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Abstract

Can some evidence confirm a conjunction of two hypotheses more than it
confirms either of the hypotheses separately? We show that it can, moreover
under conditions that are the same for nine different measures of confirma-
tion. Further we demonstrate that it is even possible for the conjunction of
two disconfirmed hypotheses to be confirmed by the same evidence.
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1 Introduction

Jack Author has just made an important discovery. From his calculations
it follows that recent evidence e supports the conjunction of two popular
hypotheses, h; and hy. With great gusto he sets himself to the writing of a
research proposal in which he explains his idea and asks for time and money
to work out all its far-reaching consequences. Author’s proposal is sent to
Jill Reviewer, who however writes a devastating report. Reviewer first recalls
what is common knowledge within the scientific community, namely that e
strongly disconfirms not only h;, but hy as well. Then Reviewer intimates
that Author is clearly not familiar with the relevant literature; for if he were
he would have realized that any calculation that results in confirming the
conjunction of two disconfirmed hypotheses must contain a mistake. At any
rate he should never have launched this preposterous idea, which will make
him the laughing stock of his peers.

Is Reviewer right? Did Author indeed make a blunder by assuming that
e might confirm a conjunction of hypotheses, h; A ho, given that the same e



disconfirms h; and hs separately? In this paper we will argue that Author
may not have been mistaken. If ¢ is some generic confirmation function, then
it can happen that c(hy A hg,e) is confirmed — which here means greater
than zero — while ¢(hy,e) and c(hg,e) are both disconfirmed — here less
than zero — while zero corresponds to neutrality. Jack Author might have
written a defensible proposal after all.

Our paper can be seen as a reinforcement of recent claims made by Crupi,
Fitelson and Tentori (2007). In this very stimulating paper, Crupi, Fitelson
and Tentori (CFT) introduce the two inequalities

c(hi,e) <0 & c(hg,elhy) >0.1 (1)
Next they convincingly argue that (1) is a sufficient condition for
c(hi A ha,e) > c(hy,e). (2)

In other words, if e disconfirms h; but confirms hy when h; is true, then e
gives more confirmation to hy A hy than to h; alone — although it confirms
ho alone even more: c(hg,€) > c(hy A ho,€).

The fact that e can give more confirmation to h; A hy than to one of its
conjuncts is of course intriguing, since the corresponding claim for conditional
probabilities is false. Under no condition whatsoever can it be true that

P(hy A hole) > P(Rile) . (3)

Indeed, (3) instantiates the notorious conjunction fallacy. Following a sug-
gestion by Sides et al. (2002), CFT surmise that the conjunction fallacy
might arise from a confusion between (2) and (3). We find this idea plausible
and promising, but we believe that its scope can be significantly expanded.
For if we replace CTF’s condition (1) by another sufficient condition, then
we are able to obtain a much stronger result. In this paper we will argue
that if we take as condition

P(hl/\_'h2|€) =0 & P(_'hl/\h2|€) :0, (4)
then it can be shown that

c(hy A hg,e) > c(hi,e) &  c(hy A hg,e) > c(hg,e). (5)

!The notation ‘c(hz, e|h1)’ is used by CFT to mean ‘c(hz,e) on the assumption that hq
is true’. As we will further explain in footnote 2, ¢(hg, e|h1) is not the same as c(ha, e Ahy).



There are two senses in which (5) is more general, and cuts deeper than
CFEFT’s result (2). Firstly, (5) implies that there is a situation in which the
conjunction hy A hy is more highly confirmed than either of the conjuncts —
whereas (2) implies that only one of the conjuncts receives less confirmation
than the conjunction. Secondly, (5) is also applicable when both hy and hy
are confirmed — whereas (2) requires that one of the hypotheses must be
disconfirmed. Hence CFT’s explanatory net can in fact be cast much wider,
since there appear to be more ways in which the occurrence of a conjunction
fallacy might actually be guided by a sound assessment of a confirmation
relation.

The condition (4) states that, if e is the case, then either both hy and hgy
are true, or neither is: P(hy <> hole) = 1. This is sufficient for (5), as we will
prove in Sect. 2 and in Appendix A. However, it is by no means necessary, as
will become clear from Sect. 4 and Appendix B, cf. inequality (12). There
we describe a sufficient condition under which ¢(h; A hg, €) is positive, but
both ¢(hy,e) and c(hs, e) are negative:

c(hy Nha,e) >0 &  c(hy,e) <0 &  c(ha,e) <O0. (6)

Note that (6) describes the case in which Jack Author would after all be
vindicated. As we will explain later, the sufficient condition for (6) is more
detailed than (4). In fact, as we will see from (12), it consists of a relaxed
version of (4) — in the sense that small, nonzero values of the two conditional
probabilities are tolerated — plus some extra constraints. Since (6) implies
(5) but not the other way around, the sufficient condition for (6) also suffices
for (5). In this sense a relaxed version of (4), together with some contraints
that we will spell out later, would still be enough to deduce (5).

