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Abstract

Standard derivations of the Bell inequalities assume a common common cause system that is
a common screener-off for all correlations and some additional assumptions concerning locality
and no-conspiracy. In a recent paper (GraRhoff et al., 2005) Bell inequalities have been derived
via separate common causes assuming perfect correlations between the events. In the paper it
will be shown that the assumptions of this separate-common-cause-type derivation of the Bell
inequalities in the case of perfect correlations can be reduced to the assumptions of a common-
common-cause-system-type derivation. However, in the case of non-perfect correlations a non-
reducible separate-common-cause-type derivation of some Bell-like inequalities can be given.
The violation of these Bell-like inequalities proves Szabd’s (2000) conjecture concerning the non-
existence of a local, non-conspiratorial, separate-common-cause-model for a §-neighborhood of
perfect EPR correlations.

1 Introduction

In a recent paper Grafhoff, Portmann, and Wiithrich (2005) presented a new derivation of the Bell
inequalities using weaker premises than standard derivations do. Standard derivations of the Bell
inequalities assume (beside other premises) a so-called common common cause system that is a
common screener-off for all correlations. Graflhoff et al. derived Bell inequalities instead via separate
common causes that is different screener-offs for the different correlations. Since the historical steps
that led to the problem are of some interest we briefly sketch the preliminaries of this result.

The conceptual difference between common common cause and separate common cause was first
recognized by Belnap and Szab6 (1996). Belnap and Szabé pointed out that in standard common-
causal explanations of the EPR correlations common cause is actually meant as a common common
cause accounting for all correlations. Therefore, in their analysis of the GHZ experiment Belnap
and Szab¢é applied a weaker concept, namely a system of separate common causes explaining the
correlations separately.

Concerning the algebraic-probabilistic features of the Reichenbachian common cause Hofer-Szabd,
Rédei, and Szabd (1999) proved the following proposition. Classical (and also non-classical) corre-
lations can be given a probabilistic common-causal explanation in the sense that any classical (and
non-classical) probability measure space with correlating pairs of events can be extended such that
the extension contains a Reichenbachian separate screener-off for each correlation. (For the precise
definitions see below.) Same authors proved in (2002) that this proposition does not apply if Re-
ichenbachian separate screener-offs are replaced with Reichenbachian common screener-offs. In other
words, classical probability measure spaces containing correlating pairs of events generally cannot be
extended such that the extension contains a Reichenbachian common screener-off for all correlations.



Thus, being a common common cause of a set of correlations turned out to be a much stronger
demand than being a common cause of a single correlation. Finally, Hofer-Szab6 and Reédei (2004,
2006) generalized the notion of the Reichenbachian common cause for situations when the correlation
is due to a system of different causes. This new concept was called Reichenbachian common cause
system. Propositions concerning the difference between Reichenbachian common cause systems and
Reichenbachian common common cause systems were proven similarly.

Szabo (2000) applied the concept of separate common cause for the EPR situation. Since factoriz-
ability, locality and no-conspiracy together entail various types of Bell inequalities, EPR correlations
cannot be given a local, non-conspiratorial, common-common-cause-system-model. Now, Szabd’s
idea was to replace the common common cause system with separate common causes and thus in
avoiding Bell inequalities to give a separate-common-cause-model for the EPR correlations. He con-
structed a number of separate-common-cause-models which were local and non-conspiratorial in the
usual sense that the measurement settings were statistically independent from the different com-
mon causes. However, the models were conspiratorial on a deeper level. The measurement settings
statistically correlated with various algebraic combinations of the separate common causes. After
numerous computer simulations aiming to remove the unwanted conspiracies Szabd concluded with
the conjecture in the Appendix of (2000) that EPR can not be given any local, non-conspiratorial,
separate-common-cause-model.

A talk given by Miklés Rédei in Bern in March 2000 prompted Grafhoff, Portmann, and Wiithrich
to investigate the possibility of separate common causes. In the course of their project they realized
that Szabd’s conjecture can be proved by deriving the Bell inequalities from separate common causes,
locality and no-conspiracy. This result has been published in (Grafihoff et al., 2005).

A crucial premise of the derivation of the Bell inequalities given by Grafshoff et al. was that the
correlation between some events had to be perfect. In our paper it will be shown that in the perfect
correlation case the assumptions of the separate-common-cause-derivation of the Bell inequalities
by Grafshoff et al. are reducible to a common screener-off system. In other words, the assump-
tions that are necessary for the derivation of the Bell inequalities in (Grafhoff et al., 2005) together
entail the assumptions of the usual common-common-cause-system-derivation. However, assuming
non-perfectly correlating pairs of events this entailment does not apply and hence a non-reducible
separate-common-cause-type derivation of the Bell inequalities can be given. We will present this
derivation in Section 7. Moreover, our derivation of the Bell inequalities in the non-perfect case
excludes a local, non-conspiratorial, separate-common-cause-model not only for perfect EPR, corre-
lations but for any EPR(6) set that is for any set of correlations lying in a d-neighborhood of perfect
EPR correlations.

