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Abstract

The CPT theorem of quantum field theory states that any rela-
tivistic (Lorentz-invariant) quantum field theory must also be invari-
ant under CPT, the composition of charge conjugation, parity reversal
and time reversal. This paper sketches a puzzle that seems to arise
when one puts the existence of this sort of theorem alongside a stan-
dard way of thinking about symmetries, according to which spacetime
symmetries (at any rate) are associated with features of the spacetime
structure. The puzzle is, roughly, that the existence of a CPT theorem
seems to show that it is not possible for a well-formulated theory that
does not make use of a preferred frame or foliation to make use of a
temporal orientation. Since a manifold with only a Lorentzian met-
ric can be temporally orientable — capable of admitting a temporal
orientation — this seems to be an odd sort of necessary connection
between distinct existences. The paper then suggests a solution to the
puzzle: it is suggested that the CPT theorem arises because temporal
orientation is unlike other pieces of spacetime structure, in that one
cannot represent it by a tensor field.

To avoid irrelevant technical details, the discussion is carried out in
the setting of classical field theory, using a little-known classical analog
of the CPT theorem.

1 Introduction

A story has it that in the early sixties, Feynman was asked to give an evening
talk to physics students at Caltech, explaining the basic idea of the CPT
theorem: the celebrated result in quantum field theory that states that any
relativistic (i.e. Lorentz-invariant) quantum field theory must be invariant
under CPT, the composition of charge conjugation, parity reversal and time
reversal. Feynman agreed to commit to doing this, commenting that if one
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cannot explain something to second year Caltech undergraduates then one
does not understand it. The story goes that Feynman spent a month or two
trying to plan the talk, and then, in despair, cancelled the commitment.

Whether or not this story is true, its basic point is well taken: despite
the importance of the CPT theorem in particle physics, the result itself is
generally not well understood, even by those whose professional practice
regularly appeals to it. It is often referred to as a ‘remarkable result’. It
seems worthwhile trying to attain a point of view from which the CPT
theorem is not remarkable at all, but is, rather, precisely what one expects
on elementary grounds. That is the aim of the project of which the present
paper is a part.

More precisely, one can identify two positive sources of puzzlement:

• How can it come about that one symmetry (e.g. Lorentz invariance)
entails another (e.g. CPT) at all?

• How can there be such an intimate relationship between spatiotempo-
ral symmetries (Lorentz invariance, parity reversal, time reversal) on
the one hand, and charge conjugation, not obviously a spatiotemporal
notion at all, on the other?

This paper focusses on the first sort of puzzlement. I first sharpen the
puzzle by suggesting that, according to a way of thinking about spacetime
symmetries that is (for good reason) fairly common currency in the philos-
ophy of physics community, there is a particular reason for thinking that
Lorentz covariance should not be able to entail anything like CPT covari-
ance. I then go on to offer a solution to the puzzle.

An outline of the paper is as follows.
Section 2 reviews the standard way of thinking about spacetime symme-

tries, well discussed by (in particular) Michael Friedman (1983) and John
Earman (1989), that will give rise to the sharpened form of our puzzle and
that will provide the framework for our discussion. The key point to be
taken from this section, for the purposes of this paper, is that one generally
expects to find a certain correspondence between the dynamical symmetries
of a give spacetime theory, on the one hand, and the spacetime structure
postulated by that theory, on the other. More precisely, we expect the
following principle to hold: that the covariance group of a theory (when for-
mulated non-generally-covariantly) should, for a well-formulated theory, be
equal to the invariance group of the set of geometrical objects that are not
represented explicitly in the coordinate-dependent, non-generally-covariant
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formulation in question. (Readers familiar with the standard framework in
question can easily skim this section.)

Section 3 suggests that, from this point of view, the existence of a CPT
theorem is prima facie puzzling. The idea here will be that a CPT theorem
seems to be telling us that it is not possible for a relativistic theory (that
is, on our way of thinking, a theory that does not require the existence of a
preferred frame or foliation) to make essential use of a temporal orientation.
This seems odd, since a temporal orientation — a geometric representation of
the direction of time — seems to be a perfectly respectable piece of spacetime
structure, and since there is no obstacle to theories’ making essential use of
other pieces of spacetime structure, such as a metric or a total orientation.

Section 4 states a theorem (proved elsewhere) that seems to be a classical
analog of the usual, quantum-field-theoretic, CPT theorem.

Section 5 offers a solution to the puzzle: the key point is that temporal
orientation is indeed (in a Lorentzian context) unlike many other pieces of
spacetime structure, in that it cannot be represented by a Lorentz-invariant
tensor field. Meanwhile, the ‘auxiliary constraints’ that we expect any ‘rea-
sonable’ field theory to satisfy have the effect that only pieces of spacetime
structure that can be represented by such tensor fields can be made use of
in the theory.

Section 6 considers the puzzle and its suggested resolution in the context
of Galilean- (rather than Lorentz-) invariant field theories. The point here
is that while we do have a ‘Lorentzian CPT theorem’ — a theorem stating
that any Lorentz -invariant field theory must also be CPT invariant — we do
not have a ‘Galilean CPT theorem’ (and there do exist Galilean-invariant,
CPT-non-invariant theories). We can therefore perform a ‘sanity check’ on
the discussion of this paper, by checking that the suggested explanation of
how anything like a CPT theorem can come about in the Lorentzian case
does not also suggest that we should expect to find a CPT theorem in the
Galilean case. The result will be reassuring: there is a Galilean-invariant
tensor field representing temporal orientation, and, indeed, by making use of
the field in question we can easily construct examples of Galilean-invariant,
non-CPT-invariant field theories.