2 Robust Confirmation

CFT justly emphasize that their analysis is robust: it holds for various spec-
ifications of the generic function c(h,e), that is for various measures of con-
firmation (cf. Fitelson 1999). These authors list six prevailing confirmation
measures and they prove that their conclusions follow for any of them. We
will demonstrate that our argument also goes through robustly in this sense.
Indeed, we will add two more measures of confirmation to those listed by
CFT, making eight measures in all. The eight measures in question are the



following, where as usual P(hle) denotes a conditional, and P(h) an uncon-
ditional probability:

C(h,e) = P(hAe)— P(h)P(e)
D(h,e) = P(hle) — P(h)
S(hye) = P(hle) — P(h|-e)
Z(h,e) = P(hﬁ)(:hf(h) if P(hle) > P(h)
_ P (h@@)P ) phle) < P(h)
R(h,e) = log [PP(Z'S)}
_ P(elh)
N(h,e) = Ple|h) — P(e|-h)
P(hle) — P(h|—e)
Fhe) = B T Phme)

The first six of these measures have been discussed by CFT. Measure C'
is attributed to Carnap (1950), D to Carnap (1950) and Eells (1982), S
to Christensen (1999) and Joyce (1999), Z to Crupi, Tentori and Gonzalez
(2007), R to Keynes (1921) and Milne (1996), and L to Good (1950) and
Fitelson (2001).

The two extra measures that we have added are N and F'. Measure N
has been taken from Tentori et al. (2007), who attribute it to Nozick (1981).
Note that NN is similar to .S, the only difference being in the positioning of A
and e. F is inspired by a measure introduced by Fitelson (2003). The latter
is in fact a measure of coherence rather than of confirmation. However, it
is well known that there are close conceptual connections between coherence
and confirmation, and confirmation measures are sometimes used to indicate
coherence (cf. Douven and Meijs 2006). For example, Carnap’s confirmation
measure D, to which Carnap himself gives special attention in (Carnap 1962),
is the favourite measure of coherence of Douven and Meijs (2007). Further,
the exponent of the confirmation measure R of Keynes and Milne, exp R(h, ¢),
is equal to a coherence measure of Shogenji (1999).

CFT succeed in showing that their inference from (1) to (2) remains valid
under any of their six measures of confirmation. Similarly, we can prove that
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our inference from (4) to (5) remains valid as one passes from one of the eight
specifications of ¢(h, e) to another. Take for example the case in which c(h, e)
is specified as the Carnap-Eells measure D(h,e). We prove in Appendix A
that, if our condition (4) is fulfilled, then

D(hl/\h27€)—D(h1,€):P(hl/\_'hg/\_‘e) 20, (7)

and similarly with h; and hy interchanged. Clearly, if (7) holds, then D(h; A
ha,e) > D(hy,e), which is the first half of our conclusion (5), with D substi-
tuted for ¢. An analogous argument applies to hy, and this will give us the
second half of (5).2

Similarly, but with more effort, it can be shown that all the remaining
specifications of ¢ in terms of C,S, N, R, L, Z and F will do the trick: they
lead to quotients of products of probabilities that are necessarily nonnegative.
In this manner we will have robustly deduced the two inequalities of (5) from
(4). Full details are given in Appendix A, where in passing we also explain
under which additional conditions (5) is deducible with > in place of >.3

As said above, the condition (4) is sufficient but by no means necessary
for the conclusion (5). For (5) still follows robustly if the probabilities in (4)
are small but not zero, and if some extra constraints are in force. In Sect.
4 and in Appendix B we will formulate upper bounds for P(h; A —hsle) and
P(=hiAhsyle) as well as extra constraints such that (5) still holds robustly, i.e.
under any of the eight confirmation measures in our list. But first, in Sect.
3, we will illustrate the validity of our inference from (4) to (5) with some
examples. The purpose of this exercise is to make the inference intuitively
reasonable and to explain its connection to a (particular type of) conjunction
fallacy.

2In terms of D, the second inequality in CFT’s condition (1) reads
D(h2,€|h1) = P(h2|€ A hl) — P(h2|h1) 2 0.

This function is not the same as D(ha,e A hy) = P(ha|e A hy) — P(ha).

3In Appendix C we present yet another specification of ¢ — the ninth — under which our
inference from (4) to (5) goes through. In that appendix we discuss a coherence measure of
Bovens and Hartmann (2003a and 2003b), which can be treated as a comparative measure
of confirmation. Since the approach of Bovens and Hartmann is radically different from
the above eight cases, we do not consider the Bovens-Hartmann measure here, but devote
a separate appendix to it. See also Meijs and Douven (2005) for a critique of the Bovens-
Hartmann measure, and the reply of Bovens and Hartmann (2005).



