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Abstract

We argue that mesoscale ecosystem resilience shifts akin to
sudden phase transitions in physical systems can entrain sim-
ilarly punctuated events of gene expression on more rapid
time scales, and, in part through such means, slower changes
induced by selection pressure, triggering punctuated equi-
librium Darwinian evolutionary transitions on geologic time
scales. The approach reduces ecosystem, gene expression, and
Darwinian genetic dynamics to a least common denominator
of information sources interacting by crosstalk at markedly
differing rates. Pettini’s ‘topological hypothesis’, via a ho-
mology between information source uncertainty and free en-
ergy density, generates a statistical model of sudden coevolu-
tionary phase transition based on the Rate Distortion and
Shannon-McMillan Theorems of information theory which
links all three levels. Holling’s (1992) extended keystone hy-
pothesis regarding the particular role of mesoscale phenom-
ena in entraining both slower and faster dynamical structures
produces the result. A main theme is the necessity of a cogni-
tive paradigm for gene expression, mirroring I. Cohen’s cog-
nitive approach to immune function. Invocation of the neces-
sary conditions imposed by the asymptotic limit theorems of
communication theory enables us to penetrate one layer more
deeply before needing to impose a phenomenological system
of ‘Onsager relation’ recursive coevolutionary stochastic dif-
ferential equations. Extending the development to second or-
der via a large deviations argument may permit modeling the
influence of human cultural structures on ecosystems.
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sion, information theory, phase transition, punctuated equi-
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1 Introduction

In the early twentieth century, evolutionists debated whether
change occurred gradually or as a result of massive catas-
trophes. At that time, the gradualists mainly won the de-
bate, and the catastrophists were marginalized. Speciation
was viewed as a gradual process of incremental changes in
response to incremental environmental challenges. However,
Eldredge and Gould (Gould, 2002), after study of the fossil
record, concluded that speciation occurred suddenly. Species
appeared in the fossil record, remained in the fossil record
largely unchanged, and then disappeared. There was little or
no evidence of gradual incremental changes that led to speci-
ation. Eldredge and Gould called the process that they saw
“punctuated equilibrium”, a term that referred to the sudden
changes (punctuations) and the quiet interims (equilibria), a
combination of gradualism and catastrophism. Eldredge and
Gould published their initial findings in the late 1960’s-early
1970’s.

At about the same time C. S. Holling published the ecosys-
tem equivalent of punctuated equilibrium, namely ecosystem
resilience theory (Holling, 1973). Ecosystem resilience theory
views each ecosystem as in a quasi-equilibrium normally. As
the ecosystem receives various impacts, it shows no obvious
changes in structure or function but the relationships between
the species become tighter as the impacts chip away at the
more delicate peripheral relationships. Finally, either a more
intense impact occurs or the aggregated impacts over time
shatter so many loose relationships that the remaining ones
become brittle and shatter. The ecosystem then flips into a
different dynamic domain, a different quasi-equilibrium with
different structure and function. Examples of domain change
include natural ones such as change of forest into prairie after
drought and major forest fires in areas marginal for forests and
unnatural ones such as eutrophication of waterbodies from
agricultural runoff and discharge of urban wastewater.

Ecosystems provide the niches for species. If ecosystems
flip suddenly into different configurations, then species are
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confronted with sudden changes. Perhaps Holling’s theory
provides an explanation for Eldredge and Gould’s reading of
the fossil record. Besides the fossil record, the climatological
and geological records also show major changes in tempera-
ture, atmospheric composition, and geological processes such
as volcanoes, earthquakes, and movements of tectonic plates.
These, of course, form the macroscale of ecosystems. Local
topography, geology, hydrology, and microclimate lead to eco-
logical niches. Organisms by their activities modify their own
niches and the niches of other organisms (Lewontin, 1993).
These localized processes form the microscale of ecosystems.
Landscape processes such as wildfires which spread and affect
large numbers of niches form the mesoscale (Holling, 1992).

Niches within ecosystems select for the fittest phenotypes
for them. Not all genes of an organism are expressed. Thus,
the genetic variability within the population of a particular
niche may be far greater than the relatively uniform pheno-
type presented to the examining ecologist. If a characteristic
may potentially be influenced by multiple genes, the niche
may select for a phenotype consonant with the expression of
only a single gene or only a couple of them. The species in
the fossil record reflect only phenotypes, not the full range
of genetic variability. Ecosystem domain shift would lead to
selection for different phenotypes. Those individuals with the
genes that can express these newly ‘preferred’ phenotypes will
supplant the old phenotypes in the new ecosystem configura-
tion. Voila! Apparent speciation! As time hardens the new
ecoconfiguration, the genetic composition of the ‘new species’
will indeed shift toward the old alleles and new mutations ex-
pressing the new phenotypes most efficiently, and true speci-
ation occurs. The wonderful book Animal Traditions (Avital
and Jablonka, 2000) describes in detail how behavioral phe-
notypes end up encoded in the genome.

Ecosystem theorists now recognize several different kinds
of resilience (e.g. Gunderson, 2000). The first, termed ‘en-
gineering resilience’, since it is particularly characteristic of
machines and man-machine interactions, involves the rate at
which a disturbed system returns to a presumed single, sta-
ble, equilibrium condition, following perturbation. From that
limited perspective, a resilient system is one which quickly
reestablishes its one stable state.

Not many biological (or social) phenomena are resilient in
this simplistic sense.

Holling’s (1973) particular contribution was to recognize
that sudden transitions between different, at best quasi-
stable, domains of relation among ecosystem variates were
possible, i.e. that more than one ‘stable’ state was possible
for real ecosystems. Gunderson (2000) puts the matter as
follows:

“One key distinction between these two types of
resilience lies in assumptions regarding the existence
of multiple [quasi-]stable states. If it is assumed
that only one stable state exists or can be designed
to exist, then the only possible definition and mea-
sures for resilience are near equilibrium ones – such
as characteristic return time... The concept of eco-

logical resilience presumes the existence of multiple
stability domains and the tolerance of the system to
perturbations that facilitate transitions among sta-
ble states. Hence, ecological resilience refers to the
width or limit of a stability domain and is defined
by the magnitude of disturbance that a system can
absorb before it changes stable states... The pres-
ence of multiple [quasi-]stable states and transitions
among them [has] been [empirically] described in a
[large] range of ecological systems...”

An often presumed difference between ‘natural’ and human-
dominated ecosystems is, however, the particular role of both
individual and collective cognitive action: human ecosystems
are not simply reflex-driven, but can oppose reasoned, orga-
nized, responses to perturbation, as indeed can many indi-
vidually intelligent animals and collectively cognitive animal
groupings.

This paper presents a formal treatment of ecosystem re-
silience which can be extended upward in a highly natural
manner to include a large class of explicitly cognitive in-
dividual and collective phenomena, (and indeed, to certain
cognitive biological submodules including gene expression).
The analysis indeed recovers most of classical ecosystem re-
silience theory, but, somewhat remarkably, can also be ex-
panded downward in the sense of Adami et al. (2000) and
Ofria et al. (2003) to encompass the Darwinian system of ge-
netic heritage. The three levels – genetic, ecosystem, cognitive
– can then be crosslinked into a class of statistical coevolu-
tionary models inherently subject to multiple forms of phase
transition – punctuated equilibira – in the sense of Pettini’s
(2007) topological hypothesis.

The means for this involve describing genetic heritage,
ecosystem dynamics, and cognitive phenomena in terms of
a least common denominator – as information sources – and
then invoking the asymptotic limit theorems of communica-
tions theory to create a spectrum of necessary conditions sta-
tistical models in similar spirit to the construction of regres-
sion models which are constrained by the Central Limit and
related theorems. A hierarchy of coevolutionary structure
emerges when information sources are linked by crosstalk to
become each other’s principal environments, operating at dif-
ferent rates. By Holling’s (1992) arguments, the mesoscale of
the ecosystem entrains both slower and faster phenomena via
punctuation.

We shall find quasi-stable resilience states represent a hi-
erarchy of modes, including topological manifolds associated
with equivalence classes of information sources, and equiva-
lence classes of paths within individual manifolds. Equiva-
lence class arguments can be expanded in a natural manner
using a topological groupoid formalism which, however we will
not pursue here. Wallace and Fullilove (2008) and Glazebrook
and Wallace (2008) provide details.

Gunderson (2007) has suggested, as an example, the spruce
budworm ecosystem. Following Fleming and Shoemaker
(1992),

“The spruce budworm, Choristoneura fumifer-
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ana... is the most damaging defoliator in North
America’s boreal forests. This native insect attacks
balsam fir... and spruce... and can kill almost all the
trees in dense, mature stands of fir during uncon-
trolled outbreaks. These periods of high population
densities typically last 5-15 yr; between outbreaks
the budworm can remain rare for 20-60 yr.

The economic impact of budworm outbreaks has
prompted a variety of innovative modeling efforts...
The most comprehensive models were developed...
as ‘laboratory worlds’ for exploring the consequences
of ecological hypotheses... and in particular alterna-
tive management strategies... [Many of these mod-
els] have roots in Holling’s... seminal notions of re-
silience...”

In short, resilience theory applied here generates a system
having two basic quasi-stable modes: [1] the ‘normal’ state of
the forest in the absence of budworm eruptions, and [2], rel-
atively brief but devastating budworm outbreaks which are
self-limiting and relatively infrequent. This two-fold classi-
fication of states and possible dynamic paths represents the
fundamental topology (homotopy) of the dynamic manifold.
Central questions involve the transition between these two
topological modes.

Imagine, however, a large scale perturbation like a ma-
jor series of crown forest fires or other catastrophes driven,
for example, by climate change (e.g. Volney and Fleming,
2007). Under such conditions there are no large-scale forests
of balsam fir and spruce left to host budworm outbreaks: A
new ecosystem will emerge and constitute a far different dy-
namic manifold, having quite different quasi-stable topolog-
ical equivalence classes of states or dynamic system paths.
Spruce budworms must suddenly evolve to graze on new plant
species, or become extinct.

It is this hierarchy which we will attempt to model, in the
context of inevitable topological phase transitions giving a
punctuated equilibrium to patterns of broadly coevolutionary
interacting between information sources.

To reiterate, the strategy is to express genetic heritage,
ecosystem structure, and cognition according to an informa-
tion theoretic least common denominator, gaining generality
at the expense of specificity. This structure will then be ex-
tended through topological punctuation triggered by increas-
ing crosstalk between these basic, now similar, if indeed sim-
plistic, elements.

This is not, overall, a particularly new approach, although
the use of modern mathematical tools to generate phase
change is new.

For example Jimenez-Montano (1989) describes the well-
known language metaphor of theoretical biology as follows:

“In his epilogue to the fourth volume of pa-
pers issuing from the IUBS Symposia at Villa
Serbellion, inspired by papers of Pattee (1972)
and Thom (1972), among others, Waddington con-
cluded that...[in] situations which arise when there

is mutual interaction between the complexity-out-
of-simplicity (self-assembly), and simplicity-out-of-
complexity (self-organization) processes are...to be
discussed most profoundly at the present time with
the help of the analogy of language...

...Waddington [thus] suggested that it is a lan-
guage that may become a paradigm for [a Theory
of General Biology], but a language in which basic
sentences are programs, not statements...”

Jimenez-Montano goes on to summarize the elegant, if
rather limited, applications of formal language theory to
molecular genetics, quoting Pattee (1972) to the effect that
a molecule becomes a message only in the context of larger
constraints which he has called a ‘language.’

Perhaps the essential defining constraint of any language
is that not all possible sequences of symbols are meaningful,
that is, systems of symbols must be arranged according to
grammar and syntax in the context of even higher levels of
structure, a matter to which we will repeatedly return.