Section 7 is the conclusion.
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2 The connection between dynamical symmetries
and spacetime structure

This section reviews a standard way of thinking about spacetime symme-
tries. This standard account provides the framework within which the exis-
tence of the CPT theorem is, I will suggest, prima facie puzzling. The review
in this section is very much in the spirit of the discussions given by Fried-
man ((1983), chapters 2 and 3) and Earman ((1989), chapters 2 and 3). It
may be skimmed by those familiar with the framework in question (the only
slightly idiosyncratic elements are the talk of ‘special’ rather than ‘absolute’
or ‘kinematical’ objects, and (relatedly) the terminology ‘covarianceQ group
of a theory’; I indulge in this idiosyncrasy to avoid irrelevant complications
concerning how, if at all, one might define ‘absolute’ of ‘kinematical’).

Spacetime theories. Let T be a spacetime theory. That is, T is a theory
whose intended models are structures of the form 〈M,Φ1, . . . ,Φn〉, where M
is a differentiable manifold, and the Φi are geometrical objects on M .

Symmetries. To discuss the symmetries of a theory T , we need first to
regard the set MD of models of the theory (D for ‘dynamically allowed’) as a
subset, MD ⊂MK , of a larger set MK of ‘kinematically allowed structures’.
We then consider maps from the set MK into itself; we say that such a map
is a symmetry of the theory T iff the map leaves the dynamically allowed
subset MD invariant.

Spacetime symmetries. We wish formally to capture the sense in which
particular groups of spacetime transformations — for example, the Lorentz
or Galilei groups — may or may not be symmetries of a given spacetime
theory T .

There is a familiar obstacle to rendering such talk of spacetime symme-
tries nontrivial : to finding a sense, that is, in which it is not trivially the
case that any manifold diffeomorphism h : M →M will count as a ‘symme-
try of T ’. The obstacle arises if, in the structures 〈M,Φ1, . . . ,Φn〉, we have
explicitly represented all of the structure that is actually presupposed by our
theory. It arises as follows. Let Diff(M) be the set of diffeomorphisms from
the spacetime manifold M onto itself. Any such diffeomorphism will have a
natural action on a given geometric object Φi: for example, if Φi is a vector
field on M , the natural action of h takes Φi to its push-forward h∗Φi; if Φi

is a one-form then the natural action is the pull-back to h∗Φi, etc. Write
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h∗Φj for the result of allowing h to act in the natural way on Φj , regardless
of the type of geometrical object that Φj is (so that we do not have to keep
track of distinctions between different types of geometric objects that are
irrelevant for our immediate purposes). Now, we wish to associate, with a
manifold diffeomorphism h ∈ Diff(M), a map h′ : MK → MK . The most
obvious way to do this is to allow h to have its natural effect on each of the
geometrical objects in an arbitrary structure m ∈ MK : that is, to define
h′ : MK →MK by

h′〈M,Φ1, . . . ,Φn〉 := 〈M,h ∗ Φ1, . . . , h ∗ Φn〉. (1)

However, if we define h′ in this way, then every h′ (i.e. the h′ corresponding
to every h ∈ Diff(M)) will be a symmetry of our theory T . This is the
sense in which, unless there is some structure to M that we have failed to
represent in our statement of the models of the theory, any spacetime theory
will, trivially, count as generally covariant.

This is unhelpful, since we want to capture the special relationship of,
say, the Lorentz group to relativistic electromagnetic theory, and the Galilei
group to Newtonian gravitation theory. (One normally wants to say that
Newtonian gravitation theory is Galilean-covariant and that Maxwell’s equa-
tions are not, or that a theory counts as special relativistic just in case it is
Lorentz-covariant; we see to be losing an interesting and fruitful distinction
if we have only the sense in which all theories are generally covariant.) To
do this, we must set up a different correspondence between manifold dif-
feomorphisms h and maps from MK onto itself, such that in general only
for some proper subset of Diff(M) do we have the corresponding maps as
symmetries. Our new correspondence is set up as follows. For a given the-
ory T , we single out some subset Q of the Φi as ‘special’. (One way to go
about branding objects ‘special’ is to look for some formal criterion that
will pick some of them out, such as the Anderson-Friedman ‘absoluteness’
criterion (see, e.g., Friedman ((1983), pp.56-61). Another is to say that the
‘special’ ones are the ‘kinematical’ or ‘geometrical’ ones, and hope that we
know what this means. An approach that is less ambitious, but that suffices
for our present purposes, is to do without any such general criterion, and
simply to specify some subset of the objects in a given theory on a case-
by-case basis, putting a subscript on ‘covariance’ to indicate which set of
objects we have chosen to treat as ‘special’. Since we don’t need to tangle
with the problems that the more ambitious programs face, we will take this
last approach.) Having chosen our set Q, we then write candidate models of
T in the form 〈M,S1, . . . , Sm, O1, . . . , On〉, where the Si (‘special’ objects)
are elements of Q and the Oi (‘ordinary’ objects) are not. We now allow the
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diffeomorphism h to act only on the ‘ordinary’ objects Oi /∈ Q. That is, to
any h ∈ Diff(M) we associate a map hQ : MK →MK , defined as follows:

hQ〈M,S1, . . . , Sm, O1, . . . , On〉 := 〈M,S1, . . . , Sm, h ∗O1, . . . , h ∗On〉. (2)

We define the covarianceQ group of T to be the set of h ∈ Diff(M) such
that the corresponding hQ is a symmetry of T .

The connection between symmetries and spacetime structure. The
covarianceQ group of a spacetime theory will, in general, be some proper
subset of Diff(M). But more can be said. Define the invariance group of a
set Q of geometrical objects as the set of diffeomorphisms h such that (the
natural action of) h leaves each element of Q invariant. Suppose it is the
case that, for all models of our theory T , the invariance group of the set
(S1, /ldots, Sm) of ‘special’ fields appearing in that model is the same. In
this case, we can write of the invariance group of Q as a property of the the-
ory, rather than of a particular model of the theory. We then expect that,
if our theory T is ‘well-formulated’, the covarianceQ group of T is equal to
the invariance group of Q.

To support this expectation, we argue first that the covarianceQ group
of T is a subgroup of the invariance group of Q, and then that the invariance
group of Q is a subgroup of the covarianceQ group of T . (Similar arguments
are given in Earman (ibid., pp.46-7).)