3 Conjunction Fallacies

Suppose a die is cast in secrecy and the number that came up is recorded by
the gamemaster. Consider two gamblers who entertain different hypotheses
about what the number is. Hypothesis h; is that the number is 1, 2 or 3,
whereas ho is that it is 2, 3, or 4. We conclude that

P(h) = P(hy) = § =

N[ =

Suppose next that the gamemaster provides the clue that the number is
prime. This can be treated as incoming evidence e = {2,3,5}, with h; =
{1,2,3} and hy = {2,3,4}. Since e contains three primes, whereas h; and hy
contain only two primes apiece, we find for the conditional probabilities

P(hale) = P(hale) = 2.

Let us now work out this example in terms of the Carnap-Eells measure D,
keeping in mind that similar results apply to any of the other eight measures.
Since by definition D(h,e) = P(h|e) — P(h), it is the case that

D(hy,e) = P(hyle) — P(hy) = % —

1
6

1
2

and similarly D(hs,e) = ;. However hy A hy = {2,3}, so P(hy A hole) = 2
too, but P(hy A hy) = % = % Therefore the degree of confirmation of hy A ho
is

D(hl/\hg,e):P(hl/\h2|6)—P(h1/\h2):%—%:

which is twice as large as the degrees of confirmation of hy or hy alone. So

1
3

D(hl VAN ]’LQ, 6) > D(h1,€) & D(hl VAN hg,e) > D(hg,@),

and this is our conclusion (5), with D substituted for ¢, and with > replaced
by >. Note that —h; = {4,5,6}, so =hy A ho = {4}, and since 4 is not a
prime number, P(=hy A he|e) = 0. Similarly P(hy A —hsle) = 0, so the two
equalities of our condition (4) are in fact respected.

It is of course intuitively clear why e = {2, 3,5} should confirm hy A hy =
{2,3} more than hy = {1,2,3} or hy = {2,3,4}, for hy A hy contains only
primes, whereas h; and hy are each ‘diluted’ by a nonprime. However, by the
same token it also seems clear how this example can trigger the commission
of a conjunction fallacy. Imagine that subjects are given the following infor-
mation: “A gamemaster casts a die. He records the number, but does not
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tell anybody what it is. The only thing he makes known is that the number
is prime (e).” Suppose that now the question is posed: “What do you think
is more probable? That the number recorded by the gamemaster is 1 or 2 or
3 (h1)? That it is 2 or 3 or 4 (h2)? Or that it is 2 or 3 (hy A ha)?” It is quite
likely that many people would choose the last option, thereby committing a
conjunction fallacy (although they would have been right had the question
been about confirmation rather than probability).

Here is another example. Imagine that you have a little nephew of whom
you are very fond. One day you receive an email from his mother, telling
you that the child is suffering a severe bout of measles (). You immediately
decide to visit the boy, bringing him some of the jigsaw puzzles that you
know he likes so much. What do you think is more probable to find upon
your arrival? That the child has a fever (hy), that he has red spots all over
his body (h2), or that he has a fever and red spots (hy A h2)? Again we
expect that many people will opt for the third possibility. Although this
answer is fallacious, the nephew story does instantiate our inference from (4)
to (5). For under the assumption that measles always comes with fever and
red spots, so that (4) is satisfied, our story makes it true that

c(hy A hg,e) > c(hi,e) &  c(hy A hg,e) > c(hg,e) 4

It should be noted that the conjunction fallacies committed in the two
examples above differ from those discussed by CFT. For CFT focus exclu-
sively on conjunction fallacies of the familiar Linda-type: when hearing about
a person named Linda, who is 31 years old, single, bright and outspoken,
concerned about discrimination and social justice, involved in anti-nuclear
demonstrations (e), most people find ‘Linda is a bank teller and is active in
the feminist movement’ (hy A hy) more probable than ‘Linda is a bank teller’
(h1). Linda-type conjunction arguments have the following characteristics in
common:

4The assumption that there are no measles without both fever and red spots does not
imply c(hy A ha,e) = c(hy,e) = c(hg,e),

although it does entail

P(hl A h2|€) = P(h1|€) = P(h2|e) s
which in fact are all equal to 1. However, it is less probable that a patient has fever and
spots than that he has just one of these afflictions, if one does not conditionalize on his

havi les:
AVING EASIES: pp A hy) < P(h1) &  P(hi Ahs) < P(hs),
and therefore c(hy A ha,e) is greater than either c(hy,e) or c(ha,e).
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(i) e is negatively (if at all) correlated with hy;
(ii) e is positively correlated with hs, even conditionally on hy;
(iii) hy and hy are mildly (if at all) negatively correlated

(Crupi, Fitelson and Tentori 2007, forthcoming, Sect. 3 — emphasis by the
authors). It is solely in relation to fallacies of this type that CFT submit
their idea that people may actually rely on assessments of confirmation when
judging probabilities. Indeed, CFT’s condition (1), that is robustly sufficient
for their conclusion (2), is an “appropriate confirmation-theoretic rendition
of (i) and (ii)” (ibid.).