In Section 2 we make explicit the concepts and propositions introduced informally in the In-
troduction. In Section 3 the standard common-common-cause-system-type derivation of the Bell
inequalities will be recalled. In Section 4 we recapitulate Szabd’s separate-common-cause-models
for the EPR and his conjecture. In Section 5 the separate-common-cause-type derivation of the
Bell inequalities by Grafhoff et al. will be presented. In Section 6 it will be pointed out that
the assumptions of Grafthoff’s separate-common-cause-type derivation of the Bell inequalities entail
a common-screener-off-system. Finally, in Section 7 a non-reducible separate-common-cause-type
derivation of the Bell inequalities will be presented.

2 The variety of common causes

Literature provides various terms for the notion of common cause, such as Reichenbachian common
cause (Reichenbach, 1956; Hofer-Szabd, Rédei, Szabd, 1999), single common cause (Belnap, Szabo,
1996), multiple common cause (Placek, 2000), common common cause (Hofer-Szabd, Rédei, Szabo,
2002), common cause variable (Wiithrich, 2004; Grahoff et al., 2005), and common cause system
(Hofer-Szabo, Rédei, 2004, 2006). Therefore, we first lay down our terminology in a series of def-



initions. Since the algebraic-probabilistic characterization yields only necessary but not sufficient
conditions for an event to be a common cause, in the following definitions we will discern the term
‘common cause’ on the one hand and the term ’screener-off’ on the other hand. Any event satisfying
the defining conditions of the definitions will be referred to as a ’screener-oftf’, whereas the same
conditions will be only necessary but not sufficient conditions for an event to be a common cause.

We begin with Reichenbach’s original definition of the common cause (Reichenbach, 1956). Let
(2, p) be a classical probability measure space and let A, B € ) be two positively correlating events,
ie.

p(AB) > p(A)p(B) (1)
Reichenbach characterizes the common cause of the correlation by the following necessary conditions:

Definition 1. An event C in (Q is said to be the Reichenbachian common cause of the correlation
between A and B only if the events A, B and C satisfy the following relations:

p(ABIC) = p(A|C)p(B|C) 2)
p(AB|C) p(A|C)p(BIC) (3)
p(AIC) > p(A[C) (4)
p(BIC) > p(B|C) ()

where C' denotes the complement of C' and p(X|Y) = p(XY)/p(Y) denotes the conditional proba-
bility of X on condition Y. Equations (2)-(3) are called ”screening-off” properties since conditioning
on C and C, respectively screens off the correlation between A and B. Inequalities (4)-(5) express
the "positive statistical relevance” of the cause C on the two effects A and B, respectively. To stress
the fact that conditions (2)-(5) are only necessary but not sufficient conditions for an event C to be
a Reichenbachian common cause, we refer to any event C' in Q satisfying (2)-(5) as a Reichenbachian
screener-off of the correlation between A and B.

Now, what is a Reichenbachian common common cause? Let (€2, p) be a classical probability measure
space as before and let (A1, B1) and (Asq, Bs), respectively be two positively correlating pairs of events
in Q,ie. fori=1,2

p(AiB;) > p(A;)p(B;) (6)
Then the Reichenbachian common common cause of both correlations is defined as follows:

Definition 2. An event C in ( is said to be the Reichenbachian common common cause of corre-
lations (Aj, B1) and (As, Bs), respectively only if for i = 1,2 the following relations are satisfied:

p(AiBi|C) = p(A:i]C)p(B;|C) (7)
p(A;Bi|C) = p(A;i|C)p(B;|C) (8)
p(4]C) > p(4i|C) ©)
p(BilC) > p(Bi|C) (10)

Again, any event C in Q satisfying (7)-(10) for the correlations (A;, B1) and (As, B2), respectively
is called a Reichenbachian common screener-off of both correlations.

While the definition of the Reichenbachian common cause refers to a single correlating pair, the
definition of the Reichenbachian common common cause relates to two (or more) correlations. This
later definition requires much more from C, as it is shown in the following two propositions:



Proposition 1. [Reichenbachian screener-off extendability] Let (£2,p) be a classical probability
measure space and let (A4, B) be a correlating pair in Q. Then there is an (£, p’) extension of
(2, p) such that for the correlation (A, B) there exists a Reichenbachian screener-off C' in (', p’).
(Hofer-Szabo, Rédei, Szabo, 1999)

Proposition 2. [No Reichenbachian common screener-off extendability] There exists an (€2, p) clas-
sical probability measure space and two correlating pairs (A1, B1) and (Asq, By), respectively in
such that there is no (€', p’) extension of (2, p) which contains a Reichenbachian common screener-off
Cin (', p') for both correlations. (Hofer-Szabo, Rédei, Szabo, 2000)

Proposition 1 claims that for a single correlating pair a common-cause-type explanation is always
possible by extending the probability measure space in an appropriate way. (Moreover, if ) contains
n € N correlating pairs, each correlation can be given a Reichenbachian-separate-common-cause-
type explanation in the sense that we apply the above extension n-times in turn for (€2, p) such that
the extended Q™ contains a Reichenbachian separate screener-off for each correlation.) However,
according to Proposition 2 this strategy does not work generally if we are going to obtain the same
Reichenbachian common cause for the two (or more) correlating pairs. Thus, being a Reichenbachian
common common cause imposes much stronger demand on C' than simply being a Reichenbachian
common cause.

