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1. INTRODUCTION 
The pendulum was crucial throughout Galileo’s career. The 

properties of the pendulum that Galileo was fascinated with from 

very early on concern especially time. A 1602 letter (cf. T1) is the 

earliest surviving document in which Galileo discusses the 

hypothesis of the pendulum’s isochronism.1 In the letter, Galileo 

claims that all pendulums are isochronous. He says that he has long 

been trying to demonstrate isochronism mechanically, but that so 

far he has been unable to succeed (see T1, for the qualification of 

the proof as mechanical). From 1602 onwards Galileo referred to 

pendulum isochronism as an admirable property but failed to 

demonstrate it.  

 

The pendulum is the most “open ended” of Galileo’s artefacts. 

After working on my reconstructed pendulums for some time, I 

became convinced that the pendulum had the potential to allow 

Galileo to break new ground. But I also realized that its elusive 

nature sometimes threatened to destabilize the progress that 

Galileo was making on other fronts. It is this ambivalent nature 

that, I thought, might prove invaluable in trying to understand the 

crucial aspects of Galileo’s innovative methodology.  

 

To explore Galileo’s innovative methodology, I have repeated 

most of his path-breaking experiments with pendulums; I have 

investigated the robustness of pendulum effects, otherwise difficult 

                                                 
1 Isochronism is the property of certain physical systems to oscillate at a 

constant frequency regardless of the amplitude of the oscillations. We now know 

that simple pendulums are not isochronous. Note that isochronism is not a 

Galilean word. As the reader will see (cf. the texts in Appendix 3) Galileo uses 

other, revealing turns of phrase to refer to this property. I will keep to 

isochronism, though, since it has become common in the literature.  
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to capture, with computer simulations; and I have repeated crucial 

calculations done by Galileo. In this paper, I will relate the 

discoveries that I made, and emphasize their significance for our 

understanding of Galileo’s innovative methodology. 

 

I am not the first to have been beguiled by Galileo’s pendulums.2 

Ronald Naylor, who contributed the most to our understanding of 

Galileo’s work with pendulums, reconstructed Galileo’s 

experiments long ago. He summarizes his findings as follows. 

“One of Galileo’s most renowned discoveries was the isochronism 

of the simple pendulum. In the Discorsi, Galileo used this 

discovery to good effect – though his claim that the pendulum was 

isochronous for all arcs less than 180° has created something of a 

puzzle for the history of science. The question arises as to how far 

the evidence available to Galileo supported his claims for 

isochronism.”3 Naylor concludes that “Galileo was almost 

certainly familiar with a much wider range of evidence than he 

indicated in the Discorsi. The examination of the evidence 

available to Galileo indicates that, though it provided ample 

support for his thesis, it was certainly not as conclusive as he 

implies in the Discorsi. It also seems clear that Galileo was bound 

to be aware of this”.4 What did the “much wider range of 

evidence” really consist in? What did Galileo know that he was not 

                                                 
2 Cf., for example, Koyré 1953, Ariotti 1968, 1972, Drake 1975, 1995, 1999, 

Naylor 1974, 1977, 2003, MacLachlan 1976, Costabel 1978, Hill 1994, 

Machamar & Hepburn 2004, and Matthews 2004. 
3 Naylor 1974, p. 23. 
4 Naylor 1974, p. 23. The Discorsi referred to by Naylor are the Two new 

sciences. 
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willing to make public? One scholar has gone so far as to indict 

Galileo of knowingly publishing false assertions.5  

 

Isochronism is only one pendulum property that fascinated Galileo. 

Indeed he put the pendulum to many different and ingenious uses. 

He experimented with lead and cork bobs, for example, in order to 

investigate the naturally accelerated motion of different materials. 

The historian and physicist, James MacLachlan, who also 

reconstructed Galileo’s experiments, argued that Galileo’s 

“observations with balls of cork and lead” are “an imaginary 

experiment”, and that Galileo’s “claim that the period of a 

pendulum is independent of amplitude” was “based more on 

mathematical deduction than on experimental observation”.6 So 

did Galileo not really perform his experiments, as also Alexandre 

Koyré thought?7  

 

More or less the same conclusion was reached by Pierre Costabel, 

but the embarrassment that Galileo caused to him might have been 

avoided, if Costabel had repeated the experiments; for, he would 

have seen that there is nothing impossible in what Galileo has to 

say about cork and lead pendulums (as we shall see in the next 

section).8  

                                                 
5 “Galileo […] published some things (the isochronism of the circular 

pendulum) which he knew to be false” (Hill 1994, p. 513). In my view, Hill’s 

conclusion is untenable, and will be discussed in section 3. 
6 MacLachlan 1974, p. 173. 
7 Koyré 1966. 
8 “It is also clear that Galileo deceived himself: if he had followed step-by-step , 

rigorously, the constitutive elements of his experiment, he should have 

concluded that theoretical presuppositions implied the expectation of the 

disagreement of the pendulums; by claiming that the experiment is negative, 

Galileo embarrasses us: has he really posed a question to nature, but an ill-posed 
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The scholars mentioned so far have all been intrigued by what I 

call the “matching” problem, i.e., the question of whether Galileo’s 

reports really match the outcome of his experiments. In my view, 

this approach has been too narrowly focused, and has restricted the 

scope of inquiry. Further, the matching problem rests on arbitrary, 

often anachronistic assumptions about what constitutes good or 

bad empirical evidence for a theoretical claim— a question which 

has hardly ever been raised in this Galileo literature (perhaps not 

even thought to be urgent). There is another dubious assumption, 

often underlying this literature, namely, that texts reporting 

experimental results can be understood by a perspective solely 

internal to the texts (obviously except in cases, such as Naylor’s 

and Thomas Settle’s studies9,  where the experiments have been 

repeated by the authors).  

 

In my approach I try to avoid these pitfalls. I have suspended the 

question of the matching problem, and similar evaluative 

questions. Further, I make an effort not to presume I understand 

                                                                                                              
one? It is better to think that he did not do the experiment [Il est ainsi très claire 

que Galilée s’est abusé: s’il avait suivi davantage pas à pas, en rigueur, les 

élements constitutifs de son expérience, il aurait dû conclure que les présupposés 

théoriques imposaient l’ attente d’ un désaccord des pendules. En affirmant que 

l’ expérience est négative, Galilée nous met dans un profond embarrass: a-t-il 

réellement mis à l’ épreuve une question posée à la nature, mais une question 

mal posée? Mieux vaut penser que l’ épreuve précise n’à pas été faite]” 

(Costabel 1978, p. 6). Costabel doubts that Galileo could have done the 

experiments with cork and lead pendulums since, in Costabel’s view, Galileo’s 

reasoning about the experiment is erroneous. Costabel’s argument only shows 

his misunderstanding of what Galileo’s experiments with cork and lead 

pendulums are really about and intended to give evidence of (cf. section 2).  
9 Cf. Settle’s ground-breaking reconstruction of the inclined plane experiment 

(Settle 1961). 
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texts evoking experience, and whose meanings appear at first 

glance to be problematic, without first forming a sense of whether 

what is being evoked can possibly be experienced, and under 

which circumstances. In fact my methodology was inspired by the 

historiographical approach to past medical texts developed by the 

Italian historian of medicine, Luigi Belloni, in his pioneering 

studies of Marcello Malpighi (1628-1694).10 Belloni realized that 

the history of the novel anatomical structures described in the 

seventeenth century by Malpighi under the microscope, could not 

be done by simply reading Malpighi’s texts. It had to be supported 

by a historically accurate reconstruction of the observations made 

by Malpighi. This was accomplished by replicating the procedures 

for preparing the specimens that Malpighi recounts in his writings. 

I have tried to apply the lesson I learned from Belloni. 

 

Furthermore, I have tried to remedy the problem of the lack of 

robustness that besets the observations made by others with 

pendulums. By “robustness” I mean repeatability and consistency 

of outcome over a wide range of the parameters that control the 

experiment. The pioneer replications done by Naylor and 

MacLachlan focused on too narrow a set of parameters arbitrarily 

fixed by the operator. Since Galileo does not tell us much about the 

setup of his experiments, we face formidable indeterminacies, 

which may affect our interpretation of the texts to a point that we 

risk failing to see what Galileo might have seen, and vice versa. To 

resolve the indeterminacies we need to make the experiments 

robust over as wide a range of parameters as possible. This can be 

                                                 
10 Belloni 1970, and Belloni’s commentaries in Malpighi 1967. In recent years, 

more and more scholars have embraced the experimental approach to the history 

and philosophy of science. Cf., for instance, Settle 1961, Wilson 1999, and Renn 

and  Damerow 2003. 
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obtained today with computer simulations of mathematical models 

(which I describe in appendix 1). 

 

I hope that, in this way, I will de-emphasize, if not resolve, the 

numerous puzzles and the embarrassment that Galileo’s pendulums 

have created for scholars (at times, myself included). 

 

 

A NOTE ON THE MATERIAL QUOTED IN THIS PAPER 

I shot a large number of videos which I will quote in this book. The 

reader will find the video material freely downloadable at 

www.exphs.org, a website which is devoted to Experimental 

History of Science, a research project that I have started at the 

University of Pittsburgh. 

 

Translations are mine. I have collected the relevant texts by Galileo 

in Appendix 3 for easy reference. 

 

ABBREVIATIONS 

EN The so-called Edizione Nazionale of Galileo’s works in twenty 

volumes (Galilei 1890-1909), the main edition of Galileo texts and 

letters. I quote this as EN, followed by a Roman numeral indicating 

the volume, and by Arabic numerals preceded by “p.” or “pp.”, 

indicating page numbers. 

T1 (EN, X, pp. 97-100). 

Letter of Galileo to Guido Ubaldo dal Monte. Padua, 29 November 

1602. (See Appendix 3). 

T2 (EN, VII, pp. 256-257). 

Excerpt from the Dialogue on the two chief world systems (1632). 

(See Appendix 3). 

T3 (EN, VII, pp. 474-476). 
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Excerpt from the Dialogue on the two chief world systems (1632). 

(See Appendix 3). 

T4 (EN, VIII, pp. 128-129). 

Excerpt from the Two new sciences (1638). (See Appendix 3). 

T5 (EN, VIII, pp. 139-140). 

Excerpt from the Two new sciences (1638). (See Appendix 3). 

T6 (EN, VIII, pp. 277-278). 

Excerpt from Two new sciences (1638). (See Appendix 3). 
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2. INGENIOUS ARTEFACTS 
In this section, I discuss my reconstruction of Galileo’s 

experiments. I will focus not only on the outcomes of the 

experiments, but also on experimenter’s activities that form the 

outcome of an experiment. 

 

2.1 On the scene of experience 

An experiment is hardly an event in isolation. It is more like the 

performance of a set of interrelated activities on a scene of 

experience. However, it is not always easy to define, or rather 

design, the activities in advance. At times they are dictated by the 

very nature of the artefact around which they start evolving. 

 

I assembled a slender and light wooden frame in the form of a 

gallows (cf. Appendix 2, for further details). The main vertical post 

I made movable up and down, so that I could quickly raise the 

horizontal arm in order to make more vertical room for longer 

pendulums. I prepared the horizontal arm with many holes and 

hooks, so that I could hang pendulums at different distances from 

each other. I wanted to observe two pendulums swinging behind 

each other. In this way I made sure that I had a good perspective, 

i.e., that I could see two equal pendulums marching synchronously 

and in parallel, and moreover that my point of view was freely 

movable all around. Figure 2.1.1 shows the scene of the pendulum 

experience. Figure 2.1.2 shows a detail of the apparatus. 
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Fig. 2.1.1 The scene of the pendulum experience. The wooden gallows-like 

frame is at the centre. Behind it is a white backdrop for improving our direct 

observations and also shooting movies. The use of modern electronics is 

explained in Appendix 2. 

 
Fig. 2.1.2 A detail of the upper part of the pendulum apparatus; the horizontal 

bar is made of Plexiglas. The load cells used for measurements of the tension in 

the strings can be spotted on the Plexiglas bar (cf. Appendix 2).  
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I begin by recounting how I measured the lengths of two equal 

pendulums, or rather how I decided that my two pendulums were 

of the same length.  

 

For starters I cut two hemp strings11 of the same length (about 92 

inches); first of all, I cut one and then the second after making their 

ends coincide. I hung two pendulums made with the hemp strings 

knotted to two 1-ounce lead balls, adjusting the knots until I was 

satisfied by visual inspection that the two pendulums were of the 

same lengths.12 The pendulums were removed from the 

perpendicular and let go at the same instant. They started losing 

synchronism after a short while, contrary to my expectations. So I 

thought that there might be something wrong with the apparatus or 

with the way I let the bobs go. I repeated the test with the same 

results. I tried from the other side of the apparatus with the same 

results. Finally it dawned on me that the lengths of the pendulums 

might in fact not be the same. By length of the pendulum I mean 

the resulting length of the string plus the radius of the ball to which 

the bob is attached, once the pendulum has been hung from the 

frame. The operation of mounting the pendulum affects its length. 

In fact visual inspection failed as a criterion of equality for the 

lengths of pendulums.  