In Sect. 1 we have already intimated that there are two differences be-
tween CFT’s conclusion (2) and our result (5). The first was that (5) can
handle the case in which the conjunction hy; A he might be more confirmed
than either of its conjuncts, the second that (5) also applies when both hy
and hy are confirmed, i.e. c(hy,e) and c(he,e) are positive. We are now in
a position to understand that these differences stem from the dissimilarity
between Linda-type fallacies on the one hand and ‘our’ conjunction fallacies
on the other. Linda-type fallacies treat h; and hy, asymmetrically in the
sense that one must be disconfirmed, while the other is confirmed. In our
case, by contrast, all options are possible: both may be confirmed or both
disconfirmed, or indeed one may be confirmed and the other disconfirmed.
Moreover, in Linda examples the confirmation degree of the conjunction lies
between those of the two conjuncts. In our case, on the other hand, the
confirmation degree of the conjunction is greater than that of either of the
conjuncts.

Given this dissimilarity, it is perhaps appropriate to say that Linda-like
problems are best analyzed by CFT’s inference from (1) to (2), whereas
‘our’ conjunction fallacies are best analyzed by our inference from (4) to
(5). In both cases the fallacious arguments are explained by pointing to
a confusion between probability judgements and confirmation assessments.
And both cases satisfy the minimal constraint that the confirmation degree
of the conjunction is greater than that of at least one of the conjuncts.

It is to be expected that there are many different kinds of conjunction
fallacy, all of which will satisfy this minimal contraint. We suspect that, for
each kind of fallacy, it will be possible to reconstruct and spell out the cor-
responding legitimate inference that ought to take the place of the fallacious
probabilistic claim.



4 Why Jack Author Can Be Correct

In this section we will formulate a sufficient condition for (6). That is, we will
explain how Jack Author might be correct when he claims that a conjunction
of two disconfirmed hypotheses can itself be confirmed. In the process, it will
become clear that the rather strict condition (4) is not necessary for obtaining
(5). Indeed, (5) is consistent with much looser forms of (4), viz. ones in which
the conditional probabilities P(h; A —hgle) and P(—hy A hgle) are positive
and can be numerically different from one another. Granted, it is only under
certain restrictions that (5) follows from weaker versions of (4). But we will
show that a precise specification can be given of these restrictions, together
with bounds for P(hy A —hyle) and P(—=hy A hsle).

Since we are dealing with two hypotheses and one piece of evidence, the
following eight triple probabilities exhaust all the possibilities that are open
to us:

P(hy Nhy Ne)  P(=hy ANhyNe)

P(hy AN —hgy ANe)  P(=hy A—hy Ae)
P(hi Ahy A =€)  P(=hy A hy A —e)
P(hy A =hgy A —e)  P(=hy A —hy A —e)

Note that all the (un)conditional probabilities and all the (un)conditional
degrees of confirmation are functions of the above eight probabilities. Hence
looking for (in)equalities between confirmation degrees and probability func-
tions reduces itself to (in)equalities between the values of these eight triple
probabilities. Because these triples are probabilities, they cannot be nega-
tive; and because there are not more triples than these eight, their sum is
unity.

Since P(—hy A—he A—e) describes the area outside the Venn diagram (see
Appendix A), it is not very interesting, and we will set its value to 1 minus
the sum of the remaining seven triples. These seven triples are independent
of one another, subject only to the requirement that their sum be not greater
than 1. Two of them, P(hy A =hg A e) and P(=hy A ha A €), are both zero
under our condition (4). However, here we will relax (4) and allow them to
be positive. We shall restrict our attention to the case in which these two
triples are equal:

z = P(hl/\—'hg/\e):P(—'hl/\hg/\e), (8)
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where z need not be zero. There are now five other independent triples left,
and to further reduce the search to manageable proportions we will give them
all the same numerical value:

r = P(hl/\hg/\e)zp(_\hl/\_'hz/\€>
= P(hl/\hg/\_'€>:P(_'hl/\hg/\_'€>:P(hl/\_'hg/\_\e). (9)

We stress that the artifices (8)-(9) are purely for convenience: they limit the
search from 7 to 2 dimensions. Many more possibilities remain open: no
matter, our ambition is only to find a sufficient (not a necessary) condition
for h1 A hy to be confirmed, while both h; and hsy are disconfirmed.

