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The use of the material theory of induction to vindicate a scientist’s claims of 

evidential warrant is illustrated with the cases of Einstein’s thermodynamic 

argument for light quanta of 1905 and his recovery of the anomalous motion of 

Mercury from general relativity in 1915. In a survey of other accounts of 

inductive inference applied to these examples, I show that, if it is to succeed, 

each account must presume the same material facts as the material theory and, 

in addition, some general principle of inductive inference not invoked by the 

material theory. Hence these principles are superfluous and the material theory 

superior in being more parsimonious. 

1. Introduction 

 History of science has presented special difficulties for me, when I approach it as a 

philosopher of science with an interest in evidence and inductive inference. It may be very clear, 

                                                
1 I am grateful for helpful discussion to Gerd Grasshoff, Kaerin Nickelsen and the participants in 

a block seminar, May 31-June 1, 2007, at the Institut für Philosophie, Wissenschaftstheorie und 

Wissenschaftsgeschichte, Universität Bern. 



2 

at a visceral level, that this piece of evidence has provided some scientist very strong evidence 

for that hypothesis or theory. Generally, when I try to apply one of the many standard accounts 

of inductive inference to the example, I can get one or other account to fit well enough, 

eventually. Often the fit is Procrustean, succeeding largely because of the original visceral 

instinct and not from any special powers of the account. And when the accounts do seem to work 

better, the success is unsatisfying. I do not seem to have vindicated the evidential claim in a 

principled way. Rather I feel more like a hypochondriac who had gone “doctor shopping” until I 

finally found a doctor willing to give me the diagnosis I wanted. 

 These problems call for a different way to think about inductive inference. My “material 

theory of induction” (Norton, 2003, 2005) was devised precisely to enable historians of science 

to offer philosophically principled evaluations of evidence claims made by scientists. Its goal is 

to give an account of inductive inference that applies in all cases, so that there is no longer a need 

to “doctor shop”; and it is to do it in a way that does not require elaborate reconstruction of the 

scientists’ evidence claims. The central claim of the material theory is that inductive inferences 

are not licensed by universal formal schema. Rather, their warrant is ultimately traceable to 

matters of fact. Since those facts vary with the domain, there can be no universal logic of 

induction. Thus, our failure over millennia to find the One True Universal Logic of Induction is 

explicable and expected. That logic was never there to be found. 

 My purpose in this paper is to show how the material approach to induction can be used 

in real historical cases and to display why I believe it is superior to any other account. To do this, 

I will take two case studies, to be reviewed in Section 2 below: Einstein’s thermodynamic 

argument for light quanta of 1905 and his 1915 recovery of the anomalous perihelion motion of 

Mercury by general relativity. In Section 3, I will apply the material theory of induction to the 

two cases and identify the material facts that I believe license Einstein’s evidence claims. In 

Section 4, I will compare the analysis of the material theory with those given by leading accounts 

of inductive inference, when applied to these two cases. In each case, I will establish that these 

accounts can accommodate the two cases only in so far as we already assume the material facts 

required by the material theory. In this regard, whatever these accounts add is superfluous to the 

justification of the Einstein’s evidence claims, for that justification can already be had from the 

material facts. Finally in the concluding Section 5, I will review the virtues of the material 

theory. Other accounts of induction incline us to homogenize, to see many inductive inferences 
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fitting as large as pattern as possible. The material theory of induction encourages us to treat 

inductive inference individually and we see that the two cases, in spite of their formal 

similarities, have rather different strengths. 

2. The Cases 

2.1 Einstein’s Quanta 

 On 18th March 1905, Einstein sent the Annalen der Physik the first of a series of papers 

that made that year his annus mirabilis. In this first paper (Einstein 1905), “On a Heuristic Point 

of View Concerning the Production and Transformation of Light,” he advanced his light 

quantum hypothesis, that heat radiation of high frequency ν behaves as if it consists of 

independent, spatially localized quanta of energy E = hν, where h is Planck’s constant. While his 

use of the photoelectric effect to support this hypothesis is widely known, my concern here is 

with a much more ingenious and telling argument that forms the centerpiece of the paper and is 

laid out in its Section 6.2 

 The evidential basis of the argument is an expression for the volume dependence of the 

entropy of a system of heat radiation of energy E and high frequency ν. If S is its entropy when 

the system occupies volume V and S0 its entropy when the system occupies volume V0, then 

S - S0  =  k (E/ hν) ln (V/ V0)                                                      (1) 

where k is Boltzmann’s constant. It is important that this result derives from macroscopic 

measurements. The experimentalists had made precise measurements of the distribution of 

energy over the different frequencies of heat radiation. Wien had fitted a well-known 

distrubution formula to the experimental results that worked well for higher frequencies. Using 

such formulae, any competent thermodynamicist could infer the corresponding entropy 

distibutions, such as (1). 

 Einstein then used this macroscopic formula to infer directly to the microscopic 

constitution of the radiation in an argument that, in my view, is the boldest of his corpus of 1905. 

In an earlier section, Einstein had recapitulated what then seemed to be a superficial truism. 

                                                
2 For further discussion of this argument and a discussion of its relation to Einstein’s work in 

statistical physics from this period, see Norton (2006). 
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Imagine that one has a thermal system that consists of many, independent moving points—n, 

say. Such is the constitution, for example, of an ideal gas. If one has a volume V0 with one point 

in it, the probability that the point will be found in a subvolume V is just V/V0. Since the points 

move independently, it now follows that the probability that all n are to be found in the 

subvolume is just 

W  =  (V/V0)n                                                                   (2) 

This formula gives the probability that the volume of the thermal system will spontaneously 

fluctuate to the smaller volume V. For a system of molecules comprising an ideal gas, n will be 

of the order of 1024 for macroscopic samples of gas. So the probability of any significant volume 

fluctuation is unimaginably small. Whether small or not, the probability of the transition is 

related to the entropy of the initial and final states by what Einstein called “Boltzmann’s 

Principle”: 

S - S0  =  k ln W                                                               (3) 

Applying Boltzmann’s Principle (3) to (2) for an ideal gas of n molecules immediately returns 

the expression S - S0  =  kn ln (V/V0) for entropy of the gas, from which, as Einstein shows in a 

footnote, the ideal gas law follows. 

 Proceeding now to the case of heat radiation, Einstein combined the expressions (1) and 

(3) to conclude that the probability that a volume of radiation V0 will spontaneously fluctuate to 

the subvolume V is 

W  =  (V/V0)E/hν                                                                   (4) 

Einstein thought the import of this last formula obvious. He wrote without any intervening text: 

From this we further conclude: 

Monochromatic radiation of low density (in the region of validity of Wien’s 

formula) behaves thermodynamically as if it consisted of energy quanta of size 

hν that are independent of one another. 