What is the situation if the correlation is due not only to a single causal factor C' but to a system
of different causes? In other words, how can the notion of the Reichenbachian common cause be
generalized for situations when more causes are present? This idea is spelled out in the next definition.

Definition 3. Let (2, p) be a classical probability measure space and let A and B be two correlating
events in Q. A partition {C;}ics of Q is said to be the Reichenbachian common cause system for the
correlation (A, B) only if for all ¢,j € I (i # j) the following two conditions are satisfied:

p(AB|C;) = p(A|Cy)p(B|C;) (11)
(p(A|C;) — p(A|C))(p(B|Cs) — p(B|Cj)) >0 (12)

We refer to an event C in € satisfying (11)-(12) as a Reichenbachian screener-off system of the
correlation.

The above definition is a natural generalization of Reichenbach’s original definition of the common
cause to the case when more than one single factor contribute to the correlation. Every element
of the partition screens the correlations off and any two elements in the partition behave like a
Reichenbachian common cause and its complement. The cardinality of the index set I (i.e. the
number of events in the partition) is called the size of the Reichenbachian common cause system. It
is straightforward to see that the partition {C,C} generated by the Reichenbachian common cause
C is a Reichenbachian common cause system of size 2. To stress this fact we will use the term
"Reichenbachian common cause’ also for the partition {C,C7}.

However, in the standard EPR-Bell literature common cause of a correlation is used in a different
way, purely as a factorizing partition of the correlation. To be in tune with this usage of the term
the notion of common cause and common cause system will be defined as follows:

Let (€, p) be a classical probability measure space and let (A, B) be a correlating pair of events
in Q.

Definition 4. An event C'in (2 is said to be the common cause of the correlation only if the following
relations hold:

p(AB|C) = p(A|C)p(B|C) (13)
p(ABIC) = p(A|C)p(B|C) (14)



Definition 5. A partition {C;};c; of Q is said to be the common cause system of the pair (A, B)
only if for all ¢ € I the following conditions are satisfied:

p(AB|C;) = p(A|Ci)p(B|C;) (15)

Finally, an event C in  satisfying (13)-(14) is called a screener-off , and a partition {C;};er of Q
satisfying (15) is called a screener-off system of the correlation (A, B).

It is obvious that the definition of the Reichenbachian common cause turns into that of the
common cause if we drop inequalities (4)-(5), and in the same manner, the definition of the Reichen-
bachian common cause system leads to that of the common cause system if we drop inequality (12).
Thus, we obtain four different common-causal definitions, namely Reichenbachian common cause,
Reichenbachian common cause system, common cause, and common cause system, respectively. It
can be seen easily in the appropriate definition that Reichenbachian common cause is the strongest
of the four notions and common cause system is the weakest.

Again, it must be obvious how the definitions of the appropriate common common cause, common
common cause system, and Reichenbachian common common cause system, respectively arise if we
take not one but two correlating pairs (A1, B1) and (A, Bs), respectively.

In Proposition 1 it was claimed that for any correlating pair (A, B) in a classical probability
measure space (£2,p) the algebra (2 can be extended in such a way that there exists a Reichenbachian
screener-off for the correlation in the extended algebra. Since the definition of the Reichenbachian
common cause is stronger than that of the other three types of common cause, Proposition 1 remains
valid if we replace Reichenbachian screener-off with screener-off, screener-off system and Reichen-
bachian screener-off system, respectively. Thus, classical correlations can be given a common-cause-
explanation in any of the four different ways.

However, Proposition 2 claimed that no Reichenbachian-common-common-cause-explanation can
be generally provided for two different correlations in a classical probability measure space by ex-
tending the algebra. Again, since the definition of the Reichenbachian common cause is stronger
than that of the other three notions, extendability can hold for the weaker cases. And indeed, this
is the case. For the case of the common cause system the following proposition holds:

Proposition 3. Let (2, p) be a classical probability measure space and let (A, B1) and (Asg, Bs),
respectively be two arbitrary correlating pairs in ). Then the partition generated by the events A,
Ay, By and Bs yields a common screener-off system in €2 for both correlations.

Obviously, the partition generated by the correlating events screens off the correlations between
the pairs (A, B1) and (A, Bs), respectively and hence it trivially regards as a common screener-off
system. Furthermore, this common screener-off system takes place in the original algebra and hence
there is no need to extend (2. For these reasons the common screener-off system due to this partition
is not a physically sound common-causal explanation of the correlations.