The key question that we now have to ask ourselves is:

Can we find values of z and x such that (6) follows?

If we can, then we will have discovered a sufficient condition for c(hy A he, €)
to be positive (confirmation), while both c(hy,e) and c(hs,e) are negative
(disconfirmation). Hence we would have shown that there is at least one
way in which Jack Author could have written a defensible reaearch proposal.
Moreover, we would also have demonstrated that our general conclusion (5)
does not require the rather rigorous condition (4), but is also compatible with
a modified form of that condition. For if (6) were to follow from a relaxed
version of (4), then so would (5), since the latter follows from (6).

In Appendix B we prove that the answer to our key question above is yes.

In particular we show that, if 0 < z < {5, and

122
6

12
<I‘<5 5

then (6) holds. Actually there is more, for z may be a little bigger, as large
as %, but then the upper limit on x decreases. If % <z< %, the restrictions
on x are

1-22 1
T<£U<Z z.

A proof of what we might call the ‘Jack Author Theorem’ can be found in
Appendix B.

In Fig. 1 we show the area in which Jack Author’s proposal would made
sense. The straight diagonal line in Fig. 1 gives the lower bound of z for
values of z between 0 and %, while the bent line gives the upper bound for
the z-values. For every x and z between these lines the inequalities (6) are
observed. The region in which the Jack Author effect occurs might perhaps
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look small, but in fact it is quite large. If z = 0, which corresponds to the

strict condition (4), « can be between § and £, as can be seen from Fig. 1.

Since the 5 triples given in (9) are all 6equal to one another, their sum can
be between % and 1, which is a large part of the whole probability space.
True, at the maximum allowed value of z, namely %, the allowed values for
x shrink to the point x = %; but at z = %, for instance, which corresponds

to the kink in the bent line of Fig. 1, one finds % <z< %.

00| =

12

Figure 1: Allowed region of x-z plane for Jack Author effect
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Appendix A: Proof of confirmation

Here is a compact notation for the probabilities of % .
the elementary intersections of the sets hy, ho, €, 4%

as displayed pictorially in the Venn diagram:
ho

r = P(hl A hg N 6)
Yo = P<_\h1 A\ _\hg A 6) Y1 = P((hl A _'hg A\ _\6) Y2 = P(_\hl A h2 A _\6)
ZQZP(hl/\hQ/\_'G) 21 = P(—|h1/\h2/\e) ZQZP(hl/\ﬁhg/\e)

An important point is that these seven triple probabilities are nonnegative,
i.e. each one must be positive or zero. Further their sum cannot be larger
than unity, for

TH+YF+yFyet+2+a+tz=1—P(-h A-hy A—e) <1. (10)

Under this global condition (10) the seven triple probabilities are independent
variables, spanning a hypervolume in seven dimensions.

The purpose of the calculations in this appendix is to show that, under
the restrictions z; = 0 = zy, it is the case that c¢(hy A he,e) > c(hy,e) and
c(hi A hg,e) > c(hs, e), for all of the eight realizations of the generic measure
¢, that is for C, D, S, Z, R, L, N, F. To do this, it will be proved, for each
of the measures, that c¢(hy A hg, €) — ¢(hq, e) can be reduced to an expression
involving the five remaining independent triple probabilities that is mani-
festly nonnegative. Terms that can be recognized as being nonnegative are
of course products of triple probabilities with a plus sign, or terms involving
1 — %, where X is a triple probability or the sum of two or more of them
(cf. inequality (10)). Once that has been done the job is finished, for then
c(hy A ha,e) > c(hy,e) has been demonstrated; and c(hy A ha,e) > c(he,€)
follows immediately by interchanging the suffices 1 and 2 throughout the
proof.

Let us begin with the Carnap measure C. We read off from the Venn
diagram that

C(hi A hg,e) —C(hi,e) = x—(x+20)(x+yo) — 2+ (x4 y1 + 20)(x + yo)
= (Z+yo)yr-

Since (z + yo)y1 is manifestly nonnegative, we conclude that C'(hy A hg,€) >
C'(hy,e). This concludes the demonstration for this simple measure.
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The Carnap-Eells measure D and Christensen’s S are not much harder:

C(hy A hg,e) = C(hi,e) (2 +yo)u >0

D(hl A hQ, 6) — D(hl, 6) = P(e) - P(e) =

Since (x + y9) = P(e), given that z; = 0 = 29, and y; = P(hy A —=hy A —e),
we have thereby proved inequality (7). Similarly,

