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Abstract 
I use a recent 'experimental philosophy' study of the concept of the gene conducted by 
myself and collaborators to discuss the broader epistemological framework within which 
that research was conducted, and to reflect on the relationship between science, history 
and philosophy of science, and society. 
 
1. Introduction: Experimental Philosophy of Biology and the 'Biohumanities' 
A central tenet underlying the work to be described here is that philosophy and science 

are not clearly separated activities, but aspects of a single inquiry into nature. They are 

distinguished primarily by the questions they ask, rather than by any restrictions on their 

'proper' methods. The new field of ‘experimental philosophy’ (X-phi) pays tribute to this 

'continuity thesis’ by bringing empirical work to bear on philosophical questions. Its 

practitioners have not lost their identity as philosophers through their employment of 

methods traditionally associated with the sciences; rather experimental philosophers (‘X-

philes’) perform experiments in an attempt to discern facts of relevance to philosophical 

debates. It is part of the burden of such work to show that some philosophical issues turn 

on an empirical supposition that may in turn be tested. With respect to studying the 

changing concept of the gene previous research by the author and her collaborators has 

established that it is possible to operationalize questions about conceptual variation in a 

survey instrument and that the statistical analysis of these questionnaire data reveals the 

prevalence of particular gene concepts in different biological fields (Stotz, Griffiths, and 

Knight 2004). The Representing Genes Project at the center of this paper represents an 

extension of that earlier work.  

 

The paper reflects on the motivation for undertaking the Representing Genes study, and 

experimental philosophy of biology in general. X-phi of biology is a potentially 
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important part of what Paul Griffiths has called the 'biohumanities'1. The concept of 

'biohumanities' is a vision of the relationship between the humanities (including 

philosophy of science), biology and society. In this vision, the humanities create 

knowledge about biology. Both the history of genetics and philosophical work on the 

concept of the gene of the sort described in this paper enrich our understanding of 

genetics itself. Contrast this to the vision implicit in the idea of Ethical, Legal and Social 

Implication (‘ELSI’) research, in which biologists provide the facts and humanists and 

social sciences work out their implications for society, or to one traditional vision of 

history and philosophy of science, in which studies of particular sciences are data for 

conclusions about the nature of science. In the biohumanities vision, good history and 

sound philosophical may provide resources for addressing ‘ELSI’ issues, but that is not 

their primary aim. Likewise, we may learn something about the nature of science from 

our work, but it is enough if we learn something about genetics, ecology or whatever 

other bioscience we study.  

 

We can discern four aims of research in the 'biohumanities'. First, Biohumanities 

understands itself as a critical enterprise. Constructive 'science criticism' (Pigliucci and 

Kaplan 2006, 8) stands back from the urgencies of actual scientific research to reflect on  

the strengths and weaknesses of current approaches. Thus, as C. Kenneth Waters has 

remarked, the aims of conceptual analysis in the philosophy of science include “to 

articulate scientific concepts in ways that help reveal epistemic virtues and limitations of 

particular sciences. This means an analysis of the gene concept(s) should help clarify the 

explanatory power and limitations of gene-based explanations, and should help account 

for the investigative utility and biases of gene-centered sciences” (Waters 2004, 29).  

 

Secondly, science criticism, without necessarily questioning any specific findings of past 

research, can simply be the “turning-over of stones that had hitherto held their ground” 

(Moss 2006, 523). History of science points out the 'roads not taken' in science. Without 

calling into question the data that was gathered, it points out that others sorts of data 

might have been gathered, or that the data that was actually gathered could have been 

                                                
1http://paul.representinggenes.org/biohum_home.html 
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interpreted in different ways. Philosophy of science adds to this enterprise by critically 

analyzing the chains of reasoning that connect specific scientific findings to claims about 

the broader significance of those findings. This can lead to changes in interpretation that 

can potentially motivate biologists to reinterpret earlier scientific findings and to 

prioritize different questions for future research. Ideally, history and philosophy of 

biology can articulate alternative visions of biology. 

