for having forgotten.13 So it seems that if
you lose information from an earlier time to a later time, you can break doxastic
commitments involved in your beliefs at that earlier time without violating the
requirements of ideal rationality.

On the other hand, if at a later time you retain all the certainties you had
at an earlier time, ideal rationality seems to require you to honor those earlier
doxastic commitments, even if you have gained and then lost some certainties in
the interim. This is what establishes the relationship between your ideally rational
t0 and t2 degrees of belief. And this, of course, is what (LC) requires: if your
certainty set at an earlier time is a subset of your certainty set at a later time,
your unconditional degrees of belief at the later time are required to reflect your
conditional degrees of belief at the earlier time. Roughly speaking, we might say
that (LC) requires you to honor your doxastic commitments from all times you
fully remember. Thus the requirements of ideal rationality that seem intuitive for
our extended Chocolate story match the verdicts that would be generated for this
story by our (LC)-based modeling framework. The domain of applicability of that
framework seems to include some stories that involve forgetting but do not mandate
the credences relevant for (LC).

Yet matters can become more complex. Suppose that when you wake up tomor-
row morning, at t2, you have forgotten not only the coin outcome revealed to you
at t1 but also what precise degree of belief you assigned to the prospect of chocolate

13I’m putting this point as if there was a doxastic commitment in place at t1 to go on believing

in heads and that doxastic commitment was violated at t2, but the violation of the commitment did
not result in a failure to meet the requirements of ideal rationality. We might equally well put the
point another way, saying that the doxastic commitment at t1 contains an exception for forgetting
episodes, such that you meet the requirements of ideal rationality at t2 because you haven’t
violated any doxastic commitments. Again, I think that choosing the correct interpretation of

this case will depend on a substantive theory of doxastic commitments, but as long as the varying
interpretations ultimately agree in their verdicts about which agents meet the requirements of
ideal rationality, the choice of an interpretation won’t affect the modeling results I’m after here.
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at t0. If your original P0(c) = 0.3 assignment was arbitrary from the point of view
of ideal rationality, and by t2 you have forgotten that you made that particular
assignment, would you violate a requirement of ideal rationality by assigning, say,
P2(c) = 0.2?

My inclination is to say no, for two reasons. First, it strikes me as difficult to
make out a coherent position about doxastic commitments on which you are not
required at t2 to honor a t1 degree of belief in chocolate that you don’t remember
but are required to honor a t0 degree of belief you don’t remember. Second, when
working with rationality constraints we usually require that an agent be able to work
out at any given moment what ideal rationality requires of her. (This is tied closely
to the notion that rationality constraints are standards of internal consistency.) If
ideal rationality requires you at t2 to maintain your t0 degree of belief that you will
receive chocolate, but you can’t remember what that t0 degree of belief was, no
matter how hard you try you won’t be able to do what ideal rationality requires.14

Judging that you may assign P2(c) = 0.2 in this case without violating any
requirements of ideal rationality does not immediately put the case outside the
domain of applicability of our (LC)-based modeling framework. After all, we might
think there was something you were certain of at t0 that you are now not certain
of at t2: the claim that you assign P0(c) = 0.3. If we enrich our modeling language
to include sentences representing claims about what degrees of belief you assign at
what times, and we assume that whenever you assign a particular degree of belief
you are required to be certain at the time that you do so, then C0 will not be a
subset of C2 and (LC) will not require P0(c) = P2(c).

Now suppose that at t3 you retain all your certainties from t2 but also suddenly
recall that you assigned a degree of belief of 0.3 to the prospect of chocolate at
t0. In setting your P3(c) value you face an interesting challenge. You retain all
the evidence relevant to setting a degree of belief in chocolate that led you to your
judgments at both t0 and t2, but you are now aware that at those two times that
evidence led your reasoning to different degree of belief conclusions. And under our
current assumptions, neither of those conclusions violates a requirement of ideal
rationality. Is there a particular way ideal rationality requires you to set your
degree of belief in chocolate given this information?

We might get some help here from our working hypothesis that (LC) represents
requirements of ideal rationality generated by doxastic commitments even in cases
that involve forgetting. C2 is a subset of C3, so (LC) can relate your degrees of
belief at those two times. Between t2 and t3, you gain the certainty that you
previously assigned P0(c) = 0.3. So by (LC), P3(c) should equal your degree of
belief in c at t2 conditional on the supposition that you assigned c a degree of belief
of 0.3 at t0. The question now becomes: If at a given time you assign a rational
unconditional degree of belief to a claim, what should your degree of belief in that
claim be conditional on the supposition that at another time you assigned the claim
a different rational unconditional degree of belief?

