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When coherent preferences may not preserve indifference between equivalent random 

variables: A price for unbounded utilities.* 
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Abstract 

We extend de Finetti’s (1974) theory of coherence to apply also to unbounded random 

variables.  We show that for random variables with mandated infinite prevision, such as 

for the St. Petersburg gamble, coherence precludes indifference between equivalent 

random quantities.  That is, we demonstrate when the prevision of the difference between 

two such equivalent random variables must be positive.  This result conflicts with the 

usual approach to theories of Subjective Expected Utility, where preference is defined 

over lotteries.  In addition, we explore similar results for unbounded variables when their 

previsions, though finite, exceed their expected values, as is permitted within de Finetti’s 

theory.  In such cases, the decision maker’s coherent preferences over random quantities 

is not even a function of probability and utility.   One upshot of these findings is to 

explain further the differences between Savage’s theory (1954), which requires bounded 

utility for non-simple acts, and de Finetti’s theory, which does not.  And it raises a 

question whether there is a theory that fits between these two. 
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1.  Introduction.  In this paper we examine coherent preferences over unbounded 

variables in order to demonstrate general circumstances when rational preference cannot 

be a function of probability and utility, let alone an ordering represented by subjective 

expected utility.  We use de Finetti’s (1974) theory of coherent previsions, which we 

summarize and extend to unbounded values, as follows. 

 

For each real-valued random variable, X, defined on a common state space the decision 

maker has a prevision Prev(X), which may be real-valued or, when X is unbounded, 

possibly infinite, negative or positive.   

 

When the prevision for X is real-valued, it is subject to a two-sided, real-valued payoff 

cX(X – Prev(X)), where cX is a real number.  The prevision is said to be two-sided, as cX 

may be either positive or negative, corresponding informally to the decision maker 

“buying” or “selling” the random payoff X for the amount Prev(X), scaled by the 

magnitude |cX|.  That is, the decision maker is committed to using Prev(X) as the “fair 

price” when buying or selling the |cX|-multiples of the random quantity X. 

 

When the prevision for X is infinite-positive, i.e., when X has a value to the decision 

maker greater than any finite amount, then for each real constant k and for each cX > 0, 

we require that the decision maker is willing to accept (i.e., is committed to “buy”) a one-

sided payoff cX(X – k).  Likewise, when the prevision for X is infinite-negative, with 

value less than any finite amount, then for each real constant k and for cX < 0, we require 

the decision maker is willing to accept (i.e., is committed to “sell”) a one-sided payoff 

cX(X – k).    Moreover, in accord with de Finetti’s theory, the decision maker is required 

to accept an arbitrary, finite sum of such real-valued payoffs across (finitely many) 

random variables.    

 

Definition: Previsions are coherent if there is no finite selection of non-zero constants, 

cX, with the sum of the payoffs uniformly dominated by 0.   The previsions are 

incoherent otherwise. 
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Theorem (de Finetti, 1974, 3.10 & 3.12):  Previsions over the set of bounded random 

variables are coherent if and only if they are the expectations of some finitely additive 

probability.   

 

Note that when the random variables in question are the indicator functions for events in 

the space, then their coherent previsions are their probabilities under the finitely additive 

measure that satisfies the theorem above. 

 

1.1  Coherent previsions for unbounded random variables. The theory of coherent 

previsions is not confined to bounded random variables, as de Finetti notes (1974, 

Sections 3.12.4, 6.5.4-6.5.9).   We extend his theory, as follows 

Define a (weak) order, «, over random variables according to their coherent previsions 

by: 

Definition: X « Y   if and only if   Prev(Y - X) > 0,  

with   X ≡ Y  if and only if  Prev(Y - X) =  Prev(X - Y) = 0. 

However, in such cases, as previsions are not necessarily real-valued, they may induce an 

ordering of random variables, «, that violates standard Archimedean and Continuity 

conditions, as explained in section 4.  

 

Random variables can be unbounded either above, below, or in both directions.  In the 

results that follow, when we refer to an unbounded random variable, we will mean 

unbounded above only.  Everything that we prove for such random variables carries over 

in an obvious way to random variables unbounded below only.  When we need to refer to 

the prevision of a random variable unbounded in both directions, for example Y-X when 

both are unbounded above, we appeal to the Fundamental Theorem of Prevision, 

essentially proven as Theorem 3.10 of (de Finetti, 1974).  This theorem guarantees the 

existence of a coherent prevision for each such random variable, but generally provides 

only an interval each of whose values is a possible coherent prevision. 

 
Also in what follows we use only countably additive probabilities, for two reasons.  It 

simplifies our analysis and it shows that the difficulties demonstrated here with de 
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Finetti’s theory of coherence applied to unbounded random variables are not avoided 

merely by restricting previsions to countably additive probabilities. 

 

Our central goal in this paper is to explore the class of coherent weak-orders as defined 

above, and establish general conditions under which such coherent previsions for 

unbounded random variables must distinguish by strict preference among a (finite) set of 

equivalent (≈) random variables.  That is let {Y1, …., Ym} be a finite set of equivalent but 

unbounded discrete random variables.  In other words, for each real number r,  Prob(Yi = 

r) is the same for each Yi,    i = 1, … m.  We provide general conditions under which 

coherence precludes  Yi ≡ Yj though Yi ≈ Yj.   

 

There are two cases of previsions for unbounded variables relevant to our analysis of 

equivalent random variables.   