 

Thirdly, good history and philosophy of biology can contribute to the creation of 'critical 

science communication' through promoting a critical understanding of scientific claims in 

the sense just outlined and communicating to a wider audience not merely 'what has been 

discovered', but something of the complexity of the scientific process and the 

contestability of its findings. To be useful, critical work of the sort described in the last 

two paragraphs must be 'bioliterate', something that might be roughly defined as engaging 

with the science at the same level as practitioners, rather than via popular representations. 

But the broad 'visions' of science in which it results can be expressed in a non-technical 

way, and can thus make a major contribution to the public understanding of science.  

 

Fourthly, and most generally, biohumanities is concerned with understanding biology. 

Although it should by now be clear that I think the biohumanities are of potential value to 

both biology and society, this is not the only possible justification for biohumanities 

research. Science is fascinating and important, and it is worth understanding even if 

understanding it does not make it work any better, just as evolution is worth 

understanding whether or not doing so contributes to crop improvement or drug 

development. As in the sciences themselves, it is hard to imagine researchers doing their 

best work without an intrinsic interest in the material they study. 

 

It may be worth reiterating at this point that professional historians and philosopher do 

not have a monopoly on any of the activities described in this section. Anyone acquainted 

with the literature in the history and philosophy of biology knows that biologists have 

made very substantial contributions to both. But when making these contributions, they 
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are not doing biology, but history or philosophy, or 'science criticism'2.  

 

The following sections of the paper will give more substance to these remarks with the 

specific example of the Representing Genes project conducted by myself and my 

collaborators. Section two outlines the project. Section three uses the project to introduce 

the ideas of scientific concepts as 'tools' for research and the experimental philosopher of 

science as a 'conceptual ecologist'. In accordance with these two metaphors, the aim of 

the Representing Genes project was to reveal complementary and competing gene 

concepts and locate them in different areas of biological research. Our conclusions about 

gene concepts and their epistemic niches are presented in section four. Finally, in section 

five, we argue for a new vision of the gene suited to postgenomic biology.  

 

2. Representing Genes 
The gene’s conceptual variation is the most salient feature of its 100-year history. 

Philosophical analyses have attempted to both describe different concepts of the gene in 

use by different biologists and at different times, and to prescribe better ones (Waters 

2004). Many philosophers and historians have analyzed this variation in terms of a 

tension between two aspects of the gene, aspects that have been characterized in several, 

not necessarily consistent ways: 

• An abstract unit of inheritance versus a concrete entity (Falk 2000) 

• A functional or top down versus a structural or bottom up approach to the gene 

(Gilbert 2000). 

•  A gene P (for phenotype, predictor or preformation) versus a gene D (for 

developmental resource)(Moss 2003) a or pop gene (of evolutionary genetics) 

versus a dev gene (of developmental genetics) (Gilbert 2003).  

One general feature that might help to unify these competing characterizations would be 

to distinguish between a statistical and a mechanistic relationship between the gene and 

phenotypic traits. Others have approached the variation in the gene concept, not by 

introducing distinctions, but by unifying the variants under a more general concept, such 

                                                
2 A term we have in fact taken from the joint work of Massimo Pigliucci, a biologist, and Jonathan Kaplan, 
a philosopher. 



5 

as schematic gene which yields different specific genes along a continuum from proximal 

to distal relationships to gene products (Waters 1994, 2000). In my own work my 

collaborators and I have come to embrace a version of the dichotomy between an 

abstract, statistical gene and a concrete, mechanistic gene, but have felt the need to 

introduce a further distinction between a simple stereotype or ‘consensus gene’ versus a 

gene which embraces the complex and messy reality of the relationship between genome 

structure and genome function (Stotz, Bostanci, and Griffiths 2006; Griffiths and Stotz 

2006). 

 

The Representing Genes project3 was an attempt to empirically assess the impact of the 

on-going molecular genomics revolution on concepts of the gene (Stotz and Griffiths 

2004; Stotz, Bostanci, and Griffiths 2006). The survey instrument developed for the 

Representing Genes study was designed to explore several of the issues posed by the 

existence of alternative gene concepts.  