The thought is clear. The similarity of expressions (2) and (4) led Einstein to infer that the 

radiation consists of n = E/hν independent points; that is the energy E is divided into n 

independent quanta of size hν. The only hesitation in Einstein’s inference is the “behaves … as 

if” qualification. That qualification is dispensed with elsewhere, such as in the introductory 

section, with mention of the full array of evidence of the paper. 
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 While Einstein’s inference to light quanta above seems irresistible, we should recall that 

its conclusion directly contradicted the great achievement of nineteenth century optics and 

electrodynamics, the wave theory of light. 

2.2 Mercury’s Perihelion 

 In November 1915 an exhausted Einstein neared the end of his struggle find the 

gravitational field equations of his general theory of relativity. His final reflections were 

communicated rapidly to the Prussian Academy in weekly installments, each correcting errors in 

the previous installment. His efforts were made all the more urgent by the knowledge that Hilbert 

in Göttingen was working on the same problem. By November 18th, in the third of these 

communications, Einstein (1915) had in hand sufficient of the final equations to be able to 

publish the solution to an outstanding puzzle in gravitational astronomy. 

 Newtonian gravitation theory entails that planets orbit the sun in elliptical orbits. Careful 

measurements of these orbits had shown that their axes move (“precess”) very slowly. In the case 

of Mercury, the motion is an advance in the direction of the planet’s motion of over 500 seconds 

of arc per century in the orbit’s perihelion, the point of closest approach to the sun. All but about 

40 seconds of this perihelion motion is explicable in terms of the tiny gravitational tugs of the 

other planets. This residual 40 seconds of arc, the anomalous motion of Mercury’s perihelion, 

was the largest anomaly among the planets and was recognized in 1915 as an outstanding puzzle. 

 What Einstein found to his absolute delight that November was that his general theory of 

relativity predicted precisely this anomalous motion. The figures he quoted in 1915 (p. 938) were 

that his theory predicted an advance of 43 seconds or arc per century and that this lay 

comfortably within the range observed by the astronomers of 45 seconds, plus or minus 5.3 

 It would be an understatement to call this achievement an evidential coup. Historically, it 

functioned as the decisive sign of the success of Einstein’s theory. Overnight it set a new 

standard of empirical adequacy for fledgling gravitation theories. Prior to November 18, 1915, it 

was no special defect of such a theory if it did not predict precisely this 43 seconds of arc. 

                                                
3 See Earman and Janssen (1993) for an account of Einstein’s computation and its astronomical 

background. For more on Einstein’s discovery of his field equations and the role of this episode 

in it, see Norton (1984, §8) and the more expansive accounts of Renn (2007). 
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Leading contenders, including Einstein’s own “Entwurf” theory of 1913, did not and with no ill 

effect. After that date, the inability to predict this figure was tantamount to the failure of the 

theory.4 

 In his communication of November 18, Einstein (p. 831) described his result as follows: 

In the present work, I arrive at an important confirmation of this most radical 

theory of relativity; that is, it turns out that the secular rotation of Mercury’s 

orbit in the direction of the orbital motion found by Leverrier, which amounts to 

about 45” per century, is qualitatively and quantitatively explained, without 

having to posit any special hypotheses at all.5 (my emphasis) 

For our purposes, the essential remark is the final clause on the lack of special hypotheses.6 For 

that is what was then and remains today truly remarkable about Einstein’s treatment of the 

motion of Mercury. His theory had been essentially uniquely fixed by a series of demands 

remote from any of the specifics of planetary motion, most notably general covariance of the 

equations. Had the resulting theory failed to accommodate the motion of Mercury, there would 

have been no recourse. 

 As Einstein then knew, there were many ways to accommodate the anomalous motion of 

Mercury if special assumptions were allowed. A simple example from the time illustrates this. 

Newton had already found in his Principia that any deviation from an inverse square law of 

                                                
4 This transition is documented in Norton (1992, §16) in the case of Nordström’s theory of 

gravitation of 1912. In 1914, Nordström could proudly proclaim that “the laws derived [from his 

theory] for [free] fall and planetary motion are in the best agreement with experience.” In 1917, 

in an otherwise sympathetic review, Laue derived the same theory’s formula for perihelion 

motion and noted that it predicted a retardation, not an advance. The blow was severe enough for 

Laue not even to bother to compute the actual value predicted for Mercury’s perihelion motion, 

lamenting the “impossibility of explaining its perihelion motion.” 
5 Einstein’s footnote here emphasized the importance of his achievement: “E. Freundlich has 

recently written a noteworthy paper on the impossibility of satisfactorily explaining the 

anomalies of Mercury’s motion on the basis of Newtoian theory (Astr. Nachr. 4803, Bd 201. Juni 

1915).” 
6 “ohne dass irgendwelche besondere Hypothese zugrunde gelegt werden müsste” 
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attraction for gravity would manifest as a rotation of a planetary orbit. Specifically, he showed in 

Book 1, Prop. 45, Cor. 1, that a power law in which force dilutes with distance r as 1/r2+λ 

produces orbits that complete in 360/(1- λ)1/2 degrees, for near circular orbits. For an inverse 

square law, λ = 0 and the orbit completes in 360o; it is stationary. If λ is slightly greater than 

zero, the orbit completes in slightly more than 360o and we have the case of an advancing 

perihelion. Hall in 1894 and Newcomb in 1895 had proposed just this modification as a way of 

accommodating the anomalous motion of Mercury. A value of λ = 0.0000001574 would suffice.7 

(For this proposal and others discussed below, see Earman and Janssen, 1993, §3; Zenneck, 

1901, §15.) 

 What this example shows is that the anomalous motion of Mercury could be 

accommodated if one was prepared to introduce special hypotheses, such as adjustments to the 

inverse square law. Many other special hypotheses are possible. Since the bulk of Mercury’s 500 

second of arc per century perihelion motion was due to the gravitational influence of the other 

planets, it was easy to posit another as yet unknown planet “Vulcan” as responsible for the 

residual motion. 

 Needless to say, things weren’t quite that easy. Hall’s hypothesis of an adjusted inverse 

square law fails theoretically in that it is not a relativistic law and observationally in that it 

affords too large a perihelion motion to Venus and Earth. And Vulcan failed to oblige by being 

visible to telescopes in its computed location. These failures mark the beginning of a series of 

retrenchments that continue today. The astronomer Seeliger in 1906 rescued the missing mass of 

Vulcan by supposing that it was distributed in a diffuse band of intra-Mercurial matter, visible as 

the zodiacal light. Exploration of admissible theories that can also accommodate Mercury’s 

perihelion motion continues in the context of the parametrized post-Newtonian (“PPN”) 

formalism. (Will, 2007; Misner, Thorne and Wheeler, 1973, Ch. 39.) 

 The PPN formalism deals with a class of metrical theories of gravity, judged admissible 

by present theoretical and observational standards. When applied to the weak gravitational field 
                                                
7 For then one orbit requires 360/(1-0.0000001574)1/2 = 360 + 0.000028332 degrees. Since the 

Mercurial year lasts 87.97 days, there are 100 x 365.25/87.97 = 415.198 Mercurial years in a 

century. Over this time the angular excess of 0.000028332 degrees accumulates to 

0.000028332 x 3600 x 415 = 42.35 seconds of arc. 
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of the sun, the equations of all these theories collapse into a single set of equations with eleven 

parameters, the relativistic generalizations of Hall’s λ parameter. The different theories are then 

distinguished by the values assigned to these parameters. Typically theories are associated with a 

range of parameter values. Just has Hall had to fix a value for his λ to accommodate the known 

motion of Mercury, for each theory in the PPN formalism, particular values of the parameters 

must be chosen in order to secure compatibility with observations within out solar system. 