We now have an intrapersonal analogue to the interpersonal question that drives
Elga’s paper (manuscript). The main concern of that paper is how a rational agent
ought to respond to the information that another rational agent with identical
relevant evidence assigns a different unconditional degree of belief to a particular
claim. Given our discussion in Section 3.3, it should be clear that this is possible

14I am grateful to Alan Hájek for suggesting this second reason to me.
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only in a situation in which there are no principles of ideal rationality on which
that evidence set mandates a particular credence for that claim (otherwise at least
one of the agents is not ideally rational). But supposing the relevant credences
are not mandated, this interpersonal case is precisely analogous to the challenge
we have described for you at t2; it’s just that the rational agent whose differing
unconditional degrees of belief you must confront is an earlier version of yourself.

3.6. Conclusion. As I suggested at its outset, the last section was highly specula-
tive, and it became more speculative as it went on. First we supposed that in stories
in which the relevant mandated credences for (LC) are not in place, there might
still be doxastic commitments in play that could generate diachronic requirements
of ideal rationality. Then we began to make conjectures about how such com-
mitments and requirements might interact with forgetting episodes. To represent
some of the conjectured requirements using (LC), we imagined adding sentences
representing second-order claims about one’s own degrees of belief to our modeling
language. This was already a worrisome maneuver, since we have not examined the
consequences of adding sentences representing such second-order claims into our
modeling framework. But then we made the further controversial assumption that
if an agent assigns credence r to claim x, it is a violation of ideal rationality for her
to assign a degree of belief less than 1 to the claim that she assigns r to x. Clearly
we have ventured rather far afield in our attempt to outline how an (LC)-based
modeling framework might yield verdicts in line with our speculations about the
rational force of doxastic commitments in various forgetting cases.

Instead of venturing even farther, then, I want to close by providing a sort of
map of our (LC)-based framework’s domain of applicability. With this map in
hand, those who want to defend various substantive positions about the strength
of rational requirements and about doxastic commitments will be able to tell how
those positions rate our framework as a modeling tool.

First, we have assumed since Section 3.2 that taken together our synchronic
systematic constraints represent requirements of ideal rationality. The following
discussion is confined to the domain of stories over which that assumption holds
true.

Within that domain, we’ll start with situations in which credences for the sen-
tences in question are mandated by the relevant certainty sets (Ck for (LC) and
Cj ∪ Ck for (GC)). These situations will fall within the domain of applicability of
our modeling framework, as proven in Sections 3.2 and 3.3 above. This is true
even if one holds a strong theory of doxastic commitments on which any agent
who forgets anything violates requirements of ideal rationality. In some cases such
agents will fail to meet requirements of ideal rationality without contravening any
of the verdicts of an (LC)-based model, but this is acceptable, as those verdicts
were intended all along to represent necessary but not sufficient conditions for ideal
rationality.

On an extremely strong view of the requirements of ideal rationality, every consis-
tent certainty set mandates a credence for every sentence in the modeling language.
On a view like this, every story will lie in the domain of applicability of our mod-
eling framework. If the requirements of ideal rationality are taken to be somewhat
weaker, there is a question about whether situations lacking the relevant mandated
credences fall within the domain of applicability of our framework.
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If there are no requirements of ideal rationality based on diachronic doxastic
commitments or something like them, situations in which (LC) generates verdicts
but the relevant credences are not mandated will lie outside the domain of appli-
cability of our framework, as those verdicts will not reflect requirements of ideal
rationality. If there are doxastic commitments of the kind I have described, stories
with no forgetting will lie within the domain of applicability of our framework even
if the relevant credences are not mandated.

Moreover, if an agent is required to honor doxastic commitments from just those
earlier times that she fully remembers, it may be that all stories fall within the do-
main of applicability of our (LC)-based modeling framework. One serious challenge
here will come from stories in which an agent forgets what degrees of belief she
assigned at an earlier time and then remembers those assignments later. To model
these stories appropriately using (LC), we may need to add sentences represent-
ing second-order belief claims to our modeling language and argue for substantive
rational requirements on an agent’s awareness of her own degrees of belief. Even
then, there will be some difficult questions about how an agent should assign her
degrees of belief in such stories, analogous to questions about how a rational agent
who learns that another rational agent has drawn different degrees of belief from
identical evidence should respond to such information.

Michael Titelbaum
University of California, Berkeley
webfiles.berkeley.edu/titelbaum
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