 

Part one of the questionnaire was inspired by a pressing problem posed by the move into 

the genome-sequencing era, namely which principles to use in order to functionally 

annotate DNA sequences. The actual practice of genome annotation inspired us to design 

a simple, annotation-like task to investigate the criteria that lead biologists to annotate a 

particular DNA sequence as either one gene with several gene products or several genes 

with a single functional product. This 'simplified annotation' task used graphical 

representations and descriptions of real DNA transcription events in eukaryotic genomes 

which challenge various aspects of the classical molecular gene concept. The cases were 

chosen to allow pair-wise comparisons highlighting differences in the criteria that may 

influence biologists’ judgments on this issue during annotation. The examples illustrate 

the flexibility, variability and complexity of ‘genome expression' that complicate defining 

what genes are. Since common definitions of the gene are insufficient for making this 

decision, the simplified annotation task is designed to reveal the implicit criteria 

biologists draw upon in this judgment.  

 

                                                
3 http://representinggenes.org 
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To give a flavor of the work, we will sketch two of the cases, and the conclusion we drew 

from them. One of the phenomenon not anticipated by the classical molecular conception 

of the gene is 'antisense transcription', in which the two strands of the DNA double-helix 

each contain their own genes, running in opposite directions. Another is 'trans-splicing', 

in which messenger RNAs transcribed from different parts of the genome are spliced 

together at a later stage to make a single molecule. This means that a single polypeptide 

may be derived from several loci in the genome. These phenomena come together in two 

of our cases which were based on events at the Drosophila locus mod(mdg4). This stretch 

of DNA contains a fairly conventional-looking gene from which the larger part of a 

messenger RNA molecule is made by the usual cutting and pasting. The final section of 

the molecule, however, comes in several variations, which are made from various short 

sections of DNA located some distance away on the chromosome and trans-spliced to the 

larger section. Some of these are on the same strand of the DNA double helix as the main 

part of the molecule. Others are on the opposite strand of the double helix, in which case 

they run in the opposite direction along the DNA. The mechanisms that make the smaller 

part of the molecule and join it to the larger part are identical in both cases. We find, 

however, that while biologists predominantly regard the first case as a single gene, they 

predominantly regard the second case as two genes cooperating to make a single product. 

What explains this difference in their responses? 

 

In recognition of the difficulties of the classical molecular gene concept, it has been 

suggested that working biologists employ a consensus gene concept based on a collection 

of flexibly applied features of well-established genes. On this proposal, there is 

something similar to a threshold effect for considering a stretch of DNA to be a gene if it 

has 'enough' of these features, such as an open reading frame, a consensus core promoter 

sequence (the TATA box), or the existence of RNA transcripts. The originator of this 

view, Thomas Fogle, has argued that by combining structural and functional features into 

a single stereotype, the consensus gene concept hides both the diversity of DNA 

sequences that can perform the same function and the diverse functions of particular 

DNA sequences (Fogle 2000). In other words, the consensus gene concept inherently 

distracts from conceptually problematic cases. It means that when biologists come to 
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annotate a locus at which something unusual is happening, they look for ways to divide 

the sequence into several different genes, none of which diverges too far from the 

stereotype. We suggest that just this has happened in our two cases based on the 

(mod)mdg4 locus. Although the cases in which the alternative terminal exon is trans-

spliced from the same strand are not significantly different in terms of molecular 

mechanisms from those in which it is trans-spliced from the antisense strand, the idea of 

a single gene with parts running in opposite directions – 'head to head' – is just too unlike 

the prototypical gene pictured in textbooks, and so in this case they are seen as separate 

genes. Whether something is one gene or two is thus as much a psychological as a 

biological matter. 

 

Another part of the survey instrument set out to investigate whether and when, as Lenny 

Moss has argued (Moss 2003), investigators either start with the conception of a 

theoretical gene determinately connected to a particular phenotype, or of a concrete 

molecular gene with a specific sequence and the template capacity to code for many 

products, depending on how it is transcribed and how its initial product is later processed. 