The full implications of the Rate Distortion Theorem
(RDT), and its zero-error limit, the Shannon-McMillan The-
orem (SMT), otherwise known as the Asymptotic Equiparti-
tion Theorem, for Waddington’s program seem to have been
largely overlooked. A development based on these theorems
is useful, in particular, for examining the ways in which vastly
different ‘languages’ can interact to create complicated struc-
tures. The central problem then becomes the characteriza-
tion of ecosystems, the genetic heritage, and the cognitive
processes of biology and social structure as such (generalized)
languages.

Again, our approach, based on robust application of the
RDT and SMT, has a ‘necessary conditions’ flavor recogniz-
ably similar to that surrounding the role of the Central Limit
Theorem (CLT) in parametric statistics and regression the-
ory. Regardless of the probability distribution of a partic-
ular stochastic variate, the CLT ensures that long sums of
independent realizations of that variate will follow a Normal
distribution. Application of the CLT gives regression theory,
whose empirical models have been central to much of prac-
tical scientific research. Analogous constraints exist on the
behavior of the information sources – both independent and
interacting – that we will infer characterize ecosystems, and
these are described by the RDT/SMT. Imposition of phase
transition formalism from statistical physics onto the SMT,
in the spirit of the Large Deviations Program of applied prob-
ability, permits concise and unified description of evolution-
ary, ecosystem, and cognitive ‘learning plateaus’ which, in
the evolutionary case, are interpreted as evolutionary punc-
tuation (e.g. Wallace, 2002a, b), and for ecosystems as re-
silience domains. This perspective provides a ‘natural’ means
of exploring punctuated processes in the effects of habitat dis-
ruption on individuals, their social groups, their interactions,
and indeed on the cognitive subprocesses of individual ani-
mal biology like immune function, tumor control, and gene
expression.

Indeed, generating a ‘cognitive paradigm’ for gene expres-
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sion, much in the spirit of Cohen’s (2000) cognitive paradigm
for immune function, appears to be one of the more interest-
ing subplots of this monograph.

Another recurring subplot is that of punctuation – sudden
biological (or social) phase transition. Punctuated biologi-
cal processes are found across temporal scales. Evolutionary
punctuation is a modern extension of Darwinian evolutionary
theory that accounts for the relative stability of a species’ fos-
sil record between the time it first appears and its extinction
(e.g. Eldredge, 1985; Gould, 2002). Species appear (rela-
tively) suddenly on a geologic time scale, persist (again, rel-
atively) unchanged for a fairly long time, and then disappear
suddenly, again on a geologic time scale. Evolutionary pro-
cess is vastly speeded up in tumorigenesis, which nonetheless
seems amenable to similar analysis (e.g. Wallace et al., 2003).

In any event, the statistical models we generate here should
be viewed as having primary scientific utility in the empirical
comparison of different structures under similar conditions,
or of similar structures under different conditions.

Our spectrum of models, then, as in the relation of the CLT
to parametric statistical inference, is almost independent of
the detailed structure of the interacting information sources
inevitably associated with genetic, cognitive, and ecosystem
processes, important as such structure may be in other con-
texts. This finesses some of the profound ambiguities asso-
ciated with dynamic systems theory and deterministic chaos
treatments in which the existence of dynamic attractors de-
pends on very specific kinds of differential equation models
akin to those used to describe test-tube population dynam-
ics, chemical processes, or physical systems of weights-on-
springs. Cognitive and natural ecosystem phenomena, like
ecosystems, are neither well-stirred Erlenmeyer flasks of re-
acting agents, nor distorted, noisy, clocks, and the application
of nonlinear dynamic systems theory to cognition. evolution,
or ecology will, in all likelihood, ultimately be found to in-
volve little more than hopeful metaphor. Indeed, as shown
below, much of nonlinear dynamics can be subsumed within
a larger information theory formalism through symbolic dy-
namics coarse-graining discretization techniques (e.g. Beck
and Schlogl, 1995).

While idiosyncratic approaches analogous to nonparamet-
ric models in statistical theory may be required in some cases,
the relatively straightforward formalism we develop here, like
its cousins of parametric statistics and regression theory, may
well robustly capture the essence of much relevant phenom-
ena.

2 Ecosystems as information sources

2.1 Coarse-graining a simple model

We begin with a simplistic picture of an elementary preda-
tor/prey ecosystem which, nonetheless, provides a useful ped-
agogical starting point. Let X represent the appropriately
scaled number of predators, Y the scaled number of prey, t
the time, and ω a parameter defining their interaction. The

model assumes that the ecologically dominant relation is an
interaction between predator and prey, so that

dX/dt = ωY

dY/dt = −ωX

Thus the predator populations grows proportionately to the
prey population, and the prey declines proportionately to the
predator population.

After differentiating the first and using the second equation,
we obtain the relation

d2X/dt2 + ω2X = 0

having the solution

X(t) = sin(ωt);Y (t) = cos(ωt).

with

X(t)2 + Y (t)2 = sin2(ωt) + cos2(ωt) ≡ 1.

Thus in the two dimensional phase space defined by X(t)
and Y (t), the system traces out an endless, circular trajectory
in time, representing the out-of-phase sinusoidal oscillations
of the predator and prey populations.

Divide the X − Y phase space into two components – the
simplest coarse graining – calling the halfplane to the left of
the vertical Y -axis A and that to the right B. This system,
over units of the period 1/(2πω), traces out a stream of A’s
and B’s having a very precise grammar and syntax, i.e.

ABABABAB...

Many other such statements might be conceivable, e.g.

AAAAA..., BBBBB..., AAABAAAB..., ABAABAAAB...,

and so on, but, of the obviously infinite number of possi-
bilities, only one is actually observed, is ‘grammatical’, i.e.
ABABABAB....

More complex dynamical system models, incorporating dif-
fusional drift around deterministic solutions, or even very
elaborate systems of complicated stochastic differential equa-
tions, having various domains of attraction, i.e. different sets
of grammars, can be described by analogous symbolic dynam-
ics (e.g. Beck and Schlogl, 1993, Ch. 3).

2.2 Ecosystems and information

Rather than taking symbolic dynamics as a simplification of
more exact analytic or stochastic approaches, it proves useful,
as it were, to throw out the Cheshire cat, but keep the cat’s
smile, generalizing symbolic dynamics to a more comprehen-
sive information dynamics: Ecosystems may not have identi-
fiable sets of dynamic equations like noisy, nonlinear clocks,
but, under appropriate coarse-graining, they may still have
recognizable sets of grammar and syntax over the long-term.
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Examples abound. The turn-of-the seasons in a temperate
climate, for many natural communities, looks remarkably the
same year after year: the ice melts, the migrating birds return,
the trees bud, the grass grows, plants and animals reproduce,
high summer arrives, the foliage turns, the birds leave, frost,
snow, the rivers freeze, and so on.

Suppose it is indeed possible to empirically characterize an
ecosystem at a given time t by observations of both habitat
parameters such as temperature and rainfall, and numbers of
various plant and animal species.

Traditionally, one can then calculate a cross-sectional
species diversity index at time t using an information or en-
tropy metric of the form

H = −
M∑
j=1

(nj/N) log[(nj/N)],

N ≡
M∑
j=1

nj

(1)

where nj is the number of observed individuals of species j
andN is the total number of individuals of all species observed
(e.g. Pielou, 1977; Ricotta, 2003; Fath et al., 2003).

This is not the approach taken here. Quite the contrary, in
fact. Suppose it is possible to coarse grain the ecosystem at
time t according to some appropriate partition of the phase
space in which each division Aj represent a particular range
of numbers of each possible species in the ecosystem, along
with associated parameters such as temperature, rainfall, and
the like. What is of particular interest to our development is
not cross sectional structure, but rather longitudinal paths,
i.e. ecosystem statements of the form

x(n) = A0, A1, ..., An

defined in terms of some natural time unit of the system,
i.e. n corresponds to an again appropriate characteristic time
unit T , so that t = T, 2T, ..., nT .

To reiterate, unlike the traditional use of information theory
in ecology, our interest is in the serial correlations along paths,
and not at all in the cross-sectional entropy calculated for of
a single element of a path.

Let N(n) be the number of possible paths of length n which
are consistent with the underlying grammar and syntax of
the appropriately coarsegrained ecosystem, e.g. spring leads
to summer, autumn, winter, back to spring, etc. but never
something of the form spring to autumn to summer to winter
in a temperate ecosystem.

The fundamental assumptions are that – for this chosen
coarse-graining – N(n), the number of possible grammatical

paths, is much smaller than the total number of paths possi-
ble, and that, in the limit of (relatively) large n,

H = lim
n→∞

log[N(n)]
n

(2)

both exists and is independent of path.
This is a critical foundation to, and limitation on, the mod-

eling strategy and its range of strict applicability, but is, in
a sense, fairly general since it is independent of the details of
the serial correlations along a path.

Again, these conditions are the essence of the parallel with
parametric statistics. Systems for which the assumptions are
not true will require special nonparametric approaches. We
are inclined to believe, however, that, as for parametric sta-
tistical inference, the methodology will prove robust in that
many systems will sufficiently fulfill the essential criteria.

This being said, some further comment does seem neces-
sary. Not all possible ecosystem coarse-grainings are likely
to work, and different such divisions, even when appropriate,
might well lead to different descriptive quasi-languages for the
ecosystem of interest. The example of Markov models is rele-
vant. The essential Markov assumption is that the probability
of a transition from one state at time T to another at time
T + ∆T depends only on the state at T , and not at all on the
history by which that state was reached. If changes within the
interval of length ∆T are plastic, or path dependent, then at-
tempts to model the system as a Markov process within the
natural interval ∆T will fail, even though the model works
quite well for phenomena separated by natural intervals.

Thus empirical identification of relevant coarse-grainings
for which this body of theory will work is clearly not trivial,
and may, in fact, constitute the hard scientific core of the
matter.

This is not, however, a new difficulty in ecosystem theory.
Holling (1992), for example, explores the linkage of ecosystems
across scales, finding that mesoscale structures – what might
correspond to the neighborhood in a human community – are
ecological keystones in space, time, and population, which
drive process and pattern at both smaller and larger scales and
levels of organization. This will, in fact, be a core argument
of our development.

Levin (1989) writes

“...[T]here is no single correct scale of observa-
tion: the insights one achieves from any investiga-
tion are contingent on the choice of scales. Pattern is
neither a property of the system alone nor of the ob-
server, but of an interaction between them... pattern
exists at all levels and at all scales, and recognition of
this multiplicity of scales is fundamental to describ-
ing and understanding ecosystems... there can be no
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‘correct’ level of aggregation... We must recognize
explicitly the multiplicity of scales within ecosys-
tems, and develop a perspective that looks across
scales and that builds on a multiplicity of models
rather than seeking the single ‘correct’ one.”

Given an appropriately chosen coarse-graining, whose se-
lection in many cases will be the difficult and central trick
of scientific art, suppose it possible to define joint and condi-
tional probabilities for different ecosystem paths, having the
form

P (A0, A1, ..., An), P (An|A0, ..., An−1)

(3)

such that appropriate joint and conditional Shannon un-
certainties can be defined on them. For paths of length two
these would be of the form

H(X1, X2) ≡ −
∑
j

∑
k

P (Aj , Ak) log[P (Aj , Ak)]

H(X1|X2) ≡ −
∑
j

∑
k

P (Aj , Ak) log[P (Aj |Ak)],

where the Xj represent the stochastic processes generating
the respective paths of interest.

The essential content of the Shannon-McMillan Theorem is
that, for a large class of systems characterized as information
sources, a kind of law-of-large numbers exists in the limit of
very long paths, so that

H[X] = lim
n→∞

log[N(n)]
n

=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, X1, ..., Xn)
n+ 1

.