The first claim — that the covarianceQ group of T is a subgroup of
the invariance group of Q — follows trivially from the sense in which T is
generally covariant. (Since

〈M,S1, . . . , Sm, O1, . . . , On〉 ∈MT

⇒ 〈M,h ∗ S1, . . . , h ∗ Sm, h ∗O1, . . . , h ∗On〉 ∈MT ,

if in addition we have h ∗ S1 = S1, . . . , h ∗ Sm = Sm, it follows trivially that

〈M,S1, . . . , Sm, O1, . . . , On〉 ∈MT

⇒ 〈M,S1, . . . , Sm, h ∗O1, . . . , h ∗On〉 ∈MT ;

that is, that hQ takes models to models.)
The second claim — that the invariance group of Q is a subgroup of the

covarianceQ group of T — can arguably be defended, for suitable selections
of the set Q, by an appeal to Ockham’s Razor. Here it is important that the
(‘special’) objects in Q are not themselves ‘directly observable’ or ‘given to
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us by a mechanical experiment’: that their existence is, rather, inferred from
empirical data that more directly gives us the ‘ordinary’ objects Oi. The
basic idea is that, if we have a theory whose covarianceQ group is a proper
subgroup of the invariance group of Q, then it ought to be possible to write
down an alternative theory T ′ that has the same empirical consequences
as does T as far as the Oi are concerned, but that replaces Q with a set
Q′ whose invariance group is smaller than that of Q; further, that this
alternative theory T ′ is more parsimonious than T . The claim then is that,
if T is a ‘well-formulated’ theory (i.e. if T respects Ockham’s Razor), the
invariance group of Q will be a subgroup of the covarianceQ group of T .

Non-generally covariant formulations of spacetime theories. While
it is often preferable, for the purposes of foundational discussions, to formu-
late theories in a coordinate-free framework, such a framework is often in-
convenient for calculations, and is used in only a minority of the the physics
literature. It will therefore be useful to see how the abstract considerations
above relate to coordinate-dependent formulations of theories.

When formulating one’s theory in a coordinate-dependent way, one faces
a choice between two options. (The distinction between the two is precisely
analogous to the distinction between the candidate symmetry operations
h′ and hQ given above.) The first option is explicitly to take coordinate
components of all the geometrical objects that appear in the coordinate-
independent formulation. If one takes this first option, one arrives at a
coordinate-dependent formulation that picks out the intended class of mod-
els relative to an arbitrary coordinate system. Say that the covariance group
of the theory is the group of transformations between coordinate systems
that pick out the intended class of models; we thus have, in this first case,
Diff(M) as the covariance group. The second, alternative, option is to rep-
resent some chosen subset Q of one’s geometrical objects implicitly : that
is, to consider its coordinate components as functions of the coordinates,
and to ‘transform’ them, when changing to any other coordinate system,
by keeping the same function of the coordinates in the new frame. If one
takes this second option, one arrives at a coordinate-dependent formulation
that picks out the intended class of models only relative to a certain ‘priv-
ileged’ class of coordinate systems (the ‘privileged’ class being the class of
coordinate systems in which the coordinate components of the implicit geo-
metrical objects happen to be the same as their components in the original,
defining, coordinate system); its covariance group will then, in general, be
some proper subgroup of Diff(M), and again we expect that the covariance
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group will be equal to the invariance group of the set Q of objects that we
chose to single out for special treatment.

Example. We illustrate the above abstract discussion using the example
of special-relativistic electromagnetism. According to this theory, there is
a flat Lorentzian metric gab, a tensor field Fab (the electromagnetic field)
of type (0, 2), and a vector field Ja (the charge-current density field). The
equations relating these objects are

F ab;b = −4πJa, (3)
F[ab;c] = 0, (4)

where indices are raised using the inverse gab of the metric, and it is un-
derstood that the covariant derivative is the unique one that is compatible
with the metric. These equations are generally covariant, in the following
two (equivalent) senses:

Coordinate-independent sense of general covariance. If 〈M, gab, Fab, J
a〉

satisfies (3) and (4), then so does 〈M,h∗gab, h∗Fab, h∗Ja〉,
for any manifold diffeomorphism h : M →M .

Coordinate-dependent sense of general covariance. In co-
ordinate component form, the equations 3–4 become

Fµν;ν ≡ ∂Fµν
∂xµ

− ΓλµνFλν − ΓλννFµλ (5)

= Jµ; (6)

F[µν;σ] ≡
1
3

(
∂Fµν
∂xσ

− ΓλµσFλν − ΓλνσFµλ (7)

+
∂Fνσ
∂xµ

− ΓλνµFλσ − ΓλσµFνλ (8)

+
∂Fσµ
∂xν

− ΓλσνFλµ − ΓλµνFσλ) (9)

= 0. (10)

These equations pick out the same (i.e. the intended) class
of models in any coordinate system x : M → R4.

However, we can also identify a clear sense in which ‘the symmetry group
of classical electromagnetism’ is the Lorentz group, rather than the full
diffeomorphism group:
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Coordinate-independent sense of special covariance. Let us single out
the metric g as ‘special’. Then, for any h ∈ Diff(M), we may consider
the transformation hg, given by

hg〈M, gab, Fab, J
a〉 := 〈M, gab, h ∗ Fab, h ∗ Ja〉. (11)

For arbitrary h, we won’t in general expect this transformation to take
models to models. In general we’ll (instead) expect h-covarianceg only
when h happens to leave g invariant, since, in that case but in that
case alone, the RHS of 11 is identical to 〈M,h ∗ gab, h ∗ Fab, h ∗ Ja〉.
So now we have a nontrivial covarianceg group, and it’s precisely the
group of transformations leaving the ‘special’ object g invariant: that
is, the Lorentz group.