We argued that these different starting points would affect how investigators set out to 

unravel the complex relationship between genes and other molecular factors with the 

phenotype. Hence the second task asked subjects to assess the value of different research 

strategies for investigating complex diseases. For each disease we offered four strategies, 

designed to run along a continuum from focusing on the statistical relationship between 

gene and phene to entirely giving up on such a relationship in favor of analyzing content-

dependent causal pathways between the two. We looked for differences in which 

strategies were favored by biologists from different backgrounds, and also at whether the 

choice of strategies changed between human versus animal disease, and for physiological 

versus psychological disease. 

 

In this section, I have given a brief description of some experimental philosophy of 

biology. In the next section I turn to the issue of what philosophers can learn from this 

kind of work.  
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3. The Philosopher as a Scientist 
One motivation for the Representing Genes study was to transcend the limitations of 

traditional conceptual analysis. There is a tradeoff between the intimate knowledge of 

part of the science through interaction with particular scientists and the bias of your 

interpretation of the whole field. Perhaps as a result, philosophers typically produce 

competing analyses of scientific concepts, and traditional conceptual analysis too often 

ends with the 'dull thud of conflicting intuitions'. Such problems have produced 

increasing interest in bringing a new set of tools to bear. Experimental philosophy of 

science has the capacity to assess these competing analyses against data and to avoid 

biases introduced by working with a single subdiscipline or a single school of thought. 

 

Such a philosophy ‘in the trenches’ is also in a privileged position to provide the bridge 

between philosophy and science. The ‘trench’ of the experimental philosopher does not 

demarcate the line between the humanities and science in the science war, but the 

empirical frontline in the fight for real knowledge where philosophy and science unite. At 

least part of philosophy of science has abandoned the idea that its job is to enforce rigor 

and precision within science through the fixation of scientific meaning. It has been 

argued that slippage of meaning was essential to the rapid progress of genetics 

(Rheinberger 2000). Equally gone is Paul Feyerabend’s conceptual anarchism, in which 

the history of science is little more than a series of changes in the fashionable topics of 

scientific discussion (Feyerabend 1975). In place of these two models we have come to 

appreciate that conceptual change in science is rationally motivated by what scientists are 

trying to achieve, by their accumulated experience of how to achieve it, and by changes 

in what they are trying to achieve. Empirical science is a powerhouse of conceptual 

innovation because scientists use and reuse their terminology in a truly “exuberant” way 

(Rheinberger 2000). The gene concept is a case in point: despite its ever-changing 

definition, the gene remains on the laboratory bench after a whole century because it has 

proved a flexible tool4. This only makes sense if we think of concepts as tool of research, 

as ways of classifying the experience shaped by experimentalists to meet their specific 

needs. Necessarily these tools get reshaped as the scientists’ needs change.  

                                                
4 But see Moss (2006) with his critique of using the ‘gene’ as placeholder for a full explanation of life. 
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In the study of conceptual diversification, the history of genetics provides a ‘conceptual 

phylogeny’ of the gene and the Representing Genes project can be seen as an attempt to 

determine some of the 'ecological' pressures that have caused the gene concept to 

diversify into different 'epistemic niches'. The next section presents an attempt of 

describing the phylogeny and ecology of the former and current use of the gene concepts. 

 

4. 'Conceptual speciation events' and the 'epistemic niche'5 
The gene was originally defined in the light of the hybridization techniques available to 

early geneticists. In the absence of any knowledge about the molecular basis of genetics 

this early ‘instrumental gene’ was a hypothetical entity, an intervening variable between 

the phenotypes of the parental generation and the distribution of phenotypes in following 

generations. As new techniques became available and new questions about the structural 

nature of the gene pressing, the gene was redefined. However, just as old techniques can 

survive alongside newer ones, old concepts can remain the best tool for the work for 

which they were originally designed. For example, when a medical geneticist is seeking 

the 'genes for' a disorder she is looking for traditional Mendelian genes - sections of 

chromosome whose pattern of inheritance explains the phenotypic differences observed 