(4)

Taking the definitions of Shannon uncertainties as above,
and arguing backwards from the latter two equations (e.g.
Khinchin, 1957), it is indeed possible to recover the first, and
divide the set of all possible temporal paths of our ecosystem
into two subsets, one very small, containing the grammati-
cally correct, and hence highly probable paths, which we will

call ‘meaningful’, and a much larger set of vanishingly low
probability.

Basic material on information theory can be found in any
number of texts, e.g. Ash (1990), Khinchin (1957), Cover and
Thomas (1991).

The next task is to show how the cognitive processes which
so distinguish much individual and collective animal activ-
ity, as well as many basic physiological processes, can be fit-
ted into a similar context, i.e. characterized as information
sources.

3 Cognition as an information
source

Atlan and Cohen (1998) argue that the essence of cognition
is comparison of a perceived external signal with an internal,
learned picture of the world, and then, upon that comparison,
the choice of one response from a much larger repertoire of
possible responses.

Following the approach of Wallace (2000, 2005a), or Wal-
lace and Fullilove (2008) it is possible to make a very general
model of this process as an information source. One commen-
tator has termed this model ‘trivial but not unimportant’. We
concur.

Cognitive pattern recognition-and-selected response, as
conceived here, proceeds by convoluting an incoming exter-
nal ‘sensory’ signal with an internal ‘ongoing activity’ – the
learned picture of the world – and, at some point, triggering
an appropriate action based on a decision that the pattern
of sensory activity requires a response. It is not necessary
to specify how the pattern recognition system is trained, and
hence possible to adopt a weak model, regardless of learn-
ing paradigm, which can itself be more formally described by
the Rate Distortion Theorem. Fulfilling Atlan and Cohen’s
(1998) criterion of meaning-from-response, we define a lan-
guage’s contextual meaning entirely in terms of system out-
put.

The model, an extension of that first presented in Wallace
(2000), is as follows.

A pattern of ‘sensory’ input, say an ordered sequence
y0, y1, ..., is mixed in a systematic (but unspecified) al-
gorithmic manner with internal ‘ongoing’ activity, the se-
quence w0, w1, ..., to create a path of composite signals x =
a0, a1, ..., an, ..., where aj = f(yj , wj) for some function f . An
explicit example will be given below. This path is then fed
into a highly nonlinear, but otherwise similarly unspecified,
decision oscillator which generates an output h(x) that is an
element of one of two (presumably) disjoint sets B0 and B1.
We take

B0 ≡ b0, ..., bk,

B1 ≡ bk+1, ..., bm.
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(5)

Thus we permit a graded response, supposing that if

h(x) ∈ B0

(6)

the pattern is not recognized, and if

h(x) ∈ B1

(7)

the pattern is recognized and some action bj , k+1 ≤ j ≤ m
takes place.

The principal focus of interest is those composite paths
x which trigger pattern recognition-and-response. That is,
given a fixed initial state a0, such that h(a0) ∈ B0, we ex-
amine all possible subsequent paths x beginning with a0 and
leading to the event h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for
all 0 ≤ j < m, but h(a0, ..., am) ∈ B1.

For each positive integer n let N(n) be the number of gram-
matical and syntactic high probability paths of length n which
begin with some particular a0 having h(a0) ∈ B0 and lead to
the condition h(x) ∈ B1. We shall call such paths meaningful
and assume N(n) to be considerably less than the number
of all possible paths of length n – pattern recognition-and-
response is comparatively rare. We further assume that the
longitudinal finite limit

H ≡ lim
n→∞

log[N(n)]
n

both exists and is independent of the path x. We will – not
surprisingly – call such a cognitive process ergodic.

Note that disjoint partition of state space may be possi-
ble according to sets of states which can be connected by
meaningful paths from a particular base point, leading to a
natural coset algebra of the system, a groupoid. This is a
matter of some mathematical importance pursued in Wallace
and Fullilove (2008) in in Glazebrook and Wallace (2007).

It is thus possible to define an ergodic information source X
associated with stochastic variates Xj having joint and con-
ditional probabilities P (a0, ..., an) and P (an|a0, ..., an−1) such
that appropriate joint and conditional Shannon uncertainties
may be defined which satisfy the relations of equation 4 above.

This information source is taken as dual to the ergodic cog-
nitive process.

As stated, the Shannon-McMillan Theorem and its variants
provide ‘laws of large numbers’ which permit definition of the
Shannon uncertainties in terms of cross-sectional sums of the
form

H = −
∑

Pk log[Pk],

where the Pk constitute a probability distribution.
It is important to recognize that different quasi-languages

will be defined by different divisions of the total universe of
possible responses into various pairs of sets B0 and B1. Like
the use of different distortion measures in the Rate Distortion
Theorem (e.g. Cover and Thomas, 1991), however, it seems
obvious that the underlying dynamics will all be qualitatively
similar.

Nonetheless, dividing the full set of possible responses into
the sets B0 and B1 may itself require higher order cognitive
decisions by another module or modules, suggesting the ne-
cessity of choice within a more or less broad set of possible
quasi-languages. This would directly reflect the need to shift
gears according to the different challenges faced by the or-
ganism or social group. A critical problem then becomes the
choice of a normal zero-mode language among a very large
set of possible languages representing the excited states ac-
cessible to the system. This is a fundamental matter which
mirrors, for isolated cognitive systems, the resilience argu-
ments applicable to more conventional ecosystems, i.e. the
possibility of more than one zero state to a cognitive system.
Identification of an excited state as the zero mode becomes,
then, a kind of generalized autoimmune disorder which can
be triggered by linkage with external ecological information
sources of structured psychosocial stress, a matter we explore
at length elsewhere (Wallace and Fullilove, 2008).

In sum, meaningful paths – creating an inherent grammar
and syntax – have been defined entirely in terms of system
response, as Atlan and Cohen (1998) propose.

This formalism can be applied to the stochastic neuron in
a neural network: A series of inputs yji , i = 1, ...m from m
nearby neurons at time j to the neuron of interest is convo-
luted with ‘weights’ wji , i = 1, ...,m, using an inner product

aj = yj ·wj ≡
m∑
i=1

yjiw
j
i

(8)

in the context of a transfer function f(yj ·wj) such that the
probability of the neuron firing and having a discrete output
zj = 1 is P (zj = 1) = f(yj ·wj).

Thus the probability that the neuron does not fire at time
j is just 1 − P . In the usual terminology the m values yji
constitute the ‘sensory activity’ and the m weights wji the
‘ongoing activity’ at time j, with aj = yj ·wj and the path
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x ≡ a0, a1, ..., an, .... A more elaborate example is given in
Wallace (2002a).

A little work leads to a standard neural network model
in which the network is trained by appropriately varying w
through least squares or other error minimization feedback.
This can be shown to replicate rate distortion arguments, as
we can use the error definition to define a distortion function
which measures the difference between the training pattern y
and the network output ŷ as a function, for example, of the
inverse number of training cycles, K. As we will discuss in
another context, learning plateau behavior emerges naturally
as a phase transition in the mutual information I(Y, Ŷ ) driven
by the parameter K.

This leads eventually to parametization of the information
source uncertainty of the dual information source to a cogni-
tive pattern recognition-and-response with respect to one or
more variates, writing, e.g. H[K], where K ≡ (K1, ...,Ks)
represents a vector in a parameter space. Let the vector K
follow some path in time, i.e. trace out a generalized line
or surface K(t). We will, following the argument of Wal-
lace (2002b), assume that the probabilities defining H, for
the most part, closely track changes in K(t), so that along a
particular piece of a path in parameter space the information
source remains as close to stationary and ergodic as is needed
for the mathematics to work. Between pieces we will, below,
impose phase transition characterized by a renormalization
symmetry, in the sense of Wilson (1971). See the Mathemat-
ical Appendix for further details.

Such an information source can be termed adiabatically
piecewise stationary ergodic (APSE). To reiterate, the ergodic
nature of the information sources is a generalization of the law
of large numbers and implies that the long-time averages we
will need to calculate can, in fact, be closely approximated by
averages across the probability spaces of those sources. This
is no small matter.

The reader may have noticed parallels with Dretske’s spec-
ulations on the the role of the asymptotic limit theorems of
information theory in constraining high level mental function
(Dretske, 1994, Wallace, 2005a, Wallace and Fullilove, 2008).

Wallace (2004, 2005a) and Wallace and Fullilove (2008)
describe in some detail how, for larger animals, immune
function, tumor control, the hypothalamic-pituitary-adrenal
(HPA) axis (the flight-or-fight system), emotion, conscious
thought, and embedding group (and sometimes cultural)
structures are all cognitive in this simple sense. In general
these cognitive phenomena will occur at far faster rates than
embedding ecosystem changes.

It is worth a more detailed recounting of the arguments
for characterizing a number of physiological subsystems as
cognitive in the sense of this section.

3.1 Immune cognition

Atlan and Cohen (1998) have proposed an information-
theoretic cognitive model of immune function and process,
a paradigm incorporating cognitive pattern recognition-and-
response behaviors analogous to those of the central nervous

system. This work follows in a very long tradition of specu-
lation on the cognitive properties of the immune system (e.g.
Tauber, 1998; Podolsky and Tauber, 1998; Grossman, 2000).

From the Atlan/Cohen perspective, the meaning of an anti-
gen can be reduced to the type of response the antigen gen-
erates. That is, the meaning of an antigen is functionally
defined by the response of the immune system. The mean-
ing of an antigen to the system is discernible in the type of
immune response produced, not merely whether or not the
antigen is perceived by the receptor repertoire. Because the
meaning is defined by the type of response there is indeed a
response repertoire and not only a receptor repertoire.

To account for immune interpretation Cohen (1992, 2000)
has reformulated the cognitive paradigm for the immune sys-
tem. The immune system can respond to a given antigen in
various ways, it has ‘options.’ Thus the particular response
we observe is the outcome of internal processes of weighing
and integrating information about the antigen. In contrast
to Burnet’s view of the immune response as a simple reflex,
it is seen to exercise cognition by the interpolation of a level
of information processing between the antigen stimulus and
the immune response. A cognitive immune system organizes
the information borne by the antigen stimulus within a given
context and creates a format suitable for internal processing;
the antigen and its context are transcribed internally into the
‘chemical language’ of the immune system.

The cognitive paradigm suggests a language metaphor to
describe immune communication by a string of chemical sig-
nals. This metaphor is apt because the human and immune
languages can be seen to manifest several similarities such as
syntax and abstraction. Syntax, for example, enhances both
linguistic and immune meaning.

Although individual words and even letters can have their
own meanings, an unconnected subject or an unconnected
predicate will tend to mean less than does the sentence gen-
erated by their connection.

The immune system creates a ‘language’ by linking two
ontogenetically different classes of molecules in a syntactical
fashion. One class of molecules are the T and B cell recep-
tors for antigens. These molecules are not inherited, but are
somatically generated in each individual. The other class of
molecules responsible for internal information processing is
encoded in the individual’s germline.

Meaning, the chosen type of immune response, is the out-
come of the concrete connection between the antigen subject
and the germline predicate signals.

The transcription of the antigens into processed peptides
embedded in a context of germline ancillary signals consti-
tutes the functional ‘language’ of the immune system. De-
spite the logic of clonal selection, the immune system does
not respond to antigens as they are, but to abstractions of
antigens-in-context.