 

Case 1: When a coherent prevision differs from its expected value:  Let Z be 

an unbounded, discrete random variable (Z = 1, 2, …), e.g.,  a Geometric(p) 

distribution, Prob(Z = n) = p(1-p)n-1 (n = 1, 2, …).  Suppose the prevision for Z, 

Prev(Z), is greater than its expectation, E[Z], where for the Geometric(p), E[Z] = 

p-1.  Then, generally, write Prev(Z) = E[Z] + b, with b > 0.  We let ‘b’ denote the 

boost that the prevision of Z receives in excess of its expected value. (Possibly, b 

is positive-infinity in the example.)  Surprisingly, a finite prevision for a non-

negative, unbounded random variable that includes a finite, positive boost b is a 

coherent 2-sided prevision in de Finetti’s sense.  This is so because there can be 

no sure loss when this prevision is combined with coherent previsions for 

bounded variables.   

 

Case 2: When a coherent prevision must be infinite: Let Z be an unbounded 

random variable such that for each coherent prevision, and for each real number r 

> 0, there is a linear combination W of random quantities such that either Z  > W 

and Prev(W) ≥ r, or W > Z and Prev(W) ≤ r.  That is, in this case each coherent 

prevision for Z must be infinite.  An example of this is the familiar St. Petersburg 
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variable, Z, where with probability 2-n, Z = 2n.  Flip a fair coin until it lands heads 

for the first time at flip n, when Z equals 2n.   

 

2. Strict preference among equivalent random variables having finite previsions 

greater than their expectations.  

  
2.1  We begin with previsions under Case 1. 

Theorem  1:  Let X be a Geometric(p) random variable.  If the prevision for X, Prev(X), 

is finite but greater than its expectation (E[X] = p-1), though this is a coherent prevision in 

de Finetti’s sense, then there exist three equivalent random variables, W1,W2, and W3, 

each with finite previsions such that some two cannot have the same prevision.  

 

Example 2.1: Before we demonstrate this result, we offer an illustration for the special 

case of fair-coin flipping.  Let X be a Geometric(1/2) random variable.  For convenience, 

denote by Ω the partition of the state space into events {ωn: n = 1, 2, ...} such that X(ωn) 

= n, i.e., where ωn denotes the event where the fair coin lands heads first on the nth flip.  

Hence, Prob(X = n) = Prob(ωn) =  2-n, n = 1, 2, …, and E[X] = 2.   

 

Let {B, Bc} be the outcome of an independent flip of another fair coin, so that Prob(B, 

ωn) = 2-(n+1),  for n = 1, 2, … .    

 

With the state space{B, Bc} × Ω, define two other random variables W1, and W2 as 

follows: 

 W1(B, ωn) = n+1;  W1(Bc, ωn) = 1   (n = 1, 2, ...) 

and  W2(Bc, ωn) = n+1;  W1(B, ωn) = 1   (n = 1, 2, ...). 

Table 1, below, displays the three equivalent variables, X, W1, and W2, defined over the 

space {B, Bc} × Ω. 

 

 

 

 



 6

TABLE 1 

       ωωωω1         ωωωω2      …………          ωωωωn        …………  

     X  =  1     X  =  2     X  =  n 

B    W1 =  2    W1 =  3   W1  =  n+1  

    W2 =  1    W2 =  1   W2  =  1 

 

    X  =  1     X  =  2      X  =  n 

Bc   W1 =  1    W1 =  1     W1 =  1 

   W2 =  2    W2 =  3     W2 =  n+1 
 

Obviously, W1 and W2 are equivalent.  Moreover, each has a Geometric(½) distribution; 

hence, X ≈ W1 ≈ W2.  However, for each state (b,ω) in {B, Bc} × Ω, W1(b,ω) + W2(b,ω) – 

X(b,ω) = 2.  Thus, Prev(W1-X) + Prev(W2-X) = 0  if and only if Prev(W1) = Prev(W2) = 

Prev(X) = 2, when the prevision for a Geometric(½) variable is its expectation, and then 

b = 0. 

 

Proof of Theorem  1:  We offer an indirect proof, assuming for the reductio the 

hypothesis that equivalent random variables with finite expectations carry equal 

prevision.  The argument is presented in 3 parts, in Appendix 1.  Part 1 of the proof 

defines the equivalent random variables whose previsions, in the end, cannot all be equal.  

Part 2 develops general results how previsions for independent random variables relate to 

their expected values.  Part 3 puts the pieces together. 

 

2.2 An elemental property of coherent boost.   

For a random variables X with finite expectation, define the boost function  

Definition:  ββββ(X) =  Prev(X) – E(X).   

It is straightforward to show that when - ∞ < E(X) < ∞, the boost function ββββ(• ) is a 

finitely additive linear operator (Dunford and Schwartz, 1988, p. 36) that has the value 0 

on all bounded random variables.  That is, ββββ(X+Y) = ββββ(X) + ββββ(Y), ββββ(aX) = aββββ(X), and 

ββββ(X) = 0 when X is a bounded random variable.   
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From this observation we obtain the following elementary result about non-negative 

boosts. 

Proposition:   Let 0 < ββββ(X) < ∞.  Then, ββββ(Xk) = ∞  if k > 1, and ββββ(Xk) = 0 if k < 1. 

Thus, the family of random variables with finite expectations and finite boost have a 

common tail distribution, up to scalar multiples of one another.   This leads to the 

following generalization of Theorem 1. 

 

Corollary: Let Q be a probability distribution whose tail is stochastically dominated by 

the tail of some Geometric(p) distribution, i.e., there exists k and p such that for all n ≥ k, 

Q(Y = n) = qn ≤  p(1-p)n-1 = pn.  If all Geometric(p) distributions have 0 boost, then by 

coherence the Q-distribution also has 0 boost. 

