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1. Cartwright’s Contribution
Hunting Causes and Using Them, Nancy Cartwright’s new collection
 of her essays and lectures from the last several years contains two pieces of positive advice for social scientists and others: exploit natural experiments, and attend to the specific details of the system or processes under study. That is good advice, but unneeded.  Recommending to social scientists that they exploit “natural experiments”—circumstances in which a variable of interest as a potential cause is inadvertently randomized, or otherwise unconfounded—is something like recommending "run as fast as you can” to a sprinter. And of course one should use what one knows of the details of a kind of system in formulating causal explanations of its statistics.
  But what should we do about the many urgent problems when natural experiments are not available—the influence of low level lead on children’s intelligence,  the causes of various ecological changes, what influences the economic growth of nations? Natural experiments are rare for the issues for which we want answers, and in many circumstances, especially but not uniquely in social science, we do not know enough about what causes what, and how much, and in what ways, in what conditions. There may be theories, often without much warrant, there may be opinions, there may be common sense knowledge that circumscribes the possible causal relations, but a large burden must fall on inferences from values of variables for cases obtained by observation. When we cannot experiment naturally or unnaturally, when we do not have detailed knowledge of causal mechanisms, or even of the most relevant causal factors, how should we obtain and efficiently use such data to make those inferences so that there is some guarantee—at least a non-vacuous conditional guarantee—that they will lead to the truth? I am not sure whether Cartwright thinks there is any answer to that question, but her book develops none, and half of her book is devoted to attacking the methods and assumptions of one line of research toward an answer, a line I endorse and have had some role in furthering. Hunting Causes continues a campaign of more than a decade
 begun in her Nature’s Capacities and Their Measurement
 against graphical causal models and associated automated search procedures. That book announced the “metaphysical” impossibility of procedures that, unbeknownst to her, were already under development, and were published, implemented and applied soon after (Spirtes and Glymour,1991; Spirtes, et al., 1993). The present book is still less informed, because there is so much more to be informed about.
 
The first half of Hunting Causes is chiefly devoted to criticism of what she calls “Bayes net methods” and to criticizing assumptions she thinks they require. She uses a collection of caveats that I and my collaborators formulated in Causation Prediction and Search, expanded by a couple of her own devising, to attack a set of inference tools that have been provided with correctness proofs, supplemented with tests of the conditions of the correctness proofs, and in various cases with remedies when the conditions do not hold in the data.  She ignores the context of scientific, especially social scientific, practice we aim to improve. Rather than a challenge for investigation, she takes every apparent problem as a fundamental limitation of our methodology, but she is unable to describe any other methods that solve the corresponding discovery problems (which, of course, she is not obliged to do if she thinks no such methods are possible), More importantly, almost everything she says in criticism of “Bayes net methods” is false, or at best fractionally true. She and they need to be better acquainted.
2. What Is Wrong With “Bayes Nets Methods”?
Nothing, Cartwright says, except that they rest on a mistaken metaphysics and they scarcely ever “apply.”  I will consider the metaphysics in due course, but no philosophical reader of Cartwright’s book or her papers, no matter how careful, could reasonably understand from her words the range of tools and their justifications which she attacks in her papers. Without explanation, her book begins with these charges:

“Bayes nets causes must act deterministically: all the probabilities come from our ignorance.” (p. 3)

“Bayes-nets methods:

These methods do not apply where:

1. positive and negative effects of a single factor cancel;

2. factors can follow the same time trend without being causally linked;

3. probabilities cause produce products and by-products

4. populations are overstratified (e.g. they are homogenous with respect to a 


common effect of two factors not otherwise linked)

5. populations with different causal structures or (even slightly) different 


probability measures are mixed.” (p. 12) 

And: “The arguments that justify randomized experiments do not suppose the causal Markov Condition.” (p. 12)

The first claim is simply false, as is the last. The enumerated claims are vagaries.“Apply” is a phrase that smothers relevant distinctions. Most inductive methods can be applied to just about anything. The question is what reliability properties a method has in what circumstances for what information: when does it converge to the truth about what? When is the convergence uniform so that there are bounded error probabilities for finite samples? When the circumstances for its reliability are not met, are they recognizable?   How does a search method behave empirically on what kinds of finite samples? Such questions are ignored in Hunting Causes, but for all of the circumstances she enumerates, there are answers or partial answers. I will describe some of the answers and relevant distinctions in what follows. But first one should understand a little of the scientific context behind the development of “Bayes nets methods,” a context that is invisible in Hunting Causes and ignored in contemporary philosophical discussions of the social sciences. 

3. The Context and Project of “Bayes net methods”
Applied science had available in the 1980s only a handful of methods for causal inference, methods whose reliability was either unknown or extraordinarily restrictive. They included a variety of multiple regression methods, stepwise regression procedures for variable selection, various forms of factor analysis, principal components analysis, various methods for estimating and testing hypotheses with unspecified parameter values, and heuristic searches that started with an initial hypothesis and added or subtracted dependencies. Nor were there extensive simulation studies warranting the methods. Except for regression under very restrictive conditions, not a single proof of correctness for causal search existed for the non-experimental methods above, and sophisticated statisticians knew as much. The statistical community was fundamentally conflicted. Textbook after textbook warned that regression was inappropriate for causal inference and then gave examples or exercises applying regression for causal inference. From its very beginning, discussions of factor analysis equivocated over whether the latent factors obtained by the method were to be understood as causes. While textbooks and papers warned against data driven generation of hypotheses—chiefly by name-calling—many of the papers in the 1970s of an entire statistics journal, Technometrics, were devoted to data driven heuristics for selecting variables for multiple regression—none with proofs either that the selection resulted in finding the relatively direct causes of the outcome, or that the procedures found the minimal set of predictors given which the target variable is independent of the remaining variables. Textbooks gave elaborate details about correct estimation of parameters in models of categorical data, and went on to propose search procedures for which no correctness result was investigated. 

Besides ad hoc search procedures, a typical procedure in many social science endeavors was (and remains) to collect data, build a model a priori according to the investigators’ opinions, test the model against the data (or sometimes not), and if the model were rejected, fiddle with it a little until it could not be rejected by a statistical test. The vast space of alternative hypotheses was unexplored. Linear models that filled (and still fill) the social science literatures so often failed statistical tests that surrogate indices were devised, with no statistical foundation, to make failed models look better. The ambitious reader will find lots of linear models in the social science literature that are rejected by appropriate statistical tests but have a high “Bentler-Bonnet index of fit.”   Computer programs for specifying, estimating and testing linear models appeared in the 1980s and after, and included heuristic searches to modify an initial hypothesis. The programs were sold without any published investigation, by proof or by simulation studies, of the accuracy of their search heuristics. First among these was the widely used LISREL program. When a large simulation study using a variety of causal structures, of parameter values and of sample sizes, found the LISREL procedure performed little better than chance, and was especially poor when one measured variable influenced another and both shared a common unmeasured cause, one of the authors of the LISREL program replied to us privately that no such circumstance is possible. In other words, confounding, the ubiquitous problem of causal inference from non-experimental data, cannot happen! Data analysis in the 1980s was confined to a handful of variables. While data sets with large collections of variables were beginning to accumulate, multiple regression methods would not work with data having more variables than sample cases, and stepwise regression was guesswork. Early in the 1990s I asked Stephen Fienberg, my colleague in the statistics department, if he had available a data set with at least a dozen categorical variables. No, he said, because there was no point in assembling a data set with a dozen categorical variables since there were no methods that could analyze them.