More recently Cohen (2006) summarizes these matters as
follows:

“Maintenance, including defense, requires the
dynamic deployment of varied inflammatory pro-
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cesses based on reliable information about cells in
flux. The inflammatory response suited to repair a
broken bone, for example, is clearly different from
the inflammatory response required to hold one’s
gut bacteria in check or to cure a bout of influenza
– which cells and molecules are to take part in the
process, when, where, how, in what order, in which
intensity, and with what dynamics?... The immune
system mines information about the state of the
various cells of the body (Is there a problem here?
What kind?), integrates the body information into
immune system information (antibody repertoires,
cell repertoires, cell differentiation and numbers, cell
movements and migrations, secreted molecules, and
so forth). The modified state of the immune sys-
tem, expressed locally at the site of injury and to
some extent globally, is key to the inflammatory
process. Immune inflammation, in turn, triggers a
response of body cells in the area of injury lead-
ing, usually, to healing and restoration of function.
As the process evolves, the immune system updates
the inflammatory response to match the particular
circumstances that emerge on the way to healing,
maintaining and/or defending the body. The gen-
eral success of physiological inflammation in keeping
us fit is highlighted by the occasional disease caused
by pathogenic inflammation – inflammation that is
not properly managed by the immune system ... can
cause autoimmune diseases such as multiple sclero-
sis, degenerative diseases such as Alzheimer’s disease
or allergic diseases such as asthma.

At the operational level, it is now clear that
clones of lymphocutes do not function in isolation, as
taught by the classical clonal selection theory. The
immune system works as an integrated, whole sys-
tem, and can respond potentially in many different,
and even contradictory ways when it detects an in-
jury or an antigen. The outcome of any immune
response involves a choice between many alternative
types of possible response, and many different types
of cells take part in the response choice. This im-
mune decision-making process uses strategies similar
to those observed in nervous system cognition...”

3.2 Tumor control

We argue that the next larger cognitive submodule after the
immune system must be a tumor control mechanism which
may include immune surveillance, but clearly transcends it.
Nunney (1999) has explored cancer occurrence as a function of
animal size, suggesting that in larger animals, whose lifespan
grows as about the 4/10 power of their cell count, preven-
tion of cancer in rapidly proliferating tissues becomes more
difficult in proportion to size. Cancer control requires the de-
velopment of additional mechanisms and systems to address
tumorigenesis as body size increases – a synergistic effect of
cell number and organism longevity. Nunney (1999, p. 497)

concludes

“This pattern may represent a real barrier to the
evolution of large, long-lived animals and predicts
that those that do evolve ... have recruited addi-
tional controls [over those of smaller animals] to pre-
vent cancer.”

Different tissues may have evolved markedly different tu-
mor control strategies. All of these, however, are likely to
be energetically expensive, permeated with different complex
signaling strategies, and subject to a multiplicity of reactions
to signals, including those related to psychosocial stress. For-
lenza and Baum (2000) explore the effects of stress on the full
spectrum of tumor control in higher animals, ranging from
DNA damage and control, to apoptosis, immune surveillance,
and mutation rate. Elsewhere (R. Wallace et al., 2003) we
argue that this elaborate tumor control strategy, particularly
in large animals, must be at least as cognitive as the im-
mune system itself, which is one of its components. That
is, some comparison must be made with an internal picture
of a ‘healthy’ cell, and a choice made as to response: none,
attempt DNA repair, trigger programmed cell death, engage
in full-blown immune attack. This is, from the Atlan/Cohen
perspective, the essence of cognition.

3.3 A cognitive paradigm for gene expres-
sion

While modes of genetic inheritance are assumed well under-
stood since the Grand Evolutionary Synthesis of the early
20th Century, the mechanisms of gene activation, regulation,
and expression remain largely hidden. A random reading of
the literature illuminates a stark and increasingly mysterious
landscape.

Liu and Ringner (2007):

“Gene expression signatures consisting of tens to
hundreds of genes have been found to be informa-
tive for different biological states. Recently, many
computational methods have been proposed for bi-
ological interpretation of such signatures. However,
there is a lack of methods for identifying cell signal-
ing pathways whose deregulation results in an ob-
served expression signature... Genetic aberrations
and variations in cellular processes are usually re-
flected in the expression of many genes... Signal
transduction is at the core of many regulatory sys-
tems. Cellular functions such as growth, prolifera-
tion, differentiation, and apoptosis are regulated by
signaling pathways... To uncover mechanisms un-
derlying cellular phenotypes, therefore, it is crucial
to systematically analyze gene expression signatures
in the context of signaling pathways...”

Soyer et al. (2006):
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“Biological signal transduction allows a cell or
organism to sense its environment and react accord-
ingly. This is achieved through cascades of proteins
that interact via activation and inhibition to con-
vert an external signal into a physiological response.
In order to understand such a cascade (or network)
one first needs to define its protein components and
their interactions. Given the appropriate experimen-
tal data, a signal transduction network can be de-
scribed by a mathematical model in order to obtain a
quantitative understand of its behavior... Typically
this understanding is limited to the specific network
under investigation and cannot be easily used to ex-
trapolate the behavior of other types of networks.
Combined with the fact that the experimental work
needed to gather enough quantitative information to
develop accurate mathematical models is highly la-
bor intensive, the modeling of specific networks may
be limited in developing a broad understand of the
general properties of biological signaling networks...”

One possible mathematical characterization of these diffi-
culties is found in Sayyed-Ahmad et al. (2007):

“The state of a cell is specified by a set of vari-
ables Ψ for which we know the governing equations
and a set T which is at the frontier of our under-
standing (i.e. for which we do not know the govern-
ing equations). The challenge is that the dynamics
of Ψ is given by a cell model, e.g.

dΨ/dt = G(Ψ, T (t),Λ)

(9)

in which the rate G depends not only on many
rate and equilibrium constants Λ, but also on the
time-dependent frontier variables T (t). The descrip-
tive variables, Ψ, can only be determined as a func-
tional of the unknown time courses T (t). Thus the
model cannot be simulated...”

Liao et al (2003):

“High-dimensional data sets generated by high-
throughput technologies, such as DNA microarray,
are often the outputs of complex networked systems
driven by hidden regulatory signals. Traditional
statistical methods for computing low-dimensional
or hidden representations of these data sets, such
as principal component analysis and independent
component analysis, ignore the underlying network
structures and provide decompositions based on a
priori statistical constraints on the computed com-
ponent signals. The resulting decomposition thus

provides a phenomenological model for the observed
data and does not necessarily contain physically or
biologically meaningful signals.”

Baker and Stock (2007), however, pose the questions in a
more general manner, using an information metaphor:

“Signal transduction systems that mediate adap-
tive changes in gene expression to specific sensory
inputs have been well characterized. Recent studies
have focused on mechanisms that allow crosstalk be-
tween different information processing modalities...

What are the decision making mechanisms by
which a bacterium controls the activities of its genes
and proteins to adapt to changing environmental
conditions? How do cells regulate the expression and
activities of thousands of different genes and proteins
to efficiently control motility, metabolism, growth
and differentiation?... [H]ow do disparate regulatory
modules interact to function as a cell? How are bac-
terial information processing networks organized?...
Research on bacterial signal transduction is shifting
from a focus on individual genes and proteins in vitro
to the study of whole systems in vivo. Each compo-
nent is now regarded as a node, the essential charac-
ter of which can only be fully appreciated in terms
of its connections to other nodes. In this context, an
individual E. coli cell is a network with about 108

nodes composed of the products of about 103 differ-
ent genes... The... task is to understand how these
elements are connected to form a dynamic, adaptive
cell. How is information converted into knowledge,
and how is knowledge sorted, evaluated and com-
bined to guide action, morphogenesis and growth?”

O’Nuallain (2006) provides an important perspective on
this approach:

“The categorical failure to solve the general prob-
lem of natural language processing... by computer...
[is] prognostic of the future of gene expression work.
After what seemed like a promising start, the field
was stalled by an inability to handle, or even define
coherently, ‘contextual’ factors. Currently, the field
is gradually being taken over by Bayesian ‘methods’
that simply look for the statistical incidence of co-
occurrence of lexical items in the source (analogous
to gene) and target (analogous to protein) languages.
Contextual factors in the case of gene expression in-
clude the bioenergetic status of the cell, a status
that can be assessed properly only with painstaking
work; yet it determines what genes are being turned
on and off at any particular moment...”

It seems clear that 18th Century dynamical models using
19th Century differential equation generalizations of equation
(9) have little to offer in addressing fundamental questions
of gene activation and regulation. More sophisticated work
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must clearly move in the direction of an Atlan/Cohen cog-
nitive paradigm for gene expression, characterizing the pro-
cesses, and their embedding contexts, in terms of nested sets
of interacting dual information sources, whose behavior is con-
strained by the necessary conditions imposed by the asymp-
totic limit theorems of communications theory.

That is, properly coarse-grained and nested biochemical
networks will have an observed grammar and syntax, and,
limited by powerful probability limit theorems, such descrip-
tion can enable construction of robust and meaningful statis-
tical models of gene expression which may then be used for
real scientific inference.

In sum, generalizing symbolic dynamics to a more inclusive,
and less restrictive, cognitive paradigm for gene expression
in terms of the model of equations (5) - (7), while invoking
the inherent complexities of topological groupoids described
in Wallace and Fullilove (2008) and Glazebrook and Wallace
(2007), seems likely to provide badly needed illumination for
this dark and confusing realm.

Not uncharacteristically, I. Cohen and colleagues (e.g. Co-
hen and Harel, 2007) have, in fact, already proposed some-
thing much in this direction:

“The discovery that DNA embodies the genetic
code has drawn attention to DNA both as the cell’s
primary reservoir of information and as the infor-
matic vehicle for evolutionary change... Biologic ex-
planations often start with DNA: biological infor-
mation is seen to originate in the genome, and this
genome DNA information is translated, by the way
of RNA transcripts, into the diversity of expressed
proteins – the proteome. The proteome then fash-
ions the phenotype that defines the functioning or-
ganism. The genome, from such a viewpoint, ap-
pears as the master plan – the explanation – that en-
codes the organism... [But] [t]he explanation of the
living system, from this viewpoint, is obtained not
by reducing its complexity to a simple underlying
‘one dimensional’ genetic code... rather by reducing
its complexity to an orderly, sequential transforma-
tion of information from genes to phenotypes... This
transformational plan is not static, but homeostatic
[taking this perspective] – the transformation of in-
formation from genome to phenotype, with the help
of controlling feedback loops, generates the evolu-
tion of a stable, balanced adaptation of the living
system to its changing environment...

But there is another way of explaining the liv-
ing system; not as a hierarchical, sequential trans-
formational system, but as a highly concurrent re-
active system... A reactive system, in contrast to a
transformational system, does not behave according
to a pre-programmed chain of linked instructions.
Rather, such a system reacts in parallel to many
concurrent inputs, and its behaviours, outputs and
effects, are not just a function of the values of its
inputs but also of their variety, of the order in which

they arrive, of their timing, of their arrival speeds,
and so forth. A reactive system expresses a dy-
namic narrative in which the DNA code is one of
the many formative inputs... Structural proteins,
enzymes, carbohydrates, lipids, intracellular signals,
hormones and other molecules play key roles in form-
ing and informing the system. The environment of
the living system is a most critical source of informa-
tion... True, DNA serves as a special repository of
information because it is replicated and transmitted
across generations, but DNA is meaningless without
the proteins and other molecules that selectively ac-
tivate segments of the DNA sequence in variable and
alternative ways to create genes. The activation of
specific genes emerges from the dynamic state of the
cell. One could argue that DNA is just as much a
servant of the cell’s state as it is the cell’s master;
there is no hierarchical master plan...

Note that, unlike a transformational system, a
reactive system does not seek equilibrium, has no set
point and no state of rest... A reactive system holds
itself together as a system just by reacting. A reac-
tive system succeeds not by reaching homeostasis; a
brain in homeostasis is clinically dead. A reactive
system succeeds by being both robust and resilient.
The reactive system responds to simultaneous per-
turbations and continues to survive; thanks to its
reactive dynamics...

Reactive systems call our attention to their emer-
gent properties. An emergent property of a system
is a behavior of the system, taken as a whole, that
is not expressed by any one of the lower-scale com-
ponents that comprise it.”