 

                                                 
11 Hemp is a material that would have been easily available in Galileo’s time. 

Linen also would have been available. Galileo says “spago” or “spaghetto” , i.e., 

thin string, which implies that the string’s material would probably have been 

hemp or linen. Cf. Appendix 2, for further details. 
12 The choice of the lead balls is somewhat problematic. Galileo does not specify 

the size of the lead balls he uses, but the words he chooses seem to indicate that 

he used very small balls, roughly the size of musket balls, or little more. Musket 

balls at that time would have been in the range of 1-2 ounces (about 28-56 

grams). Cf. Appendix 2, for further details. 
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There is no way of making sure that the two lengths are the same 

other than letting the pendulums swing together for as long a time 

as possible, and observing that they will oscillate synchronously, 

i.e., keep pace with each other. The two pendulums function 

together as a combined accumulator of the delays due to the 

inevitable difference in lengths of the pendulums. Therefore, in 

order to guarantee that pendulum experiments are significant one 

has to work patiently until one is satisfied that for an arbitrarily 

defined interval of time the pendulums will swing synchronously. I 

finally settled on a reasonable time window of five minutes. 

Beyond that time limit I knew I would have to expect the results to 

become less and less reliable since the pendulums would slowly 

start losing synchronism. I spent my first morning on the scene of 

experience working this problem out. 

 

Since the pendulums are supposedly identical, by “oscillating 

synchronously” I simply mean that they appear to march together 

to the observer. “Togetherness” here is unproblematic because the 

two pendulums will have to be in the same position at the same 

time all the time. 

 

Videos 1, 2, 3, 4 (The length of the pendulum) document the 

phenomenon of the lengths of the pendulums. They show longer 

and longer synchronism between two pendulums of “equal” 

lengths. I achieved this result during my first morning on the scene 

of experience. The astonishing fact is that pendulums will always 

tend to go out of sync and (relatively) quickly. How quickly? 

When I started, I had in mind the hundreds of oscillations13 that 

                                                 
13 I will consistently use “oscillation” to indicate a complete swing of the 

pendulum, forth and back, from starting point to maximum height on the other 

side with respect to the perpendicular and return. Note that Galileo’s language is 
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Galileo seems to claim to have counted (cf. T1, T4, T6, Appendix 

3). But with the lengths of pendulums that Galileo approximately 

indicates (in the range of the 4-5 braccia, as suggested by T4, T6, 

i.e., 2-3 meters, according to what one chooses as the equivalent of 

Galileo’s braccio), it was problematic for me to observe more than 

about one hundred “good” oscillations, since the time window 

allowed by my two “equal” pendulums was precisely about five 

minutes (about one hundred oscillations for pendulums of 92 

inches).  

 

This of course does not imply that it is impossible in principle to 

fine-tune the lengths of the pendulums until they will swing more 

than one hundred oscillations synchronously. It means, however, 

that the fine-tuning becomes more and more difficult and tedious 

to carry out, since there are obvious limitations in the way the 

hands of a human observer operate while, for example, trying to 

adjust a knot around the hook of the lead ball.14 Keep also in mind 

that when doing the adjusting the operator cannot be helped by 

visual inspection, since the lengths of the pendulums will tend to 

look the same all the time.  

 

Furthermore, there is another practical limitation to the manual 

procedure of adjusting the lengths. Hemp strings tend to coil and 

are also very flexible. In order to straighten them up one has to 

apply a modicum of tension, which however will tend to extend 
                                                                                                              
not always clear when referring to pendulum swings, at times suggesting 

oscillations, other times perhaps half oscillations. 
14 This is how I performed the adjusting of the lengths of the pendulums. It is of 

course possible to think up better fine-tuning methods, but they are trial-and-

error procedures, since the lengths of the pendulums will always look the same 

all the time (obviously within the limits of technologies that would have been 

available to Galileo).  
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them a little. In sum, the adjusting must be done by trial and error. 

Tension in the string is an ineliminable problem that the pendulum 

experimenter learns how to live with pretty quickly. In fact when 

grabbing the lead balls in preparation for a launch the operator is 

constantly adjusting, more or less consciously, as I have realized, 

the tension applied to the strings. This tension does not sensibly 

affect the outcome of the experiment, as I have concluded, yet 

creates a sort of anxiety that the outcome will in fact be affected. 

 

We can virtually-experiment with the effects of slight differences 

in the lengths of supposedly equally long pendulums with the help 

of a computer model of the pendulums used in real experiments 

(see Appendix 1). I ran a few simulations and noticed that in order 

to end up with a visually discernible lack of synchronism between 

the two pendulums, after a number of oscillations comparable to 

that of Videos 1, 2, 3, 4 (The length of the pendulum), a difference 

of about 5 millimetres is required (cf. S-Video 1 Two lengths). This 

suggests that once the pendulums are mounted on the wooden 

frame the perspective of the observer’s point of view determines a 

margin of error in the estimated equality of the lengths of the 

pendulums of at least about that size.   

 

Why do pendulums stop swinging? The question is far from naïve, 

since resistance due to impediments, such as air and/ or mechanical 

friction, might not be the sole factor, or even “the” factor, 

responsible for the slowing down of pendulums. Further, in early 

seventeenth-century Padua, Aristotelian natural philosophers, such 

as, for example, Galileo’s friend, Cesare Cremonini (1550-1631), 

would have assumed that the medium was responsible for keeping 

the pendulum going, not for slowing it down. Galileo came up with 

an ingenious hypothesis, as we will see now. 
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2.2 Artefact’s modes 

T2 is a fascinating text. In it Galileo expounds an elaborate theory 

of the intrinsic tendency of pendulums to slow down and 

eventually stop regardless of all external impediments. Galileo also 

draws a figure of the shape of an oscillating pendulum made with a 

bob and a rope (Fig. 2.2.1).  

 

 
Fig. 2.2.1 The non-rectilinear shape that a pendulum made with a rope would 

show during an oscillation. 

 

He argues that if the pendulum’s suspension is a “corda” [rope], 

i.e., a thicker and heavier suspension than the thin “spago” [string], 

or “spaghetto”, as generally reported in other texts (such as, for 

example, T4, T6), then the rope’s parts behave like many 

pendulums distributed along the rope. These will have their own 

well-determined frequency, higher and higher, as their distance 

from the centre of oscillation becomes smaller and smaller. 

Therefore, Galileo argues, they will slow down the oscillating bob, 

since the latter will be “restrained” by the many pendulums that the 

rope really amounts to, and which will want to oscillate faster and 

faster than the bob. This effect, Galileo continues, will be even 
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more manifest to the senses if the rope is replaced with a chain. 

Thus, Galileo concludes, all pendulums will inevitably stop, even 

if all external impediments were removed.  

 

Why a chain? 

 

I replicated Galileo’s experiments with chain pendulums in order 

to observe the shape taken by the pendulum while oscillating. The 

results were astounding; possibly, in my view, the most important 

finding on the scene of experience. These experiments with chain 

pendulums revealed the existence of so-called latent modes of 

oscillation. A pendulum’s latent modes of oscillation are infinite 

though only some can be observed. Latent modes of oscillations, as 

they are sometime referred to in the technical literature, are a well 

known phenomenon to structural engineers of the twentieth 

century. There are infinite possible shapes that a continuous 

mechanical system, such as, for example, a heavy rope, or a chain, 

can assume while oscillating. What Galileo shows us (Fig. 2.2.1) is 

what structural engineers call the fundamental mode of oscillation, 

i.e., the shape of the oscillation that occurs at the lowest possible 

frequency. In reality, the motion of the pendulum is always a 

composite of all possible shapes, though we can normally observe 

only a few, since those at higher frequencies are more difficult to 

perceive clearly and distinctly (no matter how Cartesian you are). 

 

The observation of the latent modes of the chain pendulum at last 

explains why Galileo insists on using pendulums made with thin 

strings (cf. T1, T4, T6). Thin strings de facto eliminate the problem 

of latent modes of oscillations. I have no doubt that Galileo was 

well aware of the fantastic display of the latent modes of 

oscillation early on. Before further discussing the implications of 
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this finding I need to present the latent modes of oscillation more 

graphically. 

 

First of all, I hung brass-chain pendulums of different lengths and 

did what I had been doing with string pendulums, i.e., simply 

removed them from the perpendicular and let them go. If the 

starting angle is relatively small, the shape the chain pendulum 

takes is the simple shape of the fundamental mode, exactly like 

that shown by Galileo. But, if the angle increases, more modes 

start kicking in and the fireworks begin. 

 

Videos 22, 23, 24 (The chain pendulum) show the fantastic 

behaviour of the latent modes of oscillations. The chain pendulums 

oscillating at a sufficiently wide angle clearly display the 

superimposition of a few latent modes, which give the chain 

pendulum’s motion its characteristic, apparently chaotic, serpent-

like shape. 

 

The following table (Table 2.1) shows approximations of the latent 

modes of oscillation of a chain pendulum, starting from the lowest 

frequency. I have calculated the modes with a 100-mass linear 

model of the chain pendulum.15 There are exactly one hundred 

modes for a 100-mass model. The table shows eight modes, 

corresponding to the eight lowest frequencies, in order of 

ascending frequency. 

                                                 
15 Cf. Braun 2003, for a discussion of a multiple mass pendulum model. I have 

adopted Braun’s linear approximation for my 100-mass model of the chain 

pendulum. 
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Table 2.1 This table shows the eight latent modes corresponding to the eight 

lowest frequencies, in order of ascending frequency, for a 100-mass linear model 

of the chain pendulum (the black dots represent some of the masses). Mode 

number 1 practically matches Galileo’s picture. During a real oscillation all the 

modes contribute, with different weight factors, to the formation of a complex 

shape. 
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The discovery of the latent modality present in the chain 

pendulum—which explains why Galileo otherwise always 

emphasizes the use of thin strings (which do not show latent 

modality)—, has further important implications. 

 

First, as already noted, the behaviour of the chain pendulum for 

wider and wider angles shows less and less regularity. It is obvious 

that the chain pendulum does not have a proper period of 

oscillation. Indeed it is hard to decide what the period of oscillation 

of the chain pendulum should be. The reason is that it is difficult to 

fix the meaning of oscillation since the chain assumes different 

shapes all the time. It looks like a continuously changing shape. 

Yet any theoretical use of the pendulum presupposes that a 

pendulum has by definition a period of oscillation. As all the texts 

translated in Appendix 3 suggest, Galileo was unswerving in 

repeating that simple pendulums are either isochronous, or at least 

quasi-isochronous (cf., for example, T3). 

 

Second, Galileo chooses to focus on the regularity which the chain 

pendulum displays for lower angles of oscillation and lower 

frequencies. There is a tendency in the behaviour of the chain 

pendulum. The operator controls the unruliness of the pendulum by 

decreasing the angle of the initial release of the pendulum. Thus 

the operator learns that regularity tends to manifest itself within the 

range of small angles of oscillation. Oscillations are observable, 

somehow, though the operator wonders more and more what the 

meaning of oscillation for a chain pendulum is. Regularity and 

oscillation manifest themselves together. 

 

I speculate that if (and, I must stress, this is a big “if”) Galileo 

started his pendulum experiment with chain and/or rope pendulums 
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and heavy masses, he would have encountered the unruly latent 

modality. He would subsequently have decided to go on to 

experiment with lighter apparatus, such as strings and light masses, 

in order to control the phenomena of latent modality. 

 

Finally, and most importantly, what would Galileo’s reaction have 

been to the latent modality of the chain pendulum? It is impossible 

to say exactly when the chain pendulum experiments were really 

carried out by Galileo, since the only reference to the chain 

pendulum is given in T2, which is a passage from the 1632 

Dialogue. But, on the assumption, commonly accepted by scholars, 

that most experiments would have been done in the Padua period, 

we can speculate on the basis of T1. The latter is a very early, 

Padua text, in which Galileo tells us something important about the 

predicting power of mathematical demonstration, when the latter is 

put to the test of experience. He argues that, when it comes to 

matter, the propositions abstractly demonstrated by the geometer 

are altered, and that of such altered propositions there cannot be 

science [scienza]. The geometer, Galileo concludes, is exempt 

from the responsibility of dealing with the many alterations 

introduced by matter in the outcome of the effects predicted by 

geometrical demonstrations. 

 

Thus, I would argue that the 1602 Galileo would have shown little 

or no concern for the intriguing imperfection of experience (T1). 

Matter is solely responsible for the unruly modality displayed by 

the chain pendulum. Why bother?  

 

 

2.3 Experience in the limit 



 21 

In this section, I tackle the crucial issue of the isochronism of 

simple pendulums (i.e., a property of simple pendulums to oscillate 

at a constant frequency regardless of the amplitude of the 

oscillations), and that of the synchronism of pendulums of different 

materials (i.e., a property of simple pendulums whose bobs are of 

different materials, but whose lengths are the same, to oscillate at 

the same frequency).  

 

Readers should familiarize themselves with the texts in Appendix 

3, especially with the terminology that Galileo adopts when 

addressing the issue of isochronism (a word, let us recall, which 

Galileo does not use). 