Coordinate-dependent sense of special covariance. If we choose a co-
ordinate system in which the Christoffel symbols vanish (i.e. an inertial
coordinate system), then, the equations (5)–(10) reduce, respectively,
to

∂Fµν
∂xν

= Jµ; (12)

∂Fµν
∂xσ

+
∂Fνσ
∂xµ

+
∂Fσµ
∂xν

= 0. (13)

(Noting that

F =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −Bx
−E3 −B2 B1 0

 , (14)

it is straightforward to see that these coincide with usual coordinate-
dependent form of the Maxwell equations.)

We have gained notational simplicity, relative to (5)–(10), but now
we must remember that our equations (12)–(13) pick otu the intended
class of models only relative to a privileged class of coordinate systems,
which latter are related to one another by Lorentz transformations.

This concludes our review of the standard material within which our
puzzle will appear. To sum up the key point of this section: there is an inti-
mate relationship between the spacetime symmetries of a theory, on the one
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hand, and the spacetime structure postulated by that theory, on the other.
Specifically, a ‘well-formulated’ theory fails to have a particular manifold
diffeomorphism as one of its symmetries iff it postulates some piece of back-
ground (‘special’) structure that is not invariant under the diffeomorphism
in question.

3 A puzzle about the CPT theorem.

We are now in a position to state our puzzle concerning the CPT theorem.
This theorem states that, subject to some apparently innocuous auxiliary
conditions, the following conditional must hold of any quantum field theory
T :

If T is invariant under the restricted Lorentz group L↑+, then T
is actually invariant under CPT.

I mentioned (in the introduction) that it is possible to decompose a
general sense of puzzlement at this statement into two parts: one concerning
how Lorentz invariance can entail another symmetry at all, and a second
concerning how charge conjugation gets into an otherwise spatiotemporal
picture. Since our present concern is with the first of these, let us ‘pretend’
(but justification for this move will be offered in the next section) that,
instead of the CPT theorem, we actually a PT theorem. Then we have
(instead) the statement

If T is invariant under the restricted Lorentz group L↑+, then T is
actually invariant under the whole of the proper Lorentz group
L+ (i.e. under the total-reflection component, as well as under
the identity component).

In the light of the standard account of spacetime symmetries that I’ve re-
viewed, this conditional is prima facie rather puzzling. Here is why. Suppose
that we have a theory according to which there are, among other objects,
a flat Lorentzian metric g, a total orientation ε and a temporal orientation
τ . (The total orientation is an object that determines, for any quadruple
consisting of one timelike and three (ordered) linearly independent space-
like 4-vectors, whether that quadruple is ‘right-handed’ or ‘left-handed’. It
can be represented by a totally antisymmetric rank four tensor, εabcd. The
temporal orientation is an object that specifies in a continuous way, at each
point p, which is the ‘future’ lobe of the lightcone in TpM . Its possible
representations will be considered in section 5.)
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The puzzle is then the following. First, we note the invariance groups
of three sets of objects we might choose to treat as ‘special’ in the sense of
section 2:

Special fields Invariance group Sk

g L (full Lorentz group)
g, ε L+ (proper Lorentz group)
g, ε, τ L↑+ (restricted Lorentz group)

Here, L↑+ is the restricted Lorentz group. This is the set of Lorentz
(i.e. g-preserving) transformations that can be continuously connected to
the identity: it includes all rotations, boosts and products thereof, but does
not include parity or time reflection. L+ is the proper Lorentz group: the
set of all metric-preserving Lorentz transformations with determinant one,
i.e. the union of L↑+ with the set of all Lorentz transformations that reverse
both spatial parity and time sense. L is the full Lorentz group: this includes
transformations that reverse parity, time sense, both or neither. (See figure
1.)

Ignoring the first of these possibilities (i.e. that of treating g alone
as ‘special’), we should then expect to be able to write down, not only
a non-generally invariant theory whose invariance group is exactly L+ (by
treating g and ε as ‘special’), but also a non-generally invariant theory whose
invariance group is exactly L↑+ (by treating g, ε and τ as ‘special’). A PT
theorem, however, tells us that we cannot do the latter: that, subject to
the (as yet unstated) auxiliary assumptions of our theorem, we cannot find
theories that are invariant under precisely the restricted Lorentz group. It
seems to be telling us, that is, that no theory that is ‘nice’ (in the sense
of conforming to these auxiliary assumptions) can actually make use of a
temporal orientation, over and above a flat metric and a total orientation.
And now one might well wonder why not. Metric, temporal orientation and
total orientation seem to be paradigm cases of distinct existences; it’s odd
to find such necessary connections between them. Or, to put the puzzle
another way: where does this discrimination against temporal orientations
come from? That is, what feature of temporal orientation can explain why,
in the context of the existing objects g and ε, they are unusable in this way?

This is not a paradox, but it does seem to be a puzzle whose resolution
is likely to be illuminating. In the next section, I give an explicit statement
of the theorem that is the source of our puzzle, and in section 5 I offer a
resolution.
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L↑+ L↑-

L↓- L↓+

L+

L

Figure 1: The (real) Lorentz group has four mutually disconnected compo-
nents, labelled by ↑ or ↓ according to whether or not they reverse time sense,
and by + or − according to whether or not they reverse total orientation
(i.e. whether their determinant is +1 or −1). In this notation, L↑+ is the
‘restricted’ Lorentz group; L+ ≡ L↑+ ∪ L

↓
+ is the ‘proper’ Lorentz group;

L ≡ L↑+ ∪ L
↑
− ∪ L

↓
− ∪ L

↓
+ is the ‘full’ Lorentz group.
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4 A classical PT theorem

At the start of section 3, I promised some motivation for changing the subject
from CPT to PT. Here, briefly, are three reasons for going along with that.
(The first is pragmatic; the second and third are more justificatory.)