3 Common common cause system and Bell inequalities

Consider the usual EPR experimental setup with a pair of spin—% particles prepared in the singlet
state |Ws). Let p(a;) denote the probability that the spin measurement apparatus is set to measure
the spin in direction ¢ (i = 1,2,3) in the left wing and let p(b;) denote the same for direction
J (j =1,2,3) in the right wing. Furthermore, let p(A;) stand for the probability that the spin

measurement in direction 7 in the left wing yields the result +1 and let p(A;) denote the probability

that the measurement in direction ¢ in the left wing yields the result —1. Let p(B;) and p(B;) be
defined in a similar way in the right wing for direction j. (See Fig. 1) For non-perpendicular directions
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Figure 1: EPR-Bohm setup for spin-§ particles

1 and j, respectively quantum mechanics yields correlation between the conditional probabilities via

1y O,

P(AiBjlaib;) = Tr(Wis,) Pa, ® Ps,) = 5 sin?( 2b- ) (16)
1

p(Ai\aibj) = T’I”(WN,S) PAi ® I) = 5 (17)
1

p(Bjlaibj) = Tr(Wg,y [ ® Pp;) = 3 (18)

where W)y, ) is the density operator pertaining to the pure state [¥;); P4, and Pp, denote projections
on the eigensubspaces with eigenvalue +1 of the spin operators associated with directions a; and b;
respectively; and 0,,,, denotes the angle between directions a; and b;. Specially, if a; and b; are
parallel directions then there is a perfect anticorrelation between the outcomes via

p(AiBjlaib;) = p(Ailaib;) = p(Bjlab;) = % (19)
Now, a full-fledged common-causal explanation of the EPR correlations must comply with three
demands on the statistical level. Firstly, all the correlations must be screened-off by a common com-
mon cause system. (Recall that the definition of the common cause system was the weakest among
the four different definitions of the common cause.) Secondly, statistical relations among the measure-
ment outcomes and the measurement, settings must reflect the spacetime location of these events in
the sense that spatially separated events have to be statistically independent. Thirdly, measurement
settings should not be influenced by the common common cause system that is the measurement
settings and the common common cause system also have to be statistically independent. We refer
to these requirements in turn as common screener-off system, locality and no-conspiracy. The precise
probabilistic formulation of these demands is the following:

1. Common screener-off system: There exists a classical probability measure space (2,p) and a
{C)},_, partition of Q2 such that for every A;, B;, a; and b; in Q (4,5 = 1,2,3; k =1...n)
the following factorization holds:

p(A;Bjlaib;jCy) = p(Aila;ib;Cr)p(Bjlaib;Cy) (20)

2. Locality: For every A;, Bj, a;, bj and C in Q (i,j =1,2,3; k = 1...n) the following screening-
off holds:

p(Aila;b;Cy) = p(Aila;Ck)  p(B;laib;Cy) = p(Bj|b;jCk) (21)

3. No-conspiracy: Consider the algebra ® C ) consisting of the C} elements in the partition
{Ci},_, and all the possible disjunctions thereof. Then for any element £ € © and a;, b; in



Q (i,7 = 1,2, 3) the following independence holds:
p(aib; E) = p(a;b;)p(E) (22)

In standard common-causal explanations one usually demands instead of (22) that for every a;, b,
and Cy in Q (i,7 =1,2,3; k =1...n) the following independence should hold:

p(aib;Cy) = p(a;b;)p(Ck) (23)

It is straightforward to see that (23) entails (22) that is the independence of the elements of the com-
mon common cause system from the choice of the measurement settings assures that any disjunction
of the elements of the common common cause system will also be independence of the choice of the
measurement settings. Thus, in the case of the common-common-cause-system-type explanations
equation (23) will suffice as a no-conspiracy requirement.

However, as it is well-known (20), (21), and (23) result in various Bell inequalities which are
violated for special measurement settings in the EPR experiment. Consequently, EPR correlations
fall short of local, non-conspiratorial, common-common-cause-system-type explanation. One premise
has to be given up.

4 Szabd’s separate-common-cause-models for the EPR corre-
lations

As it was noted in the Introduction Szabd’s idea was to replace the concept of common common cause
system with that of separate common causes and to provide a local, non-conspiratorial, separate-
common-cause-explanation for the EPR. A separate-common-cause-explanation for the EPR consists
in finding nine? C;; events (i, = 1,2,3) such that screening-off, locality, and no-conspiracy hold in
the following sense:

1. Separate screener-offs: There exists a classical probability measure space (€2, p) and nine C;;
events in ) such that for every A;, Bj, a;, b; (i,7 = 1,2,3) the following factorizations hold:

p(AiBj|aibJ£'ij) = p(Ai|aibj€ij)P(Bj\aibjgij) (24)
p(AiBjlaib;jCij) = p(Ailaib;Cij)p(Bjlaib;Cij) (25)

2. Locality: For every A;, Bj, a;, b; (1,7 = 1,2,3) and the appropriate C;; in Q the following
screening-offs hold:

p(AilaibLCij) = p(AiIaLCij), p(Bj|aibj9«j) = p(Bj|bj€ij) (26)
p(AilaibjCiz) = p(Aila;Cij), p(BjlaibjCiy) = p(B;|biCiy) (27)

3. No-conspiracy: Consider the algebra € C ) consisting of the separate common causes Cj; in €2
(i,7 =1,2,3) and all the possible conjunctions and disjunctions thereof. Then for any element
F e canda;,bjin Q (i,j =1,2,3) the following independence holds:

p(aibj F') = p(asb;)p(F) (28)

1For a full no-conspiracy one should require the independence of the choice of the measurement settings from the
conjunctions of any element of ® and any other elements in 2 representing a physically independent event from the
choice of the measurement settings. However, for our purposes (22) will suffice.