C'(hy A hele) — C'(hyle) _ (x 4+ yo)wn >0
P(e)P(—e) P(e)P(=e) —

S(hl A h2,€> — S(hl,e) =

For the Z measure of Crupi, Tentori and Gonzalez, we have to distinguish
the cases in which P(hy A hele) is larger from those in which it is smaller
than P(hyle). In the former case, Z(hy A ho,e) > 0: either Z(hy,e) < 0, so
Z(hy A\ hy,e) > Z(hy,e) trivially, or Z(hy,e) > 0, and then we find

NZ+
P(Q)P(ﬁ(hl VAN hg))P(_\h1) ’

Z(hl /\hg,e) - Z(hl,e) =

where Nz, has the form

[z —(z+20)(+yo)[[1 =2 —y1—20] — [2— (z+y1+20) (+10)][1 =2 —20] = oy,
which is nonnegative. The alternative is Z(hy A hg,e) < 0, and then

D(hl A hg, 6)

Z(hl/\hg,e): P(hl/\hQ) >

so Z(hy A ha,e) < 0 implies D(hy A hg,e) < 0. Since z; = 2 = 0, we know
that D(hy,e) < D(hy Ahg,e),s0 D(hi,e) < 0. Thus Z(hy,e) < 0 and we can
calculate the difference

Nz

Z(hy N\ ha,e) — Z(hy,e) = P(e)P(hy /\_hQ)P(hl) ’

where N, _ is given by
[z — (2 + 20)(z + yo)][x + v1 + 20] — [x — (x +y1 + 20)(z + yo)][x + 20] = zy1,

which is also nonnegative. This concludes the proof for the measure Z.
As to the two measures involving logarithms,

SRS FEW IR
T+ 29 2l T

R(hy A hale) — R(hq|e) = log
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L is a little more complicated, and we find

(1—2z—z)(z+wy —i—zo)]
(1—2—y1 — 20)(z+ 20)

Y1 W
~ o (1+ )(1+ )
g[ l—x—y —20) x + 29

Nozick’s measure yields

L(hy A hole) — L(hile) = log [

>0.

Nn

N(hy A hole) = N(hale) = P(h1)P(=h1)P(hi A ho) P(=(hy A hy))’

where

Ny = [z—(z+yo)(x+20))](x+y1+20)(1 —2—1y1 — 20)
—[z — (z+yo)(z+ 1y + 20)](z + 20)(1 — 2 — 2)
= axyp(l—2—20)(1 =2 —y1 — 20) + yoy1(z + 20)(z + y1 + 20) > 0.
Finally, Fitelson’s form has a complicated denominator:

F(hl A\ h2|€) — F(h1|6) =
Np

[P(hi A hy A €)P(=e) + P(hy A ha A —e)P(e)][P(hy A e)P(—e) + P(hy A —e)P(e)]’
but the numerator simplifies greatly, giving

Np = [z —(z+ 20)(x + o)l + (11 + 20 — ) (2 + yo)]
—[z = (z +y1 + 20)(x + vo)|[ + (20 — 2)(z + vo)]
= 2zyi(z+y)(l —2—1y) = 0.

This concludes the proof that Eq.(4) is a robust sufficient condition for the
validity of the inequalities (5). However, by scrutinizing the forms that we
have obtained for each of the expressions for ¢(hy Ahg, e) —c(hq, €), we observe
that, if we add to Eq.(4) the requirement that none of the remaining five triple
probabilities, x, yo, y1, Y2, 20 is zero, which is always a valid option, then the
inequalities in (5) can be replaced by strict inequalities, i.e.

c(hy A haye) > c(hi,e) &  c(hy A hg,e) > c(ha,e).

It is of course interesting that the equality option can be excluded so easily,
and moreover robustly, i.e. in a manner that works for all the measures
considered.
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Appendix B: Disconfirmed hypotheses

In this appendix we will describe sufficient conditions for the validity of the
three strict inequalities c(hy,e) < 0, ¢(ha,e) < 0 and c¢(hy A ha,e) > 0. To
do this we will set x = yp = y1 = y2 = 29 and z = 2z; = 25. Thus five of the
marked areas in the Venn diagram are equal to z, while the remaining two
are equal to z. It will be required that z is nonzero, while z may be zero or
nonzero, so in this appendix the condition (4) is being relaxed: it will turn
out that z should be small, but need not be zero. The reason for reducing
the seven-dimensional problem to a two-dimensional one is purely one of
convenience. With more trouble, for instance, one could allow z; and 25 to
be different. However the purpose here is only to show that the inequalities
(6) are possible, not to explore every part of the 7-dimensional hypervolume
for which they hold.