Einstein’s general theory of relativity remains distinctive among these theories in that it has no 

free parameters whose values must be “tuned by hand” to allow the theory to accommodate 

observations. It requires, as Einstein reported, no special hypotheses. These investigations 

continue with the remarkable outcome that, whenever a clear decision between Einstein’s theory 

and a competitor becomes possible, Einstein’s theory wins. 

3. Material theory of Induction 

 According to Einstein, the measured entropy of radiation inductively supports the light 

quantum hypothesis; and the observed perihelion motion of Mercury is strong inductive evidence 

for his general theory of relativity. How are we to assess whether these inductive claims are 

correct? According to the material theory of induction (Norton, 2003, 2005), we determine the 

validity of an inductive inference not by displaying its conformity to some universal inductive 

inference schema. We do it by displaying a material fact. 

 A familiar example comes in the form of Lewis’ (1980) “principal principle,” which, in 

effect, enjoins us to conform our beliefs to objective chances whenever they can be had. So, if 

we are inferring inductively over the outcomes of games of chance or the outcomes of 

radioactive processes, then those inferences ought to conform to the probability calculus, for, in 

both cases, the outcomes are governed by objective chances. 

 This example generalizes in ways Lewis might not have endorsed. We should always, I 

urge, let the material facts prevailing dictate how we reason inductively. If those material facts 

do not contain objective chances, then it is no longer clear that our inductive inferences ought to 

be governed by the probability calculus. Indeed I have identified cases in which the material 
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facts obtaining are such that we cannot responsibly conform our inductive inferences to the 

probability calculus. (Norton, 2007, §8.3; manuscript)8 

3.1 The Material Facts 

 What material facts govern Einstein’s two inductive inferences? In general, the prevailing 

material facts are quite varied in form. In this case, however, they have the same general form, 

although we shall later see important differences beneath this similarity: 

(M) It is very unlikely that the evidence (volume dependence of entropy of 

radiation/Mercury’s anomalous perihelion motion) would obtain were the world 

such that it was governed by another hypothesis or theory (other than the light 

quantum hypothesis/general theory of relativity). 

Once this proposition (M) is accepted, I shall argue below that the inductive inferences in 

question are warranted. Before doing so, some elucidations of (M) are in order. 

 First, (M) is a factual claim about the world, even though it does speak of something 

fairly fanciful: what might happen were other hypotheses or theories to govern the world. In this 

regard, (M) is a great deal more speculative than other examples of material facts that I have 

used elsewhere (2003, 2007). These examples include the fact that all samples of one chemical 

element, generally speaking, have the same melting point. That licenses an inference from the 

melting point of one element to all. Another example is the law of radioactive decay, which 

licenses the assigning of probabilistic degrees of belief to the occurrence of decay events for 

radioactive atoms. 

 What (M) shares with these two examples is that they all pertain to more than just 

occurrent fact. The claim about the melting points of samples of elements covers samples that 

could have been created but were not; and the law of radioactive decay similarly applies to all 

possible radioactive atoms, not just those that happen to be. (M) also speaks of what is possible 

but not actual. This does not seem to do great violence to the notion of fact. It is a fact that the 

earth could have had two moons, for example, although this fact actually designates a non-actual 

circumstance. (M), however, goes beyond these examples by imagining what might be in the 

                                                
8 The examples are indeterministic physical systems whose complete physical specification fails 

to provide any physical chances for the different futures admitted by a given present state. 
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larger domain of possibility that arises in which our physical laws (light quantum, general 

relativity) fail. 

 (M) presumes that a disciplined sense of possibility can be articulated for this larger 

domain. That rests in turn upon the further presumption that the processes in this larger domain 

are law-governed, so that reflection on what would happen were Einstein’s hypothesis or theory 

to be false reduces to reflection on what other possible hypotheses or theories might assert. This 

further presumption saves (M) from being pure speculation or even fantasy. For it demands that 

that the extent of possibility at issue is circumscribed by rules that are recognizable as akin to a 

physical law or theory. It means that some sort of orderly exploration of this domain is possible 

through investigation of the sorts of physical laws or theories that might prevail. 

 Nonetheless, I will admit that I find (M) worrisome. It does reduce the cogency of 

Einstein’s inferences to something far more speculative than the law of radioactive decay. As is 

detailed in Section 3.2, I believe its acceptance is due more to instinct than systematic analysis. 

However the presumption of (M) seems unavoidable in an explication of Einstein’s inductive 

inferences. Indeed I will argue in section 4 below that no other account of inductive inference 

can do any better. All other accounts that apply to these two cases must also presume (M) and 

add further presumptions deriving from the specific approach they use. Indeed I claim it a virtue 

of the material theory of induction that it forces us to make (M) explicit, whereas we shall see 

below that other accounts tend to obscure it beneath other clutter, while still fully relying upon it. 

 Second, the sense of “likely” involved in (M) is not the abstract theoretical notion of 

probability and measure theory. It is the rough and ready sense of ordinary judgment, with no 

guarantee that it is used consistently. It is the same notion that arises in “It is very unlikely that 

there are reptilian aliens from a distant planet offering to cure cancer with their advanced science 

for all patients willing to send a money order to the postal box indicated in the advertisement.” 

The notion is instinctive and primitive. The idea that it is really a disguised form of the quantity 

discussed within the calculus of probability can only seem natural to a philosopher with an 

overdeveloped sense of rigor. 

3.2 Why Einstein Would Believe the Material Facts 

 Why Einstein would believe (M) seems a matter of comparable instinct, but this time it is 

the instinct of an accomplished theorist who knows how hard it is to get any credible physical 
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theory to give the result wanted, let alone in a simple and uncontrived way.9 Take the probability 

formula (4). Certainly it would seem hopeless to try to recover it from the then dominant wave 

theory of radiation, where volume fluctuations must come from interference effects. If we have a 

system with energy E equaling hν, how are we to recover the result of (4) that, with probability 

1/n, the system will spontaneously fluctuate to 1/n th its volume? That is the natural behavior of 

a single localized particle, for there is always a chance of 1/n that the particle is in some 

nominated 1/n th subvolume. If the system has any other constitution that differs from that of a 

localized particle, those differences ought to interfere with the recovery of the result. This 

reflection is somewhat superficial. But whatever Einstein had in mind has to be quite spare, if it 

is to capture his presumption that readers would be able to pass immediately from the probability 

formula (4) to the light quantum hypothesis. 