2In (2000) Szabo used the 2 x 2 version of the EPR scenario with ¢,j = 1,2 hence the number of the separate
common causes was four.




Now, consider again the ’reduced’ version of no-conspiracy similar to the common-common-cause-
system-type case in the last Section. Assume that for every a;, b; and Cy; in Q (4,4, k,1 = 1,2,3)
the following independence holds:

p(aibjCri) = p(aib;)p(Cri) (29)

Here, requirement (29) does not entail (28) that is the independence of the separate common causes
from the choice of the measurement settings does not assure that any combination of the separate
causes and their complement will also be independent from the choice of the measurement settings.
Thus, in the case of separate-common-cause-system-type explanations (29) does not regard as a
sufficient no-conspiracy requirement.

The difference between requirements (28) and (29) is nicely illustrated in (Szabo, 2000). Szabo
provided a number of separate-common-cause-models for the EPR situation such that the models
were local and non-conspiratorial in the sense of (29). However, the models were conspiratorial in
the sense of (28). As Szab6 puts it, “combinations of the common cause events as C;;C;;, Ci; UCjr,
C;;CijCyj ete. do statistically correlate with the measurement operations” (Szabo, 2000). Finally,
after numerous computer simulations aiming to remove the unwanted conspiracies Szabé concluded
with the conjecture that EPR can not be given any local, separate-common-cause-model free from
all type of conspiracies.

5 The separate-common-causes-type derivation of the Bell in-
equalities by Grafshoff et al.

Szabd’s conjecture was proved by Grafshoff, Portmann, and Wiithrich in the course of their project
initiated in 2000. As they write it in (Grafhoff et al., 2005, p. 668): "Whether a model can
be constructed without these correlations [conspiracies] was posed as an open question by Szabo.
This question is answered negatively by the derivation of Bell’s inequalities.” Having seen Szabd’s
numerous conspiratorial separate-common-cause-models for the EPR correlations Grafshoff et al.
turned the problem upside-down and derived the Bell inequalities from the same premises. The
details of the derivation are the following;:

Consider three pairs of (conditionally) perfectly anticorrelating events (A4;, B;) (i = 1,2,3) in Q
that is

p(A;Bilaib;) = p(Aila;ib;) = p(B;|ab;) (30)

where a; and b; in €) represent the choice of the measurement settings as above. Suppose that each
correlating pair possesses a separate common cause® C; that is

p(AiBila;ibiCi) = p(AilaibiCi)p(BilaibiCy) (32)

holds for i = 1,2,3. From assumptions (30)-(32) the deterministic nature of the causes follows that
isforalli=1,2,3

P(Ai\aibici) = p(§i|aibici)
p(Ai|aibiUi) = p(§i|aibi€i)

1 (33)
0 (34)

Furthermore, assume that each common cause C; (i = 1,2, 3) is local in the following sense:
p(AilaibiCi) = p(AilaiCy),  p(BilaibiCi) = p(Bi|biCy) (35)
p(Aila;ib;C;) = p(Aila;Cy),  p(BilaibiCi) = p(Bi|b:Cs) (36)

3In (GraRhoff et al., 2005) the authors start from separate common cause systems instead of separate common
causes. Then they point out that in the case of perfect correlations the former reduces to the latter.




Requirements (35)-(36) transform (33)-(34) into

p(AilaiCy) = p(BilbiCi) = 1 (37)
p(AilaiCi) = p(Bi|b:Ci) = 0 (38)

Finally, assume that for all 4, 5 = 1,2, 3; i # j the following type of no-conspiracy holds:
p(aib;CiCy) = p(aib;)p(CiC;) (39)
Now, from (37)-(39) one obtains for 7,5 =1,2,3; i # j
p(AiBjla;b;) = p(CiC) (40)

Using the theorem of total probability and some natural assumptions spelling out the probabilistic
feature of the model Grafhoff et al. arrive at the following (Wigner type) Bell inequalities

p(AiBjlaib;) < p(AiBylaibr) + p(ArBjlakb;) (41)

where 4,5,k =1,2,3 and i # j,j # k., k # 1.

This derivation of the Bell inequalities from separate common causes proves Szabd’s conjecture.
Recall that Szabd’s conjecture was that there existed no local, non-conspiratorial, separate-common-
cause-model for the EPR correlations. Now, consider the EPR situation with the co-planar setting
Oaroy = > ass = 5, Gayps = %’r, 0u,;p, = 0 where a; and b; (i = 1,2,3) are parallel measuring
directions in the opposite wings. According to quantum mechanics, measuring in parallel directions
yields perfect anticorrelation between the outcomes via (19) and hence the assumption (30) of the
derivation by Grafthoff et al. holds. Now, any local, non-conspiratorial, separate-common-cause-
model for these perfectly anticorrelating pairs of events results in the Bell inequalities (41). However,
for the above measuring directions the conditional probabilities yield

2—2

p(AlBg|a1b2) = 8\/— (42)
1

p(A2Bslazbs) = 1 (43)
242

for which the Bell inequalities (41) are maximally violated. Thus, Szabd’s conjecture that there
exists no local, non-conspiratorial, separate-common-cause-model for all EPR correlations is proven.