 

3.  Strict preferences among generalized St. Petersburg random variables. 

We turn next to previsions that result from random variables whose coherent prevision is 

mandated to be infinite, Case 2.  For each Geometric(1-2-m) distribution, (m = 2, 3, …) 

we define a generalized St. Petersburg gamble, Zm, and construct a set of 2m-1 equivalent 

random variables X1 ≈ X2 ≈ …≈ X2m-1  (≈ Zm), such that if previsions are coherent, though 

infinite, then 

∑
−

=

12

1

m

i
Prev(Xi -Zm)  =  2m-1.             (*) 

That is, though the Xi (i = 1, ..., 2m-1) are pairwise equivalent random variables (and 

equivalent to Zm), the coherent prevision of their pairwise differences with Zm cannot all 

be 0.  Then we extend this argument to include random variables that are equivalent to 

the “tail” of a Geometric(1-2-m) distribution. 

 

Example 3.1: First, however, we illustrate these two results for the Geometric(½) 

distribution.  Let ωn (n = 1, ….) have a Geometric(½) distribution, Prob(ωn) =  2-n (n = 1, 

2, …).  Let {B, Bc} be the outcome of a fair-coin flip, independent of the states, ωn.  

Partition each ωn into two equi-probable cells using independent, probability 1/2 events 

{B, Bc}, and define three equivalent random variables, X1, X2, and Z, on the product space 

{B, Bc}× Ω as follows: 
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•  the traditional St. Petersburg random variable: Z(ωn) = 2n, independent of B. 

•  the random variable X1(B ∩ ωn) = 2n+1, and X1(Bc ∩ ωn) = 2. 

•  the random variable X2(B ∩ ωn) = 2, and X2(Bc ∩ ωn)= 2n+1. 

Table 2 displays these variables, defined on the space {B, Bc} × Ω, where ωk denotes the 

state where the fair coin lands heads first on the kth flip. 

TABLE 2 

     ωωωω1         ωωωω2      ....      ωωωωn   ....  

     Z  =  2     Z  =  4   Z  =  2n 

B    X1 =  4    X1 =  8   X1  =  2n+1   

    X2 =  2    X2 =  2   X2  =  2 

 

    Z  =  2     Z  =  4   Z  =  2n 

Bc   X1 =  2    X1 =  2   X1 =  2 

   X2 =  4    X2 =  8   X2 =  2n+1 

 

Though X2 ≈ X2 ≈ Z, if previsions are coherent, for each state (b,ω) in {B, Bc} × Ω,  

X1(b,ω) + X2(b,ω) - 2Z(b,ω) =  2.  Hence, Prev(X1+X2-2Z) = 2.  This is in contradiction 

with the hypothesis that the prevision of the difference between equivalent random 

variables is 0, as then Prev(X1-Z) + Prev(X2-Z) = Prev(X1+X2-2Z) = 0. 

 

Next, consider a random variable Zk that agrees with Z on a “tail,” and is 0 elsewhere, i.e., 

Zk(ωn) = Z(ω) for all n ≥ k and Zk(ωn) = 0 otherwise.  Define the two other equivalent 

random variables, Xk1 and Xk2, as follows.  These definitions generalize the previous 

construction.  That is, in what comes next, by letting k = 1 we obtain the construction 

above. 

•  a called-off St. Petersburg variable: Zk(ωn) = 2n for n ≥ k, and Zk(ωn) = 0 for n < k. 

•  a called-off variable Xk1(ωn ∩ B) = 2n+1 and Xk1(ωn ∩ Bc) = 2k for n ≥ k,  

Xk1(ωn) = 0 for n < k. 

•  a called-off variable Xk2(ωn ∩ Bc) = 2n+1 and Xk2(ωn ∩ B) = 2k for n ≥ k,  

Xk2(ωn) = 0 for n < k. 
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Table 3 displays these equivalent random variables which are again defined on the 

product space, {B, Bc} × Ω. 

TABLE 3 

   ωωωω1          ...   ωωωωk-1         ...          ωωωωk               ...  ωωωωn  ...  

 Z =  0       Z  =  0        Z  =  2k          Z  =  2n 

B Xk1 =  0            Xk1 =  0               Xk1 =  2k+1         Xk1  = 2n+1  

 Xk2 =  0            Xk2  =  0            Xk2  =  2k         Xk2  = 2k 

 

   Z  =  0    Z  =  0   Z   =  2k       Z  =  2n 

Bc Xk1 =  0            Xk1 =  0            Xk1 =  2k            Xk1 =  2k 

 Xk2 =  0      Xk2  =  0     Xk2 =  2k+1     Xk2 = 2n+1 

 

Though these are three equivalent random variables then, by similar reasoning as above, 

Prev(Xk1 + Xk2 - 2Zk) = 2, and it cannot be that Xk1 ≈ Xk2 ≈ Zk. 

 

Generalized St. Petersburg variables. 

Theorem  2:  For each Geometric(1-2-m) distribution, (m = 2, 3, …), we define a 

generalized St. Petersburg gamble, Zm, and construct a set of another 2m-1 equivalent 

random variables X1 ≈ X2 ≈ …≈ X2m-1 (≈ Zm), such that if previsions are coherent, though 

infinite, then 

∑
−

=

12

1

m

i
Prev(Xi -Zm)  =  2m-1.             (*) 

The details are provided in Appendix 2. 

 

Equivalent variables for a tail of the Geometric(p), p = 1 – 2m.   

In Appendix 3, we modify the construction used for Theorem 2 in order to address the 

case of agreement with a tail of the Geometric(p), resulting in the following.   