 

Isochronism vs. discrepancy. Before starting the discussion about 

the isochronous behaviour of simple pendulums, a fundamental 

question has to be answered concerning the material nature of 

Galileo’s equipment (a question rarely addressed by Galileo 

scholars). What kind of materials would Galileo have used in his 

pendulum experiments? First of all, we now know that there is a 

profound reason explaining why Galileo always proposes 

pendulums made with thin strings (spaghetti). Thins strings are 

light and therefore their latent modality remains in fact latent. Thin 

string pendulums de facto behave like masses moving along the 

circumference of a perfect circle whose radius is the length of the 

string. The string, in other words, remains perfectly rectilinear 

during the oscillations of the pendulum. In consequence, it is 

obvious that the masses that Galileo would have preferred are 

relatively small. It becomes immediately clear, even to a casual 

experimenter, that heavy weights are too dangerous when 

operating with thin strings, since the speed acquired by the bob of a 

pendulum 4-5 braccia long, swinging from a wide angle, is indeed 
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very high. But Galileo never tells us anything precise about the 

weight of the lead balls he uses. There is only one exception. In 

Two new sciences he tells us that the lead ball in the experiment of 

the pendulum twisting around the peg is 1-2 ounces [una palla di 

piombo d' un' oncia o due].16 This makes perfect sense. Further, in 

his time, commonly available musket balls would have weighed 

precisely 1-2 ounces.17  

 

If Galileo used musket balls, or, at any rate, small balls of 1-2 

ounces, as well as thin strings, then his pendulum’s patterns of 

behaviour would have been heavily dependent on the aerodynamic 

resistance acting on the string and the ball. The literature on 

Galileo’s pendulum experiments consistently misses this important 

point, i.e., light pendulums behave in a way that is governed by 

aerodynamic resistance. This is not to say that Galileo never 

extended his range of operations to pendulums heavier than 1-2 

ounces. Although we lack any textual evidence in this regard, it is 

likely that a curious experimenter, such as Galileo, would have 

tried different materials, different sizes and different lengths (see, 

for example, T1, where Galileo argues that the experience he made 

was done with two equal bobs, but that it makes no difference if 

the bobs were different). The point is that by experimenting with 

different sorts of weights and lengths Galileo would have been 

exposed to the significant effects of aerodynamic resistance on 

pendulums. In other words, he would have been exposed to the 

range of patterns of behaviour that real pendulums display.  

                                                 
16 EN, VIII, pp. 205-208. 
17 It is rather easy to cast lead balls since lead’s liquefying temperature is not too 

high. It is therefore possible that Galileo would have cast his own lead balls, in 

which case he would have been free to cast balls of different weights than 

musket balls (see Appendix 2, for more on lead balls and other materials). 
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A simple pendulum, as we know, is not isochronous (Fig. 2.3.1).  

 

 
Fig. 2.3.1 The non-isochronism of the simple pendulum. The curve shows the 

period of oscillation of a simple pendulum (i.e., the time required to complete a 

whole oscillation back and forth) as a function of its length. On the vertical axis, 

the period is represented in seconds. On the horizontal axis the angle of the 

swing is represented in degrees, for angles between 0o and 90o. The curve has 

been calculated for a pendulum’s length of 2.25 meters. The variability in the 

period is about one half of a second. 

 

Videos 5, 6, 7 (The isochronism of the pendulum) show two light 

pendulums of about 92 inches loaded with 1-ounce lead balls. The 

synchronous behaviour of the pendulums is evident. As Galileo 

would have said, the two pendulums go together. In the third 

video, the angle of release was slightly wider, so the pendulums 

start showing some discrepancy. When experimenting with 

pendulums oscillating along not too wide angles, say, up to about 

30-35 degrees, and in the range of 4-5 braccia, the whole 

oscillation can be observed quite easily. The speed of the bob when 

crossing the vertical is not too high.  
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Videos 9, 10, 11, 12 (The discrepancy of the pendulum) show the 

change in the visual appearance of the pendulums as the angles of 

release of the bobs is progressively increased. I call this 

phenomenon discrepancy. As I experimented, the best way to get 

to grips with this gradual change in visual appearance (at least the 

way that worked best for me) is to focus observation on the 

stopping points of the two bobs, the points where the bobs invert 

their motions. At those instants the bobs have zero speed. And at 

that time it is easy to ascertain if their motions do not start again at 

the same instant, or, conversely, if they do not arrive at the 

inverting point at the same instant.18 

 

Before discussing the implications of these findings I need to stress 

that the results obtained with my apparatus, i.e., the phenomena of 

isochronism and discrepancy, are very robust, in the sense that they 

occur over a wide range of the pendulum’s parameters. Robustness 

is difficult to test in practice, since these tests are very time 

consuming (and resource consuming, in that one has to find 

numerous pieces of equipment, such as lead balls of different 

weights, etc.). To test robustness, I repeated a whole set of 

experiments concerning the discrepancy phenomenon with 2-

ounce balls. The results, consistent with the 1-ounce pendulums, 

                                                 
18 At one point in the course of the experiments, the impression emerged that the 

two pendulums might somehow interfere with each other. I will discuss the 

possible effects of interference further on in this section. For the time being, I 

note that the two pendulums did not interfere in any appreciable way. I tested 

this conclusion by leaving one of the two pendulums at rest and operating the 

other in order to see if the motion of one of the two might excite some 

movement in the other. Video 8 The stability of the pendulum shows that the 

pendulum left at rest remains at rest while the other oscillates for a long period 

of time, well beyond the 4-5 minutes of the time window allowed. 
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are documented in Videos 13, 14, 15, 16 The discrepancy of the 

pendulum 2oz. Can we go further? 

 

Robustness is where the power of computer modelling kicks in. 

With the pendulum model discussed in Appendix 1, calibrated on 

the real data acquired from the real apparatus, I have tested the 

phenomena of isochronism and discrepancy over a range of 

plausible parameters. I report one example of the phenomenon of 

discrepancy, in the form of so-called time histories of the angles of 

two pendulums. This was obtained with the pendulum model for a 

pendulum of 1.5 meter, the range of 2-3 braccia that Galileo talks 

about in T1 (Fig. 2.3.2). The diagram only gives an approximate 

sense of the phenomenon since it is difficult to visualize the data 

mentally. In order to form a visual sense of the pendular motion, 

the reader should observe the animation of the phenomenon, in S-

Video 2 The pendulum model discrepancy. The pendulum model is 

so accurate that the whole phenomenon could hardly be 

distinguished from a real case. 

 

In sum, both in real tests and in simulations with the pendulum 

model, the phenomena of isochronism and discrepancy appear to 

be robust over a wide range of parameters. Thanks to the 

robustness assessed with a computer model, I feel confident in 

concluding that Galileo could not have missed the gradual change 

in behaviour, from isochronism to discrepancy, as he experimented 

with different pendulums and different angles.  
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Fig. 2.3.2 The time histories of the angles of two pendulums obtained with the pendulum model, for a pendulum of 1.5 meter, which is the range of 2-3 braccia 

that Galileo talks about in T1. On the vertical axis, the amplitudes of the two pendulums are represented in degrees. On the horizontal axis, time is represented in 

seconds. The two pendulums started from 30 and 10 degrees. The simulation was calculated for 2 minutes. This diagram only gives an approximate sense of the 

phenomenon. In order to form a better opinion, the reader should observe the animation of the phenomenon, in S-Video 2 The pendulum model: discrepancy. 
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The gradual shift from isochronism to discrepancy challenges any 

observer of the pendulum. What is, in Galileo’s view, the cause of 

the gradual shift from isochronism to discrepancy? A few 

preliminary comments are necessary before answering the 

question.  

 

The two most revealing texts in this regard are T1 and T6. In these 

texts, Galileo stresses the fact that he numbered the oscillations of 

pendulums (note that it remains unclear whether he actually means 

complete oscillations back and forth, or rather only half 

oscillations, from one point of maximum elongation to the other). 

Direct observation of the isochronism of the pendulums, Galileo 

seems to say in between the lines, is arduous, but numbering the 

oscillations, or vibrations (Galileo uses both words 

interchangeably), is more secure. It is true that, in T1 (the 1602 

letter to Guido Ubaldo), Galileo shows a cavalier attitude, when 

concluding that even without bothering to number the vibrations, 

Guido Ubaldo would easily ascertain the property of isochronism 

by simply observing the two pendulums. But the fact that he 

stresses the counting of the oscillations in T6, which he published 

in Two new sciences, to my mind betrays the fact that he realized 

that counting was the most secure way of ascertaining the fact of 

the matter about the isochronism of pendulums. Counting, 

however, has its own serious problems, as I will show presently.  

 

Most Galileo scholars have worried about the problem of whether 

Galileo’s claims as regards isochronisms are justified, and to what 

extent, by the outcome of the experiments. This form of 

historiography, in my opinion, founders on the problem of the 

arbitrary assumptions usually made in order to define what 

justified, or supported by empirical evidence, should mean. You 
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decide. On the other hand, all of these approaches to the question 

of defining justified, or supported by empirical evidence, have 

strangely neglected Galileo’s emphasis on counting, which is the 

very claim that Galileo consistently makes. It is a most interesting 

claim.  

 

The numbers of oscillations that Galileo claims he could count 

seem exorbitant. He speaks of hundreds of oscillations. On the 

other hand, if he meant half oscillations— as some of his 

descriptive language sometimes seems to imply—, the order of one 

hundred oscillations is not impossible. In fact, the human eye, as I 

discovered, has the power to discern accurately even very small, 

tiny oscillations. At any rate, it is easy to count one hundred full 

oscillations, or 200 hundred half oscillations, with pendulums in 

the range of the 4-5 braccia, and masses in the range of the 1-2 

ounces (the reader can easily verify this by counting the vibrations 

while looking at the videos). For example, with the light 

pendulums used in my tests, it is easy to count more than one 

hundred full oscillations, without a 1-count discrepancy, for angles 

up to about 70 degrees, which is more or less the maximum angle I 

could reliably test with my apparatus. This accords with Galileo’s 

claims that it is indeed possible to do so (cf. T6).  

 

In addition, I used the pendulum model to test Galileo’s T6 claim, 

for 4-5 braccia pendulums, swinging from initial amplitudes of 80 

and 5 degrees. Galileo says “hundreds” but allowing for the fact 

that he may have meant one-half oscillations, the count of one 

hundred full oscillations becomes two hundreds.19 The results are 

                                                 
19 In T6 Galileo actually seems to argue that not only would the count not 

disagree by one oscillation, but not even by a fraction of an oscillation, and for 
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impressive. It is possible to count up to one hundred full 

oscillations while observing a stable discrepancy between the two 

pendulums. I conducted two virtual tests with pendulums of 1 and 

2 ounces. The two videos, S-Videos 80 5 degrees 1 oz pendulums 

and S-Video 80 5 degrees 2 oz pendulums, show that one hundred 

full oscillations are possible without a difference of one count. In 

the second case, however, the discrepancy increases to almost ½ 

full oscillation (in which case, if Galileo meant half oscillations, 

the count would amount to a difference of one). 

 

The discrepancy has one very peculiar characteristic. Since the 

motions of light pendulums slow down rather quickly, because of 

aerodynamic resistance, the pendulums after a short time from the 

start enter a region of oscillations where the difference in their 

periods diminishes, so that the discrepancy, after accumulating for 

a while, plateaus and appears to be rather constant over the 

remaining interval of observation. This, once again, is consistently 

true over a wide range of parameters. The discrepancy, in other 

words, does not “explode” leading to chaotic patterns of behaviour. 

It remains clearly visible at a level which seems to be perfectly 

stable over a long period of observation. 

 

Further, counting the same number of oscillations for the two 

pendulums, and assuming, as Galileo does, that this is a basis for 

concluding that all the oscillations are isochronous seems to be 

faulty reasoning. One can divide the same line, or the same 

quantity, for example, into the same number of parts, but this does 

not mean that all the parts will be of the same length. In fact 

Galileo is well aware of this problem, I think. In T1, he says that 

                                                                                                             
angles up to more than 80o, which, however, I think is exaggerated, since the 

discrepancy produces that sort of difference of a fraction of oscillation. 
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the counting’s turning out the same for both pendulums is a sign of 

isochronism. And in T6, where he concludes the same, he actually 

says that the experience of counting makes us certain of 

isochronism. So, at most, experience furnishes a sign, in the first 

version of the argument, or makes us certain of the fact, in the 

second. 

 

We are now in a better position to appreciate the question of the 

cause of the gradual shift from isochronism to discrepancy. 

 

I believe that Galileo cannot have failed to confront the 

isochronism vs. discrepancy phenomenon. It is all too evident 

across the whole spectrum of parameters. Yet we are told nothing 

in the published record, and unfortunately no surviving 

manuscripts illuminate this issue. But why would Galileo have 

otherwise emphasized counting so consistently, and not direct 

visual inspection of the phenomenon, as the means of ascertaining 

the facts of the matter? I think because of the gradual shift from 

isochronism to discrepancy. Also note that in the published 

Dialogo text (cf. T3), where Galileo in fact dispenses with 

counting, he hastens to underline that experience shows that the 

pendulums are isochronous, or if not perfectly isochronous, at least 

quasi-isochronous. He does not say that experience shows 

perfectly isochronous pendulums.  