Although Cohen and Harel (2007) then attempt to develop
a complicated computer modeling strategy to address such
reactive systems, Cohen (2006) describes the essential differ-
ences between them and conventional computer architecture
as follows:

“No external operator or programmer;
No programs, algorithms, or software distinct

form the system’s hardware – its cells or molecules;
(Parenthetically... DNA is definitely not a program
or set of algorithms... DNA is information whose
meaning is defined by the way the DNA is used by
the whole cell and its component molecules.)

No central processing unit (CPU);
No standard operating system; no two [biolog-

ical] systems are identical, even in identical twins
(since the maintenance histories of their bodies dif-
fer, their immmune [and other biological] systems
must differ);

No formal, mathematical logic;
No termination criteria; the system does not halt

its operation;
No verification procedures.”
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Zhu et al. (2007), by contrast, take an explicit kinetic
chemical reaction approach to gene expression involving de-
layed stochastic differential equations. They begin by coarse-
graining multi-step biochemical processes with single-step de-
layed reactions. Thus their coarse-graining involves not only
collapsing biochemical steps, but collapsing as well the in-
evitable associated serial correlations into a small number of
‘time delays’:

“The key feature [or our model] is that the com-
plex multiple-step biochemical processes, such as
transcription, translation, and even the whole gene
expression, are simplified to single-step time delayed
reactions.”

While there are sufficiently many gene expression mecha-
nisms so that some of them, at least, will yield to this method,
we are interested in those which are more complex, and indeed
broadly cognitive, subject to emergent patterns which cannot
be modeled simply as bifurcations of stochastically-perturbed
mechanistic models.

Indeed, rather than pursuing the computer models that Co-
hen and Harel (2007) and Zhu et al. (2007) invoke, here we
will attempt to extend our statistical and dynamic analytic
treatment of the cognitive paradigm to a structure incorpo-
rating gene expression in a broadly coevolutionary manner.
As Richard Hamming so famously put it, “The purpose of
computing is insight, not numbers”, and analytic models of-
fer transparency as well as insight. We will, however, recover
a phenomenological stochastic differential equation formalism
as a kind of generalized system of Onsager relations, but at a
later, and far more global, stage of structure. That is, invo-
cation of the necessary conditions imposed by the limit the-
orems of communication theory enables us to penetrate one
layer deeper before it becomes necessary to impose a phe-
nomenological model.

4 Darwinian genetic inheritance as
an information source

Adami et al. (2000) make the following case for reinterpreting
the Darwinian transmission of genetic heritage in terms of a
formal information process:

“A recent information-theoretic... definition
identifies genomic complexity with the amount of in-
formation a sequence stores about its environment...
genetic complexity can be defined in a consistent
information-theoretic manner... [I]nformation can-
not exist in a vacuum... [and] must have an in-
stantiation... In biological systems the instantiation
of information is DNA... To some extent it is the
blueprint of an organism and thus information about
its own structure. More specifically, it is a blueprint
of how to build an organism that can best survive in
its native environment, and pass on that information
to its progeny... An organism’s DNA thus is not only

a ‘book’ about the organism, but also a book about
the environment it lives in, including the species it
co-evolves with... We... identify the complexity of
geonomes by the amount of information they encode
about the world in which they have evolved...”

Ofria et al. (2003) continue as follows:

“...[G]enomic complexity can be defined rigor-
ously within standard information theory as the in-
formation the genome of an organism contains about
its environment... From the point of view of infor-
mation theory, it is convenient to view Darwinian
evolution on the molecular level as a collection of in-
formation transmission channels, subject to a num-
ber of constraints. In these channels, the organism’s
genomes code for the information (a message) to be
transmitted from progenitor to offspring, and are
subject to noise due to an imperfect replication pro-
cess. Information theory is concerned with analysing
the properties of such channels, how much informa-
tion can be transmitted and how the rate of perfect
information transmission of such a channel can be
maximized.”

Adami and Cerf (2000) argue, using simple models of ge-
netic structure,

“Thus... the information content, or complexity,
of a genomic string by itself (without referring to
an environment) is a meaningless concept... [and] a
change in environment (catastrophic or otherwise)
generally leads to a [pathological] reduction in com-
plexity.”

The transmission of genetic information is thus a contex-
tual matter which involves operation of an information source
which, according to this development, must interact with em-
bedding (ecosystem) structures.

Such interaction is, as we show next, often highly punctu-
ated.

5 Interacting information sources:
punctuated crosstalk

Suppose that a cognitive or Darwinian information process of
interest can be represented by a sequence of states in time,
the path x ≡ x0, x1, .... Similarly, we assume an embed-
ding ecosystem with which that process interacts can also
be represented by a path y ≡ y0, y1, .... These paths are both
very highly structured and, within themselves, are serially
correlated and can, in fact, be represented by information
sources X and Y. We assume the process of interest and
the embedding ecosystem interact, so that these sequences
of states are not independent, but are jointly serially cor-
related. We can, then, define a path of sequential pairs as
z ≡ (x0, y0), (x1, y1), ....
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The essential content of the Joint Asymptotic Equipartition
Theorem (JAEPT) version of the Shannon-McMillan Theo-
rem is that the set of joint paths z can be partitioned into a
relatively small set of high probability which is termed jointly
typical, and a much larger set of vanishingly small probabil-
ity. Further, according to the JAEPT, the splitting criterion
between high and low probability sets of pairs is the mutual
information

I(X,Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y )

(10)

where H(X), H(Y ), H(X|Y ) and H(X,Y ) are, respec-
tively, the Shannon uncertainties of X and Y , their condi-
tional uncertainty, and their joint uncertainty. Again, see
Cover and Thomas (1991) or Ash (1990) for mathematical de-
tails. As stated above, the Shannon-McMillan Theorem and
its variants permit expression of the various uncertainties in
terms of cross sectional sums of terms of the form −Pk log[Pk]
where the Pk are appropriate direct or conditional probabili-
ties. Similar approaches to neural process have been recently
adopted by Dimitrov and Miller (2001).

The high probability pairs of paths are, in this formulation,
all equiprobable, and if N(n) is the number of jointly typical
pairs of length n, then, according to the Shannon-McMillan
Theorem and its ‘joint’ variants,

I(X,Y ) = lim
n→∞

log[N(n)]
n

.

(11)

Generalizing the earlier language-on-a-network models of
Wallace and Wallace (1998, 1999), suppose there is a cou-
pling parameter P representing the degree of linkage between
the cognitive human subsystem of interest and the struc-
tured quasi-language of the embedding ecosystem, and set
K = 1/P , following the development of those earlier studies.
Then we have

I[K] = lim
n→∞

log[N(K,n)]
n

.

The essential homology between information theory and
statistical mechanics lies in the similarity of this expression
with the infinite volume limit of the free energy density. If
Z(K) is the statistical mechanics partition function derived
from the system’s Hamiltonian, then the free energy density
is determined by the relation

F [K] = lim
V→∞

log[Z(K)]
V

.

(12)

F is the free energy density, V the system volume and K =
1/T , where T is the system temperature.

Various authors argue at some length (e.g. Wallace, 2005a;
Wallace and Fullilove, 2008; Rojdestvensky and Cottam,
2000; Feynman, 1996) that this is indeed a systematic math-
ematical homology which, as described in the Appendix, per-
mits importation of renormalization symmetry into informa-
tion theory. Imposition of invariance under renormalization
on the mutual information splitting criterion I(X,Y ) im-
plies the existence of phase transitions analogous to learning
plateaus or punctuated evolutionary equilibria in the relations
between cognitive mechanism and the embedding ecosystem.
An extensive mathematical treatment of these ideas is pre-
sented elsewhere (e.g. Wallace, 2000, 2002a, b; Wallace 2005a;
Wallace and Fullilove, 2008; Pettini, 2007) and in the Math-
ematical Appendix. A detailed example will be given in a
subsequent section. Much of the uniqueness of the system
under study will be expressed in the renormalization rela-
tions associated with that punctuation. See Wallace (2005a)
or Wallace and Fullilove (2008) for fuller discussion.

Elaborate developments are possible. From a the more lim-
ited perspective of the Rate Distortion Theorem, a selective
corollary of the Shannon-McMillan Theorem, we can view the
onset of a punctuated interaction between the cognitive pro-
cess and embedding ecosystem as the literal writing of dis-
torted image of those systems upon each other, Lewontin’s
(2000) interpenetration:

Suppose that two (adiabatically, piecewise stationary, er-
godic) information sources Y and B begin to interact, to talk
to each other, i.e. to influence each other in some way so
that it is possible, for example, to look at the output of B –
strings b – and infer something about the behavior of Y from
it – strings y. We suppose it possible to define a retranslation
from the B-language into the Y-language through a determin-
istic code book, and call Ŷ the translated information source,
as mirrored by B.

Define some distortion measure comparing paths y to paths
ŷ, d(y, ŷ) (Cover and Thomas, 1991). We invoke the Rate Dis-
tortion Theorem’s mutual information I(Y, Ŷ ), which is the
splitting criterion between high and low probability pairs of
paths. Impose, now, a parametization by an inverse coupling
strength K, and a renormalization symmetry representing the
global structure of the system coupling.

Extending the analyses, triplets of sequences, Y1, Y2, Z, for
which one in particular, here Z, is the ‘embedding context’
affecting the other two, can also be divided by a splitting
criterion into two sets, having high and low probabilities re-
spectively. The probability of a particular triplet of sequences
is then determined by the conditional probabilities

13



P (Y1 = y1, Y2 = y2, Z = z) = Πn
j=1p(y

1
j |zj)p(y2

j |zj)p(zj).

(13)

That is, Y1 and Y2 are, in some measure, driven by their
interaction with Z.

For large n the number of triplet sequences in the high
probability set will be determined by the relation (Cover and
Thomas, 1992, p. 387)

N(n) ∝ exp[nI(Y1;Y2|Z)],

(14)

where splitting criterion is given by

I(Y1;Y2|Z) ≡

H(Z) +H(Y1|Z) +H(Y2|Z)−H(Y1, Y2, Z).

It is then possible to examine mixed cognitive/adaptive
phase transitions analogous to learning plateaus (Wallace,
2002b) in the splitting criterion I(Y1, Y2|Z). We reiter-
ate that these results are almost exactly parallel to the El-
dredge/Gould model of evolutionary punctuated equilibrium
(Eldredge, 1985; Gould, 2002).

The model is easily extended to any number of interacting
information sources, Y1, Y2, ..., Ys conditional on an external
context Z in terms of a splitting criterion defined by

I(Y1, ..., Ys|Z) = H(Z) +
s∑
j=1

H(Yj |Z)−H(Y1, ..., Ys, Z),

(15)

where the conditional Shannon uncertainties H(Yj |Z) are
determined by the appropriate direct and conditional proba-
bilities.

If we assume interacting information sources can be parti-
tioned into three different sets, perhaps fast, Xi, medium, Yj
and slow Zk relative transmission rates, then mathematical
induction on this equation produces a complicated expression
of the form

I(X1, ..., Xi|Y1, ..., Yj |Z1, ..., Zk).

(16)

In general, then, it seems fruitful to characterize the mu-
tual interpenetration of cognitive biopsychosocial and non-
cognitive ecosystem and genetic structures within the context
a single, unifying, formal perspective summarized by a ‘larger’
information source, more precisely, invoking a mutual infor-
mation between cognitive, genetic, and ecosystem information
sources.

6 Dynamic manifolds

A fundamental homology between the information source un-
certainty dual to a cognitive process and the free energy den-
sity of a physical system arises, in part, from the formal simi-
larity between their definitions in the asymptotic limit. Infor-
mation source uncertainty can be defined as in equation (4).
This is, as noted, quite analogous to the free energy density
of a physical system, equation (12).

Feynman (1996) provides a series of physical examples,
based on Bennett’s work, where this homology is, in fact,
an identity, at least for very simple systems. Bennett argues,
in terms of idealized irreducibly elementary computing ma-
chines, that the information contained in a message can be
viewed as the work saved by not needing to recompute what
has been transmitted.