6 Separate- versus common-common-cause-type derivations of
the Bell inequalities

At the end of the paper Grafthoff, Portmann, and Wiithrich claim the following: “The derivation of
the Bell inequality presented here is an improvement on the usual Bell-type arguments . .. it does not
assume a common common cause variable [system] for different correlations” (Grafthoff et al., 2005, p.
676). Although this claim is true, it does not mean that the separate-common-cause-type derivation
of the Bell inequalities presented by Grafthoff et al. has no connection to a common-common-cause-
system-type derivation. In this Section it will be argued that the assumptions of the above separate-
common-cause-type derivation entail the mathematical assumptions of the usual common-common-
cause-system-type derivation. We achieve this by explicitly constructing the common screener-off
system which underlies the above separate screener-offs.



Consider the 2-partitions {C;,C;} in (31)-(32) where i = 1,2,3 and combine them in a finer
n-partition according to

3
{D%}ecronys = ﬂ cit (45)
i=1
where ¢; € {0,1} for all i = 1,2,3, and C;* = C; ife; = 1 and C;* = C; if &; = 0. (Obviously,
{D}.cq0,1y¢ is maximally an 8-partition.) E‘he elements of {D°}_(( ;s are the logical atoms of the
algebra generated by the 2-partitions {C;, C;} (i = 1,2, 3).
Now, we prove in turn that the partition {D*} 0,1}% screens all correlations (30) off, it is local,
and non-conspiratorial.

eef

1. Screening-off. Since the anticorrelation between events (A;, B;) in Q (i = 1,2,3) is perfect, the
appropriate separate common causes are deterministic in the sense of (33)-(34). As for all ¢ € {0, 1}3
there exists an i = 1,2, 3 such that D C C; or D C C; therefore for all ¢ € {0, 1}‘3

p(A;|a;b; DF) = p(B;|a;b; DF) € {0,1} (46)
and hence for all ¢ € {0,1}°
p(A;Bila;ib;D?) = p(A;|a;b;D*)p(B;|a;b; D?) (47)

which means that {D°}_. {013 18 @ (deterministic) common screener-off system of all three correla-
tions (30).

2. Locality. Again, since for all € € {0, 1}3 there exists an i = 1,2,3 such that D C C; or D C C;
therefore from (35)-(36) it follows that for all £ € {0,1}*

p(Ailaibi D) = p(Aila; D7) p(Bjila;b; D) = p(B;|b;D?) (48)
which means that the common screener-off system {D®}__ {0,133 is local.

3. No-conspiracy. Recall that the aim of Grafhoff et al. was to prove Szabd’s conjecture that
there existed no local, separate-common-cause-model for the EPR which is free from all type of
conspiracies in the sense of (28). To achieve this goal, it is enough to derive Bell inequalities from
the no-conspiracy requirement of any element F' of the generated algebra € by the separate common
causes. They picked out the elements Ciéj (1,7 = 1,2,3;i # j) and required no-conspiracy in form
(39). The simple reason why Grafhoff et al. employed Ciéj in the no-conspiracy requirement was
that in the derivation of the Bell inequalities (41) it was the combined term C;C; (i,j = 1,2,3;i # j)
that was needed.

Now, no-conspiracy (39) can be translated into the common-common-cause-screener-off-model
{D?}.cqo,1ys as follows. Consider the algebra € generated by the separate screener-offs C; (i =
1,2,3) and the algebra ® generated by the common screener-off system {D*}_. {0,133 respectively.
Regarding relation (45) it is straightforward to verify that the two algebras € and © are identical.
Since the elements C;C; (i,7 = 1,2,3;i # j) in (39) are identical with the disjunctions D% =
D% U DF where DY* = C;C;Cy and DY* = C;C;C}, therefore no-conspiracy (39) comes to be
equivalent to

plaib; D7) = p(a;b;)p(D™) (49)

Thus, requirement (49) prescribes the same no-conspiracy for the common screener-off system
{D%}.c10,1ys as requirement (39) prescribes for the separate screener-offs.
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To sum up, assuming perfectly anticorrelating pairs of events the separate-common-screener-off-
model of Grafhoff et al. becomes identical with a common-screener-off-system-model via relation
(45) in the following way. Screening-off relations (31)-(32) of the separate screener-offs are identical
with screening-off relation (47) of the common screener-off system. Locality (35)-(36) of the separate
screener-offs is equivalent to locality (48) of the common screener-off system. No-conspiracy require-
ment (39) for some special conjunctions of the separate screener-offs is identical with no-conspiracy
(49) for some special disjunctions of the elements of the common screener-off system.