 

Galileo must eventually have asked himself: What is the cause of 

the gradual shift from isochronism to discrepancy? For the early 

Galileo, the implications of the gradual shift from isochronism to 

discrepancy were far more serious than the imperfection of the 

pendulum experience. We need to go back to the De motu writings 

to understand why.  
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In the De motu writings, Galileo vehemently opposes the 

Aristotelian theory of rest at the point of inversion. The problem 

was addressed by Galileo under the heading of point of reflection 

[punctum reflexionis]. Galileo opposes the Aristotelian view that in 

order for motion to be inverted, such as, for example, in the case of 

a stone thrown upwards, which will invert its upward motion 

before starting its downward motion, a rest occurs at the point of 

inversion.20 Galileo’s reconstructs Aristotle’s main line of 

argument as follows. What moves nearing a point and leaving the 

point, while making use of the point both as an end and a 

beginning, does not recede unless it stays on that point: but that 

which moves towards the end point of a line and is reflected by 

that [end point], makes use of that [point] both as an end and as a 

beginning; therefore, between access and recess, it is necessary 

that [what moves] rests.21  

 

Galileo’s counter-argument to the theory of rest at the point of 

inversion is based on five distinct and independent strategies. We 

need not dwell on the first four, since the fifth is really the most 

elaborate, and the one whose relevance for the young Galileo’s 

theory of motion was now at stake, in the face of the new empirical 

evidence from the pendulum discrepancy. I will only relate the gist 

                                                 
20 EN, I, pp. 323-328, is the most elaborate version of the battery of counter-

arguments levelled by Galileo at the theory of the punctum reflexionis, in the 

whole of De motu. 
21 The argument reconstructed by Galileo is rather obscure. Galileo’s original 

Latin is as follows. “Quod movetur ad aliquod punctum accedendo et ab eodem 

recedendo, ac ut fine et principio utendo, non recedet nisi in eo constiterit: at 

quod ad extremum lineae punctum movetur et ab eodem reflectitur, utitur eo ut 

fine et principio: inter accessum, ergo, et recessum ut stet, est necessarium” (EN, 

I, pp. 323-324). 
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of the fifth strategy. Two assumptions are introduced by Galileo 

preliminarily.22 First, mobiles will only rest outside of their own 

place, when the virtue prohibiting their descent is equal to the 

gravity of the mobiles pushing them downwards. Second, the same 

mobile can be sustained in the same place by equal virtues for 

equal intervals of time. Now, if a stone rests for some time at the 

point of inversion, then, for the same duration, there will be 

equality of impelling virtue and resisting gravity; but this is 

impossible since, Galileo argues, it has already been shown in 

another chapter of De motu that the impelling virtue must diminish 

continuously. He then moves on to re-frame the argument in the 

form of a stronger reductio ad absurdum. We need not follow 

Galileo in the details of the proof. What is at stake is clear; it is the 

theory of the impelling virtue, i.e., the theory of impetus. Let us 

now return to the discrepancy.  

 

Would it not be attractive to explain the cause of the gradual shift 

from isochronism to discrepancy, by saying that at the point of 

inversion the bobs will indeed rest for a short while? But one could 

make a step further. On the assumption that the wider the 

oscillation the slightly longer the time of rest at the point of 

inversion, one could explain why the discrepancy seems to 

accumulate faster at the beginning of the phenomenon, before 

plateauing and eventually becoming virtually constant. And what 

better experience could confirm the cause of the gradual shift from 

isochronism to discrepancy, than observing the discrepancy 

becoming more and more evident, as the operator removes one 

pendulum more and more from the vertical? Aristotle’s theory of 

the rest at the point of reflection could be correct after all. 

 
                                                 
22 EN, I, pp. 326-328. 
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I speculate that Galileo did not reject isochronism out of the 

window, and remained steadfast in rejecting Aristotle’s theory of 

the rest at the point of reflection because in De motu he stated that 

“experience does not teach us the causes”.23 The norm that 

“experience does not teach us the causes”, which Galileo followed 

at this early stage, became a stabilizing factor in Galileo’s search 

for a mathematical-mechanical theory of isochronism. Galileo’s 

commitment to that norm thwarted the threat posed by the 

discrepancy and by the lure of explaining the discrepancy via 

Aristotle’s theory of the rest at the point of reflection. The 

isochronism vs. discrepancy phenomenon was destabilizing not 

only for a mathematical-mechanical theory of isochronism, but for 

the whole De motu— so decisively staked upon the theory of 

impetus as the explanans of the impossibility of rest at the point of 

inversion.  

 

In sum, experience with pendulums presented the early Galileo 

with two lures. One is the possibility of explaining the regularity of 

isochronism, which must have appealed to Galileo the 

mathematician. The second is the possibility of explaining the 

gradual shift from isochronism to discrepancy with the abhorred 

theory of rest at the point of inversion, possibly rejecting 

isochronism altogether. The second possibility must have appealed 

to Galileo the natural philosopher. Two souls competed for the 

same body. Paradoxically enough, a norm regulating the 

philosopher’s quest for causes aided and abetted the mathematician 

in the pursuit of proof. 

 

                                                 
23 Experience does not teach causes, says Galileo. “…quaerimus enim effectuum 

causas, quae ab experientia non traduntur” (EN, I, p. 263). 
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The synchronism of pendulums with bobs of different materials but 

same lengths. Cork and lead pendulums. In T4, a text published in 

Two new sciences, Galileo reports pendulum experiments with 

cork and lead balls. Galileo claims that two pendulums, one made 

with a cork ball, and another with a lead ball one hundred times 

heavier than the cork ball,  

“reiterating a full hundred times their forward and 

backward motions (le andate e le tornate), have sensibly 

shown that the heavy goes under the time of the light, in 

such a way that, neither in a hundred nor a thousand 

vibrations, the heavy is ahead of time for a moment, and 

both go at the same pace”.24 

Galileo’s wording is so carefully calibrated that it almost defies 

translation. Galileo seems to claim that what happens is the 

reiteration of one hundred comings and goings (reiterando ben 

cento volte per lor medesime le andate e le tornate), so that 

experience shows the going at the same pace of the two bobs, for a 

hundred or even a thousand vibrations. Clearly the thousand 

vibrations claim is no more than a conclusion based on reasoning, 

since Galileo has just claimed that what happens is a hundred 

comings and goings. He also claims that never is the heavy ball 

ahead of time for a moment. Further, that this experiment is not 

supposed to show isochronism is emphasized by the disclaimer at 

the end of the passage, where Galileo specifies that “on the other 

hand, when the arcs traversed by the cork were no more than 5-6 

degrees and those of the lead no more than 50-60 degrees, they are 

traversed under the same times [anzi quando gli archi passati dal 

                                                 
24 “reiterando ben cento volte per lor medesime le andate e le tornate, hanno 

sensatamente mostrato, come la grave va talmente sotto il tempo della leggiera, 

che né in ben cento vibrazioni, né in mille, anticipa il tempo d'un minimo 

momento, ma camminano con passo egualissimo”. Cf. T4. 
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sughero non fusser più che di cinque o sei gradi, e quei del piombo 

di cinquanta o sessanta, son eglin passati sotto i medesimi tempi]”. 

 

Galileo’s claim about lead and cork pendulums concerns the 

synchronism of pendulums with bobs of different materials but 

same lengths. The context of Galileo’s claim, the theory that all 

bodies fall at the same speed regardless of weight and material, I 

have explored in another paper.25 In what follows, I will discuss 

the findings of my experiments with lead and cork pendulums. 

 

The most serious problem is Galileo’s assertion that the lead ball is 

one hundred times heavier than the cork ball. This does not seem 

problematic but it really is. In fact, cork’s specific weight is so 

much smaller than lead’s, that in order for a lead ball to be one 

hundred times heavier than a cork ball, either the cork ball must be 

very light, or the lead ball must be very heavy. Both cases present 

problems. A cork ball too light will not oscillate long enough. A 

lead ball too heavy is hard to reconcile with Galileo’s indication 

that he is still using thin strings (due sottili spaghetti). I have been 

able to count about fifty full oscillations with balls that weigh 

approximately in the ratio given by Galileo.  

 

Videos 17, 18 cork and lead, show tests made with balls in a ratio 

close but not exactly equal to the ratio of 1 to 100 (cork ball = 8 

grams, lead ball = 670 grams). In Videos 19, 20 cork and lead, I 

changed the ratio, cork ball = 18 grams, lead ball = 670 grams, and 

cork ball = 7 grams, lead ball = 670 grams. Video 21 cork and lead 

shows that there is no interference between the pendulums. The 

lengths of the two pendulums were about 94 inches. 

 
                                                 
25 Palmieri 2005. 
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It is possible that the ratio indicated by Galileo is not realistic. But 

it is impossible to rule out that Galileo could operate with balls 

exactly in that ratio. We are left with an indeterminacy here.26 At 

any rate, the pendulums show a gradual shift from synchronism to 

discrepancy, with the cork ball moving ahead. This is due to the 

fact that, because it decelerates rapidly, the cork ball enters the 

region of small oscillations, thus starting to move ahead of the lead 

ball. 

 

So, once again, experience issues a fantastic challenge to the 

experimenter, the transition from passo egualissimo to 

discrepancy. Galileo is on safe ground while claiming that neither 

in a hundred nor a thousand vibrations is the heavy ball ahead of 

time. In fact the opposite happens with the gradual emergence of 

the discrepancy.  Do the balls go at the same pace (camminano con 

passo egualissimo)? For some time they do. Since Galileo is 

careful not to say from what angle the balls are supposed to be 

released, it is quite possible, for small oscillations, to see the balls 

go con passo egualissimo for some time.  

 

If such experiments were carried out early on (as T1 seems to 

suggests, when Galileo claims that it would not matter if the bobs 

were of different weights), then we can ask what Galileo would 

have made of these results, in the framework of his early De motu 

                                                 
26 In order to get closer to the 1-100 ratio, I repeated the tests with a heavier lead 

ball, in Video 26 cork lead 4lb interference, and Videos 27, 28, 29 cork lead 4lb 

discrepancy. The lead ball was 1812 grams and the cork ball 18.5 grams, very 

close to the exact ratio claimed by Galileo. As Video 26 shows, the heavy lead 

ball causes some interference which somehow affects the results. The origin of 

this interference is mechanical, as will be explained further on in this section. 

Unfortunately, the experiments with the heavy lead ball are affected by an 

interference which precludes drawing further conclusions. 
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writings. According to the De motu Archimedean framework,  in 

fluid mediums, specifically heavier bodies will move faster than 

specifically lighter bodies.27 Galileo candidly admits, in 

concluding De motu, that experience contradicts the proportions of 

motions calculated on the basis of the Archimedean framework.28 

This claim by Galileo has remained a mystery so far. What are the 

experiments he alludes to? 29  

 

I hypothesize that the experiments that Galileo alludes to (but 

never discusses in De motu) are the experiments with lead and cork 

                                                 
27 Palmieri 2005, 2005a, 2005b. 
28 EN, I, p. 273. Galileo is clear and honest. The proportions of motions 

calculated according to the Archimedean rules of the specific gravities do not 

pass the test of experience. Galileo does not say more about the tests.  
29 A possible and intriguing answer might be given by the tests made by Thomas 

Settle and Donald Miklich (even though the experiments made by Settle and 

Miklich only aimed at determining the plausibility of the empirical basis 

underlying another theory espoused by Galileo in De motu, namely, the theory 

according to which light bodies fall faster than heavy bodies at the beginning of 

a free fall). A few decades ago Settle and Miklich tried the following test (Settle 

1983). Participants were asked to drop two balls at the same time, an iron ball of 

about ten ponds, and a wooden ball of about one pound. The iron ball preceded 

the wooden ball after release rather consistently. In his paper, Settle documented 

this phenomenon by printing eight frames after release from a 24-frame per 

second 8-mm camera. Recently, in a private communication, Settle confirmed to 

me that the phenomenon can also be observed directly, and that he obtained the 

same results again in 2005-06, though less formally, in Florence. The 

phenomenon can be explained physiologically. The fatigue of grabbing the 

heavy iron ball with one hand causes a delay in the execution of the drop even 

though experimenters believe that they are actually executing the drop of the 

two balls at the same time. The result is fascinating but I feel that it is not robust. 

In other words, you need a very narrow set of parameters to replicate the effect 

(balls enormously different in weight), and I think that this, somehow, makes it 

less likely that experiments of this sort were those alluded to by Galileo.  
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pendulums. They seem to suggest that specifically lighter bodies 

will move faster than specifically heavier bodies. So, how could a 

mighty lead ball lag behind the cork ball? Unfortunately the 

Archimedean framework that innervates De motu is silent about 

the resistive role of the medium. For Aristotle and the 

Aristotelians, attacked by Galileo in De motu, the medium is the 

cause of, not a hindrance to, the motion of projectiles. If we 

suspend the belief that mediums resist motion, we can see that the 

latter question must have been deeply troubling for the young 

Galileo. Could the medium be more effective in pushing the cork 

ball than the lead ball? 

 

A cork ball starts moving ahead of a lead ball. Why? What is the 

cause of such a bizarre phenomenon? Might a new theory of the 

resistance exerted by the medium be brought to bear on the 

Archimedean framework, so as to prevent the latter from 

collapsing, in the face of negative evidence from the cork and lead 

pendulums? The cork and lead pendulums somehow seem to teach 

us something about fluid mediums which is missing in both the 

Aristotelian and Archimedean frameworks. Fluid mediums can 

resist motion. They can be the cause of resistance. Does experience 

tell us more about causes than we might have suspected, after all, 

contrary to the De motu’s stern statement that “experience does not 

teach causes”? Here we see the challenges of pendulum behavior 

behind the scenes of Galileo’s crucial transition from the De motu 

writings to a more mature theory of motion.  

 

To summarize, pendulums show isochronism, synchronism, and 

discrepancy along a continuum of patterns of behaviour. There is 

no such thing, then, as “the” pendulum experience. I would argue 

that the pendulum experience is an experience in the limit, in the 
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sense that isochronism and synchronism tend to manifest 

themselves better and better, as the parameters that control the 

outcome of the experiment tend to certain values. This is also true 

of latent modality. Latent modality tends to disappear as the 

parameters that control it tend to certain values. 

 

2.4 Artefact restrained 

Artefacts may be unpredictable in interesting ways. Latent 

modality was discovered in the chain pendulum. In the gallows-

like apparatus that I built, I discovered coupling. This phenomenon 

was present from the very beginning. Coupling is an interference 

of some sort between the two pendulums. Coupled pendulums may 

mislead the observer; for example, by tuning themselves to each 

other, or by driving each other. Coupling, therefore, may determine 

quite bizarre oscillatory patterns. It is a fascinating phenomenon 

that may affect all pendulum experiments. So far as I know, it has 

never been investigated in the literature concerning Galileo’s 

experiments. In this section, I will briefly discuss coupling, its 

consequences for pendulum experiments, and argue that we can 

reasonably exclude that coupling had a serious impact on Galileo’s 

experiments. 