The project I and my colleagues, Richard Scheines and Peter Spirtes, and many of our former students, have pursued for more than 20 years is to provide tools for informative causal inference that have various guarantees of reliability under explicit assumptions more general than those available for statistical search procedures in common use, and to understand the limitations of our tools and of other tools of traditional statistical practice.
 We are joined in the effort by people at UCLA, Microsoft, Cal Tech, the University of Washington, Australia, Scandinavia, Japan, Germany, all over. Our aim has been to exploit directed graphical representations of causal and probability relations long in use but formally developed only around 1980 by a group of statisticians, and elaborated algorithmically later in the decade by Judea Pearl and his students. Pearl (1988) initially rejected any causal interpretation of the directed graphs, a position he soon abandoned in the 1990s, much to the benefit of our understanding of many issues (Pearl, 2000). 

We—Richard Scheines, Peter Spirtes and several of our students, former students and colleagues in other institutions—viewed, and view, the use of data to search for correct causal relations as an estimation problem, subject to evaluation criteria analogous to those conventionally considered in statistics for parameter estimation. As with the statistical estimation of parameters, the statistical estimation of causal structures is not a single problem, but resolves into a variety of problems, some solved and many not. We sought (and continue to seek) to abstract conditions that are commonly implicit in the data analysis and hypotheses of applied scientific models; feasible procedures are sought that are provably guaranteed to converge to true information under those assumptions; the computational complexity of the procedures is investigated; the existence of finite sample bounded error probabilities is investigated; the procedures are implemented, tested on simulated data, applied to real data, and methods are sought to test the assumptions. In addition to proofs of sufficient conditions for the correctness of methods, we seek unobvious necessary conditions for their correctness. Then the assumptions are weakened, or specialized, or otherwise altered and the process is repeated.  Our concerns are with both non-experimental and experimental data. In parallel, we investigate what predictions can be made given partial knowledge of causal relations and associated probabilities. 

The metaphysical picture we initially adopted was that individual systems have values of properties,  quantities that vary in value from system and to system, and all of which we refer to as “variables.”. The variables in an individual system may stand in both probability relations and causal relations, which at least in some cases can be manifested by changes in values of variables upon appropriate manipulations of others, as Woodward (2003) emphasizes. For each such system, there is a joint probability distribution on the values of the variables, even though at any time the system has some definite value for each variable. Initially, three assumptions from the literature of the 1980s seemed fundamental: (1) The causal relations are acyclic at the individual level: if A causes B then B does not cause A. (2) The causal Markov condition: for a set S of variables instantiated in a system such that every common cause of two variables in S is also in S—a causally sufficient 
 set of variables--each variable, X in S, is independent of variables in S that are not effects of X conditional on any values of the variables in S that are direct (with respect to S) causes of X. And, (3) the converse condition, which I call Faithfulness: all conditional independence relations in the probability distribution for a causal system result from the Markov property for the graph of causal relations in that system. In addition, we made a sampling assumption: the data from which estimation is made consists of systems with identical, independent, probability distributions, or i.i.d. samples. Over the years we and others have investigated possibilities of causal estimation in circumstances where each of these conditions does not hold. 
  One of the most important alternatives is the d-separation postulate, a purely graphical condition due to Pearl (1988) that for directed acyclic graphs characterizes all of the implications of the Markov condition. The Markov condition fails for directed cyclic graphs and for systems with “correlated errors” but Spirtes (1995) showed that the postulate that d-separation characterizes implied independence and conditional independence relations for such systems does not fail. A converse condition, d-connection, characterizes dependence relations assuming Faithfulness.
4. Cartwright’s Complaints

Cartwright does not explain what “Bayes net methods” are. I will respond to her complaints citing only some of the now very large number of methods in the literature intended to extract from data causal information represented by graphical causal models.
1. “Bayes net methods’ do not “apply” where  “positive and negative effects of a single factor cancel.” 

Her claim is quite false. The Faithfulness condition is a restriction on the class of possible models, a restriction required for proofs that various search algorithms converge to correct information about causal relations. The Faithfulness condition has been decomposed into components each of which can be tested in the data (Spirtes and Zhang, 2006). The assumption that there are “no canceling pathways” can be detected whenever 4 or more recorded variables are involved, e.g. if A causes B which causes D and, by a separate mechanism, A causes C which causes D. Only in cases is which the canceling pathways involve only 3 variables—e.g., A causes C which causes D and by a separate mechanism A causes D with no recorded intervening variable—is the cancellation undetectable, and for linear systems with a non-Gaussian joint distribution, the causal structure can nonetheless be discovered. The unique causal structure described by a directed acyclic graph can be recovered (speaking, as I usually will, of the large sample limit or given the population distribution) from i.i.d. samples if the causal relationships among X, Y and Z are linear, are not deterministic, and at most one of the variables is Gaussian.(Hoyer, et al., 2005, 2006; Shimizu, et al., 2005, 2006).. Whether comparable results can be obtained for non-linear, non-Gaussian systems is unknown.

One will hunt in vain through Hunting Causes for a hint as to a reliable method for discovering causal relations in such circumstances. Should, however, the system be non-linear, or Gaussian, and the available tests of Faithfulness passed and there is no association between two variables, one can make causal inferences assuming no perfectly canceling pathways, or one can postulate perfect cancellation, or one can refuse to make any inference whatsoever as to causal relations. The alternatives are the same whether both variables are passively observed or one of the variables is experimentally manipulated. With sufficient sample sizes, in the absence of other information supporting exactly canceling pathways, I would make the first choice. Cartwright has announced elsewhere that she would make the third, so much so that with two independent, large sample experiments each showing no association between an experimental treatment and a single measured outcome variable, she would remain agnostic (see Glymour, et al. 1987 for the example, Cartwright, 1989 for her view, and Glymour 1999 for a discussion). 

2. Bayes net methods do not “apply” where “factors follow the same time trend without being causally linked.”

Early in the 20th century George UdnyYule observed that two or more time series that change monotonically with time (no matter whether all increase, all decrease, or some increase and some decrease) will produce correlations when the observations are pooled. Yule’s interpretation of the phenomenon was that the series have a common cause, somewhere back in time, but that does not help us in understanding the causal relations among the measured variables.  