 In the case of Mercury’s perihelion, Einstein’s boast of not needing any special 

assumptions suggests why he would believe (M). The accounts then known that accommodated 

Mercury’s motion all had free parameters. Hall’s λ could take any small value. Seeliger’s masses 

could be distributed in many ways. If those hypotheses were the correct ones, it would seems that 

the parameters are equally likely have any value other than just the one needed to accommodate 

Mercury. There were also theories that did not have these adjustable parameters. They gave fixed 

results and those results did not match Mercury’s perihelion advance 43 seconds of arc per 

century. The theories included Newton’s original theory, Nordström’s theory of 1912, Einstein 

and Grossmann’s “Entwurf” precusor to general relativity of 1913; and more. So either way—

free parameters or not—(M) follows. 

 Finally, the security of (M), realized in the two cases, differs markedly. We shall see 

from results reviewed in Section 4.4 below that we can be very secure in accepting (M) when 

applied to the light quantum. However we cannot be as secure accepting (M) in the case of 

Mercury’s perihelion. The reason is that the perihelion motion of Mercury only probes the very 

weak gravitational fields surrounding the sun. Theories of gravity must cover strong gravitational 

                                                
9 This experience stands in direct contradiction with the mythology in the underdetermination 

thesis literature that scientists are always awash in multiple theories, all fully adequate to the 

evidence. In practice theorists feel fortunate if they can find even one theory properly responsive 

to the evidence. For a critique, see Norton (manuscript (a)). 
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fields as well, including those that arise in the vicinity of gravitationally collapsed bodies. These 

strong fields, according to general relativity, may harbor singularities in spacetime structure and 

also provide bridges to other sectors of our universe. We should be cautious using data from 

weak gravitational fields to choose among gravitation theories that deal with such extraordinary 

possibilities in the domain of very strong gravitational fields. 

3.3 How They Warrant Einstein’s Claim 

 It would seem easy to infer Einstein’s evidence claim from (M); and we can, with a little 

care. Schematically, the inference proceeds from (M) as: 

(M1) If not-hypothesis, then it is very unlikely that evidence. 

from which we infer 

(M2) If not-hypothesis, then it is very likely that not-evidence. 

Then, by mimicking contraposition in deductive logic, 

(M3) If evidence, then it is very likely that hypothesis. 

The inference from (M1) to (M2) is, I believe, unproblematic. It merely replaces an “unlikely 

that” with a “likely that not”. The inference from (M2) to (M3) may also seem unproblematic. It 

seems to be a minor variant of a valid deductive inference from 

(D2) If not-hypothesis, then not-evidence. 

to its contrapositive 

(D3) If evidence, then hypothesis. 

However the addition of the “very likely” modifier makes a difference that requires other 

background assumptions to hold if the inference from (M2) to (M3) is to proceed. For, unlike its 

deductive counterpart (D2), (M2) allows for the possibility that the hypothesis is false, but the 

evidence still obtains, even if only as a very unlikely possibility. This unlikely possibility may be 

sufficient to defeat the inference from (M2) to (M3). For, once we have learned the evidence 

obtains, we may end up judging “evidence and not-hypothesis” to be more likely than “evidence 

and hypothesis.” That can happen in two ways, one in which we favor “not-hypothesis” and one 

in which we disfavor “hypothesis”: 

(i) If the hypothesis itself is antecedently vastly implausible, we may continue to 

disbelieve the hypothesis, even though the evidence obtains.  
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(ii) It may be that the evidence is even less favorable to the hypothesis obtaining than it is 

to the failure of the hypothesis. In that case, the evidence would give more support for the 

falsity of the hypothesis than the hypothesis. 

Loophole (i) is realized in the following example. The famous math prodigy Ramanujan noted 

that π4 very nearly equals 2143/22 to eight significant figures and is remarkable in that it uses 

only the small digits 1, 2, 3, and 4. Take this as the evidence. We may hypothesize it is due to the 

cosmic interference of a benevolent mathematics genie who placed it there to amuse us. Let us 

grant that if the genie hypothesis is false, it is very likely that just this formula would not obtain; 

that is, grant (M2) applies to this case. Nonetheless, most of us find the idea of such a genie 

antecedently so vastly implausible that, even with the evidence of the value of  π4, we continue 

to disbelieve in the genie; that is, we deny (M3). The same example can also realize loophole (ii). 

We may well judge that were there such a benevolent mathematics genie who could interfere 

with the very content of mathematics, that genie would not leave as obscure an entertainment as 

this rather facile formula for π4.  In that case, it no longer matters whether we are antecedently 

well disposed to the hypothesis. The evidence inclines us to disbelieve the hypothesis and (M3) 

fails again. 

 Recognizing that the inference from (M1) to (M3) must be treated cautiously, we can say 

that it obtains for the two cases at hand, Einstein’s light quantum and the perihelion motion of 

Mercury. In both cases, loophole (ii) is closed in that the hypotheses (the light quantum 

hypothesis/ general relativity) entail the evidence, with suitable auxiliaries. Loophole (i) is closed 

in the case of general relativity since the theory is universally regarded so esthetically pleasing 

that we are antecedently predisposed to believe it. The antecedent plausibility of the light 

quantum hypothesis is harder to judge since it contradicts the enormously successful wave theory 

of light of the nineteenth century. Presumably that fact did not engender sufficient antecedent 

doubt that Einstein was dissuaded from writing his paper and the journal from publishing it. If 

the notion had the antecedent credibility of a mathematics genie, it is hardly likely to have 

survived. 

 The above analysis teases out, at somewhat tedious length, the sort of inferences that 

people make rapidly. “If there weren’t going to be a thunderstorm, then its unlikely that we’d 

have thunderclouds massing on the horizon. But we do. So there will likely be a thunderstorm.” 

Bayesians will, no doubt, already be mentally starting to compare the inference from (M1) to 
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(M3) with a natural application of Bayes’ theorem.10 While a Bayesian analysis will vindicate the 

inference from (M1) to (M3), I am not inclined to say that it is what is “really” going on in this 

inference. The sense of “likely” at issue in (M) is a rough and ready one, with a much 

impoverished value set for the relevant degrees of support. They are restricted to something like 

true, false, very likely, very unlikely and perhaps some intermediate value. The associated 

inferential practice is prone to paradox if used incautiously and in a way that the proper use of 

probabilities will not produce paradoxes.11 The rough and ready notions can be applied to cases 

in which the full precision of the theory of probability is excessive. A case is the example of the 

mathematical coincidence noted above on the value of  π4. We may speak of its “probability,” 

but if we intend that to invoke the full content of the probability calculus we are surely guilty of 

spurious precision. Aside from those who have diligently trained themselves, we have a much 

less formal notion in mind when we instinctively say we find the coincidence and the very idea 

of a benevolent mathematics genie “unlikely.” 

 Let us say that the probability calculus does fail historically as a description of how we 

informally use the notions of likely and unlikely. Nonetheless, should we not decide, 

normatively, to conform our use of the notions to the probability calculus, for that would protect 

us from the inconsistencies and paradoxes alluded to above? That prescription is a double-edged 

sword. It also commits us to aspects of the Bayesian system we may not want, such as its long-

standing difficulty of representing ignorance as opposed to disbelief. (For more, see Norton, 

2007, manuscript (b).) 