Feynman explores in some detail Bennett’s ideal micro-
scopic machine designed to extract useful work from a trans-
mitted message. The essential argument is that computing,
in any form, takes work. Thus the more complicated a cogni-
tive process, measured by its information source uncertainty,
the greater its energy consumption, and the ability to provide
energy is limited. Inattentional blindness, Wallace (2007) ar-
gues, emerges as a thermodynamic limit on processing capac-
ity in a topologically-fixed global workspace, i.e. one which
has been strongly configured about a particular task.

Understanding the time dynamics of cognitive systems
away from the kind of phase transition critical points de-
scribed above requires a phenomenology similar to the On-
sager relations of nonequilibrium thermodynamics. This will
lead to a more general phase transition theory involving large-
scale topological changes in the sense of Morse theory, sum-
marized in the Mathematical Appendix.

If the dual source uncertainty of a cognitive process is
parametized by some vector of quantities K ≡ (K1, ...,Km),
then, in analogy with nonequilibrium thermodynamics, gra-
dients in the Kj of the disorder, defined as

S ≡ H(K)−
m∑
j=1

Kj∂H/∂Kj
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(17)

become of central interest.
Equation (17) is similar to the definition of entropy in terms

of the free energy density of a physical system, as suggested
by the homology between free energy density and information
source uncertainty described above.

Pursuing the homology further, the generalized Onsager
relations defining temporal dynamics become

dKj/dt =
∑
i

Lj,i∂S/∂Ki,

(18)

where the Lj,i are, in first order, constants reflecting the
nature of the underlying cognitive phenomena. The L-matrix
is to be viewed empirically, in the same spirit as the slope and
intercept of a regression model, and may have structure far
different than familiar from more simple chemical or physi-
cal processes. The ∂S/∂K are analogous to thermodynamic
forces in a chemical system, and may be subject to override by
external physiological driving mechanisms (Wallace, 2005c).

An essential contrast with simple physical systems driven
by (say) entropy maximization is that cognitive systems make
decisions about resource allocation, to the extent resources
are available. That is, resource availability is a context for
cognitive function, in the sense of Baars, not a determinant.

Equations (17) and (18) can be derived in a simple
parameter-free covariant manner which relies on the under-
lying topology of the information source space implicit to the
development. Cognitive, genetic, and ecosystem phenomena
are, according to our development, to be associated with par-
ticular information sources, and we are interested in the local
properties of the system near a particular reference state. We
impose a topology on the system, so that, near a particular
‘language’ A, dual to an underlying cognitive process, there
is (in some sense) an open set U of closely similar languages
Â, such that A, Â ⊂ U . Note that it may be necessary to
coarse-grain the system’s responses to define these informa-
tion sources. The problem is to proceed in such a way as to
preserve the underlying essential topology, while eliminating
‘high frequency noise’. The formal tools for this can be found,
e.g., in Chapter 8 of Burago et al. (2001).

Since the information sources dual to the cognitive pro-
cesses are similar, for all pairs of languages A, Â in U , it is
possible to:

[1] Create an embedding alphabet which includes all sym-
bols allowed to both of them.

[2] Define an information-theoretic distortion measure in
that extended, joint alphabet between any high probability
(i.e. grammatical and syntactical) paths in A and Â, which

we write as d(Ax, Âx) (Cover and Thomas, 1991). Note that
these languages do not interact, in this approximation.

[3] Define a metric on U , for example,

M(A, Â) = | lim
∫
A,Â

d(Ax, Âx)∫
A,A

d(Ax,Ax̂)
− 1|,

(19)

using an appropriate integration limit argument over the
high probability paths. Note that the integration in the de-
nominator is over different paths within A itself, while in the
numerator it is between different paths in A and Â.

Consideration suggests M is a formal metric, having

M(A,B) ≥ 0,M(A,A) = 0,M(A,B) =M(B,A),

M(A,C) ≤M(A,B) +M(B,C).

Other approaches to metric construction on U seem possi-
ble.

Structures weaker than a conventional metric would be of
more general utility, but the mathematical complications are
formidable (Glazebrook and Wallace, 2007).

Note that these conditions can be used to define equiva-
lence classes of languages, where previously, in cognitive pro-
cess, we could define equivalence classes of states which could
be linked by high probability, grammatical and syntactical,
paths to some base point. This led to the groupoid character-
ization of different information sources described in Wallace
and Fullilove (2008). Here we construct an entity, formally a
topological manifold, which is an equivalence class of informa-
tion sources. This is, provided M is a conventional metric, a
classic differentiable manifold. We shall be interested in topo-
logical states within such manifolds, and in the possibilities
of transition between manifolds.

Since H and M are both scalars, a ‘covariant’ derivative
can be defined directly as

dH/dM = lim
Â→A

H(A)−H(Â)
M(A, Â)

,

(20)

where H(A) is the source uncertainty of language A.
Suppose the system to be set in some reference configura-

tion A0.
To obtain the unperturbed dynamics of that state, impose

a Legendre transform using this derivative, defining another
scalar
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S ≡ H −MdH/dM.

(21)

The simplest possible Onsager relation – here seen as an
empirical, fitted, equation like a regression model – in this
case becomes

dM/dt = LdS/dM,

(22)

where t is the time and dS/dM represents an analog to the
thermodynamic force in a chemical system. This is seen as
acting on the reference state A0. For

dS/dM|A0 = 0,

d2S/dM2|A0 > 0

(23)

the system is quasistable, a Black hole, if you will, and ex-
ternally imposed forcing mechanisms will be needed to effect
a transition to a different state. We shall explore this circum-
stance below in terms of topological considerations analogous
to the concept of ecosystem resilience.

Conversely, changing the direction of the second condition,
so that

dS2/dM2|A0 < 0,

leads to a repulsive peak, a White hole, representing a pos-
sibly unattainable realm of states.

Explicit parametization of M introduces standard – and
quite considerable – notational complications (e.g. Burago
et al., 2001; Auslander, 1967): Imposing a metric for dif-
ferent cognitive dual languages parametized by K leads to
Riemannian, or even Finsler, geometries, including the usual
geodesics. See the Mathematical Appendix for details.

The dynamics, as we have presented them so far, have been
noiseless, while neural systems, from which we are abducting
theory, are well known to be very noisy, and indeed may be
subject to mechanisms of stochastic resonance. Equation (22)
might be rewritten as

dM/dt = LdS/dM+ σW (t)

where σ is a constant and W (t) represents white noise.
Again, S is seen as a function of the parameterM. This leads
directly to a family of classic stochastic differential equations
having the form

dMt = L(t, dS/dM)dt+ σ(t, dS/dM)dBt,

(24)

where L and σ are appropriately regular functions of t and
M, and dBt represents the noise structure.

In the sense of Emery (1989), this leads into deep realms of
stochastic differential geometry and related topics. The ob-
vious inference is that noise, which need not be ‘white’, can
serve as a tool to shift the system between various equiva-
lence classes, i.e. as a kind of crosstalk and the source of a
generalized stochastic resonance.

Deeply hidden in equation (24) is a very complicated pat-
tern of equivalence class dynamics, since flows are defined on
a manifold of languages having particular relations between
H,S, and M. Many possible information sources may, in
fact, correspond to any particular ‘point’ on this manifold.
Although we cannot pursue this matter in much detail, as it
involves subtle matters of ‘topological groupoids’ and the like,
some implications are clear. In particular, setting equation
(24) to zero and solving for ‘stationary points’ find a set of
stable attractors, since the noise terms will perturb the struc-
ture from unstable equilibria. Second, what is converged to
is not some ‘stable state’ in any sense, but rather is an equiv-
alence class of highly dynamic information sources. We will
have more to say on this below.

We have defined a particular set of equivalence classes of
information sources dual to cognitive processes, ecosystems,
and genetic heritage. That set parsimoniously characterizes
the available dynamical manifolds, and, breaking of the as-
sociated groupoid symmetry creates more complex objects of
considerable interest. This leads to the possibility, indeed,
the necessity, of Deus ex Machina mechanisms to force tran-
sitions between the different possible modes within and across
dynamic manifolds.

Equivalence classes of states gave dual information sources
to cognitive systems. Equivalence classes of information
sources give different characteristic system dynamics. Be-
low we will examine equivalence classes of paths, which will
produce different directed homotopy topologies characterizing
those dynamical manifolds. This introduces the possibility of
having different quasi-stable resilience modes within individ-
ual dynamic manifolds. Pink or white noise might provide a
tunable means of creating crosstalk between different topolog-
ical states within a dynamical manifold, or between different
dynamical manifolds altogether.
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Effectively, topological shifts between and within dynamic
manifolds constitute a theory of phase transitions. Indeed,
similar considerations have become central in the study of
phase changes for physical systems. Franzosi and Pettini
(2004), for instance, write

“The standard way of [studying phase transition
in physical systems] is to consider how the values
of thermodynamic observables, obtained in labora-
tory experiments, vary with temperature, volume,
or an external field, and then to associate the ex-
perimentally observed discontinuities at a PT [phase
transition] to the appearance of some kind of sin-
gularity entailing a loss of analyticity... However,
we can wonder whether this is the ultimate level
of mathematical understanding of PT phenomena,
or if some reduction to a more basic level is possi-
ble... [Our] new theorem says that nonanalyticity is
the ‘shadow’ of a more fundamental phenomenon oc-
curring in configuration space: a topology change...
[Our] theorem means that a topology change [in a
particular energy manifold] is a necessary condition
for a phase transition to take place... The topol-
ogy changes implied here are those described within
the framework of Morse theory through attachment
handles...

The converse of our Theorem is not true. There
is not a one-to-one correspondence between phase
transitions and topology changes... an open prob-
lem is that of sufficiency conditions, that is to de-
termine which kinds of topology changes can entail
the appearance of a [phase transition].”

The phenomenological Onsager treatment would also be en-
riched by adoption of a Morse theory perspective on topolog-
ical transitions, following Michel and Mozrzymas (1977).

The next section introduces a further topological complica-
tion.

7 Directed homotopy

To reiterate, we can define equivalence classes of states accord-
ing to whether they can be linked by grammatical/syntactical
high probability ‘meaningful’ paths, generating ‘languages’,
as done in Wallace and Fullilove (2008). Above we developed
equivalence classes of languages constituting dynamic man-
ifolds. Next we ask the precisely complementary question
regarding paths on dynamical manifolds: For any two partic-
ular given states, is there some sense in which we can define
equivalence classes across the set of meaningful paths linking
them?

This is of particular interest in a second order hierarchical
model which, effectively, describes a universality class tuning
of the renormalization parameters characterizing the dancing,
flowing, tunably punctuated process of cognitive function.

A closely similar question is central to recent algebraic ge-
ometry approaches to concurrent, i.e. highly parallel, comput-

ing (e.g. Pratt, 1991; Goubault and Raussen, 2002; Goubault,
2003), which we adapt.

For the moment we restrict the analysis to a system char-
acterized by two Morse-theoretic parameters, say w1 and w2,
and consider the set of meaningful paths connecting two par-
ticular points, say a and b, in the two dimensional w-space
plane of figure 1. The arguments surrounding equations (17),
(18) and (23) suggests that there may be regions of fatal at-
traction and strong repulsion, Black holes and White holes,
which can either trap or deflect the path of the system.

Figures 1 and 2 show two possible configurations for a Black
and a White hole, diagonal and cross-diagonal. If one requires
path monotonicity – always increasing or remaining the same
– then, following, e.g. Goubault (2003, figs. 6,7), there are,
intuitively, two direct ways, without switchbacks, that one can
get from a to b in the diagonal geometry of figure 1, without
crossing a Black or White hole, but there are three in the
cross-diagonal structure of figure 2.