Cartwright’s complaint betrays a misconstrual of conditions for the correctness of a search procedure as universal metaphysical principles that are supposed to hold in every sample and circumstance. When the conditions for the reliability of an inductive tool are obviously not met in the data, one does not turn first to metaphysics; one looks to see if there are data transformations and a probability model that make sense in the circumstances and that will bring about those conditions for reliability, and that is what is routinely done in practice wherever time series are studied: transform the data, if possible, to stationarity—the identity of the joint distribution of the variables across time--usually by differencing the timed observations. Other transformations may be required. For example, the variances of some variables may also trend with time; we may then try to transform the variables to eliminate the trend, for example by a system of transformations proposed by Box and Cox (1964). Hoover (2005) rightly points out that in various cases the correlation coefficient is not the appropriate measure of association, and when we have succeeded in transforming appropriately, the Markov condition holds for the sample--in the absence of other complicating conditions we will subsequently consider. Our practice is in this regard perfectly standard.

To illustrate what “Bayes net methods” can do with time series, consider the problem of climate teleconnections. Climate teleconnections are associations of geospatially remote climate phenomena produced by atmospheric and oceanic processes. The most famous, and first established teleconnection, is the association of El Nino/Southern Oscillation (ENSO) with the failure of monsoons in India. A variety of associations have been documented among sea surface temperatures (SST), atmospheric pressure at sea level (SLP), land surface temperatures (LST) and precipitation over land areas. Since the 1970s data from a sequence of satellites have provided monthly (and now daily) measurements of such variables, at resolutions as small as 1 square kilometer. Measurements in particular spatial regions have been clustered into time indexed indices for the regions, usually by principal components analysis, but also by other methods. Climate research has established that some of these phenomena are exogenous drivers of others, and has sought physical mechanisms for the teleconnections. 
Chu and Glymour (in press) consider data from the following 6 ocean climate indices, recorded monthly from 1958 to 1999, each forming a time series of 504 time steps:

· QBO (Quasi Biennial Oscillation): Regular variation of zonal stratospheric winds above the equator

· SOI (Southern Oscillation): Sea Level Pressure (SLP) anomalies between Darwin and Tahiti

· WP (Western Pacific): Low frequency temporal function of the ‘zonal dipole’ SLP spatial pattern over the North Pacific. 

· PDO (Pacific Decadal Oscillation): Leading principal component of monthly Sea Surface Temperature (SST) anomalies in the North Pacific Ocean, poleward of 20° N

· AO (Arctic Oscillation): First principal component of SLP poleward of 20° N

· NAO (North Atlantic Oscillation) Normalized SLP differences between Ponta Delgada, Azores and Stykkisholmur, Iceland

Some connections among these variables are reasonably established, but are not assumed in the analysis that follows. In particular, SO and NAO are thought to be exogenous drivers. 

The PC algorithm (Spirtes and Glymour, 1991; Spirtes, et al., 1993) uses statistical decisions about the independence of pairs of variables conditional on sets of other variables to estimate a class of directed acyclic graphs (DAGs) representing causal hypotheses about measured variables. The output of the algorithm is a “Markov equivalence class”—a description a set of DAGs that imply the same conditional independence relations according to the Markov condition. PC was the first algorithm that could be successfully applied to a large number of variables and for which there were proofs of asymptotic correctness assuming i.i.d. sampling, no unrecorded common causes, and the Markov and Faithfulness conditions hold. The procedure is now a standard against which new search algorithms are commonly compared. In some but not all cases the PC algorithm will also detect the existence of unmeasured common causes influencing two or more measured variables. A generalization, the FCI algorithm (Spirtes, et al., 1993) finds all such cases of confounding that can be identified from conditional independence relations among the measured variables and avoids postulating direct causal relations between measured variables when the conditional independence relations allow, but do not require, unmeasured common causes. 

After testing for stationarity, the PC algorithm yields the following structure for the climate data:
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Figure 1

The double headed arrows indicate the hypothesis of common unmeasured causes. So far as the exogenous drivers are concerned, the algorithm output is in accord with expert opinion. 

Monthly time series of temperatures and pressures at the sea surface present a case in which one might think that the causal processes take place more rapidly that the sampling rate. If so, then the causal structure in between time samples, the “contemporaneous” causal structure, should look much like a unit of the time series causal structure. When we sample at intervals of time as in economic, climate, and other time series, can we discover what goes on in the intervals between samples? Swanson and Granger (1997) suggested that an autoregression be used to remove the effects on each variable of variables at previous times, and a search could then be applied to the residual correlations. The search they suggested was to assume a chain model X -.> Y -> W -> …-> Z and test it by methods described in Glymour, et al. (1987), some of the work whose aims and methods Cartwright (1989) previously sought to demonstrate is metaphysically impossible. But a chain model of contemporaneous causes is far too special a case. Demiralp and Hoover (2003), and later, Moneta and Spirtes (2006), proposed applying PC to the residuals. (Moneta also worked out the statistical corrections to the correlations required by the fact that they are obtained as residuals from regressions.) When that is done for model above, the result is the unit structure of the time series:
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Figure 2

Using  the FCI algorithm, Chu and Glymour (in press) show how to extend the analysis to allow non-linear dependencies apparent in the data. 

3. Bayes net methods do not “apply” where “populations are overstratified (e.g., they are homogeneous with respect to a common effect of two factors not otherwise causally linked,)”

If I understand this claim correctly, it is wrong, as always modulo the vagueness of “apply.” Consider the following example. The variables are categorical and S is a sample variable such that S = 1 for a unit means the unit is in the sample. 

X< - Y <- W

R-> Q -> P


K

  S

M

Figure 3

The “Fast Causal Inference” (FCI) algorithm ( Spirtes, et al., 1995) yields the result that Y causes X and Q causes P. Zhang (2006) showed that the FCI algorithm, recently updated, outputs all causal relations (or lack thereof) among the measured variables that are not underdetermined by conditional independence information—assuming causal Markov and Faithfulness. Causal nformation, but not all causal information, is lost. Can one do better with sample selection bias—reliably get more information about causal relations from sample data—with algorithms that use other features of the data,  perhaps combined with other assumptions? We do not know.

4. Bayes net methods do not “apply” to “populations with different causal structures or when even slightly different probability measures are mixed.” 

Cartwright smothers a wealth of distinct cases, solutions and open problems, none of which she has any means to address. “Mixed” samples, consisting of systems with different causal structures and probability distributions can come about in a lot of different ways.

a. There is a recorded variable, conditional on different values of which, different causal relations obtain.