1. The account of the connection between symmetries and ‘special fields’
has been developed only for spacetime symmetries: transformations
that are diffeomorphisms on the spacetime manifold M . So PT is a
relatively well-understood case to deal with. It’s less clear how we’re
supposed to think about CPT-invariance (i.e. whether, and how, this
‘combination of a geometrical and a nongeometrical symmetry’ can be
associated with the absence of some piece of structure on some larger
space). As a research strategy, to avoid unmanageable confusion at
the outset, it seems worth starting with the more straightforward case
of PT , and hoping that the results will generalize to CPT .

2. I have growing suspicions that the transformation usually called ‘CPT’
is actually more properly regarded as PT, that is, as a bona fide space-
time symmetry that is the product of mirror-image reflection and time
reversal. If this is right, then I am not actually changing the subject
at all, in insisting on talking about PT. But that’s another story. 1

3. Again to avoid irrelevant complications, it will be better to start the
foundational discussion in the context of classical (rather than quan-
tum) field theory. And in the classical case, we can prove a theorem
that transparently is a PT, rather than a CPT, theorem. (Its precise
relationship to the usual quantum ‘CPT’ theorem is an open question
— but it seems inevitable that there will be an intimate connection,
and this is part of my reason for thinking that so-called ‘CPT’ is really
just PT.)

The following, then, is a theorem (‘classical PT theorem’).

4.1 Bell’s theorem

The following argument is adapted from one given by John S Bell, in a
surprisingly little-known paper (Bell, 1955).

In outline, the result is as follows. We consider a classical field theory
given by a system of partial differential equations (PDEs) on a specified set

1This comment relates to work-in-progess by Frank Arntzenius and myself: see, e.g.,
(Arntzenius & Greaves, 2007).
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of fields. Let Φ be the space of kinematically allowed fields. (In the general
case, we may be dealing with a theory containing a number of interacting
fields — scalar fields, tensor fields, etc — so, for a given theory, an ele-
ment of Φ will be an ordered m-tuple of specified numbers of scalar fields,
vector fields, rank 2 tensor fields, etc.) We note that any PDE (with real
coefficients, and for real fields) can be expressed as the vanishing of some
functional F : Φ → RM of the fields. (That is, F encodes the dynamics in
the sense that: φ ∈ Φ is dynamically allowed iff F (φ) is the zero map on
M .) Let there be given a representation of the full Lorentz group L on Φ
(that is, we know how each of our fields ‘transforms under Lorentz trans-
formations’). We assume that F is a local polynomial in the fields, and that
the fields transform as components of tensors under proper2 Lorentz trans-
formations. (Each of these two assumptions is crucial to the theorem.) It
can then be proved that, if the set S of solutions of the equation F (φ) = 0
is invariant under L↑+, S is actually invariant under the whole of the proper
Lorentz group L+ (i.e. including total reflections as well as rotations and
boosts).

Summing this up, the claim is as follows. Let T be a theory according to
which there are n dynamical fields Φ1, . . . ,Φn. Suppose that the following
three conditions hold:

1. The dynamical fields are tensors (of arbitrary rank).

2. The dynamical equations are partial differential equations that are
local polynomials in the fields and their derivatives.

3. The set S of solutions to the dynamical equations is invariant under
L↑+.

Then, S is actually invariant under all of L+

(
≡ L↑+ ∪ PT (L↑+)

)
.

A formal statement of the theorem behind this claim is given in the
Appendix. The proof is given in (Greaves, 2007).

2That is, the fields may be P-pseudotensors and T-pseudotensors — they may pick up a
sign flip, relative to the transformations undergone by true tensors, under parity-reversing
and time-reversing transformations — but they may not be PT-pseudotensors, i.e. they
must transform as true tensors under total-reflection transformations. The distinction
between true tensors and P/T-pseudotensors is irrelevant for present purposes, since the
theorem to be proved deals only with proper Lorentz transformations.
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4.2 Auxiliary constraints

We were careful, in section 3, to state our puzzle as arising from the fact
that no ‘nice’ theory is invariant under precisely the restricted Lorentz group,
rather than that no theory whatsoever has just that invariance group. ‘Nice’,
here, means ‘conforming to the auxiliary assumptions of the PT theorem’
(i.e. the conditions (1) and (2) above). It is worth highlighting, then, the
fact that these ‘innocuous auxiliary constraints’ play a crucial role in both
the antecedent plausibility, and in the proof, of the PT theorem. There
obviously do exist ‘theories’, in the minimal sense of ‘classes of models’,
that are L↑+-invariant but not L+-invariant. (To generate one, we need only
pick some particular scalar field on 〈M, g〉 that does not have any interesting
symmetries, and take the set that results from closing under the action of
the restricted Lorentz group.)

But we would like to know more: we would like to be able to see precisely
how it is that the particular auxiliary constraints in question assumptions
— which, after all, do look pretty innocuous — manage to rule out the use
of a temporal orientation.

In the classical theorem sketched above, we have two auxiliary con-
straints.

One is a restriction on the types of geometrical objects that the theory
postulates: they have to be tensors. This is supposed to rule out, in partic-
ular, objects that transform as pseudotensors under PT. If we are allowed
PT-pseudotensors, then counterexamples are easy to come by. Here’s one:
let φ be a pseudoscalar field, and let the dynamical equation be

φ = 1. (15)

Slightly less trivially, suppose that ψ is a scalar field and χ a pseudoscalar
under PT (i.e. χ e7−→ χ for e ∈ L↑+, but χ PT−→ −χ). Then, the equation

ψχ− ψ = 0 (16)

is L↑+-invariant but not L↓+-invariant.
Our second auxiliary constraint is a restriction on the dynamics: the

dynamics must express the vanishing of all members of some particular set
of polynomials in the coordinate components of the fields and their deriva-
tives. There are two points here that are worthy of note. The first is that
some equations, fairly plausible from the point of view of physics, are not
‘polynomial’ in the required sense.3 It may be possible to weaken the as-
sumptions of the theorem, so as to cover these cases also. The second point

3For example, equations involving terms like sin(∇aφ∇aφ) or operators like
√
∇2 +m2
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is that some ‘dynamics’ do not express the vanishing of any mathematically
simple functional F at all (polynomial or otherwise). One example of this
phenomenon is given by the ‘theory’ sketched at the start of this subsection;
another is given by the theory ‘Inc’ stated below (see footnote 5).