 

There are at least two forms of coupling, mechanical coupling and 

aerodynamic coupling. Let me say at the outset that I made sure 

that coupling did not affect my experiments by checking that the 

two pendulums do not interfere with each other. This is the reason 

why, as noted above, I controlled the outcome of my experiments 

by always checking, in a preliminary test, that while one pendulum 

was going the other remained at rest. However, in the case of the 

very heavy lead ball, which I used to test the 1-to-100 ratio in the 

cork and lead pendulums, a coupling phenomenon was clearly 
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observable. Its origin is mechanical. I will focus firstly on 

mechanical coupling, and then briefly on aerodynamic coupling. 

 

As already noted, Galileo tells us virtually nothing about the set up 

of his pendulums. Indeed it is perfectly possible that he simply 

hung pendulums from the ceiling of his workshop, or even of his 

bedroom, or, on a wall, adjacent to each other, as shown in the 

diagram accompanying T1.30 I have imagined the gallows-like 

structure on the basis of two considerations. First, it is a structure 

which allows for the two pendulums to be seen in front of each 

other, thus also allowing for a better observation of their relative 

motions. Second, I was inspired by a similar structure devised later 

on by the Galilean experimenters at the Accademia del Cimento in 

Florence (cf. Appendix 2, for further details). The horizontal arm 

of the structure has some flexibility that allows the arm to bend 

under the forces exerted by the oscillating masses. If the masses 

are modest then the forces will be modest, but if the masses are 

greater then the forces might be considerable. The flexibility, 

though, can be controlled by connecting the horizontal arm with 

little, or non, extensible cables to fixed points on walls. This is 

how I practically eliminated the unwanted flexibility. I say 

practically because in the case of the heavy lead ball I was unable 

to eliminate all the flexibility. This residual flexibility explains 

why coupling was observable with the heavy lead ball. The heavy 

lead ball was able to drive the light cork ball for dozens of 

oscillations, through mechanical coupling induced in the flexible 

structure (cf. Video 26 cork lead 4lb interference and Videos 27, 

28, 29 cork lead 4lb discrepancy). 

                                                 
30 See Appendix 2, where I discuss the reasons why I think this arrangement is 

unconvincing.  
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Fig. 2.4.1 Above: A simplified sketch of the structure I built, with a light 

horizontal arm rigidly attached to a stronger vertical frame. Mechanical coupling 

is possible if the horizontal arm of the structure bends. In this case, the points at 

which the strings are attached will move accordingly. Below: An imaginary 

structure where a flexible horizontal arm is connected to a sturdier, fixed beam 

above.  
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Under these circumstances, on the other hand, the horizontal arm 

quite visibly and regularly bends (in the order of 2-3 inches at the 

farthest point from the joint), right and left, under the regular, 

alternate pulling of the heavy ball. If Galileo ever used a structure 

similar to the one I have re-invented, and if this kind of mechanical 

coupling was observable when he experimented, I conclude that he 

must have realized that something in the set up was seriously 

flawed, and that a corrective was needed. Therefore, I do not 

believe that his accounts, particularly of the cork and lead 

experiments, can be explained away in terms of significant 

mechanical coupling phenomena, of which he might have been 

unaware. 

 

But can we exclude that mechanical coupling was not affecting 

Galileo’s pendulums under all possible circumstances, even when 

operating with small masses? 

 

While it is impossible to rule out mechanical coupling absolutely, 

we can at least investigate the case of isochronism for small 

masses, like the 1-2 ounces lead balls that I think Galileo used, 

once again with the help of computer models. Consider now the 

imaginary set up represented in Figure 2.4.1 (part below). Suppose, 

in other words, that Galileo hung his pendulums from a structure 

that, unknown to him, at least initially, allowed for some 

flexibility. Might he have been misled by mechanical coupling into 

believing that two pendulums are perfectly isochronous? In other 

words, might structural flexibility subtly (and viciously) couple the 

pendulums in such a way as to make them oscillate in tune with 

each other? 
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Consider Fig. 2.4.2 (diagram above). A simulation was carried out 

for three minutes, with pendulums of 1 oz masses, and strings of 

92 inches, in order to observe an example of the highly complex 

patterns of behaviour which may develop because of coupling. The 

two pendulums drive each other. The pendulum which is started 

from the higher angle, which has more energy, initially pushes the 

other, but the latter responds, because of the interaction through the 

structure, and slows down the first pendulum. The pattern at one 

point shows that the phenomenon is reversed. This kind of weird 

pattern of behaviour is too evidently an artefact of the mechanical 

structure, I am convinced, for it to be mistaken, even by a naïve 

observer, as genuine. Indeed, the horizontal arm’s ends move 

alternately back and forth, with aplitudes up to ± 2 cm, a fact 

which should alert any observer. Therefore, I would argue that we 

can confidently exclude that such weird examples might have been 

mistaken for anything more than an exceptional result due to the 

particular setup. 

 

However, there are more subtle possibilities. Consider now Fig. 

2.4.2 (diagram below). Another simulation was carried out for 

three minutes, again with pendulums of 1 oz masses, and strings of 

92 inches. The result is subtly different. After an initial phase of 

energetic interaction, the two pendulums tune to each other so well 

that they go on oscillating, as if they were perfectly superimposed 

on each other. However, even in this more subtle case, the visible 

motion of the ends of the horizontal arm should alert the observer 

to the possibility that something in the mechanical structure of the 

arrangement is affecting the oscillations of the pendulums. 
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How do these results translate into dynamic visual appearances? 

We can form an idea of the real dynamics of the phenomenon of 

coupling, by animating the numerical results obtained with the 

coupled pendulums. In S-Video Coupling 1 and S-Video Coupling 

2, I have animated the two patterns of behaviour diagrammatically 

presented in Figure 2.4.2. Note, however, that only the pendulums 

are shown, but in reality, on the scene of experience, the 

oscillations would appear in their natural setting with the 

horizontal arm flapping back and forth. 

 

I will now say something about the possibility of aerodynamic 

coupling. If the pendulums are placed very close to each other, in 

an arrangement such as, for instance, that shown above in Figure 

2.4.1, or when simply hanging from a ceiling, the question arises 

whether aerodynamic forces, which are generated especially by the 

strings, could make the two pendulums interfere with each other. 

First of all, the observations made with one pendulum at rest and 

the other oscillating, again, confirm that such a phenomenon was 

not affecting the results in my experiments. Moreover, it is 

somewhat difficult to place the pendulums very close to each 

other, because their planes of oscillation often tend to rotate, one 

way or other. The danger of collisions discourages the idea of such 

an arrangement. 

 

In conclusion, I feel that we can exclude the possibility that 

coupling phenomena might have consistently vitiated the results 

that Galileo obtained with pendulums. 
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Fig. 2.4.2 Above: a spectacular yet bizarre case of coupling (on the vertical axis angles are represented in degrees, while on the horizontal axis time is 

represented in seconds). The pendulums drive each other while developing a highly complex pattern of behaviour. One mass was started from 50o and one mass 

from 5o. The pendulum starting from the higher angle “pushes” the other pendulum, which in turn responds by amplifying its oscillation while slowing down the 

other. The pattern is then almost reversed. Below: a much more ambiguous and perplexing pattern. After a initial phase of energetic interaction, the two 

pendulums tune to each other so well that they go on oscillating as if perfectly superimposed to each other. 
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3. THE BRACHISTOCHRONE PUZZLE  
In this section, I discuss the significance of the brachistochrone 

calculations (carried out by Galileo on folios of so-called 

Manuscript 72), in relation to our understanding of Galileo’s 

pendulum theory.31  

 

In 1994 David Hill argued that Galileo knew a great deal more 

about pendulums than he was willing to publish.32 In particular, 

some manuscript folios of Manuscript 72 have been interpreted by 

Hill as evidence of experiments and calculations performed by 

Galileo with pendulums. Hill’s challenging conclusions are that, as 

the calculations confirmed, Galileo was well aware of the non-

isochronic behaviour of pendulums, and consciously published 

false assertions in Two new sciences. In what follows, by 

reconstructing and repeating the calculations done by Galileo in 

Manuscript 72, I will offer a counter-argument to Hill, showing 

that his interpretation of the calculations is erroneous, and his 

conclusion that Galileo consciously published false assertions 

untenable.  

 

More specifically, I will show that the main evidence Hill brings in 

support of his thesis cannot in fact support it. His whole argument 

hinges on the assumption that by calculating times of descent along 

rectilinear chords of a circle and extrapolating the results to the 

arcs of the circle, Galileo must have realized the non-isochronism 

of swinging bobs. There is no evidence, though, that Galileo might 

have allowed such an arbitrary extrapolation. Furthermore, the 

                                                 
31 See Galilei 1999, for Manuscript 72. The calculations have been published 

also in EN, VIII, pp. 420-422.  
32 Hill 1994. Cf. also Drake 1990, pp. 9-31, who proposes a different 

interpretation of the manuscripts studied by Hill. 
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crucial calculations that would have been necessary to extrapolate 

the results, even though they are perfectly possible in principle, 

were not carried out by Galileo, presumably, as we shall see, 

because of the insurmountable amount of operations needed.  

 

First of all, it is important to realize that the original context of the 

calculations was not the pendulum, as Hill believes, but the 

problem of the brachistochrone curve (i.e., a curve joining two 

points such that a body travelling along it under the sole action of 

gravity takes a shorter time than along any other curve between the 

points). At the end of his treatment of accelerated motion along 

straight paths, in Two new sciences, Galileo conjectures that an arc 

of circumference is the brachistochrone (a word not used by 

Galileo).33 Galileo does not prove his conjecture. The conjecture is 

in fact false. We now know that the brachistochrone is the 

cycloidal arc. However, Galileo sought to prove his conjecture, as 

the many remnants of related theorems and problems surviving in 

the folios of Manuscript 72 suggest.34 That the calculations 

originally relate to this problem I will try to make clear presently 

(Fig. 3.1). 

 

 

 

 

 

 

 

 

 

                                                 
33 Cf. Galileo’s Scholium, in EN, VIII, pp. 263-264. 
34 Wisan 1974. 
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Fig. 3.1 How Galileo defines the boundaries of the problem of a numerical 

analysis of the brachistochrone conjecture. I have highlighted the relevant 

segments and the arc. From Manuscript 72, preserved at the National Library in 

Florence, at folio 166 recto (see Galilei 1999). 

 

To begin with, Galileo defines the boundaries of a numerical 

analysis of the brachistochrone conjecture. His units are very 

simple. He assumes that the vertical path ad is equal to 100000 

units. He also assumes that the time of descent along this vertical 

path is equal to 100000 units. He knows that the time of descent 

along the 90o chord, i.e., a chord corresponding to an angle of 90o, 

is to the time along the vertical path as the length of the 90o chord 

is to the length of the vertical path.35 He therefore calculates for the 

                                                 
35 EN, VIII, pp. 215-217. 

a 

d 

l 

k c 

e 
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latter time the value of 141422 (which, given Galileo’s choice of 

units, is also the length of the 90o chord). You can spot this figure 

in the diagram close to the middle of the 90o chord. He then 

calculates the time of the multiple-segment trajectory alkc, finding 

135475, and the time of the two-chord trajectory, aec, finding 

132593. These values, 132593 and 135475, define the problem, in 

that the time of the multiple-segment trajectory alkc is greater than 

the time of the two-chord trajectory aec, and both in turn are 

smaller than the time along the 90o chord, thus suggesting that 

among the paths inside the quadrilateral figure, alkc, there must be 

a path of minimum time. Galileo’s brachistochrone conjecture 

therefore amounts to the following question: might the arc of 

circumference, inside the quadrilateral figure, alkc, be the 

trajectory of minimum descent time? 

 

But Galileo does not know how to calculate the time of descent 

along the circular path, except by successive approximations of 

multiple-segment trajectories, which approach the arc in the limit. 

He then has no choice but to embark on a computing journey. The 

further calculations that he performs are for a 4-chord 

approximation, and finally for an 8-chord approximation. In the 

next table I summarize Galileo’s results. 

 

Trajectory Calculated time 

1 chord (90o) 141422 

2 chords 132593 

4 chords 131319 

8 chords 131078 

 

The times of descent decrease, as expected, thus presumably 

confirming, in Galileo’s mind, the validity of his conjecture. These 
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are all the calculations that Galileo carried out, or, at least, all those 

which have been preserved among his folios.  

 

The amount of operations needed for this numerical approach is 

exorbitant, since for each rectilinear path of descent one has to 

calculate the time by considering not only the different inclination 

of the path, but also the initial speed gained by the body while 

falling along the whole preceding trajectory. It comes as no 

surprise that, with no other means of calculation than his own 

human computing power, Galileo gave up on this approach, after 

succeeding in crunching the 8-chord approximation. So far as 

documented history is concerned, then, this is all we can say about 

the extant calculations. 

 

But the interesting possibility is that this numerical approach to the 

analysis of conjectures might immediately be turned to another 

use, that is, an exploration of the isochronism of pendulums, as 

Hill has intuited. Since the isochronism of the pendulum predicts 

that all times of descent along circular arcs are isochronous (up to a 

quarta, in Galileo’s terminology, i.e., an arc of 90o), one way to 

explore this prediction is to calculate the times of descent along 

different arcs by the method of approximating the arcs with 

multiple-segment trajectories, such as those used for the 

brachistochrone analysis. The above table already furnishes one 

such case, for the time of descent along the whole arc of 90o. The 

best approximation, i.e., the 8-chord approximation, predicts a time 

of 131078. 
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Fig. 3.2 The multiple-segment trajectories that I have calculated, according to 

Galileo’s procedure, in order to investigate numerically the conjecture that all 

times of descent along a circular arcs are isochronous. I have highlighted the 

four initial chords. From Manuscript 72, preserved at the National Library in 

Florence, at folio 166 recto (see Galilei 1999).  