The simplest example is a switch. The light switch turns a lamp on and off if the main is on. If the main is off, the light switch has no influence on the lamp. If all variables are recorded, and all vary in the sample, the joint structure and the conditional structures can be learned.  Anynumber of algorithms will return from appropriate sample data a graph that represents aspects of the causal relations. And any number of automated updating algorithms will, upon conditioning on the values of the switch variable, produce conditional probabilities for which—if the algorithm is applied again—the special causal structure in that condition is revealed. That is so even if for different values of a variable influences among other variables go in opposite directions. For example, suppose X influences Y, W, and Z, and conditional on X = 1,  Y and W influence Z and conditional on X = 2, W and Z influence Y. Then,  with appropriate samples, the PC algorithm (as well as many others), will return the relatively uninformative pattern:



X


Y
Z        W

Figure 4

But conditional on X = 1, the algorithm will return that Y and W influence Z, and conditional on X = 2, that W and Z influence Y.

b. We have two or more data sets that are different marginalizations of the same causal structure and the same probability distribution.

A serious problem for causal inference from social and epidemiological data is that data recording conventions vary from place to place. Thus different hospitals have different recording practices, different states record a common set of variables (required by the “No Child  Left Behind” act) as well as idiosyncratic variables, and so on. There will be no common probability distribution for the recorded samples, because in each data set some variable will be recorded that is not recorded in others.

Suppose a causal structure: 
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Figure 5

And suppose in one database X, Y, R, Q and Z are recorded while in another X, Y R, Q and W are recorded. Thus there is no case in evidence for which Z and W are both recorded and no case in evidence in which L is recorded. Nonetheless, from the two databases, a generalization of the ION algorithm (Danks, 2005) calling the PC algorithm will return the full, correct structure.  Or suppose Z, W, R, Q are recorded in one data base and X, Y, Z, W in another. Again, the algorithm will return the correct structure with sufficient sample sizes or given the true marginal probability distributions.

c. There are unmeasured common causes.

If there are unmeasured common causes of some or all of the measured variables, then the marginal distribution over the measured variables will be a mixture. As the examples above illustrate, both the PC and the FCI algorithms will detect the existence of unmeasured common causes in some circumstances, and FCI will caution agnosticism where, in the absence of knowledge from outside the data, it should. Even in the presence of unmeasured confounders, the algorithms of Hoyer and his collaborators provide the directed acyclic graph of causal relations among measured variables in non-Gaussian linear systems.
The more common appeal to unmeasured common causes in the social sciences is through multiple indicator models, which are typically postulated either a priori or as the result of factor analysis, and most commonly assuming linear relationships in which unmeasured “latent” variables influence one another and influence measured variables, which may also influence one another. Commonly, the interest is what unmeasured causes of variation exist, and what their causal connections, if any, may be. Not only do “Bayes net methods” “apply,” but they provide the only methods for which we have any asymptotic correctness results for methods that can identify the latent variables and recover information about their causal relations. 

In a leading text on factor analysis (Bartholomew and Knott, 1998) the largest example is from data on “test taking anxiety” questionnaire responses from 335 high school students in British Columbia. Factor analysis with rotation to “simple structure” results in two factors.  No statistical test of the model is provided in the text, but when the correlation between the two latent variables is unconstrained the model intensely fails a standard asymptotic chi square test used for linear Gaussian latent variable models. The authors write that it is beyond the capacity of statistical science to determine causal relations among latent variables, but the statistical test is essentially of the clustering, and the clustering fails the test. 
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Figure 6

The standard asymptotic chi square test for this model gives a p value of zero, where the model itself is the null-hypothesis, and thus entirely rejected. Silva, et al. (2006) describe a procedure (Build Pure Clusters, BPC) that seeks clusters of measured variables that share a common cause but are otherwise unconfounded, ignoring measured variables that are confounded, for example those that turn out to be influenced by two or more measured variables.  The procedure is correct in the large sample limit when the true structure is a linear multiple indicator model and each latent variable has at least two unconfounded measured indicators. When such clusters are found, latent common causes are postulated and their correlations are estimated by standard methods. Then a standard algorithm such as PC or the Bayesian Greedy Equivalence Algorithm (GES) of Chickering and Meek (Chickering, 2003) is applied to the correlations as part of another procedure (Multiple Indicator Model Builder,  MIMBUILD). to extract information about the causal relations among the latent variables, and then the model is tested. The result when applied to Bartholomew and Knott’s data is:
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With colors flying, the hypothesis passes the test the factor analysis model fails. In this example, no directions of causal connections are inferred—the undirected output represents all directed acyclic graphs with three edges.  I emphasize that the algorithm was given no prior bias or information as to the clustering of measured variables.
The example is not anomalous. 

 An undergraduate can apply the tools to data set after data set in the social science literature for which published (or unpublished) “expert’ models fail statistical tests and find one or more multiple indicator models that explain aspects of the data and cannot be rejected by asymptotic chi square tests. I do not know, or believe, that any of these explanations are true. The linearity and Normality conditions generally cannot be checked from published data , which are typically confined to correlations or covariances, and p values can vary wildly if the distribution family is misspecified—see for example, Mayo and Spanos  (2004). I do believe that a huge literature in the social sciences produces causal explanations with multiple indicator models that are untenable on the data even by the distribution assumptions (Normality and linearity) commonly made, and that automated search over a vast space of alternatives will find explanations that, on the same distribution assumptions, do account for aspects of the data with latent variables and their relationships.

d. Measurement Error

A related way, much studied in econometrics, that mixed samples can occur is if the variables under study are measured with error. Here is an important illustration, due to work by Richard Scheines (2002) of how “Bayes net methods” can  “apply” in such circumstances.

A 1979 study (Needleman, et al., 1979) of the influence of low level lead exposure on children’s IQ scores helped to justify the elimination of lead from gasoline and paint. Applying stepwise regression to data on lead concentrations, IQ scores, and 40 familial and social variables, Needleman eliminated all but six potential causes of IQ scores. Lead exposure was among the six remaining variables. Needleman’s multiple regression of IQ on these six variables found all of them to be significant, resulting in a least squares estimate that showed a small decrease in IQ with increasing lead exposure. Subsequently, assuming that Needleman’s  measurements of IQ and of these six variables were subject to error, two economists (Klepper and Kamlet 1993), used a theorem of Klepper’s to argue that the data for the 7 variables were consistent with the hypothesis that low level lead exposure has no influence whatsoever on children’s IQ. Neither Needleman nor the economists noticed one striking anomaly of his data: Two of the six potential causal variables—but not lead exposure—had zero correlation with IQ.  How could variables with zero correlation with IQ have significant partial regression coefficients for IQ, and did that matter to the estimation of the influence of lead exposure?