Theorem  3:  Assume that distribution Q agrees with the Geometric(p) for all (coarse) 

states ωn, n ≥ k.  That is, Q(ωn) = p(1-p)n, for all n ≥ k.  We define a called-off 

generalized St. Petersburg gamble, Zm, and construct a set of 2m-1 equivalent called-off 
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random variables X1 ≈ X2 ≈ …≈ X2m-1 ≈ Zm, such that if previsions are coherent, though 

infinite, then 

∑
−

=

12

1

m

i
 Prev(Xi -Zm)    =  2m-1.             (*) 

 

Our primary reason for the added generality of Theorem 3 over Theorem 2 is the 

following corollary. 

 

Corollary:  Let Q be a probability distribution whose tail stochastically dominates the tail 

of some Geometric(p) distribution, i.e., there exists k and p such that for all n ≥ k, Q(Y = 

n) = qn ≥  p(1-p)n-1 = pn.  Then coherent previsions under the Q-distribution also must 

distinguish between some equivalent random variables. 

 

Proof: Thin out the tail of the Q-distribution using independent Benouilli trials in order to 

define the random variable X that agrees with the tail of this Geometric(p) distribution.  

Specifically, for each n ≥ k define an event En with independent Bernoulli probability 

Prob(En) = en = 1 – (qn – pn), and where Prob(En, Y = n) = enqn.  Define the random 

variable X so that X(ωn) = 0 if n < k, and for n ≥ k, X(ωn) = Y(ωn) when En does not 

obtain, otherwise, i.e., when En obtains, Y(ωn) = 0.  Then, under the Q-distribution, X is 

equivalent to the k-tail of the Geometric(p) distribution.  The corollary follows from 

Theorem 3.  

 

4. Archimedean and Continuity principles applied to Cases 1 and 2. 

In order better to understand the differences between Cases 1 and 2, we consider two 

principles that relate coherent previsions to expected values for random variables.  

Definition: Given random variables X and Y, and real number 0 ≤ α ≤ 1, let   

αX ⊕  (1-α)Y  denote their convex mixture.   

First, recall the familiar Archimedean axiom of von Neumann-Morgenstern Expected 

Utility theory. 
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•  Archimedean principle:   Let X, Y, and Z be random variables strictly ordered as  

X « Y « Z.  Then there exist 0 < α, β < 1 satisfying  

αX ⊕  (1-α)Z  «  Y  «  βX ⊕  (1-β)Z. 

 

This principle is violated by infinite coherent previsions, such as the St. Petersburg 

lottery of Case 2.  The argument is elementary.  Let X and Y be constant random 

variables, X = 1 and Y = 2.  And let Z be a variable with infinite prevision, e.g., the St. 

Petersburg variable.  Then though X « Y « Z there is no 0 < α < 1 satisfying   αX ⊕  (1-

α)Z  «  Y.   At the same time, this principle does not preclude a coherent prevision that 

uses a positive boost, as in examples from Case 1.  That is, this Archimedean principle 

blocks only coherent previsions falling under Case 2, but does not prevent those from 

Case 1.  But previsions from Case 1 cannot be represented as a function of probability 

and utility. 

 

Together with the Ordering and Independence axioms, the Archimedean principle is 

adequate to insure a real-valued expected utility representation for coherent preference 

over simple random variables.  But this principle fails to produce that same result when 

random variables are non-simple, even though utility is bounded.   [See Fishburn (1979, 

section 10) and (1982, section 11.3) for helpful discussion of this point.]  And as just 

noted, since it allows previsions with finite, positive boost (Case 1), it is not adequate 

either to insure that previsions for unbounded random variables are a function of 

probability and utility.   

 

A different approach, used in the definition of the Lebesgue integral for unbounded 

functions – see Royden (1968, p. 226), is this. 

•  Continuity principle:  Let X be a non-negative variable and let {Xn} be a sequence 

of non-negative random variables converging “from below” to the random 

variable X.  That is, for each state ω, Xn(ω) ≤ X(ω) (n = 1, …) and limn Xn = X.   

Then limn Prev(Xn) = Prev(X). 
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Evidently, this Continuity principle blocks previsions from Case 1 – positive boost 

creates discontinuous previsions.  The reasoning again is elementary.  Let X be an 

unbounded non-negative random variable with finite expectation E[X] = µ, but whose 

prevision includes a positive boost, b, Prev[X] = µ + b.  Define Xn as the bounded 

random variable which is a truncation of X at state ωn: Xn(ωi) = X(ωi), for i ≤ n, and 

Xn(ωi) = 0 for i > n.  Then the sequence of  random variables {Xn} converges to X (from 

below).  But since each Xn is simple Prev[Xn) = E[Xn] and then  limn Prev[Xn] < Prev[X].   

By contrast, this Continuity principle does not preclude previsions in Case 2.  Hence, as 

with the Archimedean principle, which blocks Case 2 but not Case 1, it too is insufficient 

to insure that coherent previsions are represented by some function of probability and 

utility. 

 
If we entertain the combination of these two principles, in order to block the problematic 

previsions from Case 1 and Case 2, the results are troubling because also we add other 

deficiencies that each principle brings in its wake.   

 
We have already indicated that the Archimedean principle “solves” the problems posed in 

Case 2 by precluding infinite previsions.  But, if utility is unbounded, then the 

construction of a St. Petersburg-style variable follows from the presence of a geometric 

distribution.  Hence, adopting the Archimedean principle combined with allowing non-

simple, discrete distributions will compel a bounded utility function. 