in patients. Translated into molecular terms these sections may turn out not to be 

molecular genes. Some abnormalities in human limb development, for example, have 

been tracked down to mutations in a gene on chromosome 7. But recent research suggests 

that the gene in which the mutation is located plays no role in the development of these 

abnormalities (Lettice et al. 2002). Instead, embedded in that gene is a sequence which 

acts to regulate the use of the gene 'sonic hedgehog', about one million DNA nucleotides 

away on the same chromosome, which is involved in the relevant aspects of limb 

development. Nothing is gone wrong in either piece of research. It is simply that the 

molecular gene concept is not a good tool for some kinds of research. The instrumental, 

Mendelian gene remains the best tool in fields like medical genetics and population 

genetics. So while a particular scientific concept reflects the scientific knowledge at a 

                                                
5 For a more detailed explanation of the points in this and the next sections, see (Griffiths and Stotz 2006, 
in press; Stotz 2006). 
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point in time, this alone cannot explain the parallel use of several different concepts. For 

a full understanding of that phenomenon we need to see scientific concepts as tools for 

research, as much as glassware, microscopes or scales.  

 

In the 1960s molecular biologists believed they had arrived at a single molecular concept 

of the gene, which united the structural and functional aspects of the gene. The molecular 

gene is a structure in the DNA whose function is to specify the linear order of elements in 

a gene product (RNA or polypeptide). This is reflected in the Central Dogma of 

Molecular Genetics, which claims that the genetic information, the linear sequence of 

nucleic acid bases, specifies the linear order of the gene product, with no feedback 

mechanisms allowed (Crick 1958, 1970). In the light of today’s knowledge about the 

ways in which a limited number of DNA sequences is used to create a vastly greater 

'transcriptome' of gene products, the sequences we count to arrive at the claim that there 

are about 25,000 human or 14,000 Drosophila genes are best regarded as stereotypical 

genes – sequences that fit a stereotype of how DNA plays the gene-role. The cases that 

inspire the stereotype are the simple cases of bacterial transcription and translation that 

were used to derive our basic understanding of molecular genetics in the 1960s. The 

prototype is undermined by heavily edited mRNA transcripts derived from 'cryptogenes' 

or by cases of trans-splicing, in which the linear order of the product is no longer 

mirrored in the linear order of nucleotides in the DNA.  

 

How does a scientist today decide where one gene starts and another stops? Since one 

gene can code for many different products when expressed in different ways or in 

cooperation with other sequences, there is no principled answer. The tip of the iceberg of 

the complexity of gene expression is the common process of alternative splicing6. It was 

the first mechanism detected to seriously undermine the one gene - one polypeptide 

hypothesis enshrined in the classical molecular gene concept. However, the widespread 

convention of molecular geneticists is to define alternatively spliced genes as one gene 

with multiple products. At first surprising, the underlying rationale of the molecular gene 
                                                
66 The majority of genes in higher organisms are alternatively spliced and the current star example of 
alternative splicing is Dscam (Drosophila Cell Adhesion Molecule), a gene which may produce up to 
38,016 different forms of the DSCAM protein. 
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concept actually explains this convention: A molecular gene is defined as the linear 

image of a gene product in the DNA (Waters 1994, 2000). Accordingly, if, in the 

scientist’s judgment, the many different products of a single DNA sequence are 

sufficiently similar, e.g. protein isoforms with many shared functional subunits, then they 

are produced from one gene. If, however, they are sufficiently different from one another, 

e.g. through the process of frame-shifting, then they are the products of two overlapping 

genes. As we discussed in Section two, a key aim of genome annotation is to find a way 

of segmenting complex eukaryote genomes into sequences that look reasonably like the 

prototype of a gene (Fogle 2000). 