Now, according to the derivation of Grafhoff et al. requirements (31)-(39) together entail Bell in-
equalities (41). Consequently, the equivalent assumptions (47), (48) and (49), respectively will entail
the same Bell inequalities. Regarding this fact, the separate-common-screener-off-type derivation of
Grafshoff et al. is reducible to a common-screener-off-system-type derivation.

Expressing the above results in the ’common cause’ terminology instead of the ’screener-off’
terminology the situation is the following. Since the notion of common cause is stronger then that
of the appropriate screener-off, we are not allowed to interpret our result as a reduction of the set of
the local, non-conspiratorial separate common causes to a local, non-conspiratorial common common
cause(!) system. All we can say is that we reduced the set of the local, non-conspiratorial separate
common causes of Grafshoff et al. to a local, non-conspiratorial common screener-off(!) system which
is not necessarily a common common cause system. Notice however that standard common-common-
cause-system-type derivations of the Bell inequalities make use of no other properties of the common
common cause system than screening-off, locality and no-conspiracy. In this sense our reduction
reproduces all the essential assumptions of a common-common-cause-system-type derivation of the
Bell inequalities.

7 A non-reducible separate-common-cause-type derivation of
the Bell inequalities

The derivation of Grafshoff et al. crucially depended on the fact that the correlations were perfect.
If requirement (30) is dropped the Bell inequalities (41) can not be derived the way they have done.
This fact leaves open the question whether any set of non-perfect EPR correlations can be given a
local, non-conspiratorial, separate-common-cause-model. Grafhoff et al. (2005, p. 677) put it as
follows: "We have not been able to derive a Bell-type inequality ruling out perfect correlations and
allowing different common cause variables [separate common causes|. If PCORR [perfect correlation]
is indeed a necessary assumption for our derivation of the Bell inequality, it should be possible to
construct a model in which PCORR [perfect correlation] does not hold (being violated by arbitrary
small deviation, say).”

In other words, the derivation of the Bell inequalities by Grafhoff et al. from perfectly cor-
relating pairs of events does not exclude the possibility of a separate-common-cause-explanation
of the non-perfect EPR correlations. Since perfect correlations can not be tested experimentally
with absolute precision, the derivation of the Bell inequalities from perfect correlations does not
provide an experimentally verifiable refutation of separate-common-cause-models for the EPR. In
the following we close this experimental loophole of the project of Grafhoff et al. by presenting a
separate-common-cause-derivation of some Bell-like inequalities from non-perfect correlations.

Consider three pairs of (conditionally) correlating events (A;, B;) (i = 1,2,3) in  and assume
that each correlating pair possesses a separate common cause C;, that is

p(AiBilab:;Ci) = p(Ailaib;C;)p(BilaibC;) (50)
p(AiBi|ab;Cs) = p(AilabiCi)p(Bslaib;Cs) (51)

holds for ¢ = 1,2,3. Furthermore, assume that each common cause C; (i = 1,2,3) is local in the
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following sense:

p(Aila;ibiC;) = p(Aila;Ci),  p(Bilaib;C;) = p(B;|b;C;) (52)
P(A;ila;ib;C;) = p(Aila;Ci), p(Bila;ib;C;) = p(B;|b;C5) (53)

Let us denote the conditional probabilities by

pAilaiCy) = 17 (54)
p(BilbiCi) = 1-1f (55)
p(AilaiCi) = 7 (56)
p(Bilb:iCs) = 77 (57)
Finally, assume that for all 4,5 = 1,2, 3; i # j the following type of no-conspiracy holds:
p(aib;CiCy) = p(aib;)p(CiCy) (58)

Now, from (50)-(58) one obtains the following bounds for the conditional probabilities (i,5 = 1,2, 3;
i #J):

Bilab o4 p@C) g p(0;Cj) —
p(AiBjlaib;) > (1 W b CiCy) %Bp(aibj Cﬁj))p(czc])
_A p(a;C;) p(b;C5) = '
+ (W plaib;(C; UC,)) +5 m) p(Ci U Cy) (59)
B:lasbs 7. =A p(a:Ci) 4 p(b;C;) - 4
p(AiBjlaibj) < p(CiC) + <% aibs (G U ) vfp(aibj@ch))>p(clucj) (60)

Using the theorem of total probability after some tedious but trivial calculation one arrives at the
following Bell-like inequalities

p(AiBjlaib;) + fl < p(A;Bilaiby) + p(ArBjlarb)) (61)

where 7,5,k = 1,2,3 and i # j,j # k,k # i and the functions f. are the following:

ko _ =A p(aiai) B p(bka) =
v (% P(abe@UCR) ¥ plabi(C; U ck))> PC: V)
_a_ p(arCy) B p(b;C}) _ ‘
’ (%C p(axb;(Cr UCy)) i p(agb;(Cy U Cj))> p(CrUC)
_ (=4 p(a:Ci) B p(b;C;) — ‘
(% p(a;b;(C; UCy)) i p(a;b;(C; U Cj))) p(Ci U Cy)

a4 pla;Cy) _5 pbiCy) ) =
( p(aibyCiCr)  '* p(aibpCiCy) (G:C%)