Be this as it may, there still seems to be something prima facie puzzling
even about the restricted claim that all theories within the stated class obey
the conditional ‘if L↑+-invariant then L+-invariant’ — there is no connection
yet apparent between the restrictions involved in the assumptions of the
theorem on the one hand, and the surprising ineffectiveness of temporal
orientation on the other. This is the puzzle we wish to solve.

5 Resolution of the puzzle

Let us take stock. We started (section 2) by sketching a way of thinking
about spacetime symmetries according to which the set of dynamical sym-
metries ought to coincide with the invariance group of a set of objects that
we have (for some reason or none) decided to single out as ‘special’. We
then noted (section 3) that, on this way of thinking, a PT theorem seems to
be asserting that, subject to apparently innocuous auxiliary constraints, it
is not possible to write down a theory that makes essential use of a temporal
orientation, over and above a Lorentzian metric and a total orientation, and
that this is puzzling. To ground the discussion, we then gave (in section
4) a statement of such a theorem, for the case of classical field theory. We
now seek a more enlightened point of view: a point of view from which the
existence of such theorems in certain cases is not puzzling at all, but is,
rather, precisely to be expected, where and only where they in fact occur.

My suggestion is that the following observation lies at the heart of the
otherwise puzzling nature of the CPT theorem: there is no tensor field
that represents temporal orientation and no more, in the context of a flat
Lorentzian metric and a total orientation.

The remainder of this section has two aims. The first is to explicate this
observation — what exactly it means, and why it is true. The second is
to explain how this helps to dissolve the puzzle. It will be easiest to tackle
both of these aims simultaneously.

Intuitively, a temporal orientation on a (temporally orientable4) manifold
M is supposed to specify which temporal direction is ‘the future’. Let p be an

are not ‘polynomial’. I am grateful to Robert Geroch and Michael Kiessling (resp.) for
pointing out these particular examples.

4Definition: A manifold M equipped with a Lorentzian metric g is said to be temporally
orientable iff there exists a continuous, nowhere-vanishing, timelike vector field on M .
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arbitrary point in a temporally orientable manifold M that is equipped with
a Lorentzian metric g. Then, the tangent space TpM can be divided into
timelike, spacelike and null vectors. Further, the set of timelike vectors in
TpM has two disconnected components: these will be the ‘past’ and ‘future’
lobes of the lightcone at p (‘will be’ rather than ‘are’, because until and
unless we have a temporal orientation, neither lobe is distinguished as the
‘future’ one).

Now, we wish to represent temporal orientation by some geometric object
on M . Here we have a choice: there are many structures on M that would
do the trick.

The most obvious way (perhaps) of representing temporal orientation
is by a map that assigns, to each point p ∈ M , one of the two lightcone
lobes in TpM (and that does so in a continuous way, i.e. the assignments of
lightcone lobes to neighboring points must be ‘mutually consistent’). This
is our first candidate way of representing temporal orientation.

But let us now recall the use we wish to make of our pieces of spacetime
structure: we wish to formulate laws that relate other (‘dynamical’/‘matter’)
fields to them, so that, by treating the spacetime structures as ‘special’, we
can restrict the invariance groups of non-generally-invariant formulations
of our theories. We then note that, if, as seems to be usually the case,
our physical laws take the form of differential equations coupling various
geometrical objects to one another, then a ‘map from spacetime points to
lightcone lobes’ is not an object we can easily work with. The point is that
if f is such a map, the idea of a ‘differential equation for f ’ does not seem to
make sense; f , that is, is not the right sort of object to appear in differential
equations.

This observation suggests a second possible way of representing tempo-
ral orientation. Instead of using a map from spacetime points to lightcone
lobes, we could use a continuous nonvanishing timelike vector field, ta, on
M . (We can then pick out the ‘future’-directed timelike vectors va ∈ TpM
as those that have positive ‘dot product’ gabvata with ta (relative to a con-
vention according to which the metric has signature (+,−,−,−) rather than
(−,+,+,+)).) This move solves the problem we faced when trying to make
use of f : ta, as a vector field, is an object of a type that we perfectly well
know how to use in differential equations. However, we have now incurred

Heuristically: iff a manifold M fails to be temporally orientable, then one can ‘parallel-
transport’ a timelike vector v at some point p ∈Maround the manifold, and return to the
point p with a vector v′ that points in the opposite temporal direction to v. In this case,
it is not possible to make any continuous global specification of which temporal direction
is ‘the future’.
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a problem of a different sort: ta is not restricted-Lorentz invariant. That is,
it is not the case that, ∀l ∈ L↑+, l ∗ ta = ta. The point here is that ta picks
out more structure than we wanted to pick out: we wanted only to pick out
a preferred lobe of the lightcone at each point, but a vector field picks out,
in addition, a preferred timelike vector in the chosen lightcone lobe. The
upshot of this is that when we combine our ‘temporal orientation’ ta with or
existing pieces of structure gab, εabcd, we do not have a set whose invariance
group includes L↑+: rather, the most we expect is the group of translations
and rotations (if gab is flat and va is constant).

This observation suggests a third possible way of representing temporal
orientation: rather than a single (continuous nowhere-vanishing timelike)
vector field, we could take an equivalence class of such vector fields (where
sa ∼ ta iff gabs

atb > 0). But now we are back to our original problem: an
equivalence class of vector fields, as opposed to a particular vector field, is
not the right sort of object to appear in a single partial differential equation.5

More generally: suppose we convince ourselves that the geometric ob-
jects we can make use of, in equations that satisfy the restrictions we have
laid down, are just those that can be represented by tensor fields.6 Then,

5Such an equivalence class of vector fields can, of course, be used to generate a set of
differential equations. Here is a non-PT-invariant theory that makes use of this idea: Take
the temporal orientation τ to be the set of all nowhere vanishing, future-directed timelike
vector fields. Let there be (besides the temporal orientation, total orientation and metric)
a single scalar field φ. Say that φ is dynamically allowed iff the following condition holds:

(Inc) There exists at least one vector field va ∈ τ such that, at every spacetime point
p ∈ R4, va∇aφ > 0.