                                                
10 The analysis can be recovered directly from Bayes’ theorem as given in (6) in Section 4.3 

below. (M3) corresponds to P(H|E) being nearly one. It can fail to have that value in the two 

ways indicated above. First, (i), it can fail if P(~H) is very much greater than P(H). Second, (ii), 

it can fail if P(E|H) is greater than P(E|~H). Neither loophole obtains in the cases at hand. 
11 The difficulties are well known. If each of A, B, C, … are individually very likely, then, 

according to a common, tacit presumption, so is their conjunction. This presumption eventually 

must fail. While each, individual lottery ticket is very unlikely to win, at least one of all the 

tickets sold must win. Or while I may believe each individual assertion in my magnum opus very 

likely to be true, I am also convinced that very likely they cannot all be true. See Sorensen (2006, 

§§3-4). 
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4. Accounts of Induction 

 The proposition (M) has a nebulous character. It depends on vague judgments of what is 

likely and unlikely among a universe of possible hypotheses and theories, most of whose 

members are only dimly glimpsed. Ought we really to think that this is what powers Einstein’s 

celebrated inductive inferences? Do we not recover a more solid account from one of the many 

formal accounts of induction to be found in the philosophy of science literature? We do not. 

 The principal claim of his paper is that all these account are able to vindicate Einstein’s 

inductive claim only in so far as they presume (M). The general principles they add to (M) are 

comforting, in that they give us a sense of a principled analysis. But those principles are inert. 

For the proposition (M) by itself is sufficient to vindicate Einstein’s claim. Whatever the general 

accounts add are superfluous for the exercise at hand, that of assessing the cogency of Einstein’s 

inductive claim. 

 My goal in this section is to make good on this claim. To do this, I will indicate briefly 

how some of the principal accounts of inductive inference accommodate the two cases at hand, if 

they can, and indicate how every one of them depends in the end on (M). To make this review 

tractable, it will be structured by a survey I have given elsewhere (Norton, 2005) of different 

families of accounts of inductive inference. That survey divides accounts of inductive inference 

into three families: inductive generalization, hypothetical induction and probabilistic induction. 

4.1 Inductive Generalization 

 Accounts of inductive inference in this family all depend on the principle that an instance 

confirms the generalization. The simplest is the venerable enumerative induction: If some A’s 

are B, then all A’s are B. The family grew with attempts to extend the reach of this limited 

inference form. In my catalog (Norton, 2005, pp11-14), it includes Hempel’s instance 

confirmation, Glymour’s boostrap and Mill’s methods. None of the members of this family12 

                                                
12 Glymour (1980, pp. 288-89) balks at fitting the three classic tests of general relativity, one of 

which is Mercury’s perihelion motion, into his bootstrap framework. In Norton (2005) I included 

demonstrative induction within this first family as an extreme form. Its application to these two 

cases is sufficiently important to be reserved for a separate section below. 
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seem especially well suited to the two cases at hand, excepting analogical inference, which is a 

variant form of enumerative induction. 

 If a has properties P and Q and b has property P, then the inductive argument form of 

analogy allows us to infer that b also has property Q. This argument form can be applied directly 

to the case of Einstein’s light quantum (but not the perihelion of Mercury). We have 

An ideal gas sustains volume fluctuations governed by (2); and it consists of many, 

spatially localized, independent components. 

High frequency radiation sustains volume fluctuations governed by (4), a formula very 

similar to (2). 

Therefore, by analogy 

High frequency radiation consists of many, spatially localized, independent components. 

Or at least that is the conclusion that analogy allows us to infer. Few of us would make the 

inference with much confidence, without closely examining the details. We are very aware of 

how fragile analogical arguments can be. Ripples in a pond and sound are propagating waves and 

they are carried by a medium (water, air). Light is a propagating wave. Therefore by analogy 

light is carried by a medium (ether). 

 The strength of the analogical inference depends upon the relative weights of the positive 

and negative analogies, that is, the degrees of similarity and dissimilarity of the entities related 

by the analogy. The greater the negative analogy, the less we are inclined to believe the 

inference. In the case of the light quantum, the negative analogy is very great. An ideal gas is 

very different from heat radiation in many properties. Most importantly, radiation, unlike ideal 

gases, exhibit wavelike properties, such as interference, and waves are inevitably associated with 

extended systems in space, in direct contradiction with what the positive analogy seeks to 

establish.13 We need to be quite assured of the force of the positive analogy in the probability 

formulae to overrule such a strong negative analogy. That is, we need to be assured that the 

positive analogy is not fortuitous or spurious. And that amounts to saying that we need to believe 

                                                
13 Another striking difference is that if we isothermally expand a cylinder filled with heat 

radiation, then more radiation is created to fill the new space. If that radiation consists of quanta, 

then the expansion creates new quanta. The isothermal expansion of an ideal gas certainly does 

not create new molecules. 
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that the agreement in the probability formulae (the evidence) is very unlikely to come about, 

were the agreement in constitutions not the case. But that amounts to saying that the analogical 

argument is very strong only in so far as we already believe (M). 

 The general principle of analogical reasoning recovers the warrant for Einstein’s results, 

only in so far as we already believe (M). But if we already believe (M), we have no need of the 

principle to recover the warrant. 

4.2 Hypothetical Induction 

 This second family of accounts (Norton, 2005, pp. 14-17) of inductive inference stem 

from the simple idea that it is a mark of truth when an hypothesis or theory deductively entails 

the evidence. This is hypothetico-deductivism; or, to use the name attached to the earliest 

instance of the notion, it is “saving the phenomena.” The difficulty with this mark is that it is too 

easy to acquire. If some hypothesis saves the phenomena, then so will the conjunction of that 

hypothesis with just about anything else. Virtually all embellishments seek to tame this 

indiscriminateness by requiring that, in addition, the phenomena must be saved in right way. The 

specification of this right way generates the family of accounts. 

Simplicity 

 The simplest embellishment is to require that we choose the simplest hypothesis able to 

save the phenomena. That simplicity certainly obtains in the case of the light quantum. No one 

can doubt the simplicity of the idea that radiation just consists of independent points and the 

elegance with which one proceeds from it to the probability formula (4) and then to the entropy 

formula (1). The case of general relativity is not so straightforward. Einstein’s theory replaces 

the one, easy to solve, linear field equation of Newtonian theory with ten, non-linear, coupled 

differential field equations, whose solution, even in simple cases, is a complicated mathematical 

feat. However, at a more elevated, conceptual level, general relativity is reputed to be beguiling 

simple; all gravitational phenomena are subsumed under the simple idea that the curvature of 

spacetime goes hand in hand with matter density. 

 This example shows the difficulty of employing the principle that we should believe the 

simplest, adequate hypothesis. There can be competing notions of simplicity applicable to the 

one case; and we may further judge some senses of simplicity to be of the wrong sort for 
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epistemic purposes. We might account for the elliptical orbits of planets with Newtonian theory 

or with the hypothesis that God wants those motions just as they are. The God hypothesis is four 

times simpler in that it replaces four laws of the Newtonian account (three laws of motion plus 

the law of gravitation) with just one hypothesis. Yet that notion of simplicity is clearly not the 

notion relevant here. 