 

In order to investigate this possibility, I have repeated Galileo’s 

computations for all of the four multiple-segment trajectories, 

approaching in the limit the four arcs, 
2

,
8

3,
4

,
8

ππππ , and for 

different approximations (Fig. 3.2). I started from the one-chord 

approximation, as Galileo did, for each of the four trajectories. The 

initial one-chord approximations (Fig. 3.2) are all isochronous, as 

Galileo has proven, and their time of descent is, in his units, 

141422 (the same figure he calculated). Now consider the 

calculations diagram (Fig. 3.3).  
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Fig. 3.3 The results of the multiple-segment trajectories that I have calculated 

according to Galileo’s procedure. The uppermost curve is Galileo’s calculation 

(but I have re-calculated the values) corresponding to the 1, 2, 4, 8 chords (the 

curve is identified by the square-like symbol □). The grey arrow suggests the 

decrease in the times of descent for smaller and smaller arcs. The next curves 

below, are arcs of 
8

,
4

,
8

3 πππ
, and identified by a black diamond-like symbol, a 

black circle symbol, and a black triangle symbol, respectively. The large 

question mark underlines the lack of evidence about the behaviour of the four 

curves for higher order approximations, as the number of chords is increased. 

 

Along the horizontal axis, I represent the number of iterations, 

corresponding to the number of chords in each approximation (I 

have calculated 1, 2, 4, 8 chords, for each of the four arcs, as 

Galileo originally did for the arc of 90o). On the vertical axis, I 

represent the times of descent in Galileo’s units. So, for a one-

chord approximation, all curves in the diagram start from the same 

point, since, as already noted, all such chords are isochronous. As 

expected, the times of descent decrease with the decreasing 

amplitude of the arc, as we now know that the arcs are not 

? 
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isochronous. The four curves do not converge, as the number of 

chords increases, to a common value, contrary to expectations on 

the isochronism hypothesis.  

 

However, as far as the isochronism hypothesis is concerned, even 

if we assume that Galileo might have repeated his efforts three 

more times, in order to calculate the three curves, for 
8

,
4

,
8

3 πππ , 

the evidence of the above diagram must still be considered 

inconclusive, since we must also assume to know nothing beyond 

the limit of 8-chord approximations. In other words, to make the 

calculations significant we would need to extend the diagram, by 

computing approximations for far greater numbers of chords. We 

can easily supply these calculations today, of course, and satisfy 

ourselves that the curves do not in fact converge to a single value, 

thus casting doubt on the pendulum’s isochronism hypothesis.  

 

 
Fig. 3.4 The results of the multiple-segment trajectories that I have calculated, 

according to Galileo’s procedure, extending the approximations, in powers of 2 

(hence the uneven distribution of the data along the horizontal axis), up to 256 

chords for each of the four arcs. 



 54 

 

Indeed, I have repeated the calculations for approximations of the 

four arcs up to 256 chords, according to powers of 2 (Fig. 3.4), as 

Galileo did for the 90o arc. The extended diagram can strengthen 

our confidence that the four curves do not in fact converge to a 

single value. But it is also clear that the evidence of the data at 

Galileo’s disposal, namely, only one curve (the uppermost one in 

Fig. 3.3), or, hypothetically, the four curves— had he repeated the 

calculations three more times—, would not have been significant, 

for the extrapolation of any conclusion about the isochronism of 

pendulums, i.e., about the convergence of the four curves. Galileo 

had to content himself with the values for only one curve, and up 

to his best approximation of only eight chords.  

 

To conclude, the calculations carried out by Galileo concerned 

originally the brachistochrone hypothesis, not the pendulum. It is 

true that these calculations can in principle be repeated for other 

arcs, so as to construct a numerical analysis of the isochronism 

hypothesis. But Galileo did not go so far as to arrive at a series of 

data which might call into question the isochronism hypothesis. 

The computations needed were simply far beyond the power of a 

human computer. Therefore, Hill’s conclusion that Galileo 

consciously published false assertions in Two new sciences is, in 

my view, untenable. 

 

A technical note. 

It is easy to replicate Galileo’s calculations with a computer. 

Galileo’s units determine the gravity constant that must be used in 

order to obtain results comparable to Galileo’s. Thus by assuming 

the radius of the quadrant to be equal to 100000 units, the gravity 

constant for vertical descent must be 5102 −⋅=g , and the formula 
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for the time of descent along a rectilinear path will be 

g
L

g
V

g
VT ⋅

+⎟⎟
⎠

⎞
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⎝

⎛
+−=

2
2

00 , where T is the time of descent, V0 the 

speed at the beginning of the descent, and L is the length of the 

rectilinear path. By programming a series of iterations for all the 

chords of any approximation to an arc, adjusting g according to the 

inclination of the path, and taking V0 as the speed reached after fall 

along the preceding portion of the trajectory, one can calculate the 

total time for a descent along a multiple-segment trajectory. 
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4. CONCLUSION  
The pendulum was an open-ended artefact. Its elusive features 

challenged the norms that presided over the tentative construction 

of a new methodology for science. However, the destabilization 

potential also acted as a invitation to explore new investigative 

pathways.36 Galileo’s detour around the pendulum was path-

breaking; it was a risky enterprise. The element of risk is inherent 

in Galileo’s new science. To calculate something of the risk he was 

taking with the pendulums, Galileo might have embarked on 

formidable calculations. However, as we have seen, the iterations 

that he needed would have been beyond his computing power. 

 

Much has been made, in the philosophical literature, of the relation 

of empirical facts to theory, and ever since Pierre Duhem’s seminal 

studies emphasis has been placed on theory-laden phenomena. I 

find that this emphasis is misplaced. On the scene of experience, I 

lived-through nothing but the stubbornness of phenomena. The 

scene of experience is robust. For, try as I might, weird phenomena 

would resist all sorts of attempts to explain them away. Facts of 

experience are not easily concocted out of theoretical 

commitments. You may be struck dumb by the unexpected 

behaviour of artefacts, and wish it to go away by the magic of 

theory, but you can do nothing about it. You are stuck with it.  

 

Galileo’s new science erupted out of a willingness to negotiate and 

trade theoretical norms for stubborn facts of experience, and 

sometimes, no doubt, the other way round (with consequent 

discomfort of later scholars). Praxis and theory were placed on an 

equal, unstable footing.  

                                                 
36 “Pathway” in the sense articulated by Holmes 2004. 
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APPENDIX 1. The computer models  
In this appendix, I discuss the computer models used in the course 

of my investigations. All models have a mathematical component, 

i.e., a system of simultaneous ordinary differential equations which 

describe the physics of the phenomenon under scrutiny, and a 

computer component which solves the system of equations. For the 

systems of equations we are interested in do not in general have 

known solutions in analytic form. In other words, in general there 

is no known formula which solves the system of equations. This is 

the reason why we need a computer. We need to study the 

solutions of the systems of equations in numerical form.  

 

But there is another reason why computers are so spectacularly apt 

for this type of investigation. Most of the difficulties with 

replicating historical experiments are due to the paucity of 

information about the original setting and conditions of the 

experiments. To repeat the test in practice requires reconstructing 

many possible settings, a time-consuming requirement which 

sometimes is impossible to meet, or otherwise economically 

unfeasible. In other words, there is often a huge range of 

uncertainty about the original experiments. Thus replicating an 

experiment is in a way reinventing it. How do we make sure that, 

this limitation notwithstanding, we can capture something of the 

original which is true? With computer models we can run tens of 

virtual experiments in a few minutes by adjusting the parameters, 

so that we can explore the range of uncertainty, and draw very 

robust conclusions relative to a range of variability of a parameter. 

We cannot claim that this or that specific event happened but we 

can claim that it was plausible that a specific event happened under 
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physical circumstances described by a range of variability of 

certain parameters.  But of course a final verdict can only come 

from real experimentation. How this approach translates into 

practice we shall see better below in the discussion of each 

individual case.  

 

There are nowadays efficient algorithms to carry out the 

computations needed for solving systems of differential equations. 

There is a specialized literature on this subject, which in effect has 

become a branch of mathematics in its own right. There are also 

numerous software packages that implement the algorithms. Given 

the huge computational power of today’s personal computers we 

are in the fortunate position of being able to carry out 

computations that not long ago would have required expensive 

supercomputers accessible only to a few scientists around the 

world. 

 

The computer models presented in this section have all been 

studied with Mathcad, version 13, by http://www.mathsoft.com/, a 

sowftware package for solving mathematical problems numerically 

and symbolically. I myself have written the systems of equations. 

The algorithms for solving the equations are already coded in the 

package so there is no need to write additional code. The feature 

which I find most attractive about this package is that it allows the 

writing of mathematics in a natural format, as though on a piece of 

paper, without need for learning a programming language. 

 

I will discuss the nature of the physical phenomena I have 

modelled, the systems of equations I have written in order to 

capture the phenomena, and the results I have obtained. 
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1.1 The pendulum computer model 

A simple pendulum, such as one of those hinted at by Galileo (see 

texts T1, T3, T4, T5, T6), consists of a thin string hanging from 

some kind of support and a ball somehow tied at one end of the 

string (except in the case of the chain pendulum, cf. text T2). The 

equations of motion of a simple pendulum depend on many 

factors, most important of which are the length of the string, the 

weight of the ball, and the aerodynamic forces acting on the string 

and the ball. Since the pendulum’s freedom of movement is due to 

the flexible string deforming under the driving force of the ball’s 

weight, and since there is virtually no rotation of the string around 

the point to which it is knotted, unlike the case of a rigid pendulum 

which rotates around a pivot, mechanical friction is practically 

negligible. I will assume that the pendulum does not rotate in 

three-dimensional space, i.e., that the oscillation is constrained to a 

plane of oscillation, and further that the plane of oscillation does 

not rotate. Under these circumstances the angle of oscillation of the 

string suffices to describe the dynamics of the pendulum. Consider 

the following schematic diagram (Fig. A1.1.1).  

 

 

 

 

 

 

 

 

 

 

 



 60 

 

 

 

 

 

 

 

 

 

 
Fig. A1.1.1 A simple pendulum. The only paramter needed to describe the  

oscillatory motion of the simple pendulum is angle θ. The triangular shaded area 

approximately represents the distributed aerodynamic force acting on the string. 

Note, however, that the correct distribution of the string’s aerodynamic 

resistance is not a linear function of the distance from the centre of oscillation. 

 

The most uncertain factor we need to capture in the model is the 

aerodynamic force, specifically resistance, acting on both the ball 

and string (lift is negligible since we assume that the ball and the 

string are sufficiently symmetrical with respect to the direction of 

the velocity). An approximate description of the form of these 

forces can be given by common, simple formulas for spheres and 

slender cylindrical bodies available in the literature. The problem, 

as we shall see, is that these approximate formulas contain an 

empirical coefficient that needs to be adjusted to the operating 

conditions of the real apparatus. 

 

As for the ball, on the assumption that it is a perfect sphere, we can 

express the aerodynamic resistance with the following formula, 

 

2
d VS

2
ρCR ⋅⋅⋅=  , 

θ 

R

weight acts 
along the 
vertical 

aerodynamic 
force on the ball 
acts along the 
tangent to the 
arc

velocity 
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where R is the resistance, Cd the drag coefficient of a sphere, ρ the 

density of air, S a reference surface, in our case the surface of a 

diametrical section of the sphere, and V the speed of the ball. 

 

As for the string, we can represent an infinitesimal element of 

resistance acting on an infinitesimal portion of the string, assumed 

to be perfectly cylindrical, as follows, 

 

2
x Vdrδ

2
ρCdF ⋅⋅⋅⋅=   , 

where dF is the infinitesimal force acting on an infinitesimal 

portion of the string, Cx the drag coefficient of the cylinder, δ the 

diameter of the cylindrical string, dr the infinitesimal length of the 

infinitesimal portion of the string (so that δ⋅dr  is the string’s 

infinitesimal reference surface), and V the speed at that point of the 

string. By integrating the previous formula along the radius one 

obtains the total resistance caused by the string.  

 

Since RθV ⋅= & , the equation of motion of a simple pendulum, 

with aerodynamic forces acting on both ball and string, and on the 

assumption that the string has no mass (i.e., that the mass of the 

string is negligible compared to the mass of the ball), is as follows,  

 

0θ)F(Cθ)R(C)θsin(
R
gθ 2

x
2

d =⋅−⋅−⋅+ &&&&                 , 

 

where θ&&  is the angular acceleration, g is the gravity constant, 

R(Cd) and F(Cx) are functions which depend on air density, R, the 

mass of the ball, the reference surfaces of ball and string, and the 

empirical coefficients Cd, Cx. I have evidenced only the latter 
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coefficients as arguments of R(Cd) and F(Cx), since these 

coefficients constitute the most delicate part of the model.  

 

As anticipated Cd, Cx have to be determined empirically, since the 

model will work really well only when the coefficients are adjusted 

to the real operating conditions. This is especially true since both 

the ball and the cylindrical string are blunt bodies, and even the 

best aerodynamic theories we have today do not furnish good 

theoretical approximations of resistance forces in the case of blunt 

bodies. This is the most challenging part of modelling the simple 

pendulum. 