(This theory is cooked up to say, in a restricted-Lorentz-invariant way, ‘φ increases towards
the future’, and hence not to be PT -invariant.)

This example shows that the restrictions on the dynamics that appear in the premises
of the theorem include restrictions on the ‘logical form’ of the dynamics: it’s crucial to
the theorem that the sort of existential quantification that’s going on in this example is
disallowed.

6It is not entirely clear that this is true. For example, the covariant derivative is usually
thought of as a map from tensor fields of type (n,m) to tensor fields of type (n,m + 1),
and not itself as a tensor field; and yet it can be used in PDEs. This suggests that perhaps
the present discussion must be extended to some class of geometric objects that is wider
than the class of tensor fields. However, it is also true that the covariant derivative can
be represented by a tensor field (viz. the metric — since the covariant derivative operator
is uniquely determined by the metric), so perhaps not.

A second point in this vein is that I am ignoring the issue of density weight. When one
writes “tensor” rather than “tensor density of weight n”, one normally implies that the
object under discussion has density weight zero. I do not intend this implication. Density
weight is irrelevant for present purposes, since all the transformations under consideration
have determinant unity. (For an explanation of the concept of density weight, see, e.g.,
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we can avail ourselves of the following mathematical fact:

There does not exist any Lorentz-invariant tensor field with an
odd number of spacetime indices.7

It is easy to see, meanwhile, that a tensor representing the temporal orien-
tation would have to have an odd number of spacetime indices; to represent
temporal orientation, it must not be invariant under PT, but any tensor
with an even number of spacetime indices is invariant under PT.

We can then conclude, as stated, that no Lorentz-invariant tensor field
can represent temporal orientation; given our conviction, it follows that no
Lorentz-invariant theory can make use of a temporal orientation.

6 Galilean-invariant field theories

We now wish to perform a sanity check on the suggestion of section 5, by
considering the case of Galilean-invariant field theories.

The point here is that the PT theorem does not hold in the Galilean
case. That is, the following hypothesis is false:

Galilean PT hypothesis. If T is a spacetime theory containing tensor
fields, whose dynamics are polynomial in the fields and their deriva-
tives, and if in addition T is invariant under the restricted Galilean
group G↑+, then T is PT-invariant.

Therefore, if our suggested explanation of the possibility of a Lorentzian PT
theorem is on the mark, it had better not be the case that the analogous

(?, ?), pp. 23-5.)
7Proof: We first note the existence of a type (0,2) and of a type (2,0) restricted-

Lorentz-invariant tensor, namely, the Minkowski metric ηab and its inverse ηab. Second,
we note that there does not exist a nonzero restricted-Lorentz-invariant tensor of type
(0,1) or of type (1,0). (This latter is easy to prove by considering a coordinate system
— which always exists — in which such a tensor has the form (a, 0, 0, 0) — and noting
that, since there is always a restricted Lorentz transformation that nontrivially mixes the
first coordinate with the second, it cannot be that such an object has the same coordinate
representation in every nonreflected inertial coordinate system.)

Now, consider an arbitrary tensor T a1...an
b1...bm , with n+m odd; we will show that T

cannot be restricted-Lorentz-invariant. To show this, suppose WLOG that n is even, m
odd. Define a new tensor T ′, of type (0, 1), as follows:

(T ′)b := ηa1a2 . . . ηan−1anη
b1b2 . . . ηbm−2bm−1T a1...an

b1...bm−1b. (17)

Then, if T were restricted-Lorentz-invariant, T ′ would be too. But this is impossible, since
we have already shown that there are no rank 1 restricted-Lorentz-invariant tensors.
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statement is also true in the Galilean case. That is, it had better not also
be true that there is no way of representing temporal orientation against
a background of Galilean spacetime structure, without ‘picking out more
structure than we want’, i.e., in this case, the object that represents temporal
orientation had better be invariant under the restricted Galilean group.

At first sight, things look worrying. One of the points we met in the
Lorentzian case was that a vector field picked out a timelike direction, as
well as a privileged direction of time. But privileged timelike directions are
no more acceptable in the Galilean setting than in the Lorentzian.

Fortunately for our suggested explanation, however, it does not, in fact,
also go through in the Galilean case. There is no Galilean-covariant vector
field, but there is a Galilean-covariant one-form (corresponding to the fact
that, in Galilean spacetime, there is no preferred timelike direction, but there
is a priveleged notion of simultaneity). In this section we explain this point,
and we use it to develop a counterexample to the Galilean PT hypothesis.

6.1 Temporal orientation in Galilean spacetime

One encodes the structure of Minkowski spacetime using a flat Lorentzian
metric g; elements of the (full) Lorentz group are then transformations leav-
ing g invariant. Things are less simple in the Galilean case: there is no
single geometric object, as it were, that will encode, in a single shot, all of
the structure of Galilean spacetime.

Let us first get clear about what the structure is that we are trying to
encode, over and above topological and differential structure. To model the
Galilean case, we want our spacetime to possess a natural foliation into a
family of three-dimensional hypersurfaces, the preferred simultaneity slices.
We want each simultaneity slice to be equipped with a Euclidean spatial
metric. We want there to be a fact, for any two points of spacetime, about
what is the (absolute value of the) temporal distance between them. And
we want there to be a fact, for any timelike curve, about whether or not
it is ‘straight’ (i.e. is an inertial trajectory). Iff we want to endow our
Galilean spacetime with a temporal orientation, then we also want there to
be a privileged total ordering on the set of simultaneity slices.