 
De Finetti (1974, section 3.13) shows that when previsions for the variables Xn are 

coherent, and X is their (pointwise) limit, then using the Continuity principle to fix the 

prevision for X preserves coherence.  Moreover, for a random variable with finite 

prevision then its prevision equals its expected utility.  However, he rejects the 

Continuity principle as mandatory for coherence, since it precludes finitely but not 

countably additive probabilities.  Thus, if it is important to allow merely finitely additive 

probability as coherent, the Continuity principle is too strong.   
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5. Conclusions and further questions.    

The results in this paper extend de Finetti’s (1974) theory of coherence to unbounded 

random variables without assuming either Continuity of preferences or the usual 

Archimedean axiom.  We show that for random variables with infinite previsions, such as 

the St. Petersburg gamble, coherence precludes indifference between some equivalent 

random quantities.  That is, according to Theorems 2 and 3, and their Corollary, the 

prevision of the difference between two such equivalent random variables must 

sometimes be positive.  This result follows from a very liberal standard of coherence, i.e., 

we do no see how further to weaken de Finetti’s theory of coherence beyond what we 

propose with 1-sided previsions in order to avoid this problem.  Nor is it an issue where 

the debate over coherence of merely finitely additive prevision is relevant.  

 

In addition to problems arising with St. Petersburg-styled variables, we explore similar 

results for unbounded variables when their previsions, though finite, exceed their 

countably additive expected values, as is permitted within de Finetti’s theory.  In such 

cases, the decision maker’s coherent preferences over random quantities, though real 

valued, are not a function of probability and utility.    

 

These results conflict with the usual approach to theories of Subjective Expected Utility, 

such as Savage’s (1954) theory, where preference is defined over (equivalent) lotteries.  

The contrast is a subtle one, however.  Like de Finetti’s theory, Savage’s theory permits 

merely finitely additive personal probability, i.e., preference in Savage’s theory is not 

required to be continuous in the sense that we use here.  Nor do we think it reasonable to 

mandate full Continuity of previsions in general as a way to avoid these problems.   

 

In Savage’s theory, the problem with unbounded random variables is sidestepped entirely 

because, in the presence of his postulate P7 (which is needed to control the preference 

relation over non-simple acts), utility is bounded (Savage, Section 5.4).  Savage’s 

postulates P1-P6 constitute a theory for simple acts that does not require a bounded 

utility.  However, in that setting there are no unbounded random variables either, and so 

the difficulties with SEU theory that are the subject of this paper cannot occur.   
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We see the results of this paper as pointing to the need for developing a normative theory 

that stands between Savage’s P1-P7, where utility is bounded, and de Finetti’s theory of 

coherence, which allows finite but discontinuous previsions for unbounded random 

quantities, even when all bounded random quantities have continuous previsions and 

probability is countably additive.  We hope to find a theory that navigates satisfactorily 

between these two landmarks. 

 

One example of a theory taking the middle ground, and with which we are not completely 

satisfied, is to restrict coherence to random variables with finite previsions and to require 

that when previsions for indicator functions are continuous, then all random variables 

with finite expectations have previsions that are continuous.  This combination results in 

a theory that permits: 

1) merely finitely additive, discontinuous previsions for non-simple, bounded 

random variables, 

2) countably additive, continuous previsions for unbounded random variables with 

finite expectations, 

and 3)  finitely additive previsions for unbounded random variables that are a convex  

combination of these first two.  

But such a theory is not satisfactory, we think, since it requires that merely finitely 

additive probabilities live on compact sets.  This will not do even to reconstruct text-book 

inference with so-called “improper” priors.   
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Appendix 1 

Theorem  1:  Let X be a Geometric(p) random variable.  If the prevision for X, Prev(X), 

is finite but greater than its expectation (E[X] = p-1), though this is a coherent prevision in 

de Finetti’s sense, then there exist three equivalent random variables, W1,W2, and W3, 

each with finite previsions such that some two cannot have the same prevision.  

 

Proof of Theorem  1:  We offer an indirect proof, assuming for the reductio the 

hypothesis that equivalent random variables with finite expectations carry equal 

prevision.  The argument is presented in 3 parts, in the appendix: Part 1 of the proof 

defines the equivalent random variables whose previsions, in the end, cannot all be equal.  

Part 2 develops general results how previsions for independent random variables relate to 

their expected values.  Part 3 puts the pieces together. 

 

Part 1 of the proof:   Let Prev(X) = E[X] + b = t > p-1.  Consider two, iid draws from 

this Geometric(p) distribution, X1 and X2.  By the hypothesis Prev(Xi) = t (i = 1, 2).   

 

Define the random variable W = X1+X2, which has a NegBin(2,p) distribution.  By 

coherence, then Prev(W) = 2t. 

 

Note that the conditional distribution Prob(X1 | W = n)  = (n-1)-1 for (1 ≤  X1  ≤  n-1) is 

uniform, because Prob(X1 = k | W = n) = Prob(X1 = k, X2 = n-k, W = n) / Prob(W = n). 

Prob(X1 = k, X2 = n-k, W = n) = Prob(X1 = k, X2 = n-k)  

 = p(1-p)k-1p(1-p)n-k-1  

 = p2(1-p)n-2 

which is constant (and positive) for 1 ≤  k  ≤  n-1.  Hence, Prob(X1 = i | W = n) / Prob(X1 

= j | W = n) = 1 for 1 ≤  i, j ≤  n-1. 

 

Write W as a sum of four random variables: W = W1+W2+W3+W4, with the first three 

equivalent random variables, defined as follows.  The set of points where Wi = n is 

defined according to 3 cases, as n = 1, 2, or 0, mod 3.  The idea is that the n-1 many 

equally probable points (X1 = k, X2 = n-k) that comprise the event W = n are divided 
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equally among the three events Wi = n, (i = 1, 2, 3), with the remaining one or two points 

relegated to W4 = n, which is a non-empty set whenever n ≠ 1 mod 3.   