 What is the relevant notion of simplicity? In the case that works best, the relevant notion 

of simplicity seems to reside directly in the idea that, having seen what the light quantum 

hypothesis says and how it enables recovery of the evidence, we deem it unlikely that any other 

hypothesis could plausibly recover the evidence. In the absence of any independent rule that 

identifies the epistemically active sense of simplicity, we attach the label of simplicity to that 

feature of the hypothesis; that is, in this case, we identify simplicity with the obtaining of (M). 

 The general principle of simplicity recovers the warrant for Einstein’s results, only in so 

far as we already believe (M) obtains. But if we already believe (M), we have no need of the 

principle to recover the warrant. 

Eliminativist Accounts 

 Another type of approach seeks to embellish hypothetico-deductivism by conditions that 

have the effect of eliminating the alternatives to the hypothesis. A well-articulated example is 

Mayo’s (1996, Ch. 6) notion of a severe test. Imagine that predicting correctly the anomalous 

motion of Mercury is offered as a challenging test to a gravitation theory. Then to pass the test, 

the theory must predict the motion correctly. Now, passing the test would offer no special 

support if every theory could make that same prediction. To rule out this breakdown, Mayo adds 

the requirement that passing a test supplies an evidential warrant, only if the test is severe. In one 

version (p. 180), the severity requirement is:  

There is a very low probability that test procedure T would yield such a passing 

result, if [the hypothesis] H is false. 

In the case of general relativity and Mercury’s perihelion, the hypothesis H is general relativity 

and passing the test procedure is correctly predicting the anomalous motion of Mercury. So the 

severity requirement amounts to requiring this: if general relativity were false, then very 

probably there would be some anomalous motion for Mercury other than the 43 seconds of arc 

per century that is observed and that general relativity predicts. That amounts to requiring that if 
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the hypothesis, general relativity, were false, then the evidence as we now have it would very 

likely not have obtained. That is just (M). (A similar analysis would give us (M) from the 

severity requirement in the case of the light quantum.) 

 The general principle of severity of testing recovers the warrant for Einstein’s results, 

only in so far as we already believe (M). But if we already believe (M), we have no need of the 

principle to recover the warrant. 

Abduction 

 Another popular embellishment of hypothetic-deductivism is abduction or inference to 

the best explanation. The added requirement is that the hypothesis or theory must not just save 

the phenomena; it must explain it and it must explain it the best. The account works well at an 

intuitive level. The light quantum hypothesis certainly gives a very satisfying explanation of the 

probability formula (4) and thereby also the entropy formula (1). Einstein himself repeatedly 

wrote of his “Explanation [Erklärung] of the Perihelion Motion of Mercury from the General 

theory of Relativity”—this being the title of Einstein (1915). 

 The difficulty with this account emerges, however, when we try to make precise just what 

is meant by explanation, as we must if it is to figure centrally in account of inductive inference. 

Einstein gave no clarification of what he meant by the term. Of the various notions of 

explanation in the literature, it seems to me that the one that fits the two cases at hand is the 

covering law model. According to it, evidence is explained if it deduced (with appropriate 

auxiliaries) from a covering law. The evidence of Mercury’s motion is deduced from the 

covering law of general relativity. The entropy formula (1) for radiation is deduced from the 

covering law of the hypothesis of light quanta.14  

 What is it for an hypothesis to explain best? It is not too hard to identify virtues. Many of 

them are not of the sort that is relevant to the “best” of inference to the best explanation. For 

example, Einstein used an elegant iterative computational procedure to wrestle the anomalous 

                                                
14 Or perhaps we might construe explanation in the latter case of light quanta only as the 

revealing of an underlying constitution. It ends up to be pretty much the same, since, from the 

hypothesis of the constitution of radiation as light quanta, we still deduce the entropy formula 

(1). 
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motion of Mercury from his theory. Whether the particular computational procedure Einstein 

used is elegant or not is irrelevant to the evidential warrant. The virtues sought are those that 

would engender belief in the hypothesis or theory. In that regard, the obvious virtues are those 

already outlined in Section 3.2. General relativity entails the anomalous motion of Mercury 

without special hypotheses. This is epistemically relevant precisely because it gives us reason to 

believe that if another theory were the right one, we would likely not have the same evidence 

obtaining. In the case of the light quantum, the virtue is that the deduction of the probability 

formula (4) from the light quantum hypothesis is successful at all, since we doubt any other 

could do it. That automatically makes it the best. The epistemic power of these virtues is already 

embraced by the simple formula (M), so that we see once again that the success of the abductive 

account presumes (M) in these two cases. 

 The inferential principle of believing that which best explains the evidence, recovers the 

warrant for Einstein’s results, only in so far as we already believe (M). But if we already believe 

(M), we have no need of the principle to recover the warrant. 

Reliabilism 

 The final embellishment to be considered here is reliabilism. According to this approach, 

we cannot assess in isolation the evidential import of an hypothesis successfully accommodating 

the evidence. That assessment can only be done in the context of the history of the 

accommodation, showing that it conforms to a reliable discovery process. Best known of these 

accounts is Popper’s (1959) account of science progressing through a cycle of bold conjecture, 

testing against evidence and refutation.15 A bold conjecture that passes the test is “corroborated,” 

a notion that, in spite of Popper’s tireless denials, seems to differ little from the notion of 

“confirmed.” Lakatos’ (1970) “methodology of research programmes” is a more elaborate 

version of Popper’s falsificationism in which the development of science is portrayed as a 

struggle between competing research programs. Einstein’s 1915 recovery of the anomalous 

motion of Mercury would count as a major success for the research programme hosting general 

                                                
15 Mayo’s notion of severe testing might also belong here, although her specification of just what 

counts as a severe test is ahistorical, so it can be applied without recounting the precise history of 

the test. 
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relativity. Although this anomalous motion was not a novel fact, accounting for it expanded the 

explanatory power of the program. That is progressive (p. 117), a praiseworthy feature for 

Lakatos. The converse of this virtuous accommodation of observation is the non-virtuous ad hoc 

hypothesis.16 Ad hoc hypotheses may accommodate the evidence; yet it is said that they are not 

supported by it since they were devised precisely with this goal in mind. 

 The presumption seems to be that we can only meaningfully say that something has 

evidential import in the context of the sorts of historical tales told by Popper and Lakatos: who 

had which idea when and what happened next. While that presumption seems dubious to me, I 

will not dispute it here. Rather, I want to address the question of why passing tests, or being 

progressive, or not being generated ad hoc should have epistemic force. Passing a test or 

explaining some anomaly ought only to advance a theory in relation to its competitors if we 

believe that these competitors cannot perform as well. That is we should favor a theory or 

hypothesis for its ability to entail the evidence just to the degree that we believe its competitors 

cannot. That is, the reliabilist approach depends upon the assumption that, were other theories or 

hypotheses to be the right ones, then we would not expect the world to be such that evidence we 

have obtains. That is the proposition (M). 