Needleman’s six remaining predictors after stepwise regression were Lead, Mother’s Education (med),  father’s age at birth of child (fab), mother’s age at birth of child (mab), number of live births by mother(nlb) and parent’s IQ (piq). The child’s IQ (ciq) was the 7th variable, whose variation was to be explained. An artifact of multiple regression and the elimination of other variables by stepwise regression provides a likely explanation of the fact that two of the three predictors were uncorrelated with ciq but had significant partial regression coefficients.  Multiple regression estimates a dependence of one factor say X, on the outcome, Y, by conditioning on all other regressors. In Needleman’s case, the regression coefficients of mab, for example, was obtained by implicit conditioning on all five other potential causal variables in the multiple regression. Suppose that mother’s age at birth of child influenced mother’s education, or the variables had a common cause not among the other four predictors. Suppose further that mother’s education and child’s IQ have a common unmeasured cause, like this

mab -> med  <-    U  ->  ciq 

where U is some unmeasured factor or factors, perhaps some combination of the 34 variables eliminated by stepwise regression. Then mab and ciq would be uncorrelated but mab would have a nonzero partial regression coefficient, which, if interpreted as a cause, would be mistaken. The PC, GES, FCI and other search algorithms discussed above do not make that error. PC applied to the data removed 3 of the predictors including both of those uncorrelated with ciq. Using the economists’ method, the value of the ciq coefficient was then found to be bounded away from zero. If those variables are removed from the economists’ model which assumes measurement error the graphical version of their hypothesis is:


Figure 8

(1 is the quantity representing the effect of lead on children’s IQ. It cannot be estimated by standard procedures—technically, the model is “unidentifiable.” But prior probabilities for error means and variances were elicited from Needleman, using a Gaussian for the error parameters and flat prior for the value of (1 and the posterior  distribution given the data computed.  The result is that the modal value of (1 is about twice as large as Needleman estimated—taken seriously, the conclusion is that lead exposure is most probably twice as bad as he estimated. 


Figure 9
e. Random mixing

When none of the preceding circumstances obtain, under what conditions does the causal Markov condition hold in an entire population consisting of a mixture of subpopulations for which the condition holds ? The subpopulations can vary in several different ways. They might share the same graph, but have different parameter values. They might have different graphs, but all be subgraphs of one acyclic supergraph. Or they might have different graphs, and not be subgraphs of one acyclic supergraph. The same diversity applies to cyclic graphs representing feedback systems.

First about representation. Represent the parameter for each variable V by an exogenous variable directed into V. Consider the case of a linear model:

X := a ( Y + Y
Suppose that for each unit in the population, the value of the coefficient is the value of the random variable coeffX(Y. Treat the parameter as a regular random variable, and treat  the parameters as if they were ordinary causes—whether they are causes or not is beside the point. If every system in the population has the same value for the coefficient, then coeffX(Y is independent of everything and can be left out of the graph representing the population . On the other hand, if coeffX(Y is different for different members of the population, then the graph is: X ( Y ( coeffX(Y. Note that the model as a whole is no longer linear, because coeffY multiplies X rather than being added to X. If the value of coeffX(Y is independent of X and Y, then it can also be marginalized out of the graph without affecting the Markov condition on the non-parameter variables. 

Suppose we have a binary model, X ( Y, where Y=0|X=0 = P(Y = 0|X = 0) = a and Y=0|X=1 = P(Y = 0|X = 1) = b. Again, if a and b are different for different units in the population, then the graph can be represented in the following way, assuming that Y=0|X=0 and Y=0|X=1 are independent of each other and all of the other non-descendants of Y. The independence of Y=0|X=0 and Y=0|X=1 from each other and all the other non-descendants of Y is one of the fundamental assumptions that Heckerman, et al. (1994) make in their Bayesian search algorithm (although in their case they interpret it as a degree of belief, not a distribution in a population.) Note also that the model as a whole is not necessarily binary any more, as Y=0|X=0 and Y=0|X=1 are continuous.



Figure 10
Suppose now we mix together different populations Pop1, … , Popn. Suppose in each population that there is a causal DAG, G1, …, Gn, respectively, and that the union of the DAGs is also a DAG G. G now contains all of G1, …, Gn - each of these can be considered a specialization of G in which the parameters take on a certain value. For example, if it is a linear model, and G contains X ( Y, but G1 is a subDAG of G in which the edge X ( Y is missing, then coeffX(Y = 0 in G1. Suppose we mix together populations with DAGs G1 and G2, and that G1 is X      Y ( Z, but G2 is X ( Y ( Z. Suppose that coeffY(Z is the same in Pop1 and Pop2. Then coeffX(Y = 0 in Pop1 but not in Pop2. However, coeffX(Y and coeffY(Z are not correlated because coeffY(Z is the same for both populations. So if these two populations are mixed, the Markov Assumption is true for the combined population and the combined non-parameter causal graph X ( Y ( Z. The following reason confirms this. The causal graph with the parameters included is:



Figure 11
We can marginalize out the two coefficient variables, and {X, Y, Z} is still causally sufficient. We can also apply this reasoning to cases where everybody in the population has a different coefficient, as long as the coefficients are independent of each other.

On the other hand, if coeffY(Z is different in Pop1 and Pop2, then coeffX(Y and coeffY(Z are correlated. So if these two populations are mixed, the Markov Conditions does not hold  for the combined population and the combined causal graph X ( Y ( Z. This is because if we include the parameter variables, and assume that the Markov Assumption applies to coeffX(Y and coeffY(Z; from the fact that they are correlated, they are causally related, and so we can write coeffX(Y (  coeffY(Z. (The analysis is essentially the same if coeffX(Y (  coeffY(Z  or coeffX(Y (  coeffY(Z). So X and Z are d-connected conditional on Y, and X is not independent of Z conditional on Y.  Now if we marginalize out coeffX(Y and coeffY(Z, {X, Y, Z} is not causally sufficient. On this analysis the Markov assumption is still correct (but uninformative) for the non-parameter variables (because they are not causally sufficient, the Markov assumption does not apply), and for the combined parameter - non-parameter variables (because it gets the independencies right). This cannot be said to prove that the Markov assumption holds for mixtures, because it was assumed that it held for coeffX(Y and  coeffY(Z, i.e. that the correlation between them has to be explained by a causal connection. (A second possibility is that there is selection bias, which might also be plausible in the construction of a population from subpopulations.)  But it does show that there is no special problem or special assumption being made when applying the Markov assumption to mixtures. 


Figure 12
The same analysis applies when we mix together populations with DAGs G1 and G2, when that G1 is X      Y ( Z, but G2 is X ( Y     Z. Then coeffX(Y = 0 and coeffY(Z ≠ 0 in Pop1 and coeffX(Y ≠ 0 and coeffY(Z = 0 in Pop2. In that case coeffX(Y and coeffY(Z have to be correlated, and X is not independent of Y conditional on Z, no matter what the proportions of Pop1 and Pop2 in the mixture are. 