 

For n = 1 mod 3: 

W1 = n for states satisfying  {X1 + X2 = n and 1 ≤ X1 ≤ (n-1)/3} 

W2 = n for states satisfying  {X1 + X2 = n and (n-1)/3 < X1 ≤ 2(n-1)/3} 

 W3 = n for states satisfying  {X1 + X2 = n and 2(n-1)/3 < X1 ≤ (n-1)} 

and {W4 = n} = ∅ .   

 

For n = 2, mod 3: 

W1 = n for states satisfying  {X1 + X2 = n and 1 < X1 ≤ (n+1)/3} 

W2 = n for states satisfying  {X1 + X2 = n and (n+1)/3 < X1 < 2(n+1)/3} 

 W3 = n for states satisfying  {X1 + X2 = n and 2(n+1)/3 ≤ X1 ≤ (n-1)} 

and W4 = n for the event {(X1 = 1, X2 = n-1)}  

 

For n = 0, mod 3: 

W1 = n for states satisfying  {X1 + X2 = n and 1 < X1 ≤ n/3} 

W2 = n for states satisfying  {X1 + X2 = n and n/3 < X1 < 2n/3 } 

 W3 = n for states satisfying  {X1 + X2 = n and 2n/3 ≤ X1 < (n-1)} 

and W4 = n for either of the two event  {(X1 = 1, X2 = n-1), (X1 = n-1, X2 = 1)}. 

 

Wi = 0 (i = 1, 2, 3, 4) for all other states. 

It is evident that W = W1 + W2 + W3 + W4, so Prev(W) = ∑i Prev(Wi).  Also evident is 

that W1 ≈ W2 ≈ W3, as they are constructed so that Prob(Wi = n) is, for each n = 1, 2, …,  

the same value for i = 1, 2, 3. 

 

Part 2 of the proof:  Next, we develop two general claims about previsions for 

independent variables, Lemmas 1 and 2, from which, in Part 3, we derive that Prev(W2) < 

Prev(W1) < Prev(W3), in contradiction with the hypothesis that equivalent random 

variables are equally preferred. 
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Lemma 1:  Let Y be an integer random variable with finite mean, E(Y) = µ < ∞, and finite 

prevision Prev(Y) = π < ∞.  Coherence assures that  µ ≤ π.   Let F be the indicator for an 

event, independent of Y, with Prob(F) = α.   Then Prev(FY) = απ. 

Proof:  If α is a rational fraction, α = k/m, the lemma follows using the reductio 

hypothesis applied to the m-many equivalent random variables FiX , where {F1, …, Fm} 

is a partition into equiprobable events Fi.  That is, from the hypothesis, Prev(FiY) = c (i = 

1, …, m), and by finite additivity of previsions, then c = π/m, so that Prev(FY) = kπ/m = 

απ.  If α is an irrational fraction, the lemma follows by dominance applied to two 

sequences of finite partitions of equally probable events.  One sequence provides bounds 

on Prev(FY) from below, and the other sequence provides bounds from above.  

 

Next, let X and Y be independent random variables defined on the positive intergers Ν.  

Consider a function g(i) = j, g:Ν→Ν, with the sole restriction that for each value j, g-1(j) 

is a finite (and possibly empty) set.  The graph of the function g forms a binary partition 

of the positive quadrant of the (X, Y)-plane into events G and Gc, with G defined as: G = 

{(x, y): g(x) ≤ y}.   G is the region at or above the graph of g.  Then, on each horizontal 

line of points in the positive quadrant of the (X, Y)-plane, on a line satisfying {Y = j}, 

only finitely many points belong to the event G.   

 

Let GX denote the random variable that equals X on G and 0 otherwise, and likewise for 

the random variable GcX.   So, X = GX + GcX.   The next lemma shows how the boost b 

for the random variable X divides over the binary partition formed by the event G.   

 

Lemma 2.  With X, Y, and G defined above, 

Prev(GX) = E(GX), whereas Prev(GcX) = E(GcX) + b. 

That is, all of the boost associated with the prevision of X attaches to the event Gc, 

regardless the probability of Gc. 

Proof:  For each value of  j = 1, 2, …, write the random variable  [Y = j]X as a sum of two 

random variables, using G (respectively Gc) also as its indicator function:   

  [Y = j]X  =  [Y = j]GX  +  [Y = j]GcX. 
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So,   Prev([Y = j]GcX)  =  Prev([Y = j]X) - Prev([Y= j]GX) 

and   E([Y = j]GcX)  =  E([Y = j]X) – E([Y= j]GX). 

   

But [Y = j]GX is a simple random variable, as the event G contains only finitely many 

points along the strip [Y = j].  Thus,  Prev([Y= j]GX)  =  E([Y = j]GX). 

 

Since X and Y are independent, by Lemma 1, 

Prev([Y= j]X)  =  Prob(Y =j)(E[X] + b)   

So,   Prev([Y = j]GcX)   =  Prob(Y =j)(E[X] + b)  - E([Y = j]GX) 

           =  Prob(Y =j)b + E([Y= j]X) – E([Y = j]GX)  

           =  Prob(Y =j)b + E([Y = j]GcX). 

Thus, the prevision for [Y = j]GcX contains a boost equal to Prob(Y =j)b.  But as  

∑j Prob(Y =j)b = b, we have Prev(GcX) = ∑j (E([Y = j]GcX) + Prob(Y =j)b) = E[GcX] + b 

and there is no boost associated with GX, Prev(GX) = E[GX].  