5. A Postgenomic Gene Concept? 

Just as finer work may require more specialized tools, it may be that molecular 

geneticists are now confronting problems for which the classical molecular gene concept 

no longer proves useful. For instance, scientists today want to understand how regulated 

genome expression lead from a ridiculously small number of genes to the explosion of 

gene products that create and maintain higher organism, especially humans. This will 

likely require a more modest gene concept in which the structural and functional aspects 

of the molecular gene are dissociated again. In reality the way in which the DNA contains 

the image of its product is often akin to the way in which Picasso's cubist paintings 

contain a fragmented and distorted image of his models. The best trick of the genome, 

however, the cubists never invented, namely how a single sequence (brushstroke) can be 

part of many genes (paintings). We now know that complex forms of transcriptional and 

post-transcriptional processing, at least in eukaryote genomes, are 'business as usual'. 

Beside the well-known process of alternative splicing, more recently it has been 

discovered that through trans-splicing coding sequences can be pasted together in a 

different order, repeated or even pasted in backwards. Thus, as well as getting many 

products from a single piece of DNA, several pieces of DNA can be used to make a 

single gene product. These pieces may even be located on different chromosomes. 

Sequences can be transcribed or translated in different reading frames, or be edited 

through the insertion, deletion or substitution of nucleotides (see Stotz 2006; 

forthcoming, for references and description of such cases). 
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The postgenomic gene concept, rather than covering up any unwanted messiness, 

welcomes and embraces these complexities in the relationship between DNA and its 

products as new opportunities to relate a mere 25,000 genes to all the complexities of 

human development and functioning. Thanks to a large variety of specific complexes of 

interacting regulatory molecules (cis-acting sequences in the genome, trans-acting factors 

of gene products, metabolites and other environmental signals) DNA is used in highly 

time- and tissue-specific ways (Stotz forthcoming). Regulated recruitment and 

combinatorial control of these regulatory molecules is the mechanism of choice of most 

organism to control gene expression (Ptashne and Gann 2002). Lenny Moss has 

described these as 'ad hoc committees' of regulatory molecules whose particular 

'membership' reflects the contingent history of the cell up to that time, including the 

history of the cell's transactions with its environment (Moss 2003). This metaphor is 

designed to embody the new biology of genome regulation in the same way that the 

metaphor of a genetic program written in the DNA embodied the biology of the 1960s. 

 

In this vision the ‘gene’ is relieved of its unrealistic and mystical status as the sole 

embodiment of life with a (unsurprisingly, not very well understood) propensity to ‘work 

on its own behalf’ (Kauffman 2000; Moss 2006). Instead, genes become prosaic ways to 

classify the template capacity of certain parts of the genome, a capacity that must be 

interpreted through a process of gene expression to yield any determinate result. Because 

of this limited and very context-dependent capacity, the gene is also stripped of its place 

as the sole unit of inheritance. Predictable expression patterns of parts of the genome are 

ensured by the reliable reproduction of a developmental niche that regulates the same 

expression patterns. Inheritance is not embodied in mystical preformations of the 

phenotype but in the reproduction of the necessary factors of development that will self-

organize to reproduce a similar developmental life cycle. Life is not situated in genes but 

the particular organization of biomolecules that enables the system to maintain itself by 

reconstituting its own components from the template capacity in the genome, 

constructing the environmental factors necessary for this to occur, and ultimately 

reproducing copies of itself. 
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6. Conclusion 

This paper describes empirical/experimental studies in the philosophy of biology in 

general part of the 'biohumanities'. This field comprises four different but related aims: 

constructive science criticism, creating alternative visions of biology, critical science 

communication, and, simply, understanding biology as an object of natural knowledge in 

its own right. In Section three I outlined how experimental philosophy methods can 

contribute to this kind of research. Section four and five demonstrate the critical potential 

of this research when directed at current molecular biology.  

 

References 
Crick, Francis H. C. (1958), "On Protein Synthesis", Symp. Soc. Exp. Biol. 12:138-163. 

——— (1970), "Central Dogma of Molecular Biology", Nature 227:561-563. 

Falk, Raphael (2000), "The Gene: A concept in tension", in Peter Beurton, Raphael Falk 

and Hans-Jörg Rheinberger (eds.), The Concept of the Gene in Development and 

Evolution, Cambridge: Cambridge University Press, 317-348. 

Feyerabend, Paul (1975), Against Method. London: Verso. 