 

In order to solve this adjustment problem I have equipped the 

pendulum apparatus with a computerized data acquisition system 

(see Appendix 2, for a description of the pendulum apparatus, and 

of the data acquisition system), which basically allows me to 

collect very precise time-histories over a certain period of time. 

The time-histories can subsequently be compared with simulated 

time-histories of the theoretical model. By adjusting the Cd, Cx in 

the theoretical model until the simulation, i.e., the calculated 

dynamics of the modelled system, accords well with the acquired 

time-histories, I succeeded in tuning the pendulum model. In other 

words, I succeeded in fixing the values of the Cd, Cx which work 

best under the operating conditions of my real apparatus. I 

proceeded as follows. 

 

First of all, note that it is rather difficult to read the position of the 

strings accurately using an affordable technology. Therefore, I 

have used high-precision load cells in order to read the tension in 

the strings of the pendulums. So the time-history collected is the 

actual tension present in the string at any given moment during the 
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motion of the pendulum. Load cells are wonderful engineering 

masterpieces which can output precise and reliable data. The 

following diagram, Fig. A1.1.2, shows a comparison between the 

data collected with my apparatus, and the calculated dynamics 

(which is easy to perform starting from the above equation of 

motion of the pendulum). 

 

 

 
Fig. A1.1.2 A comparison between the data collected with my apparatus, and the 

calculated dynamics. 

 

On the horizontal axis time is given in seconds over a period of 18 

seconds. On the vertical axis tension in the string of the pendulum 

is given in kilograms. The dotted curve represents the time-history 

collected during the test with the real pendulum. The solid line 

represents the calculated result with the tuned model. The match is 

satisfactory, in that the overlap of the two time-histories tells us 

that the tuned model captures well the two fundamental 

characteristics of the pendulum’s oscillatory motion, i.e., its 

frequency and its oscillatory “decay” due to aerodynamic 

resistance. 

 

During the trial-and-error tuning of the model I easily hit upon the 

values that best fit the acquired data. In so doing I discovered that 
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the approximations for the Cd, Cx coefficients, which can be found 

in the scientific literature, dramatically underestimate the real 

resistance in my apparatus. But this was no surprise. 

 

To sum up, the tuned pendulum model represents, I believe, a 

significant improvement of the prediction power of the simple 

pendulum equation discussed above. With some caution, and over 

a range of parameters not too different than those adjusted on the 

tests carried out with real apparatus, we can use the tuned 

pendulum model in order to investigate conditions of operation, 

which, for whatever reason, might not be realizable in the real 

apparatus. 

 

1.2 The coupled-pendulums computer model 

In the previous section I presented a model for one pendulum. We 

can now develop this into a more complex model for two 

pendulums mechanically coupled. Consider the structure 

represented below (Fig. A1.2). 
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Fig. A1.2 A simple structure allowing for mechanical coupling. To describe the 

equations of motion of this structure three degrees of freedom are required, 

which can be assigned by means of three angles. 

 

Three degrees of freedom are required to write the equations of 

motion of the two pendulums interfering through the mechanical 

structure. Two angles are sufficient to describe the oscillations of 

the two pendulums (imagined as occurring on a plane of oscillation 

that does not change orientation in space), but a third angle must 

be introduced to describe the rotation of the horizontal arm around 

a vertical axis. By neglecting not only all of the structural 

characteristics of the material of which the horizontal arm is 

supposed to be made, but also the mechanics of its joint with a 

fixed support, the horizontal arm can be modelled quite simply, on 

a first approximation, with a second-order ordinary differential 

equation whose two parameters are frequency and damping. These 

two parameters, in other words, summarily take into account all the 

complex effects due to structure and friction in the joint. This 

reducing of the complex structural and mechanical behaviour of 

θ1 

θ2 

β 
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the arm to two parameters is not a serious limitation, since by 

varying the parameters in the model, within a plausible range of 

values, we can explore the effects that they generate. 

 

The following system of equations contains the three equations of 

motion of  the two pendulums and the horizontal arm, coupled by 

the flexibility of the structure represented above. 
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The symbols have the following meaning. 

 

• m1, m2   masses of the pendulums 

• R1, R2   lengths of the strings of the pendulums  

• θ1, θ2  angles of the pendulums 

• FA1, FA2 aerodynamic forces on pendulums 

• L  length of horizontal arm 

• g  gravity constant 

• β  angle of the horizontal arm 

• τ1, τ2  tension in the strings of the pendulums 

• ξ  damping parameter of horizontal arm 

• ω  frequency parameter of the horizontal arm 
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Note that there are five equations but only three degrees of 

freedom, i.e., only three variables are required to describe the 

motion of the pendulums and horizontal arm, since two equations 

are used only to calculate the tensions in the strings of the 

pendulums. However, since the latter two equations are coupled 

with the third, it is necessary, to speed up the calculation process, 

to resolve algebraically the system of the last three equations in 

order to make explicit the tensions and the angle of the horizontal 

arm. Once this is done a system is obtained of three equations of 

motions which can be easily implemented numerically, and 

efficiently solved. 
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APPENDIX 2. The pendulum apparatus 
In the collective book reporting their experiments (published in 

1666), the Galilean experimenters of the Accademia del Cimento 

presented a pendulum in the form of gallows-like structure. It was 

depicted in the historiated capital of the first paragraph of the 

section on time measurements. It struck me. It is a simple but 

elegant structure. In the marginal note, we read, “Experiences that 

require the exact measure of time [Esperienze, che richiedono la 

misura esatta del tempo]”. 

 

The real instrument, built and used by the Accademici, is then 

depicted in detail in a full-page table (Fig. A2.1). I was inspired by 

the pendulum of the Accademici, which might in turn have been 

inspired by Galileo via the mediation of Galileo’s pupil, Vincenzo 

Viviani, himself a member of the Cimento Academy. 

 

Unfortunately the only suggestion we get from Galileo concerning 

his pendulum set-up is the diagram accompanying the 1602 letter 

to Guido Ubaldo (cf. T1). The arrangement suggested in T1 is 

unconvincing. It is of course quite possible that Galileo initially 

had two 2-3 braccia pendulums adjacent to each other on a wall. 

But if we consider that later on he refers to 4-5 braccia pendulums, 

I think that the T1 arrangement becomes implausible. In order for 

the pendulums not to hinder each other, they would have to be 

hung at a distance such as to allow their full extension. This means 

a wall of at least 20 braccia, about 7 meters, which would then 

require the observer to stand at a considerable distance, thus 

making the observations rather difficult. Further, the 1602 letter is 

preserved only in a third-hand copy of the nineteenth century. The 

diagram of the two pendulums looks suspicious since, in the text, 

Galileo says that one of the pendulums is removed from the 
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perpendicular “a lot [assai]”, while the other is removed “very 

little [pochissimo]”, yet the two arcs drawn in the diagram are 

almost of the same amplitude. Moreover, it is possible that, even if 

accurate, the diagram only had an illustrative function, and was not 

intended to describe a real set-up. 

 

 
Fig. A2.1 The pendulum used by the Accademici del Cimento. The shape of the 

pendulum support (left) initially inspired the gallows-like structure shown in 

section 2, Fig. 2.1.1. The Accademici’s pendulum, though, seems to be a very 

small instrument. See Magalotti 1666, p. 21. 

 

I therefore came to the conclusion that a different structure might 

have been used by Galileo. The Accademici offered me a plausible 

solution. The gallows-like structure has the advantage of allowing 

for easier observation of the oscillations of two pendulums relative 

to each other. Since isochronism and synchronism, as explained in 
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section 2, were the focus of the investigation, this seemed an ideal 

arrangement for the pendulums. 

 

I modified a wooden easel in order to build a structure which could 

easily accommodate the electronics needed to acquire the data for 

the computer model of the pendulum (see the picture shown in 

section 2). The suspicion that a phenomenon of mechanical 

coupling might be lurking in structures like this, as I had already 

predicted on the basis of simple computer models, suggested that I 

build a light horizontal arm which could subsequently be stiffened 

by means of cables fixed to the walls of the lab. This solution 

worked well and allowed for a certain freedom in adjusting the 

cables, so as to control the amount of residual flexibility left in the 

structure. 

 

The data acquisition system is based on miniature, high precision 

load cells capable of measuring the tension in the strings of the 

pendulums. Ideally one could measure directly the angular position 

of the pendulums, but in practice, since the strings are not rigid, 

easy and economically affordable solutions, based on angular 

position sensors, such as, for instance, rotation potentiometers, are 

unavailable. On the other hand, the measurement of tension made 

possible by load cells is very precise.  
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Fig. A2.2 The horizontal arm, made of Plexiglas, showing the two load cells, 

above it, two hemp strings directly connected to the load cells, a few hooks, and 

the stiffening cables fixing the horizontal arm to the wall of the lab.  
 

The load cells are then connected to a data acquisition system, not 

shown above, which converts the analogical signals from the cells 

into a numerical format. The acquisition system is connected to a 

laptop computer, on which special software allows for further 

elaboration of the acquired data. 

 

The load cells I used are capable of reading loads up to 100 grams, 

with virtually infinite sensitivity, only limited by the finite length, 

i.e., number of bits, of the output from the analogue to digital 

converter inside the data acquisition system (a 14-bit A/D 

converter in the system I used). The range and high precision of 

the load cells is perfectly suited to measurements with pendulums 

carrying light lead balls, in the range of the 1-2 ounces that Galileo 

might have used.  
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The tension generated in the string of the pendulum can easily be 

calculated while simulating the mathematical model, so that an 

accurate comparison can then be made between acquired tension 

data and calculated tension data. This comparison is the basis for 

the fine-tuning of the aerodynamic parameters of the mathematical 

model of the pendulum (see the discussion of the pendulum 

computer model in Appendix 1).  

 

As for the materials of strings and balls, let us first note that often 

Galileo refers to the strings of his pendulums as “spago” or 

“spaghetto”. A “spago” would presumably have been made of 

either hemp or linen. The strings of my pendulums were thin and 

made of natural hemp or of linen (about 1.5 mm in diameter, 

though diameter varies, especially for hemp strings). Natural hemp 

tends to be more fluffy and knotty than linen, so I initially thought 

that this might be a factor in determining aerodynamic forces, but 

it turned out that there is no appreciable difference between strings 

having more or less fluff or little irregularities such as small knots. 

In fact the aerodynamic forces are due basically to the length and 

thickness of the string. The 1623 edition of the Vocabolario degli 

Accademici della Crusca, says that “canapa [hemp]” was used to 

make “corde, funi, e anche tele”, and that  a “spago” is a 

“funicella”, i.e., a thin “fune”, which therefore suggests to me that 

hemp would likely have been used by Galileo for his “spago” or 

“spaghetto”.37  

 

As far as lead balls are concerned, I investigated the possibility that 

Galileo used musket bullets, since they were roughly the size of 1-

2 ounces (as he indicates on one occasion, in the experiment of the 

pendulum twisting around the peg is 1-2 ounces, as we have seen). 
                                                 
37 Cf. Accademici della Crusca 1623, ad vocem. 
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Bullets would have been easily available to him, I guess, since he 

was in contact with military students and engineers, especially in 

Padua. I purchased a few historic musket bullets, relics of the 

English Civil War, and noticed that they tend to be rather irregular 

both in size and weight. If this is any indication of the quality of 

early seventeenth-century bullets, and if Galileo used anything like 

bullets, then we must make allowances for possible differences in 

what he tends to call lead “balls [palle]”. On the other hand, 

Galileo might also have cast his own lead balls. The technology 

would have been available to him since the melting temperature of 

lead is not too high.  

 

At any rate, I eventually decided to do my experiments with 

modern lead balls, which are commonly used in fishing. They 

come in different sizes and have a hook, so that it is easy to 

experiment with different weights. I noticed no difference between 

a modern lead ball and a historic bullet of roughly the same size 

and weight, though the bullet, not having a hook, has to be tied to 

the string differently. As for the cork balls, I need to point out that, 

since cork is a natural material somewhat variable in specific 

weight, it is impossible to say exactly how large Galileo’s cork 

balls would have been, even when the weight can be estimated 

with some accuracy (and the same could be repeated of early 

modern lead, though perhaps to a lesser extent). 

 

Finally, as for the video material, I used a camera with wide-angle 

lens to shoot the videos in the lab, since the amplitude of the 

oscillations of the pendulums can be very large. Subsequently, the 

videos were downloaded into a laptop computer, reviewed, edited, 

and finally converted to a suitable format for delivery via the 

internet or other digital media.  
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APPENDIX 3. Galileo’s pendulum texts  
In this appendix, I furnish translations of Galileo’s most relevant 

texts concerning the pendulum.   

 

T1 (EN, X, pp. 97-100). 

Letter of Galileo to Guido Ubaldo dal Monte, from Padua, dated 

29 November 1602. 
Most Illustrious Sir and Revered Master 

I beseech You to excuse my insistence in persuading You that the proposition of 

the motions done in equal times in the quadrant of circle is true; for, it always 

having seemed admirable to me, now I fear that it might be considered 

impossible by You. Thus, I would consider it my grave error and deficiency, if I 

allowed it to be repudiated by your thinking, as if it were false, since it does not 

merit this qualification, let alone deserve to be banished from Your mind; 

especially since You are the one, more than anyone else, who could retrieve it 

most quickly from exile. Given that the experience by which I became clear 

about this truth is certain, although I must have explained it rather confusingly in 

my previous letter, I will repeat it now, so that You can ascertain this truth by 

replicating this experience. 