4 plarCy) _g pb;,C)) > =
< " planb;CrCy) 7 plarb;CiC5) PICkC)

Now, let us introduce a so-called ’deviation parameter’ which measures the maximum deviation
of a set of correlations from perfect anticorrelation. In other words, let § € [0, 1] be a real number
such that

0= mzax{p(Ai|aibz) p(AiBilaib); p(Bslaib;) — p(AiBilaib;)} (62)
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It is straightforward to see that from assumptions (54)-(57) and (62) it follows that for all i = 1,2,3

] 0

1 1 4 o5 1 1
s—7— e <AAE <S5 - 63
2 1 p(cy ST 2T\ p(C;) (63)
1 16 . 1 16

Gt == <TAAP <+ 2+ —= 64
2 N1y ST ST\ A T @) (69

and hence all 7;4, 7B, 7{‘ and 713 , respectively (i = 1,2, 3) vanish as J tends to 0. However, with %A,
7P, 74 and 7P tending to zero the functions fikj also tend (continuously) to zero and the Bell-like
inequalities (61) tend (continuously) to the Bell inequalities (41) derived from perfect anticorrelation.
Concisely, the closer the correlations are to perfect anticorrelation, the closer are the derived Bell-like
inequalities to the Bell inequalities (41). Let Bell(d) denote those Bell-like inequalities that result
from a set of correlations of deviation parameter 9.

Now, ;:T(r)nsider again the EPR situation with the measurement directions 04,5, = 7, 04,0, = 5,

0a0, = 5 and 04,5, = 0, respectively. Because of the parallel measuring directions quantum

mechanics predicts a perfect correlation between the events (A;, B;) (i = 1,2,3). As stated before,
for this setting Bell inequalities are maximally (\/5 < 1!) violated. However, assume now that due to
experimental imperfections we are unable to test the perfect anticorrelations with absolute precision
and all we know is that the deviation from perfect anticorrelation is less than §. Denote any set of
such correlations by EPR(d). Now, regarding that the Bell(d) inequalities continuously tend with §
to the maximally violated Bell inequalities (41), there exists a ’deviation threshold’ o € [0, 1] such
that for any EPR(0) set such that 0 < o the resulting Bell(d) inequalities are violated. This excludes
that for arbitrary small deviation from perfect anticorrelation there exists a separate-common-cause-
system-model for the EPR.

There exists another interpretation of the EPR(J) set. Suppose we have no limit on experimental
precision. Suppose furthermore that the measuring directions are chosen ’very close’ to the above
parallel settings that is 04,0, = T, Ougay = 5, Oayay = 25 and 0 < 6,5, < 2arcsin V20, where o is
the ’deviation threshold’. Then due to (16) the Bell inequalities (61) will be again violated. In other
words, assuming absolutely precise experiments there exists a set of measurement directions around
the setting 04,0, = 7, Oubs = 5, Uaypy = 3% and 0,5, = 0 such that for any measurement direction
in this set the Bell inequalities (61) are violated. Thus, there exists no local, non-conspiratorial,
separate-common-cause-model for this set.

A very similar result for the Clauser-Horne inequality assuming separate-common-cause-systems
was derived by Portmann and Wiithrich (2007), where the authors explicitly calculate the deviation
parameter. In our proof we arrive at the Bell inequalities without calculating the deviation parameter,
simply exploiting the fact that the conditional probabilities are continuous.

One final point has to be stressed regarding the above derivation. The equivalence of the
separate-common-screener-off-derivation and the appropriate common-common-cause-screener-off-
type derivation offered in the previous Section depended crucially on the fact that the correlations
were perfect. In the non-perfect case the screening-off equations (31)-(32) does not imply (47)
and thus {D°}__ {0,132 does not provide a common screener-off system for the correlations. Conse-
quently, derivations of the Bell inequalities from a set of non-perfectly correlating pairs of events is
not automatically reducible to common-screener-off-system-type derivations. In other words, in the
non-perfect case Bell inequalities do not obtain indirectly due to an underlying common screener-off
system but directly due to the separate common causes.*

4Obviously, other common screener-off systems might exist for the given set of correlations but they bear no
logical relation to the original separate common causes via (45). The general question whether there exist separate-
common-cause-derivations of Bell-like inequalities with no (underlying) common common cause systems is open. (See
(Portmann and Wiithrich, 2007)).
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8 Conclusions

In the paper we have shown the following. The local, non-conspriratorial separate-common-cause-
type derivation of the Bell inequalities by Grafshoff et al. based on perfect anticorrelations is reducible
to a local, non-conspiratorial common-screener-off-system-type derivation. However, not assuming
perfect anticorrelations a non-reducible separate-common-cause-type derivation of some Bell(d) in-
equalities can be presented. The violation of these Bell(d) inequalities proves Szab6’s (2000) conjec-
ture concerning the non-existence of a local, non-conspiratorial, separate-common-cause-model for
an EPR(9) set of correlations.
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