 

Part 3 of the proof:  Observe that, in accord with Lemma 2, 

the random variable W2 contains none of the boost associated with either X1 or X2, 

the random variable W1 contains none of the boost associated with X1 

and the random variable W3 contains none of the boost associated with X2. 

 

By application of Lemma 1, we see that:  

the boost b associated with X2 divides between W1 and W4 in the proportion α:(1-

α) where α = (1-p)(1+ p(1-p)/[3(1-p) + p2]) 

and the boost b associated with X1 divides between W3 and W4 in the proportion       

(1-γ):γ where γ = p(1-p)/[3(1-p) + p2]. 

 

Since W1 ≈ W2, ≈ W3, then E[W1] = E[W2] = E[W3]  =  (2/3p) – E[W4].  Therefore, by 

adding the respective boosts, Prev(W2) < Prev(W1) < Prev(W3), which establishes the 

theorem, and somewhat more.  
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Appendix 2 

Theorem  2:  For each Geometric(1-2-m) distribution, (m = 2, 3, …) we define a 

generalized St. Petersburg gamble, Zm, and construct a set of another 2m-1 equivalent 

random variables X1 ≈ X2 ≈ …≈ X2m-1 (≈ Zm), such that if previsions are coherent, though 

infinite, then 

∑
−

=

12

1

m

i
Prev(Xi -Zm)  =  2m-1.             (*) 

 

Proof of Theorem 2: Fix m ≥ 2.  Begin with the coarse states ωn (n = 1, ….) having 

Geometric(p) probability,  

Prob(ωn) =  p(1-p)n-1, 

where p = 1 – 2-m. 

 

Partition each ωn into [2m-1 + 1] × 2 many cells, as follows:  

The rows of the partition are comprised by a 2m-1+1 fold event, with disjoint outcomes:  

B1, …, B2m-1, and Bc.  Call B = B1 ∪  … ∪  B2m-1, for reasons that will become clear shortly.   

Denote the two columns of the partition of ω by (tn1, tn2), where tn1 ∪  tn2 = ωn.   

The marginal probabilities for the two column events that partition the coarse state ωn 

satisfy: Prob(tn1) = (1-p)n and so Prob(tn2) = (2p-1)(1-p)n-1. 

The marginal probabilities for the 2m-1+1 row events satisfy: Prob(Bi) = 1-p  (i = 1, …, 

2m-1), so that Prob(Bc) = ½. 

Let the rows and columns be independent, so that for i = 1, ..,  2m-1, 

Prob(Bi ∩ tn1) = (1-p)n+1. 

Next, define Zm, the generalized St. Petersburg variable as follows: 

Zm(tn1) = (1-p)-n and Zm(tn2) = 0. 

Note that  Zm does not depend on Bi or Bc, and Zm has infinite prevision. 

 

Define the random variables Xi so that for i = 1, …2m-1-1, 

Xi(Bi ∩ tn1) = (1-p)-(n+1) 

Xi(Bi ∩ tn2) = 0 

Xi(Bi+1 ∩ tn1) = Xi(Bi+1 ∩ tn2) = (1-p)-1 
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for other states, (j ≠ i, i+1)  Xi(Bj ∩ tn1) = Xi(Bj ∩ tn2) = 0 

and     Xi(Bc ∩ tn1) = Xi(Bc ∩ tn2) = 0. 

 

For X2m-1, modify only the third line of this definition, as follows: 

X2m-1(B2m-1∩ tn1) = (1-p)-(n+1) 

X2m-1(B2m-1∩ tn2) = 0 

X2m-1(B1 ∩ tn1) = X2m-1(B1 ∩ tn2) = (1-p)-1 

for other states, (j ≠ 2m-1, 1)  X2m-1(Bj ∩ tn1) = X2m-1(Bj ∩ tn2) = 0 

and     X2m-1(Bc ∩ tn1) = X2m-1(Bc ∩ tn2) = 0. 

 

The Xi are pairwise equivalent random variables as is evident from the symmetry of their 

definitions and the fact that the first 2m-1 rows have equal probability.  Each Xi is 

equivalent to Zm as well, since the probability that each assumes the value (1-p)-n is (1-p)n 

for n = 1, 2, … .  Table 4, below, displays these 2m-1+1 random variables defined over the 

2m-1+1 × 2 partition of the one coarse state ωn. 

 

Technical Aside: The equivalence among the 2m-1+1 variables Zm, X1, X2, …, X2m-1, 

obtains over all values of p for which the construction above is well defined, i.e., 

the equivalence obtains for all 1 > p ≥ 1 – 2-(m-1).  However, in order to avoid 

appeal to the following extra assumption, we apply the construction solely to the 

case where p = 1–2-m, when the proof of the theorem does not require an extra 

assumption.  The additional assumption needed to apply the construction to the 

other values of p is that, if (i) X is simple with Prev(X) = 0, and (ii) X and Y are 

independent, then Prev(XY) = 0. 
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TABLE 4 – The partition of coarse state ωωωωn into 2m-1+1 rows and 2 columns, with 

the values of the 2m-1+1 equivalent variables displayed within the table. 

                        tn1          tn2 

 
                   Zm = (1-p)-n          Zm  =  0 
B1     X1  = (1-p)-(n+1)                X1  =  0 
                 X2  =  0                            X2  =  0 
                      …………           ………… 
                   X2m-1-1 =  0                            X2m-1-1 =  0 
                   X2m-1 = (1-p)-1                        X2m-1 = (1-p)-1 
 
                   Zm = (1-p)-n          Zm  =  0 
B2               X1 = (1-p)-1                            X1  = (1-p)-1 

                   X2  = (1-p)-(n+1)                X2  =  0 
                   X3  =  0                            X3  =  0 
                         …………            ………… 
                   X2m-1 =  0                            X2m-1 =  0 
. 