Consider first the Carnap confirmation function C'(h, e). We read off from
the Venn diagram that

C(hi,e) = z+z—(x+y1+ 20+ 20)(x +yo+ 21 + 22)
r+z—Bx+2)(2r+22) = (v+ 2)(1 — 62 — 22)
C(hy ANhg,e) = x— (x4 2z0)(x +yo+ 21 + 22)
= z—2x(2x +22) = x(1 — 4z — 4z2) .

If 1-62—2z < 0and 1—42—42z > 0, then C(hy,e) < 0 and C(hyAhg,e) > 0.
The first inequality yields 6z > 1 — 2z, while the second gives 4x < 1 — 4z,
which are consistent with each other if (1 —4z)/4 > (1 — 22)/6, and that is
only possible if z < %. When this holds,

t—i<z<i-z. (11)

=

In addition, there is the constraint « + yo + y1 + y2 + 20 + 21 + 22 < 1,
which means that 5z 4+ 2z < 1. Note that z = 0 is possible, for then the
inequalities simply reduce to + < z < 1. We see that C(hy,e) < 0 and
C'(hy A hg,e) > 0 are simultaneously possible, and because of the symmetry
between hy and hg, also C'(hg,e) < 0 (indeed, with the symmetries that we
have imposed, C'(hy,e) = C(h,e)). As we have seen, this can occur under
the strict condition (4), but also when this condition is relaxed.

We will now show that these inequalities guarantee c¢(hi,e) < 0 and

c(h1Ahg,e) > 0 also when c is realized by the other measures of confirmation.
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This is obvious for D, S, N and F' because

Dne)= Gt S = peipds N =
Flhe) = C(h,e)

P(h Ae)P(—e)+ P(h A —e)P(—e)

Whenever C'is positive (or negative), D, S, N and F' are likewise positive (or
negative), so the same sufficient conditions are applicable. The same applies
to the measure Z, but we have to distinguish between two cases:

Z(h,e) P(i)(;i’(i)h) it P(hle) > P(h)
_ C(h,e) . .
= POP® £ P(hle) < P(h).

The first form must be used for h = h; A hy, when C and Z are both positive.
The second form is needed for h = hy, for then C' and Z are negative. We have
used the fact that C, D, S, N and F are all equivalent up to normalization,
which indeed inspired Crupi, Tentori and Gonzalez (2007) to produce their
Z-measure, that has the property that it is equal to 1 if e implies h, and —1
if e implies —h.

For the logarithmic measures R and L we find

. P(h1 A 6)
R(hi,e) = log W
T+ 29

S@t ot mt @)@ty t otz
r+z

2(z + 2)(3x + 2)

P(hy A\ hy A e)

P(e)P(hi A hs)

T

= log = —log(6x + 2z) .

R(hi A hy,e) = log

lo
S tyo+ 21+ 2)(@ + 2)

= log = —log(4x + 4z2) .

2(x + 2)(2x)
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We require 6z + 2z > 1 and 4z + 4z < 1, and this yields Eq.(11) again.
Finally,

P(hi Ae)[l — P(hy)]

[P(e) = P(hy A e)|P(h1)

(x+29)(1l =z —y1 — 20 — 22)
(o + 21)(x + 41 + 20 + 22)

(x+2)(1 -3z —2) b 1-3x—z
(x+2)Bx+2)  3rtz
P(hy A hy Ae)[l — P(hy A hg)]

[P(e) — P(hy A hy A e)]P(hy A hy)

L(hlv 6) = IOg

= log

= log

L(h1 A hQ, 6) = IOg

z(l—x — 2)

= lo

g (yo + 21 + 22)(z + 20)
L z(1 — 2x) o 1—2x
T %2920 2wt 22)

Now we require 1 — 3z — z < 3x + z and 1 — 2z > 2x + 4z, and this leads to
Eq.(11) once more.

In conclusion, we have proved the following robust result, which we call the
Jack Author Theorem:

A sufficient condition for c(hy,e) <0, c(hg,e) <0 and c¢(hy A hg,e) > 0 is

%<x<min{ﬂ ﬂ} & 0<2<

504 (12)

where ¢ stands for C, D, S, Z, R, L, N, F', and where

r = P(hl/\hg/\e):P(—'hl/\—'hg/\e)
= P((hl/\ﬁhg/\_'e):P(ﬁhl/\hg/\_@):P(hl/\hg/\_'e)
z = P<_\h1/\h2/\6)zp<h1/\_\h2/\6).

The upper bound, z < , is in fact already implied by the first part of (12).

17



Appendix C: Bovens and Hartmann coherence

In Sect. 2 it was noted that there is a close conceptual link between con-
firmation and coherence: measures of confirmation can be put to work as
measures of coherence and vice versa. The eight measures of confirmation
that we have considered so far were all quantitative, i.e. the confirmation
that e gives to h is expressed as a number between —1 and +1.