Elements of each ‘way’ can be transformed into each other
by continuous deformation without crossing either the Black
or White hole. Figure 1 has two additional possible mono-
tonic ways, involving over/under switchbacks, which are not
drawn. Relaxing the monotonicity requirement generates a
plethora of other possibilities, e.g. loopings and backwards
switchbacks, whose consideration is left as an exercise. It is
not clear under what circumstances such complex paths can
be meaningful, a matter for further study.

These ways are the equivalence classes defining the topo-
logical structure of the two different w-spaces, analogs to the
fundamental homotopy groups in spaces which admit of loops
(e.g. Lee, 2000). The closed loops needed for classical homo-
topy theory are impossible for this kind of system because
of the ‘flow of time’ defining the output of an information
source – one goes from a to b, although, for nonmonotonic
paths, intermediate looping would seem possible. The theory
is thus one of directed homotopy, dihomotopy, and the cen-
tral question revolves around the continuous deformation of
paths in w-space into one another, without crossing Black or
White holes. Goubault and Rausssen (2002) provide another
introduction to the formalism.

It seems likely that cultural heritage or developmental his-
tory can define quite different dihomotopies in natural ecosys-
tems, cognitive process, and genetic heritage. That is, the
topology will be developmentally modulated.

Such considerations, and indeed the Black Hole develop-
ment of equation (23), suggest that a system which becomes
trapped in a particular pattern of behavior cannot, in general,
expect to emerge from it in the absence of external forcing
mechanisms or the stochastic resonance/mutational action of
‘noise’. Emerging from such a trap involves large-scale topo-
logical changes, and this is the functional equivalent of a phase
transition in a physical system.

This sort of behavior is central to ecosystem resilience the-
ory (Gunderson, 2000; Holling, 1973). The essential idea is
that equivalence classes of dynamic manifolds, and the di-
rected homotopy classes within those manifolds, each and to-
gether create domains of quasi-stability requiring action of
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Figure 1: Diagonal Black and White holes in the two dimen-
sional w-plane. Only two direct paths can link points a and
b which are continuously deformable into one another with-
out crossing either hole. There are two additional monotonic
switchback paths which are not drawn.

Figure 2: Cross-diagonal Black and White holes. Three direct
equivalence classes of continuously deformable paths can link
a and b. Thus the two spaces are topologically distinct. Here
monotonic switchbacks are not possible, although relaxation
of that condition can lead to ‘backwards’ switchbacks and
intermediate loopings.

some external factor for change.
Apparently the set of dynamic manifolds, and its subsets

of directed homotopy equivalence classes, formally classifies
quasi-equilibrium states, and thus characterizes the different
possible resilience modes.

Transitions between markedly different topological modes
appear to be necessary effects of phase transitions, involving
analogs to phase changes in physical systems.

Equivalence classes of quasi-languages generated dynamical
manifolds, which Wallace and Fullilove (2008) and Glazebrook
and Wallace (2007) use to construct a groupoid structure,
and equivalence classes of paths on those manifolds consti-
tute dihomotopy topological states. We have recovered the
essential material of the Spruce budworm example described
in the introduction. Shifts between dihomotopy modes rep-
resent transitions within manifolds, but larger scale shifts,
between manifolds, are also possible, in this model.

Next we consider a particular canonical form of interac-
tion between rapid, mesoscale, and slow information sources,
which will produce the principal results.

8 Red Queen coevolution

8.1 Fragmentation

Natural systems subject to coevolutionary interaction may
become enmeshed in the Red Queen dilemma of Alice in Won-
derland, in that they must undergo constant evolutionary
change in order to avoid extinction – they must constantly
run just to stay in the same place. An example would be
a competitive arms race between predator and prey: Each
evolutionary advance in predation must be met with a coevo-
lutionary adaptation which allows the prey to avoid the more
efficient predator. Otherwise the system will become extinct,
since a highly specialized predator can literally eat itself out
of house and home. Similarly, each prey defense must be
matched by a predator adaptation for the system to persist.

Here we present a fairly elaborate model of coevolution, in
terms of interacting information sources. Interaction events,
we will argue, can be highly punctuated. These may be be-
tween Darwinian genetic, broadly cognitive, or embedding
ecosystem structures.

We begin by examining ergodic information sources and
their dynamics under the self-similarity of a renormalization
transformation near a punctuated phase transition. We then
study the linked interaction of two information sources in
which the richness of the quasi-language of each affects the
other, that is, when two information sources have become one
another’s primary environments. This leads directly and nat-
urally to a coevolutionary Red Queen. We will conclude by
generalizing the development to a ‘block diagonal’ structure
of several interacting sources.

The structures of interest to us here can be most weakly,
and hence universally, described in terms of an adiabatically,
piecewise stationary, ergodic information source involving a
stochastic variate X which, in some general sense, sends sym-
bols α in correlated sequences α0, α1...αn−1 of length n (which
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may vary), according to a joint probability distribution, and
its associated conditional probability distribution,

P [X0 = α0, X1 = α1, ...Xn−1 = αn−1],

P [Xn−1 = αn−1|X0 = α0, ...Xn−2 = αn−2].

If the conditional probability distribution depends only on
m previous values of X, then the information source is said
to be of order m (Ash, 1990).

By ‘ergodic’ we mean that, in the long term, correlated se-
quences of symbols are generated at an average rate equal to
their (joint) probabilities. ‘Adiabatic’ means that changes are
slow enough to allow the necessary limit theorems to func-
tion, ‘stationary’ means that, between pieces, probabilities
don’t change (much), and ‘piecewise’ means that these prop-
erties hold between phase transitions, which are described
using renormalization methods.

As the length of the (correlated) sequences increases with-
out limit, the Shannon-McMillan Theorem permits division of
all possible streams of symbols into two groups, a relatively
small number characterized as meaningful, whose long-time
behavior matches the underlying probability distribution, and
an increasingly large set of gibberish with vanishingly small
probability. Let N(n) be the number of possible meaningful
sequences of length n emitted by the source X. Again, uncer-
tainty of the source, H[X], can be defined by the subadditive
relation

H[X] = lim
n→∞

log[N(n)]
n

.

The Shannon-McMillan Theorem shows how to character-
ize H[X] directly in terms of the joint probability distribution
of the source X: H[X] is observable and can be calculated
from the inferred pattern of joint probabilities.

Let P [xi|yj ] be the conditional probability that stochastic
variate X = xi given that stochastic variate Y = yj and let
P [xi, yj ] be the joint probability that X = xi and Y = yj .
Then the joint uncertainty of X and Y , H(X,Y ), is given by

H(X,Y ) = −
∑
i

∑
j

P (xi, yj) log[P (xi, yj)].

The conditional uncertainty of X given Y is defined as

H(X|Y ) = −
∑
i

∑
j

P (xi, yj) log[P (yj |xi)].

Again, the Shannon-McMillan Theorem of states that the
subadditive function for H[X] is given by the limits

H[X] = lim
n→∞

H(Xn|X0, ..., Xn−1)

= lim
n→∞

H(X0, X1, ..., Xn)
n+ 1

.

Estimating the probabilities of the sequences α0, ...αn−1

from observation, the ergodic property allows us to use them

to estimate the uncertainty of the source, i.e. of the behav-
ioral language X. That is, H[X] is directly measurable.

Some elementary consideration (e.g. Ash, 1990; Cover and
Thomas, 1991) shows that source uncertainty has a least up-
per bound, a supremum, defined by the capacity of the chan-
nel along which information is transmitted. That is, there ex-
ists a number C defined by externalities such that H[X] ≤ C.
C is the maximum rate at which the external world can

transmit information originating with the information source,
or that internal workspaces can communicate. Much of the
subsequent development could, in fact, be expressed using this
relation.

Again recall the relation

H[X] = lim
n→∞

log[N(n)]/n,

and its analog with a physical system having volume V
which undergoes a phase transition depending on an inverse
temperature parameter K = 1/T at a critical temperature
TC . Remember that the free energy density F (K) of a phys-
ical system is defined by

F (K) = lim
V→∞

log[Z(K)]
V

,

where V is as above and Z(K) is the partition function
defined from the system’s energy distribution.

Imposition of a renormalization symmetry on F (K) de-
scribes, in the infinite volume limit, the behavior of the system
at the phase transition in terms of scaling laws (K. Wilson,
1971). After some development, taking the limit n → ∞ as
an analog to the infinite volume limit of a physical system,
we will apply this approach to a source uncertainty associ-
ated with crosstalking internal information sources. We will
examine changes in their structure as a fundamental ‘inverse
temperature’ changes across the underlying system.

We use three parameters to describe the relations between
an information source and its environment or between differ-
ent interacting sources.

The first, J ≥ 0, measures the degree to which acquired
characteristics are transmitted. For systems without memory
J = 0. J ≈ 0 thus represents a high degree of genetic as
opposed to cultural inheritance.
J will always remain distinguished, a kind of inherent direc-

tion or external field strength in the sense of Wilson (1971).
The second parameter, Q = 1/C ≥ 0, represents the inverse

availability of resources. Q ≈ 0 thus represents a high ability
to renew and maintain an particular system, in a large sense.

The third parameter, K = 1/T , is an inverse index of a
generalized temperature T , which we will more directly spec-
ify below in terms of the richness of interacting information
sources.

We suppose further that the structure of interest is implic-
itly embedded in, and operates within the context of, a larger
manifold stratified by metric distances.

Take these as multidimensional vector quantities A, B,
C.... A may represent location in space, time delay, or the
like, and B may be determined through multivariate analysis
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of a spectrum of observed behavioral or other factors, in the
largest sense, etc.

It may be possible to reduce the effects of these vectors to
a function of their magnitudes a = |A|, b = |B| and c = |C|,
etc. Define the generalized distance r as

r2 = a2 + b2 + c2 + ....

(25)

To be more explicit, we assume an ergodic information
source X is associated with the reproduction and/or persis-
tence of a population, ecosystem, cognitive language or other
structure. The source X, its uncertainty H[J,K,Q,X] and
its parameters J,K,Q all are assumed to depend implicitly
on the embedding manifold, in particular on the metric r of
equation (25).

A particularly elegant and natural formalism for generat-
ing such punctuation in our context involves application of
Wilson’s (1971) program of renormalization symmetry – in-
variance under the renormalization transform – to source un-
certainty defined on the r-manifold. The results predict that
language in the most general sense, which includes the trans-
fer of information within a system, or between it and an em-
bedding context, will undergo sudden changes in structure
analogous to phase transitions in physical systems.

We must, however, emphasize that this approach is argu-
ment by abduction, in Hodgson’s (1993) sense, from phys-
ical theory: Much current development surrounding self-
organizing physical phenomena is based on the assumption
that at phase transition a system looks the same under renor-
malization. That is, phase transition represents a stationary
point for a renormalization transform in the sense that the
transformed quantities are related by simple scaling laws to
the original values.

Renormalization is a clustering semigroup transformation
in which individual components of a system are combined
according to a particular set of rules into a ‘clumped’ system
whose behavior is a simplified average of those components.
Since such clumping is a many-to-one condensation, there can
be no unique inverse renormalization, and, as the Appendix
shows, many possible forms of condensation.

Assume it possible to redefine characteristics of the infor-
mation source X and J,K,Q as functions of averages across
the manifold having metric r, which we write as R. That
is, ‘renormalize’ by clustering the entire system in terms of
blocks of different sized R.

Let N(K,J,Q, n) be the number of high probability mean-
ingful correlated sequences of length n across the entire com-
munity in the r-manifold, given parameter values K,J,Q. We
study changes in

H[K,J,Q,X] ≡ lim
n→∞

log[N(K,J,Q, n)]
n

as K → KC and/or Q→ QC for critical values KC , QC at
which the community begins to undergo a marked transfor-
mation from one kind of structure to another.

Given the metric of equation (25), a correlation length,
χ(K,J,Q), can be defined as the average length in r-space
over which structures involving a particular phase dominate.