One way of encoding the aspects of this structure, aside from temporal
metric and temporal orientation, is as follows (here I largely follow Friedman
((1983), pp. 71-92), who sets this approach out in far more detail). We start,
as in the Lorentzian case, with a four-dimensional differentiable manifold M .
The affine structure (i.e. the set of facts about which lines in the spacetime
are ‘straight’) is encoded by a connection Γ. The Euclidean spatial metrics
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are encoded by a rank 2 tensor field hab.
We now face the question of how to encode the temporal metric and/or

temporal orientation. Suppose first that we wish to encode temporal metric
without picking out a preferred temporal orientation. This can be done by
means of a symmetric tensor field of type (0, 2) (satisfying certain restric-
tions; cf. Earman (1989), pp.30-31; in Earman’s notation, the tensor field
in question is hij). This object will tell us the temporal distance between
any two time-slices, but will not tell us which is to the future of which. Sec-
ond, though, suppose that we do wish to encode a temporal orientation, in
addition to a temporal metric. Then, we can use a one-form, ta (this can be
thought of as the exterior derivative, ta := (dt)a, of a global time function
t that respects the simultaneity structure in the sense that the surfaces of
constant t are the simultaneity surfaces). This represents temporal metric
and temporal orientation at once, in the natural way: if va is a timelike
vector, then |tava| is the temporal length of that vector, and the sign of tava

tells us whether va is future- or past-directed. And ta can be chosen to be
invariant under the restricted Galilean group G↑+, so we have not picked out
more structure than we wished to encode.

6.2 Counterexample to the Galilean PT hypothesis

The above suggestion for encoding temporal orientation in Galilean space-
time, via the one-form ta, can easily be used to generate a counterexample
to the ‘Galilean PT hypothesis’ above. Here is one such counterexample:

Suppose we have a theory containing a scalar field φ and vector
field χa, whose dynamics are given in generally covariant form
by single equation

tav
a = habφ;a;b. (18)

Here, ta, hab are understood as, respectively, the temporal struc-
ture and Euclidean spatial metric structure outlined above for
Galilean spacetime.

Suppose now that we treat ta and hab, and in addition the a
flat connection Γ, as ‘special’. Then, we have a privileged class
of coordinate systems: the inertial frames in which t increases
towards the future. In these coordinate systems, the dynamics
is given by the non-generally-covariant equation

v0 = ∇2φ. (19)
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Under a restricted Galilean transformation, both v0 and ∇2φ are
invariant. However, under PT, ∇2φ is invariant while v0 flips
sign. Hence, PT in general does not take solutions to solutions,
while restricted Galilean transformations do. So this theory con-
stitutes a counterexample to the Galilean PT hypothesis.

7 Conclusions

The existence of a PT theorem (such as that discussed in this paper) is prima
facie puzzling, since it seems to show that a reasonable theory cannot make
use of a temporal orientation, over and above a flat Lorentzian metric and
total orientation, without also using extra, ‘unwanted’ structure such as a
preferred frame. One might well wonder where this discrimination against
temporal orientations comes from. This paper has suggested that temporal
orientation in a relativistic context indeed is special, as pieces of spacetime
structure go: it cannot be represented by a tensor field. Meanwhile, we seem
to be committed to constraining principles on our physical theories (e.g.
constraints on the types of PDEs theories may use), such that structure
that cannot be encoded via tensor fields (or ‘similar’) cannot be used. This
dissolves the puzzle.

Several open questions remain. The most pressing is perhaps the fol-
lowing. The discussion above was carried out in the classical context, using
a ‘classical PT theorem’. It is an open question whether the same sort of
line of thought can be used to illuminate the CPT theorem in quantum field
theory. This would, presumably, require first reconstruing the operation of
charge conjugation as a geometrical operation on a par with parity and time
reversal, so that the ‘CPT’ theorem is also, properly understood, a PT the-
orem. I am hopeful that this project can be completed. One then wonders
whether similar lines of thought can also illuminate the relationship between
parity violation and ‘CP’ violation, the possibility of CPT violation, and so
on.

A Classical PT theorem

A more precise statement of the theorem referred to in section 4 follows.
The proof is given in (Greaves, 2007).

Theorem 1 (Classical PT theorem for polynomial systems of real tensor
fields.). Let M be a differentiable manifold that is topologically R4.
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Let Φ be a space of n-tuples of tensor fields of specified types on M . That
is, suppose there is a fixed set of integers ni,mi : i = 1, . . . , n such that each
φ ∈ Φ is an n-tuple of the form (φ1, . . . , φn), where, for each i, φi is a tensor
field of type (ni,mi).

Let η be a flat Lorentzian metric on M . Let L be the group of manifold
diffeomorphisms l : M → M leaving η invariant (i.e., L is the Lorentz
group). Let L↑+, L

↓
+, L

↑
−, L

↓
+ be the connected subsets of L that reverse neither

time sense nor parity, time sense but not parity, parity but not time sense,
and both time sense and parity respectively. For arbitrary l ∈ L and φ ∈ Φ,
let lφ be the n-tuple of fields obtained by allowing l to act in the natural way
on each element of φ.

Let F : Φ→ RM be a functional that is polynomial in the fields and their
derivatives. That is, suppose there exists a chart x : M → R4, non-negative
integers p, q and real coefficients {am1,...,mn ∈ R : m1, . . . ,mn = 0, . . . , p}
such that for all φ ∈ Φ,

F (φ) =
p∑

m1,...,mn=0

am1,...,mq(ψ1)m1(ψ2)m2 . . . (ψq)mq , (20)

where each ψj is a specified partial coordinate derivative (possibly zeroth
order) of a specified one of the (φi)µ1...µni ν1...νmi

, and multiplication is defined
pointwise in the obvious way.8

Let S ⊆ Φ be given by

S := {φ ∈ Φ : F (φ) = 0} (21)

[the intended interpretation being that S is the set of solutions to the partial
differential equation expressed by the condition F = 0].

Suppose that S is invariant under L↑+, i.e. for any φ ∈ S and l ∈ L↑+,
lφ ∈ S also. Then, S is actually invariant under all of L+.
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