. 

. 
                   Zm = (1-p)-n          Zm  =  0 
Bi                X1  =  0                            X1  =  0 
                     …………                        ………… 
                   Xi-2 =  0                            Xi-2 =  0 
                   Xi-1 = (1-p)-1                Xi-1 = (1-p)-1 
                   Xi  = (1-p)-(n+1)                       Xi   =  0 

                   Xi+1 = 0                            Xi+1 = 0 
                         …………             ………… 
                   X2m-1 =  0                            X2m-1 =  0 
. 

. 

. 

                        Zm = (1-p)-n          Zm  =  0 
B2m-1          X1  =  0                            X1  =  0 
                      …………           ………… 
                   X2m-1-2  =  0                            X2m-1-2 =  0 
                   X2m-1-1  = (1-p)-1                      X2m-1-1  = (1-p)-1 
                   X2m-1 =  (1-p)-(n+1)                X2m-1 =  0 
                  
                  Zm = (1-p)-n          Zm  =  0 
Bc    X1  =  0                          X1  =  0            
                        …………            ………… 
                   X2m-1  =  0                            X2m-1  =  0 
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We establish a contradiction with the hypothesis that the prevision for a difference in 

equivalent random variables is 0 as follows.  Consider the random variable obtained by 

the finite sum    Wm =  ∑
−

=

1
2

1

m

i
 (Xi – Zm).  

Then    Wm(Bi ∩ tn1) = (1-p)-n/2  +  (1-p)-1 

Wm(Bi ∩ tn2) = (1-p)-1 

Wm(Bc ∩ tn1) = -2m-1(1-p)-n = -(1-p)-n/2   

Wm(Bc ∩ tn2) = 0. 

Note that Wm does not distinguish among the Bi, which we may now collapse into a single 

row of cells, denoted B, with combined probability ½.  

 

Write Wm as a sum of three random variables, Tm, Um, and Vm, defined as follows on 4 

cells per coarse state ωn = {B, Bc} × {tn1, tn2} 

Tm(B ∩ tn1) = -Um(Bc
 ∩ tn1) = (1-p)-n/2   

Tm(B ∩ tn2) = Tm(Bc
 ∩ tn1) = Tm(Bc

 ∩ tn2) = 0 

Um(B ∩ tn1) = Um(B ∩ tn2) = Um(Bc
 ∩ tn2) = 0 

Vm(B ∩ tn1) = Vm(B ∩ tn2) = (1-p)-1 

Vm(Bc
 ∩ tn1) = Vm(Bc

 ∩ tn2) = 0. 

 

Note that as Prob(B) =  ½, Prev(Vm) = 2m-1. Observe also that Tm and -Um are equivalent 

random variables.  Then, by the reductio hypothesis Prev(Tm + Um) = 0.   Adding these 

two previsions, we obtain the desired equation (*), which contradicts the hypothesis that 

the difference in equivalent random variables carries prevision 0, and proving the 

theorem.   
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Appendix 3 

Theorem  3:  Assume that distribution Q agrees with the Geometric(p) for all (coarse) 

states ωn, n ≥ k.  That is, Q(ωn) = p(1-p)n, for all n ≥ k.  We define a called-off 

generalized St. Petersburg gamble, Zm, and construct a set of 2m-1 equivalent called-off 

random variables X1 ≈ X2 ≈ …≈ X2m-1 ≈ Zm, such that if previsions are coherent, though 

infinite, then 

∑
−

=

12

1

m

i
 Prev(Xi -Zm)    =  2m-1.             (*) 

Proof of Theorem 3.  For notational convenience, we suppress the subscripts k and m in 

what follows.  Define Z, the called-off St. Petersburg variable so that: 

Z(ωn) = 0 for n < k. 

Z(tn1) = (1-p)-n and Z(tn2) = 0 for n ≥ k. 

Next define the random variables Xi so that for i = 1, …2m-1-1, 

    Xi(ωn) = 0 for all n < k 

Xi(Bi ∩ tn1) = (1-p)-(n+1) for n ≥ k  

Xi(Bi ∩ tn2) = 0 

Xi(Bi+1∩ tn1) = Xi(Bi+1∩ tn2) = (1-p)-k 

for other states, (j ≠ i, i+1)  Xi(Bj ∩ tn1) = Xi(Bj ∩ tn2) = 0 

and     Xi(Bc∩ tn1) = Xi(Bc∩ tn2) = 0. 

For X2m-1, modify only the fourth line of this definition, as follows: 

    X2m-1(ωn) = 0 for all n < k 

X2m-1(B2m-1 ∩ tn1) = (1-p)-(n+1) 

X2m-1(B2m-1 ∩ tn2) = 0 

X2m-1(B1 ∩ tn1) = X2m-1(B1 ∩ tn2) = (1-p)-k 

for other states, (j ≠ 2m-1, 1)  X2m-1(Bj ∩ tn1) = X2m-1(Bj ∩ tn2) = 0 

and     X2m-1(Bc ∩ tn1) = X2m-1(Bc ∩ tn2) = 0. 

It is obvious that the Xi are pairwise equivalent random variables.  In order to verify that 

each is equivalent to Z, note that Prob(Xi = (1-p)-k)  = (1-p)p∑i = k-1(1-p)i  =  p∑i = k(1-p)i 

= 1- Prob{∪ i≤k ωi) = (1-p)k as is needed for equivalence with Z.  Following the identical 

reasoning used in sub-section 3.1 we obtain the equation (*), as was to be shown.  
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