Now suppose we mix together 4 populations with DAGs G1 through G4. and that G1 is    X      Y ( Z, G2 is X ( Y     Z, G3 is X  (  Y  (  Z, and G4 is X      Y      Z.  Then it is possible to find mixing proportions to make coeffX(Y and coeffY(Z independent, in which case X is independent of Z conditional on Y in the mixed population, and the Markov Condition applies to the combined graph X ( Y ( Z. For example, mixing the 4 subpopulations in equal proportions is a sufficient but unnecessary condition for making coeffX(Y and coeffY(Z independent. Arbitrary proportions of each population in the mixture, however, would lead to coeffX(Y and coeffY(Z being dependent. 

The same analysis applies to cases where the combined graph is cyclic. Joseph Whittaker’s Graphical Models in Applied Multivariate Statistics (1990) is an excellent monograph, full of useful statistical facts, and some conundrums. It considers simultaneous equation models with graphical structures like the following:

Weather      Supply          Demand      Advertising

in which each variable is a linear function of its parents plus independent sources of variation. So 

Supply = ( Demand + ( Weather + (s
Demand = ( Supply + ( Advertising + (d
Whittaker argued that in models like this Demand both is and is not independent of Weather  conditional on Supply, and so the models are inconsistent. But the equations look entirely consistent. 

Spirtes (1995) showed Whittaker’s model in fact implies the following: Weather is independent of Advertising and Weather and Advertising are independent conditional on Supply and Demand jointly. No other independence relations are implied. Richardson found purely graphical criteria for d-separation equivalence in cyclic graphs, and developed a search algorithm—a generalization of PC--for such populations that is correct in the large sample limit when d-separation captures all of the conditional independence relations (Richardson, 1998; Richardson and Spirtes, 1999). If correlations from a linear model corresponding to the graph are given to Richardson’s algorithm it returns two graphs

Weather      Supply          Demand      Advertising

Advertising       Supply          Demand      Weather

These two graphs constitute a d-separation equivalence class and are indistinguishable statistically for Normally distributed variables. Richardson’s algorithm can be applied to mixed samples under the independence conditions noted above, by the following argument.

Suppose we mix just two subpopulations with graphs G1 and G2 respectively, X ( Y and Y ( X, then coeffX(Y ≠ 0 and coeffY(X = 0 in Pop1, and coeffX(Y = 0 and coeffY(X ≠ 0 in Pop2. Hence if these two populations are mixed together, coeffX(Y and coeffY(X are dependent no matter what the non-trivial proportions are. On the other hand, if 4 populations are mixed together with graphs X    Y, X ( Y, X ( Y, and 
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then if the right mixing proportions are chosen, coeffX(Y and coeffY(X are independent. If this is right, the Markov condition fails (independence of each variable from non-descendants conditional on parents), but d-separation works. 

Notice that is the linear case each subgraph of the cyclic graph just sets some edges to zero, so the free parameters of the cyclic supergraph are just a superset of the free parameters of the subgraphs. In the case of discrete variables and other families of distributions, it is not clear how to parameterize the cyclic supergraph at all, let alone parameterize it in such a way that the parameters of a cyclic supergraph are a superset of the parameters of each subgraph. But we conjecture that d-separation still entails the corresponding conditional independencies in a cyclic supergraph, where variables in a cycle also are given a common cause.
       7. “Bayes nets causes must act deterministically: all the probabilities come from our ignorance.”

There is not a single piece of textual or logical warrant for this claim. If A and B and C are binary variables, for example, a causal Bayes net can postulate that B is a probabilistic cause of A and C satisfying the Markov condition for the graph A <- B -> C. Nothing prevents it. I think Cartwright says otherwise because she can imagine that B is a common cause of A and C, and at the same time imagine a probability distribution for A, B and C  not satisfying the Markov condition for that graph. 
5. Experiments

Cartwright objects that the causal Markov condition is not assumed in analysis of experiments because the experimental sample may be a mixture of causal structures. That is an error. The causal conclusions of randomized experiments are usually not about every unit in the sample,  but about the existence, or non-existence, of a “significant” subsample of units in which the influence obtains. If in none of the individual units the treatment were to cause the outcome, we would expect the two variables to be independent, and, conversely, dependent if in a statistically significant subsample of units the treatment were to cause the outcome.  The inference is that, in the absence of a common cause, and assuming that in the experimental sample variation in the outcome variable Y does not cause the variation of X from experimental manipulation,  the association of the experimentally manipulated variable X and the outcome Y, implies (sampling difficulties aside) that X causes Y.  The contrapositive is that in the absence of common causes, if X does not cause Y, and Y does not cause X, then X and Y are not associated, which is a case of the Markov condition. If the Markov condition did not hold between the treatment and the outcome for some sub-samples, there would be no inference from associations of experimental outcome with treatment to the existence of a causal relation between treatment and outcome  IConversely, when there is no association between treatment and outcome, the inference to absence of causal connection is an instance of the Faithfulness condition.  
It may be objected that this is only a special case of the Markov condition. It does not include, for example, the case in which two variables are independent conditional on their common causes if neither influences the other. But consider the many experimental (or natural experimental) circumstances in which causal inferences are licit because factors that might confound the potential cause and effect if they were to vary are in fact known to be constant. Or consider quasi-experimental designs in which a confounding factor cannot be controlled and is not constant, but its confounding effect is removed by conditioning on an intervening variable (Rubin, 1974). It has been noted that the Markov condition is violated in various quantum experiments (Glymour, 2006), but Janzing and Beth (2001) have shown that such effects in macroscopic experiments, such as drug trials, would appear to invalidate most of our experimental conclusions. We need the Markov condition to make sense of our diverse experimental procedures.
It is useful to contrast Cartwright’s contributions on the topic of experiments with what “Bayes net methods” can tell us about experimental design and inference to causation. In various scientific domains, cell biology for example, it has become, or is becoming, possible to measure and manipulate a large number of variables simultaneously and the system of causal relations among all of those variables is of interest. Suppose we have N variables, all of which can be experimentally randomized or fixed. For simplicity, assume the dependencies are linear. (Somewhat different results are available for categorical variables.) Traditional experimental method is to randomize one variable and hold all but one other, the “outcome” variable, fixed, or to control statistically for the others. Eberhardt (2007) points out that the causal structure among the variables—including unmeasured common causes--can be determined in N experiments without statistical or experimental controls: Find out which variables are associated with X1 when X1 is randomized, with X2 when X2 is randomized, and so on. The result is a partial ordering of the variables if the system is acyclic, which is a DAG. But if selected subsets of the variables are randomized simultaneously, he shows that the causal structure can always be found in no more than 2log2N + 1 experiments. Thus 15 experiments are at most needed to determine relations among 128 measured variables. Eberhardt’s studies with simulated data suggest that, when the same total number of sample units is used, without repetition from experiment to experiment, the results with simultaneous interventions are more accurate than with single interventions. 