Bovens and Hartmann (2003a & 2003b) have introduced a coherence mea-
sure that is comparative rather than quantitative. Given two pairs of propo-
sitions, for example {h,e} and {I,¢'}, Bovens and Hartmann describe a
condition such that, when it is fulfilled, it tells us which of the two pairs is
the more coherent. An ordering of pairs is thus introduced, but it is what
Bovens and Hartmann call a quasi-ordering. For it can happen that the con-
dition is not fulfilled, and then the relative coherence of two different pairs
is simply not defined.

In more detail, the quasi-ordering can be explained as follows. Imagine
a witness who reports on a hypothesis and some evidence about which he
has heard. Let h be his report concerning the hypothesis, and e be his
formulation of the evidence. Define

ap = P(hAe)
ap = P(=hAe)+ P(hA —e)
ay = P(-hA-e)=1—-ay—a;.

Consider the function

ag + (1 — ag)z?
ap + a1 + agx?’

B(h,e;x) = (13)
where x is a number in the interval [0, 1] that represents the unreliability
of the witness, with 1 corresponding to total unreliability and 0 to total

reliability. According to Bovens and Hartmann, the pair {//, e’} is not less
coherent than the pair {h,e} if

B(W,e';x) > B(h,e; ), Vo e [0,1]. (14)

The salient point is that this inequality must hold for all z, i.e. for all possible
degrees of unreliability of the witness, = being the same for both pairs {h’, ¢’}
and {h,e}. If (14) holds with > replaced by <, then {h/ ¢’} is said to be
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not more coherent than the pair {h,e}. However, it can happen that (14)
holds neither with > nor with <, and then the relative coherence of the two
pairs is undefined: they are not ordered in respect of their Bovens-Hartmann
coherence.

Bovens and Hartmann illustrate cases in which the inequality (14) holds
by means of a graph that shows the left- and the right-hand sides as curves
that do not intersect one another. Here we introduce however a simple alge-
braic alternative. Since ay = 1 — ag — ay, it follows from Eq.(13) that

B(h,e;x) ao o 1P
l—2)————"———=—(1-— —.
m( m)l—B(h,e;x) al( $)+a1
Further, since the left-hand side of this equation is a monotonic increasing
function of B(h,e;x) € [0, 1], for fixed z, it follows that (14) is equivalent to

/ 2 2

i a i
A1 —H)+ > 21—+ —, Ve e [0,1]. 15
=)+ = 2=+ rel01.  (15)

With the notation X = 22, this can be rewritten

/

ag X _ap X
—1-X)+—=>—01-X)+—,. 16
DX+ 22 =X+ (16)

The above inequality holds at X = 0 if Z—é > Z—‘;, and it holds at X =1 if

1> i This is a necessary and sufficient condition that the two straight

(11 -
lines in (16), to the left and right of >, do not cross, and therefore that (15)
is true. These requirements are equivalent to

/
a a
a, < a & 1< (17)
QA Qo

We now set h = hy, b/ = hy A he, € = ¢e; and we use Bovens-Hartmann
coherence as a (relative) measure of confirmation. Conditions (17) read

P(=(hs Aha) Ae) + P(hy Ay A=e) < P(=hy Ae)+ P(hy Ae)

P(ﬂ(h1 A hg) A e) + P(hy A ha A —e) < P(=hy Ne)+ P(hy A —e)
P(hl/\hz/\e) o P(hl/\e)
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On referring to the Venn diagram of Appendix A, we transcribe these con-
ditions as follows:

Yo+z0t+z1+22 < yt+uyi+z0+2
y0+20+21+22 y0+y1+zo+21
T T+ 29

IN

Y

which reduce respectively to
20 < Y1 & 2o(x +yo + 20 + 21+ 22) < Yy (18)

Evidently both of these equalities are satisfied automatically if zo = 0. Under
this condition we conclude that h; A hs is not less highly Bovens-Hartmann
confirmed by e than is h; alone. A similar argument, with h; and hsy inter-
changed, shows that, if z; = 0, also hy A hs is not less highly confirmed by e
than is hy alone.

Since z; = 0 = z is equivalent to the conditions (4) of Sect. 2, we have
shown thereby that the robustness of these conditions extends also to the
measure of Bovens and Hartmann. Moreover, if neither x nor y; nor ys is
zero, < may be replaced by <, and under these conditions h; A hg is strictly
more confirmed by e than are hy or hs.

The work of this appendix may be seen as an extension of Appendix A
to Bovens-Hartmann confirmation. No analogous extension in the spirit of
Appendix B is possible, for it does not make sense to say that hy A hy is
confirmed, nor that h; or hy are disconfirmed in the sense of Bovens and
Hartmann.
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