 The reliabilist approach recovers the warrant for Einstein’s results, only in so far as we 

already believe (M). But if we already believe (M), we have no need of it to recover the warrant. 

4.3 Probabilistic Induction 

 This family of accounts of inductive inference takes its inspiration from the theory of 

probability developed in the seventeenth century as means of analyzing games of chance. These 

physical probabilities behave like degrees of belief, so the proposal is that our degrees of belief 

everywhere ought to conform to the same calculus. Other members of the family employ other 

                                                
16 For example, the failure of nineteenth century ether drift experiments to detect an ether current 

is accommodated by the ad hoc hypothesis that we just happen to be at rest in the ether. I urge 

readers to resist the temptation of dismissing Einstein’s formulation of the light quantum 

hypothesis as a defective, ad hoc hypothesis, even though it was explicitly designed to 

accommodate the known entropy properties of heat radiation. The idea was too ingenious for 

such rude dismissal. 
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calculi in the attempt to remedy defects of the probability calculus as a logic of induction. Here I 

will consider only the accounts of induction that retain the probability calculus as the governing 

calculus and represent the support that some background B gives to an hypothesis H by the 

probability P(H|B). The evidential import of an item of evidence E is gauged by conditionalizing 

on E. These accounts are typically called “Bayesian,” since Bayes’ theorem is used to compute 

that conditional probability. 

 When E supports H, conditionalizing on H increases the probability of H; that is, 

P(H|E&B) > P(H|B). If that is our criterion of support, then according to Glymour’s (1980, pp. 

85-93) “problem of old evidence,” Einstein’s evidential warrant fails completely in the two cases 

considered here. For in both cases, the evidence (the entropic properties of radiation/ Mercury’s 

anomalous perihelion motion) was already known at the time the theories were proposed. 

Writing B for the background knowledge then known, E for each of these items of evidence and 

H for any hypothesis whatever, the fact that E was already known entails that 

E&B = B 

from which we immediately infer that 

P(H|E&B) = P(H|B)                                                         (5) 

It now immediately follows that H accrues no support from E. Since H is any hypothesis, E has 

become evidentially inert, contrary to every intuition. 

 Glymour presented the problem as one specifically challenging probabilistic accounts and 

deduced (5) by the rather indirect route of an application of Bayes’ theorem. We can see 

immediately that the problem is far more general. It will arise in any account of evidence that 

assigns degrees of support as [hypothesis|evidence], where these degrees need no longer be 

probabilities or even numeric (as in Norton, 2007). For we will still have [H|E&B] = [H|B].  

 It seems far too cheap to let this problem derail such a large class of accounts of 

evidential import. So, while there have been some ingenious constructions proposed to evade this 

problem in the Bayesian context (see Earman, 1996, Ch.5), I believe the best response is the 

obvious one. The import of evidence E should be assessed against a background B’ from which 

E has been deleted. Glymour is right that we take great liberties in presuming that such a 

background can be identified unequivocally, although Howson and Urbach (2006, pp. 297-301) 

seek to establish that the resulting uncertainty in the analysis is small. Nonetheless that liberty 
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seems comparable or even more modest than others routinely taken in Bayesian analysis.17 

Bayesians will assign probabilities to outcomes conditioned on the supposition that some 

hypothesis does not obtain, even though they cannot pretend any precise grasp of the full range 

of possibilities opened by the falsity of the hypothesis.  

 Let us proceed with the Bayesian analysis, presuming that the prior probability P(H) of 

the hypothesis (light quantum hypothesis/general relativity) is tacitly conditionalized on a 

background from which we have deleted the evidence E (entropy formula (1)/anomalous motion 

of Mercury). In that case, Bayes’ theorem can be written as  
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where we have set P(E|H)=1 to reflect the fact that in this case the hypothesis H (with suitable 

auxiliaries) entails the evidence. We read immediately from (6) that P(H|E) is close to one--that 

is H is very likely when E is presumed, just in case P(E|~H) is small--that is, E is very likely 

false if we presume the falsity of H. But this last presumption is just (M). 

 The success of the entire analysis depends on this presumption (M).18 We have seen 

above, however, that the judgments that establish (M) are quite imprecise. They are a mix of an 

accomplished theorist’s instincts and a belief that what we cannot imagine cannot be. The 

formula of (6) bears an impressive aura of precision. But since the outcome of its calculation 

depends sensitively on the imprecise quantity P(E|~H), it risks being an exercise in spurious 

precision. Of course we need not take that risk to recover Einstein’s evidential warrant. As we 

saw in Section 3.3, that can already be secured directly from (M) and without any special 

pretensions to precision. 

 In sum, a Bayesian analysis recovers the warrant for Einstein’s results, only in so far as 

we already believe (M). But if we already believe (M), we have no need of it to recover the 

warrant. 

                                                
17 There is also a precedent in legal proceedings, in which the evidential record must be purged 

of improperly secured evidence. 
18 The other way that P(H|E) can turn out close to one is if P(~H) is very small, that is P(H) is 

close to one. But that just asserts that we already think H very likely, so the displaying of a 

correspondingly large P(H|E) is no longer revealing the evidential import of E. 
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4.4 Demonstrative Induction 

 In any inductive inference, we take some inductive risk in proceeding from the premise 

of the evidence to the conclusion of the hypothesis in question. Since the inference is ampliative, 

it may just turn out that the conclusion is true, but the evidence is false. There turn out to be 

many interesting cases in which this inductive risk can be eradicated. These are cases in which 

we discover that we have already sufficient presumptions in our background belief that, with 

their aid, we may deduce the hypothesis from the evidence. The fact the inference is deductive, 

that is, demonstrative, engenders the term “demonstrative induction” (Norton, 2005, pp. 13-14). 

 The inference form is sometimes also known as “Newtonian deduction from the 

phenomena” since it was used by Newton in his celebrated Principia. A simple example in 

Newtonian physics illustrates the argument form. Famously, Newton’s inverse square law of 

gravity entails Kepler’s third law of motion for the planets. That law relates their period T with 

their radii R according to R3∝T2. So, by hypothetico-deductive confirmation, the truth of 

Kepler’s third law lends support to the inverse square law of gravity.  

 Demonstrative induction eliminates the inductive risk taken in inferring from Kepler’s 

third law to the inverse square law of gravity by making the inference deductive. To see how it 

does this, take the simple case in which we presume that planetary orbits are circular. For a 

planet orbiting at speed V in a circular orbit of radius R with period T, it follows from Newton’s 

mechanics that its acceleration A=V2/R and from Euclidean geometry that V=(2πR)/T. 

Combining, we have 

A  =  V2/R  =  (2π)2 (R/T)2 (1/R)  =  (2π)2 (R3/T2) (1/R)2 

Kepler’s third law tells us that (R3/T2) is a constant, so we deduce from the above relation that 

A∝(1/R)2, which is Newton’s inverse square law, at least applied to this special case. 