There is more, at least for linear systems, and perhaps for systems having more general additive relations. The analysis of experiments in Causation, Prediction and Search allowed circumstances in which interventions on X do not make X independent of its causes before intervention. “Soft” interventions, as Eberhardt calls them, are permitted. Soft interventions do not make an experimentally manipulated variable independent of its causes prior to intervention, but alter the dependencies. By comparing the probability distribution of variables before and after soft interventions the existence of latent common causes can be identified. Eberhardt further points out that unmeasured, common causes can be detected, and in some circumstances their causal relations identified, from experiments in the following way. The coefficients of steps along the various pathways from measured variable to measured variable, and the correlations they produce, can be estimated from the randomized experimental procedures described above. Subtracted from the passively observed correlations, the residual gives an estimate of the correlations among the measured variables due to unmeasured common causes. The BPC and MIMBUILD procedures can be applied to the residuals to estimate the location and causal relations among the unmeasured variables. See also Yoo, et al. (2002).
6. Miscellany

The graphical causal model or “Bayes net” framework has been used for a host of other issues including, negatively, identifying fallacies in epidemiological modeling, fallacies in search for gene regulation networks, and, positively, methods for selecting relevant variables in classification problems. Important theoretical work by Zhang has recently furthered the similarities between estimating causal structure and traditional statistical estimation.  Cartwright does not discuss these issues, but they are interesting in themselves and will further the contrast with Cartwright’s own positive contributions in Hunting Causes. 

a. Using graphical causal models, Medellena Glymour (2006) has described several practices in epidemiology that lead to incorrect inferences, conditioning on base rates for example. I will describe just one such practice. To decide whether cognitive ability before stroke has a direct influence on cognitive ability after stroke therapy that is not mediated by cognitive ability immediately subsequent to stroke, take measures of all three conditions for a collection of patients, and use the following model:


 Ability Before

Ability Just After
            Ability Later




M1   M2   M3


M4
M5
M6

M7  M8  M9

Figure 16

where only the M variables are measured, all variables are assumed Gaussian, dependencies are linear, and each variable, both measured and unmeasured, has a unique source of variance or noise. The existence, or not, of the path of influence indicated by the dotted directed edge is what is to be discovered. Now do the following: For each case in the sample, define ScoreAB = M1 + M2 +  M3; ScoreAJA = M4 + M5 + M6; ScoreAL = M7 + M8 + M9.Averages can be used instead, or weighted averages. Finally regress ScoreAL against ScoreAJA and ScoreAB. If the partial regression coefficient for ScoreAB is statistically significant, conclude that the dotted dependency exists, and otherwise not.

Under exactly the assumptions specified, the procedure is fallacious, and will typically find a dependency where none exists in reality. 

b. One of the disappointments of Cartwright’s book is that she does not contribute to uncovering real limitations of “Bayes net methods”—which turn out to be limitations of all methods for estimating causal relations from certain kinds of data and background knowledge. Consider the problem of discovering the network of dependencies through which the genes in cells of a kind of tissue regulate one another’s’ expression. In the mid 1990s microarray techniques were developed permitting the simultaneous measurement of messenger RNA concentrations for thousands of genes from preparations extracted from tissue samples. Computer scientists and statisticians rushed to use various search methods, including methods I and my colleagues had developed—to try to discover gene regulation networks from microarray data. Hundreds of papers and millions of dollars of research funds have been devoted to the effort. But could a regulatory network common to individual cells be discovered from the concentrations of mRNA molecules extracted from thousands of such cells? 

Since few actual regulatory networks were known, the common practice in the computational genetics literature was to test the results of various search procedures  either by their “plausibility” or by simulations. The simulations never included the process of generating measured concentrations of mRNA by aggregating concentrations of mRNA in individual cells. But in a regulatory network in the sea urchin, independently established by wet laboratory methods, there are non-linear dependencies. Chu, et al. (2003) provided necessary conditions for the measurement of aggregated variables to preserve conditional independence relations, and showed those conditions to not hold in the sea urchin network. Few of the search procedures tested for conditional independence relations among the measured variables, but all of them implicitly relied on the preservation of those relations through aggregated measurements. Contrary simulations in which the many search procedures were applied to aggregated data from simulated non-linear systems found that the search procedures failed badly—as they should according to theory (Wimberly, et al., 2003). Recent work (Niemi, 2007) applying the various search methods to real microarray data from an independently known gene expression regulatory network confirms their failure.

c. Classification and identification are major enterprises in science, almost never discussed in philosophy of science aside from discussions of biological classification schemes. We can recognize properties, or kinds of entities from their causes, their effects, or merely from associations. As data recording expands, a problem is that there are often far too many associations—too many variables—and too few sample cases. In spectral data of many kinds, and textual data, in gene expression data, and elsewhere, the number of potentially relevant variables for classifying a target variable is sometimes an order of magnitude larger than the number of samples. But often, only a small proportion of the variables are necessary and sufficient for classification of a target variable. Specifically, one would like to find among the measured variables the smallest subset, not containing the target variable, conditional on whose values all other recorded variables are independent of the target—the “Markov Blanket” of the target variable. Neither regression nor stepwise regression procedures guarantee such a result, and neither can be applied (literally) when the number of variables is larger than the sample size. Several adaptations of the PC algorithm can find the Markov Blanket in such problems.

Consider the following real problems. The first problem is in aid of drug discovery, by using molecular structural properties to predict which biomolecules will bind to thrombin and may therefore be of use as anti-clotting agents. The second problem is to use clinical and EKG data to diagnose arrhythmias into 8 possible disease categories. The third problem is to use keyword occurrences to identify articles that are relevant to neonatal disease in a subset of the Medline document database. The fourth problem is to use gene expression array data to differentiate squamus vs. adenocarcinoma in patients with lung cancer. The fifth problem is to use signal peaks from mass-spectrometry of human sera to diagnose prostate cancer. What these problems share is that each involves a huge number of potential prediction variables. All but one have a smaller—in some problems much smaller—number of cases from which a classification rule is to be learned. The table below summarizes relevant characteristics.
	Problem Type 
	Drug Discovery 
	Clinical/EKG Diagnosis 
	Text Categorization 
	Gene Expression Diagnosis 
	Mass-Spec Diagnosis 

	Variables # 
	139,351 
	279 
	14,373 
	12,600 
	779 

	Variable Types 
	binary 
	nominal/ordinal/continuous 
	continuous 
	continuous 
	continuous 

	Target 
	binary 
	nominal 
	binary 
	binary 
	Binary 

	Sample 
	2,543 
	417 
	5000 
	160 
	326 

	Variables-to-Sample 
	54.8 
	0.67 
	2.87 
	60 
	2.4 

	
	
	
	
	
	