 

 

 
Fig. T1.1 

 

I take two thin strings (Fig. T1.1), equally long about two or three braccia, let 

them be AB, EF, and attach them to two nails, A, E, while at the other ends I tie 

two equal lead balls (although it would make no difference if they were 

different). After removing the strings from the vertical, one a lot, as along arc 

CB, the other very little, as along arc IF, I let them go at the same moment. One 

begins to describe great arcs, similar to BCD, while the other describes small 
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arcs, similar to FIG; yet mobile B does not employ more time traversing the 

whole arc BCD, than the other mobile, F, traversing arc FIG. I make sure that 

this must be the case as follows. 

 

Mobile B traverses the great arc, BCD, and comes back along the same DCB, 

and returns towards D, reiterating 500 and 1000 times its reciprocations. The 

other equally will make many reciprocations. During the time while I count, for 

example, the first hundred great reciprocations BCD, DCB etc., another observer 

will count a hundred other reciprocations along FIG, very small, without 

counting one more: a most evident sign that each single one of the greatest 

[oscillations] BCD takes as much time as any single one of the smallest 

[oscillations] FIG. Now, if the whole BCD is traversed in as much time as FIG, 

then their halves, too, which are the falls along the unequal arcs of the same 

quadrant, will be traversed in equal times. But even without bothering to count, 

You will see that mobile F will not make its smallest reciprocations more 

frequent than mobile B its own greatest, but they will always go together. 

 

The experience, which you tell me you did with the box, may be most uncertain, 

perhaps because its surface is not very smooth, perhaps because it is not 

perfectly circular, and perhaps because it is impossible to observe the moment of 

the beginning of motion in one passage. However, if You still desire to use this 

concave surface let ball B go from a great distance, for example from point B, 

which ball will reach point D, and at the beginning will make its reciprocations 

large, but at the end small, and yet the latter will not be more frequent than the 

former. 

 

As to the fact that it seems unreasonable that, of a quadrant 100 miles long, two 

mobiles might traverse, one of them the whole of it, the other only a palm’s 

width, in the same time, I admit that it is admirable. But let us consider that a 

plane might be so little inclined, as that of the bed of a river which flows so very 

slowly, that a body along such a plane would not traverse more than a palm’s 

length, in the time that another body on a much more inclined plane (or even on 

a modest inclination if conjoined with a great impetus) will have traversed one 

hundred miles. Yet this is not more incredible than the geometric proposition 

stating that triangles between two parallels and on equal bases are equal, even 

though one can make a triangle very short, and another as long as a mile. But to 
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go back to the our subject, I think I have demonstrated this conclusion, which is 

no less certain than the other. 

 
Fig. T1.2 

 

Let diameter AB, in circle BDA (Fig. T1.2), be perpendicular to the horizon, and 

from point A let lines be drawn to the circumference, such as AF, AE, AD, AC: 

I prove that equal bodies fall in the same time along the vertical BA and the 

inclined planes CA, DA, EA, FA. Thus, if they start at the same moment from 

points B, C, D, E, F, they will arrive at the same moment at point A, no matter 

how small is line FA. 

 

The following, which I have also demonstrated, may perhaps appear even more 

incredible. If the line is not greater than the chord of a quadrant, and if the lines, 

SI, IA, are taken as one pleases, the same body will more quickly traverse path 

SIA, starting from S, than the single path IA, starting from I. 

So far I have demonstrated without transgressing the boundaries of mechanics; 

but I am unable to demonstrate that arcs SIA and IA are traversed in the same 

time, which is what I seek. 

 

Please send my regards to Signor Francesco, and tell him that as soon time 

allows me I will describe to him an experiment, which I imagined, in order to 

measure the moment of percussion. As to his question, I concur with Your 

opinion, namely, that when we begin to concern ourselves with matter, because 

of its contingency, the propositions demonstrated by geometers in the abstract 

begin to be altered. As for these propositions, thus perturbed, since no certain 

knowledge of them can be assigned, the mathematician is absolved from 

speculating. 
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I have been too prolix and tedious, please forgive me and consider me as Your 

very devoted servant. With my utmost reverence to You. 

 

 

T2 (EN, VII, pp. 256-257). 

Excerpt from the Dialogue on the two chief world systems (1632). 
SALV. Tell me: of two different pendulums, does not that which is attached to 

the longer string make its vibrations less frequently? 

SAGR. Yes, if they moved along equal distances from the vertical. 

SALV. This removal from the vertical, being more or less, does not matter, 

since the same pendulum always makes its reciprocations, whether they are 

through very long or short arcs, under the same times, regardless of the 

pendulum’s being removed from the vertical a great deal or very little; or, if they 

are not exactly equal, they are negligibly different, as experience can show you. 

However, even though they were quite different, this would not go against our 

opinion. 

 
Fig. T2 

 

Let us consider perpendicular AB (Fig. T2), and let a weight C hang from point 

A by rope AC, and let us consider another weight, E, above. Now, after 

removing rope AC from the perpendicular, let it be released. Weights C, E will 

move along arcs CBD, EGF. Weight E, insofar as hanging from a shorter 

distance, and also less removed from the perpendicular (as you suggested), 

wishes to go back sooner, and make its vibrations more frequent than weight C, 

so that it will prevent the latter from running towards point D as much as if it 

were free. In this way, by impeding it in every vibration, it will make it stop. 
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Now, the rope itself (if one does not consider the weights) is a composite of 

many heavy pendulums; that is, each part of the rope is a pendulum, attached 

closer and closer to point A, and therefore such that it will make its vibrations 

more and more frequently. In consequence, a part can impede continuously 

weight C. A sign of this is that if we observe rope AC, we will see it not 

elongated rectilinearly but curved. If instead of a rope we take a chain, we will 

see this effect more evidently, and most of all when we remove weight C from 

the perpendicular a great deal. For, since the chain is compounded of many 

disjointed particles, each of which is very heavy, arcs AEF, AFD will be seen 

very curved. For this reason, namely, that the parts of the chain want to make 

their vibrations more frequent, according as they are closer to point A, thus 

preventing the parts below from running as far as they would naturally do, 

which continuously diminishes the vibrations of point C, the parts of the chain 

will ultimately stop weight C, even if the impediment of air could be removed. 

 

T3 (EN, VII, pp. 474-476). 

Excerpt from the Dialogue on the two chief world systems (1632). 
SALV. Thus, I say that it is true, natural, and necessary, that the same body, 

moved circularly by the same moving virtue, will run its course along a greater 

circle in a longer time than along a smaller circle. This truth is accepted by 

everybody, and confirmed by all sorts of experiences, of which we will put 

forward some. […] Further: let a weight be attached to a rope which twists 

around a nail fixed in a wall, and keep the other end of the rope with your hand; 

after letting the pendulum go, while it makes its vibrations, pull the end of the 

rope with the hand, so that the weight will be lifted. You will see that while it 

rises the frequency of its oscillations will increase, as if they were made 

continuously along smaller circles. Here I want you to take notice of two things 

worth knowing. First, the vibrations of such a pendulum are made so necessarily 

under so determined times,  that it is impossible to make the pendulum vibrate 

under different times, except by lengthening or shortening the rope. You can 

ascertain this by experience, by tying a stone to a string and keeping the other 

end in your hand. Try as you might, with any stratagem whatever, you will be 

unable to make it oscillate under another time than its own, unless you lengthen 

or shorten the string. The second fact, really marvellous, is that the same 

pendulum makes its vibrations with the same frequency, or very little, almost 

negligibly different, regardless of whether they are made along the greatest or 

the smallest arcs of the same circumference. I say that if we remove a pendulum 
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from the perpendicular, one, two, or three degrees, or if we remove it 70, 80, or 

even 90 degrees, once released, it will in both cases make its vibrations with the 

same frequency, both those where it traverses an arc of 4 or 6 degrees, and those 

where it traverses arcs of 160 degrees, or more. This will be most clearly seen 

by suspending to equal weights by two strings of the same length, and by 

removing one from the perpendicular a small distance, and the other a much 

greater distance. When let go they will go back and forth under the same times, 

one along very long arcs, the other along very small ones.  

 

T4 (EN, VIII, pp. 128-129). 

Excerpt from the Two new sciences (1638). 
SALV.  The experiment made with two mobile bodies as different in weight as 

possible, by letting them fall from a height to observe if their speed is the same, 

labours under some difficulties. For, if the height is great, the medium that must 

be cleaved and laterally pushed by the impetus of the falling body, will impede 

much more the small moment of the light body than the violence of the heavy 

body, so that the light body will lag behind by a long distance. If the height is 

small, it would be doubtful whether there truly is any difference, or  perhaps if 

there were one, it would be unobservable. Thus, I thought I could reiterate many 

times the fall from small heights, so as to accumulate many small differences of 

time, which might occur between the arrivals of the heavy and the light bodies, 

in such a manner that once conjoined these differences would add up to an easily 

observable time. Furthermore, to take advantage of motions as slow as possible, 

in which the resistance of the medium alters much less the effect dependent on 

simple gravity, I thought I might have the bodies descend on an inclined plane, 

but slightly elevated above the horizon, for how heavy bodies of different 

weight behave would be observable both on an inclined plane and along a 

vertical descent. Then, wishing to eliminate the impediments that might be due 

to the contact between the mobile bodies and the plane, I decided to take two 

balls, one of lead and the other of cork, the former more than a hundred times 

heavier than the latter. I attached both to thin strings, equally long, about 4-5 

braccia, and fixed above. After removing both from the perpendicular, I let them 

go at the same instant. While descending along the circumference of the circles 

described by the equal strings, the balls, after passing beyond the vertical, have 

come back along the same paths. By reiterating their goings and comings a full 

hundred times, on their own, they have shown to the senses that the heavy one 

goes so nearly under the time as the light one, that neither in one hundred, nor in 
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one thousand vibrations, does it anticipate the time by a moment; for, both move 

with exactly the same pace. Further, the operation of the medium can be 

discerned, since, by somewhat impeding motion, the medium much more 

decreases the vibrations of the cork ball than those of the lead ball; yet, it does 

not make them more or less frequent. On the contrary, if the arcs traversed by 

the cork ball are no more than 5-6 degrees, and those traversed by the lead ball 

no more than 50-60 degrees, they will be traversed under the same times. 

 

T5 (EN, VIII, pp. 139-140). 

Excerpt from the Two new sciences (1638). 
SALV. We will see if from these pendulums of ours, we can extract the 

solutions to our difficulties. As to the first doubt, which is, if truly and most 

exactly the same pendulum makes all its vibrations, the greatest, the 

intermediate, and the smallest, under precisely equal times, I will refer you to 

what I heard from our Academician. He proves clearly that a mobile body that 

descends along the chords of any arc would traverse all of them necessarily in 

equal times, not only that corresponding to 180 degrees (i.e., to the diameter), 

but also those corresponding to arcs of 100, 60, 10, 2, ½, degrees, or even a 

fraction of a degree, on the understanding that all chords converge to the 

bottommost point which touches the horizontal plane. As far as the bodies 

descending along the vertical arcs of the chords, which are no greater than a 

quadrant, i.e., 90 degrees, experience shows that all the arcs are traversed in the 

same times, but shorter than the times of the chords; which effect is marvellous, 

in that, superficially, it seems that the contrary would have to happen, for, given 

that the starting and ending points of motion are the same, and given that the 

straight line is the shortest line between two points, it would seem reasonable 

that the motions along the straight chords would be the shortest; but this does 

not happen. Indeed, the shortest time, and therefore the fastest motion, is that 

along the arc of the chord. As for the ratio of the times of mobiles hanging from 

strings of different length, they are in the subduple ratio [i.e., the square root] of 

the ratio of the lengths of the strings. In other words, the lengths of the strings 

are in the duplicate ratio of the times, i.e., they are as the squares of the times. 

Thus, for example, in order for the vibration time of one pendulum to be double 

the vibration time of another pendulum, the length of the string of the former 

must be quadruple the length of the string of the latter. In this way, during one 

vibration of a pendulum another will make three, if the string of the former is 

nine times that of the latter. From this it follows that the lengths of the strings 
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have to one another the same ratio as the squares of the numbers of vibrations 

made in the same time. 

  

T6 (EN, VIII, pp. 277-278). 

Excerpt from Two new sciences (1638). 
SALV. As for the other part, i.e., to show that the impediment that the same 

mobile body receives from air, while the mobile moves with a great speed, is not 

much greater than that which it receives when moving slowly, the following 

experience will afford certainty that this is indeed the case. Let two equal lead 

balls be attached to two equally long strings, of about 4-5 braccia, and after 

fixing these strings above, let the two balls be removed from the perpendicular, 

but one 80 degrees or  more, the other no more than 4-5 degrees, in such a way 

that, when released, one will descend, and after crossing the perpendicular, will 

describe great arcs of 160, 150, 140 degrees, etc., which diminish little by little; 

but the other, while oscillating, will go along small arcs of 10, 8, 6, etc., which 

also diminish little by little. I now say that the first ball will traverse its degrees 

of 180, 160, etc., in the same time as the second ball traverses its degrees of 10, 

8, etc. From this it is manifest that the speed of the first ball will be 16 and 18 

times greater than the speed of the second. Thus, if the greater speed were 

impeded from the air more than the smaller speed, the vibrations in the great 

arcs of 180 and 160 degrees, etc.,  would have to be less frequent than those in 

the small arcs of 10, 8, 4, and even 2 and 1. But experience does not agree with 

this, for, if two observers counted the vibrations, one the smallest and the other 

the greatest, they will count not only tens of them, but hundreds, without a 

discrepancy of one count, or even of a fraction of a count. This observation 

makes us certain of two propositions, namely, first, that the greatest and smallest 

vibrations are all made under equal times, and, second, that the impediment due 

to air does not operate more in the fastest motions than in the slowest, contrary 

to what we  thought a short while ago. 
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