 An awkward point in Einstein’s light quantum argument comes when he infers from the 

probability formula (4) to the hypothesis of light quanta. The inference is inductive and we have 

explored in some detail what its character may be. In all those accounts, there has been some 

sense of fragility. If it is an argument from analogy with the formula (2) deduced for ideal gases, 

just how much inductive risk do we take in accepting the analogy and proceeding to Einstein’s 

conclusion that light energy is localized in points just like the molecules of an ideal gas? 
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 Dorling (1971), in a remarkable demonstrative induction, has shown that we actually take 

no real inductive risk at all. The argument from (4) to the light quantum hypothesis can be made 

deductive. In Dorling’s words (p. 3) 

…I shall now show how [(4)] alone, in conjunction with some of the usual 

statements of the probability calculus, actually entails: 

(A) There is a probability equal to zero of the energy of the cavity being 

anything other than an integral multiple of hν. 

(B) If the total energy in the cavity is equal to nhν, then there is a probability 

equal to unity of there being exactly n distinct points in the cavity with 

energy hν located at each point. 

I believe in addition that Dorling’s arguments establish the probabilistic independence of the 

distribution of spatial points of (B). So Dorling’s arguments return the light quantum hypothesis, 

in so far as we are willing to proceed from judgments of probability 0 and 1 to full disbelief and 

certainty. 

 Dorling’s argument is not especially simple. It starts with a few special cases and then 

arrives at the general result by recursion. We can, however, get a general sense of how his 

argument proceeds by looking at his two simplest cases. 

 Take the case in which E=hν/2. In that case, the probability that all the energy has 

fluctuated the left half of the volume V0 is W=(V/V0)E/hν=(1/2)1/2. So the probability that the 

energy has fluctuated to either left or right half volume is (1/2)1/2+(1/2)1/2=21/2>1, which 

contradicts an axiom of the probability calculus. Hence E=hν/2 is impossible. 

 Take the case of E=hν. The probability of finding the energy fluctuating into some 

particular subvolume of size V0/n th is just W=(V/V0)E/hν=(1/n). If we imagine the volume V0 

divided into n such disjoint subvolumes, there is a probability n(1/n) = 1 that the energy has 

fluctuated into just one of those subvolumes. However, since n can be as large as we like and the 

subvolumes as small as we like, this can only be true if all the energy hν is localized in just one 

point. 

 This is an elegant and persuasive account of how we can proceed from the probability 

formula (4) to Einstein’s light quantum hypothesis. However, what it does not provide is a 

plausible reconstruction of what Einstein intended when his text passed without comment from 
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the probability formula (4) directly to the light quantum hypothesis. If Einstein explicitly had in 

mind an argument like Dorling’s, some further elucidation would be called for. Perhaps the best 

we can say is that Einstein sensed intuitively what Dorling’s argument establishes without doubt: 

that no other hypothesis about the energy distribution of radiation could give Einstein’s formula. 

But sensing intuitively just that much is, in effect, just to ascribe to (M). 

 Demonstrative induction has a special connection with the material theory of induction 

that will be discussed in the Conclusion below. 

5. Conclusion: Virtues of the Material Approach 

 The material theory of induction, in my view, affords a philosopher of science the best 

way of approaching the evidence claims of scientists. The first advantage is that it does not 

require us to portray scientists as secret methodologists, covertly or unconsciously conforming 

their inductive inferences to our favorite principle of inductive inference. What has made it 

tempting to imagine this sort of covert or unconscious behavior is that it does seem to work in 

relation to scientists’ deductive inferences. Scientists do seem to conform their deductive 

reasoning to the familiar deductive argument forms. However that is no assurance that a similar 

reconstruction will work for inductive inferences. Indeed our enduring failure to settle on one 

correct account of induction continues to make the reconstruction efforts dubious. For we still do 

not know whether an Einstein inferring from the anomalous perihelion motion of Mercury 

should be portrayed as secretly computing Bayes’ theorem or secretly sifting an hypothesis space 

for the best explanation. 

 The material theory of induction relieves us of the need to fit a scientist’s inductive 

inferences into some elusive set of universally valid templates that prescribe good inductive 

inferences. The material theory tells us that there are no such things. Rather it enjoins us to seek 

the warrant for a scientist’s evidence claims in other material facts. 

 In doing so, we may still need to ascribe some tacit beliefs to the scientist. In the two 

cases here, these were the factual claim (M) applied to each case. However, in this regard, what I 

showed in Section 4 is that the material theory is a strict improvement on every other applicable 

account of induction surveyed. For each such account needed to make the same presumption (M) 

and in addition to propose some general inductive principle. A philosopher of science following 
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the material theory of induction can have the same results without the need to resort to any of 

these inductive principles. 

 Finally, the material theory of induction gives us more hope than any other account in 

assessing the strengths of various inductive inferences. Let us ask: how strong was Einstein’s 

inference from the entropic properties of radiation to the light quantum hypothesis; and how 

strong is the support accrued to general relativity from its explanation of the anomalous motion 

of Mercury? 

 If we follow any of the accounts of induction surveyed in Section 4, the search for an 

answer immediately throws us into terminally nebulous assessments. If Einstein’s argument is 

one from analogy, how good was the analogy? How do we assess the goodness of an analogy? 

Or, if Einstein’s argument depended upon the simplicity of his hypotheses, just what it is to be 

simple; and how do we translate degrees of simplicity into measures of strength? Or if Einstein is 

inferring to the best explanation, how are we to assess the difference between explaining and 

merely accommodating; and how do we translate that into measures of strength? Or, if our 

analysis is Bayesian, how will the elegance of our theorems ever overcome the fact that the 

entire analysis depends upon a conditional probability P(E|~H) whose value is known more 

through intuitions and hunches. 

 The material theory of induction focuses our investigation more productively. It enjoins 

us to consider the particular material facts that carry us from evidence to theory. In doing so, we 

naturally treat each inductive inference as a unique individual, each with its own special 

properties, as opposed to homogeneous instances of a single argument form. The natural 

question we are led to ask is this: if one set of facts is carrying us there weakly, are there others 

that do so more strongly? This is practical, heuristic advice, as useful to the scientist as the 

philosopher. For it tells us that we better understand the strength of an inductive inference by 

knowing more factually about the case at hand. The problem is not to be solved by a flight to 

ethereal heights where we ponder just what it means to be simple or to explain better. Rather we 

should look to what we know or could know about radiation to see how that might affect our 

induction. The extreme form of this analysis is Dorling’s successful demonstrative induction to 
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Einstein’s light quantum hypothesis. 19 For unlike any other analysis, Dorling’s assures us that we 

can dispense with all the hesitations about Einstein’s induction. It can be converted pretty much 

into a fully deductive argument.  

 The difference between this case of the light quantum and the case of Mercury’s 

perihelion is striking. We saw above in Section 3.2 that we need to exercise some caution in 

accepting (M) in the case of Mercury’s perihelion, for the evidence of the perihelion motion 

plumbs only the weak field. 20 So the material theory of induction leads us to see that the two 

inductive inferences discussed here actually have very different strengths. 
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