Fogle, Thomas (2000), "The Dissolution of Protein Coding Genes in Molecular Biology", 

in Peter Beurton, Raphael Falk and Hans-Jörg Rheinberger (eds.), The Concept of 

the Gene in Development and Evolution, Cambridge: Cambridge University 

Press, 3-25. 

Gilbert, Scott C. (2000), "Genes Classical and Genes Developmental: The Different uses 

of Genes in Evolutionary Syntheses", in Peter Beurton, Raphael Falk and Hans-

Jörg Rheinberger (eds.), The Concept of the Gene in Development and Evolution, 

Cambridge: Cambridge University Press, 178-192. 

Gilbert, Scott F. (2003), "Evo-Devo, Devo-Evo, and Devgen-Popgen", Biology and 

Philosophy 18 (2):347-352. 

Griffiths, Paul E., and Karola Stotz (2006), "Genes in the Postgenomic era", Theoretical 

Medicine and Bioethics 27 (6):499-521. 



14 

——— (in press), "Gene", in David Hull and Michael Ruse (eds.), Cambridge 

Companion for the Philosophy of Biology, Cambridge: Cambridge University 

Press. 

Kauffman, Stuart A. (2000), Investigations. Oxford, New York: Oxford University Press. 

Lettice, L. A., T. Horikoshi, S. J. H. Heaney, M. J. van Baren, H. C. van der Linde, G. J. 

Breedveld, and et al. (2002), "Disruption of a long-range cis-acting regulator for 

Shh causes preaxial polydactyly", Proceedings of the National Academy of 

Sciences, 99 (11):7548-7553. 

Moss, Lenny (2003), What Genes Can't Do. Cambridge, Mass.: MIT Press. 

——— (2006), "The question of questions: What is a gene? Comments on Rolston and 

Griffiths & Stotz ", Theoretical Medicine and Bioehtics 27 (6):523-534. 

Pigliucci, Massimo, and Jonathan Kaplan (2006), Making Sense of Evolution: The 

Conceptual Foundations of Evolutionary Biology. Chicago and London: 

University of Chicago Press. 

Ptashne, Mark, and Alexander Gann (2002), Genes and Signals. Cold Spring Harbor, 

NY: Cold Spring Harbor Laboratory Press. 

Rheinberger, Hans-Jörg (2000), "Gene Concepts: Fragments from the Perspective of 

Molecular biology", in Peter J Beurton, Raphael Falk and Hans-Jörg Rheinberger 

(eds.), The Concept of the Gene in Development and Evolution, Cambridge: 

Cambridge University Press, 219-239. 

Stotz, K, P.E Griffiths, and R.D Knight (2004), "How scientists conceptualize genes: An 

empirical study", Studies in History and Philosophy of Biological and Biomedical 

Sciences 35 (4):647-673. 

Stotz, Karola (2006), "With genes like that, who needs an environment? Postgenomics' 

argument for the ontogeny of information", Philosophy of Science 73 (5, PSA 

2004 proceedings):(Preprint in PhiSci Archive). 

——— (forthcoming), "2001 and all that: a tale of a third science", Biology & 

Philosophy. 

Stotz, Karola, Adam Bostanci, and Paul E. Griffiths (2006), "Tracking the shift to 'post-

genomics'", Community Genetics 9 (3):190-196. 



15 

Stotz, Karola, and Paul E. Griffiths (2004), "Genes: Philosophical analyses put to the 

test", History and Philosophy of the Life Sciences. 26 (Special issue on 'Genes, 

Genomes and Genetic Elements', ed. by Karola Stotz)):5-28. 

Waters, C. Kenneth (1994), "Genes made molecular", Philosophy of Science 61:163-185. 

——— (2000), "Molecules Made Biological", Rev. Int. de Philosophie 4 (214):539- 564. 

——— (2004), "What Concept Analysis Should Be (and why competing philosophical 

analyses of gene concepts cannot be tested by polling scientists)", Studies in 

History and Philosophy of the Life Science 26:29-58. 

 

 