Aliferis et al.,(2003) apply an algorithm incorporating PC to find small Markov blankets in all of these problems, leading to excellent classifications.
c. Each of the search procedures I have discussed has a large sample guarantee: Under explicit conditions relating probabilities and causation, the search converges to correct information. The details of those conditions vary, as indicated above. But convergence has various senses. For Bayesians it is a matter of the conditional distributions converging to the correct result provided the correct result has a non-zero prior. Frequentists generally want something stronger, “uniform consistency”, meaning, roughly, that there exists a non-trivial probability bound on the likelihood of the samples on  alternative estimates, a single bound (as a function of sample size) that covers all alternatives (in some family of distributions) to the estimated distribution—or in our case causal structure or Markov equivalence class—and the width of the probability bound converges to 0 as the sample size increases. Uniform consistency allows confidence intervals for estimates. Robins et al. (2003) proved that for Normally distributed variables, assuming Faithfulness, for non-experimental i.i.d. samples there is no uniformly consistent estimator of the Markov equivalence class even if the time order of the variables is known. The results of Hoyer, et al., strongly suggest that the Robins et al. result does not extend to non-Gaussian linear systems. For linear, Gaussian systems and for non-linear systems, Zhang (2006) has modified the Faithfulness condition and Ramsey, et al. (2006) provided an algorithm (the Conservative PC algorithm, CPC) that converges uniformly under the modified condition. The Faithfulness condition requires that causal relations be transitive, as they are necessarily in linear systems but not necessarily in systems with categorical variables. Zhang’s modification allows but does not require transitivity.

5. Conclusion
There are lots of open problems about how to discover causal relations. For various reasons, search procedures are implemented only for a limited set of distribution families. We know some statistical properties of systems with “embedded” latent variables—those that are effects of some measured variables and causes of others—and we have heuristics for finding them (Desjardins, 2001), but no convergent algorithms. Work is underway, but not complete, on turning the output of the FCI algorithm into testable statistical models (Richardson and Spirtes, 2002). We have only heuristic algorithms for deterministic systems. When the parameters of mixtures are not independent we do not know how to resolve the components. We would like to apply the Hoyer et al. procedures in an algorithm like MIMBUILD, and in other circumstances, but we do not know how. We do not know if Eberhardt’s results on exponential reductions in number of experiments can be extended to mixed populations or to fast feedback systems. Estimating causal relations when the natural units influence the values of one another’s variables, as in disease propagation, is not solved. As with statistical estimation and hypothesis testing, there is lore that comes from experience and familiarity with the tools about how to apply them, but there is no algorithm for doing so. There are interesting problems that arise when the variables considered are arbitrary deterministic transformations of the “natural” variables (Spirtes, 2007),  requiring a solution to an unsolved problem, inference to cyclic structures with latent variables. That is but a sample of the importantwork that remains to be done. Cartwright’s assembly of her writings on the topic over the last many years shows she has contributed nothing towards the solved or unsolved problems, and, to  judge from her book, she thinks the effort really  is a waste of time. I wonder, then, why she wastes so much of hers upon it..
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� Huntng Causes and Using Them, Cambridge University Press, 2007.


� I will belabor the point with an example.  David Bessler’s (2002) study for the World Food Organization of the causes of world poverty uses graphical causal models on contemporaneous data. One of Bessler’s interesting points is that, by nation, the proportion of persons living on less than one dollar a day is uncorrelated with per capita foreign aid received. It would be foolish to conclude from that fact (not that Bessler does any such thing) that foreign aid cannot reduce poverty, but how does the zero correlation come about?  One could imagine that it comes about via a process that has led to a violation of the presumption that zero correlation means no causal connection: suppose rich nations have in the past given aid to selected poorest countries, aid which made many of them richer, and diplomatic inertia continued the aid, until the present circumstance arrived in which foreign aid and national poverty are uncorrelated. But the least knowledge of the history of post-war foreign aid dashes this explanation, and another is more plausible: rich nations give most of their aid for political, military and historical (e.g., to former colonies) reasons having little to do with the poverty of nations. 





� For example, Measuring Causes: Invariance, Modularity and the Causal Markov Condition, Measurement in Physics and Economics Discussion Paper Series Monograph DP MEAS 10/00, London: Centre for Philosophy of Natural and Social Science, 2000; 'Against Modularity, the Causal Markov Condition and any link between the Two: Comments on Hausman and Woodward.' British Journal for the Philosophy of Science 53, no. 3 (2002), pp. 411-453.; 'Modularity: It Can - and Generally does, Fail.' In Stochastic Dependence and Causality. Edited by Costantini, D.; Galavotti, M. C.; Suppes, P. CSLI Publications, 2001, pp. 65-84.; 'What is Wrong with Bayes Nets?' The Monist 84, no. 2 (2001), pp. 242-264.;. 'Causal Diversity and the Markov Condition.' Synthése 121, Special edition, "Statistics and Causation" (1999), pp. 3-27.


�  Cartwright wrote that the aim of that book was, to show that automated search (of the kind that I and my collaborators and others had in fact published the year before without her notice) is metaphysically impossible.In one case her argument turned on features she wrongly imagined of empirical data in a political science paper that she evidently had not read. For details, see my “Rabbit Hunting”  (1999).





� In charity, only someone guided to the diverse literature on graphical causal models could be expected to undertand what has been done in the last 15 years. But it would have been easy enough for her to find out: she knows my address.


� Terry Speed, who first applied the formulation of the Markov property of graphical models to explicate causal models, once told me, after listening to a demonstration of regression fallacies,  that, nevertheless, no other model specification procedure should be used!.


� Cartwright levels extended, and pointless, criticism of this formulation. It is short-hand for: For ever pair of variables X, Y in S, and every cause Z of X, Y such that there is a causal path from Z to X and a causal path from Z to Y, and the paths intersect only in Z, Z is in S.


� Is it arrogant for philosophers, not originally trained in statistics or social science, to attempt to fundamentally reform areas of scientific practice? Perhaps, but a doctorate in history and philosophy of science is not an oath to deference. A passage in Michael Friedman’s Dynamics of Reason might almost serve as manifesto:





 “Science, if it is to continue to progress through revolutions…needs a source of new ideas, alternative programs, and expanded possibilities that is not itself scientific in some sense—that does not, as do the sciences themselves, operate within a generally agreed upon framework of taken for granted rules. For what is needed…is precisely the creation and stimulation of new frameworks or paradigms, together with what we might call meta-frameworks or meta-paradigms—new conceptions of what a coherent rational understanding of nature might amount to—capable of motivating and sustaining the revolutionary transition to a new first-level or scientific paradigm. Philosophy, throughout its close association with the sciences, has functioned in precisely this way.





� I am indebted to Peter Sprites for the discussion in this section.


� The method illustrated is not confined to social epidemiology: after 9/11/01 a contractor for the ill-fated Total Information Network touted it to me as the key to searching the data the TIA would acquire. He had learned as much from a prominent statistician. .


� I thank Frederick Eberhardt and Jiji Zhang for important corrections, John Earman and Peter Spirtes for tempering my prose—they may think not enough--and Spirtes for most of the discussion of mixtures. They are not responsible for my assessment of Cartwright’s work.
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		Pure model, p-value 0.47
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