Now clump the ‘community’ into blocks of average size R in
the multivariate r-manifold, the ‘space’ in which the cognitive
enterprise is implicitly embedded.

Following the classic argument of Wilson (1971), repro-
duced and expanded in the Appendix, it is possible to im-
pose renormalization symmetry on the source uncertainty on
H and χ by assuming at transition the relations

H[KR, JR, QR,X] = RDH[K,J,Q,X]

(26)

and

χ(KR, JR, QR) =
χ(K,J,Q)

R

(27)

hold, where KR, JR and QR are the transformed values of
K, J and Q after the clumping of renormalization. We take
K1, J1, Q1 ≡ K,J,Q and permit the characteristic exponent
D to be nonintegral. The Mathematical Appendix provides
examples of other possible relations.

Equations (26) and (27) are assumed to hold in a neighbor-
hood of the transition values KC and QC .

Differentiating these with respect to R gives complicated
expressions for dKR/dR, dJR/dR and dQR/dR depending
simply on R which we write as

dKR/dR =
u(KR, JR, QR)

R

dQR/dR =
w(KR, JR, QR)

R

dJR/dR =
v(KR, JR, QR)

R
JR.

(28)
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Solving these differential equations gives KR, JR and QR
as functions of J,K,Q and R.

Substituting back into equations (26) and (27) and expand-
ing in a first order Taylor series near the critical values KC

and QC gives power laws much like the Widom-Kadanoff re-
lations for physical systems (Wilson, 1971). For example,
letting J = Q = 0 and taking κ ≡ (KC − K)/KC gives, in
first order near KC ,

H = κD/yH0

χ = κ−1/yχ0

(29)

where y is a constant arising from the series expansion.
Note that there are only two fundamental equations – (26)

and (27) – in n > 2 unknowns: The critical ‘point’ is, in this
formulation, most likely to be a complicated implicitly de-
fined critical surface in J,K,Q, ...-space. The ‘external field
strength’ J remains distinguished in this treatment, i.e. the
inverse of the degree to which acquired characteristics are in-
herited, but neither K, Q nor other parameters are, by them-
selves, fundamental, rather their joint interaction defines crit-
ical behavior along this surface.

That surface is a fundamental object, not the particular set
of parameters (except for J) used to define it, which may be
subject to any set of transformations which leave the surface
invariant. Thus whatever parameters drive the system are
inextricably intertwined and mutually interacting, according
to the form of this critical evolutionary transition surface.
That surface, in turn, is unlikely to remain fixed, and should
vary with time or other extrinsic parameters, including, but
not likely limited to, J .

At the critical surface a Taylor expansion of the renormal-
ization equations (26) and (27) gives a first order matrix of
derivatives whose eigenstructure defines fundamental system
behavior. For physical systems the surface is a saddle point
(Wilson, 1971), but more complicated behavior seems likely
in what we study. See Binney et al., (1986) for some details
of this differential geometry.

Taking, for the moment, the simplest formulation, (J =
Q = 0), as K increases toward a threshold value KC , the
source uncertainty of the reproductive, behavioral or other
language common across the community declines and, at KC ,
the average regime dominated by the ‘other phase’ grows.
That is, the system begins to freeze into one having a large
correlation length for the second phase. The two phenomena
are linked at criticality in physical systems by the scaling
exponent y.

Assume the rate of change of κ = (KC −K)/KC remains
constant, |dκ/dt| = 1/τK . Analogs with physical theory sug-
gest there is a characteristic time constant for the phase tran-
sition, τ ≡ τ0/κ, such that if changes in κ take place on a

timescale longer than τ for any given κ, we may expect the
correlation length χ = χ0κ

−s, s = 1/y, will be in equilibrium
with internal changes and result in a very large fragment in
r-space. Following Zurek (1985, 1996), the ‘critical’ freezout
time, t̂, will occur at a ‘system time’ t̂ = χ/|dχ/dt| such that
t̂ = τ . Taking the derivative dχ/dt, remembering that by
definition dκ/dt = 1/τK , gives

χ

|dχ/dt|
=
κτK
s

=
τ0
κ

so that

κ =
√
sτ0/τK .

Substituting this value of κ into the equation for correla-
tion length, the expected size of fragments in r-space, d(t̂),
becomes

d ≈ χ0(
τK
sτ0

)s/2

with s = 1/y > 0. The more rapidly K approaches KC

the smaller is τK and the smaller and more numerous are
the resulting r-space fragments. Thus rapid change produces
small fragments more likely to risk extinction in a system
dominated by economies of scale.

8.2 Recursion

Extending the theory above involves envisioning recipro-
cally interacting genetic, cognitive or ecosystem information
sources as subject to a coevolutionary Red Queen by treating
their respective source uncertainties as recursively parame-
tized by each other. That is, assume the information sources
are each other’s primary environments. These are, respec-
tively, characterized by information sources X and Y, whose
uncertainties are parametized

[1] by measures of both inheritance and inverse resources –
J Q as above – and, most critically,

[2] by each others inverse uncertainties, HX ≡ 1/H[X] and
HY ≡ 1/H[Y], i.e.

H[X] = H[Q, J,HY ,X]

H[Y] = H[Q, J,HX ,Y].

(30)

This is a recursive system having complex behaviors.
Assume a strongly heritable genetic system, i.e. J = 0,

with fixed inverse resource base, Q, for which H[X] follows
something like the lower graph in figure 3, a reverse S-shaped
curve with K ≡ HY = 1/H[Y], and similarly H[Y] depends
on HX . That is, increase or decline in the source uncertainty
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Figure 3: A reverse-S-shaped curve for source uncertainty
H[X] – measuring language richness – as a function of an
inverse temperature parameter K = 1/H[Y]. To the right
of the critical point KC the system breaks into fragments
in r-space whose size is determined by the rate at which K
approaches KC .

A collection of fragments already to the right of KC ,
however, would be seen as condensing into a single unit as
K declined below the critical point. If K is an inverse source

uncertainty itself, i.e. K = 1/H[Y] for some information
source Y, then under such conditions a Red Queen dynamic
can become enabled, driving the system strongly to the left.

No intermediate points are asymptotically stable, given a
genetic heritage in this development, although generalized
Onsager/dynamical arguments suggest that the repulsive

peak in S = H −K/dH/dK can serve to create quasi-stable
resilience realms. To the right of the critical point KC the

system is locked into disjoint fragments.

of one system leads to increase or decline in the source uncer-
tainty of the other, and vice versa.

Start at the right of the lower graph for H[X] in figure 3, the
source uncertainty of one system, but to the left of the critical
point KC . Assume H[Y] increases so HY decreases, and thus
H[X] increases, walking up the lower curve of figure 3 from the
right: the richness of the system’s internal language increases
– or the interaction between structures increases the richness
of their associated information sources – they get smarter or
faster or more poisonous, or their herd behavior becomes more
sophisticated in the presence of a predator.

The increase of H[X] leads, in turn, to a decline in HX and
triggers an increase of H[Y], whose increase leads to a further
increase of H[X] and vice versa: The Red Queen, taking the
system from the right of figure 3 to the left, up the lower curve
as the two systems mutually interact.

The upper graph of figure 3 represents the disorder

S = H[K,X]−KdH[K,X]/dK,K ≡ 1/H[Y].

According to the dynamical manifold analysis, the peak in
S represents a repulsive barrier for transition between high
and low values of H[X]. This leads to the expectation of
hysteresis. That is, the two realms, to the left and right of
the peak in S for figure 3, thus represent quasi-stable resilience
modes, in this model.

8.3 Extension

The model directly generalizes to multiple interacting infor-
mation sources.

First consider a matrix of crosstalk measures between a set
of information sources. Assume the matrix can be block di-
agonalized into two major components, characterized by net-
work information source measures like equation (16),

Im(X1...Xi|Y1...Yj |Z1...Zk),m = 1, 2.

Then apply the two-component theory above.
Extending the development to multiple, recursively inter-

acting information sources resulting from a more general
block diagonalization seems direct. First use inverse mea-
sures Ij ≡ 1/Ij , j 6= m as parameters for each of the other
blocks, writing

Im = Im(K1...Ks, ...Ij ...), j 6= m

where the Ks represent other relevant parameters.
Next segregate the Ij according to their relative rates of

change, as in equation (16). Cognitive gene expression would
be among the most rapid, followed by ecosystem dynamics
and selection.

The dynamics of such a system, following the pattern of
equations (18) and (24), becomes a recursive network of
stochastic differential equations, similar to those used to study
many other highly parallel dynamic structures (e.g. Wymer,
1997).
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Letting the Kj and Im all be represented as parameters Qj ,
(with the caveat that Im not depend on Im), one can define

SmI ≡ Im −
∑
i

Qi∂Im/∂Qi

to obtain a complicated recursive system of phenomenolog-
ical ‘Onsager relations’ stochastic differential equations like
(24),

dQjt =
∑
i

[Lj,i(t, ...∂SmI /∂Q
i...)dt+σj,i(t, ...∂SmI /∂Q

i...)dBit],

(31)

where, again, for notational simplicity only, we have ex-
pressed both the reciprocial I’s and the external K’s in terms
of the same Qj .
m ranges over the Im and we could allow different kinds

of ‘noise’ dBit, having particular forms of quadratic variation
which may, in fact, represent a projection of environmental
factors under something like a rate distortion manifold (Wal-
lace and Wallace, 2008).

Indeed, the Im and/or the derived Sm might, in some cir-
cumstances, be combined into a Morse function, permitting
application of Pettini’s Topological Hypothesis.

The model rapidly becomes unwieldy, probably requiring
some clever combinatorial or groupoid convolution algebra
and related diagrams for concise expression, much as in the
usual field theoretic perturbation expansions (Hopf algebras,
for example). The virtual reaction method of Zhu et al.
(2007) is another possible approach.

As in the simple model above, there will be, first, multiple
quasi-stable points within a given system’s Im, representing
a class of generalized resilience modes accessible via punc-
tuation and enmeshing gene selection, gene expression, and
ecological resilience – analogous to the simple model of figure
3.

Second, however, will be analogs to the fragmentation of
figure 3 when the system exceeds the critical value Kc. That
is, the K-parameter structure will represent full-scale frag-
mentation of the entire structure, and not just punctuation
within it.

We thus infer two classes of punctuation possible for this
kind of structure, both of which could entrain ecosystem re-
silience shifts, gene expression, and gene selection, although
the latter kind would seem to be the far more dramatic.

There are other possible patterns: [1] Setting equation (31)
equal to zero and solving for stationary points again gives
attractor states since the noise terms preclude unstable equi-
libria. [2] Unlilke equation (24), however, this system may
converge to limit cycle behavior in which the system seems to
chase its tail endlessly. [3] What is converged to in both cases
is not a simple state or limit cycle of states. Rather it is an

equivalence class, or set of them, of highly dynamic informa-
tion sources coupled by mutual interaction through crosstalk.
Thus ‘stability’ in this structure represents particular patterns
of ongoing dynamics rather than some identifiable ‘state’.

Here we are, at last and indeed, deeply enmeshed in a highly
recursive phenomenological stochastic differential equations,
but at a deeper level than Zhu et al. (2007) envisioned for
gene expression alone, and in a dynamic rather than static
manner: the objects of this dynamical system are equivalence
classes of information sources and their crosstalk, rather than
simple ‘states’ of a dynamical or reactive chemical system.

Imposition of necessary conditions from the asymptotic
limit theorems of communication theory has, at least in the-
ory, beaten the thicket back one full layer.

Other formulations may well be possible, but our work here
serves to illustrate the method.

It is, however, interesting to compare our results to those
of Dieckmann and Law (1996), who invoke evolutionary game
dynamics to obtain a first order canonical equation having the
form

dsi/dt = Ki(s)∂Wi(s′i, s)|s′i=si
.

(32)

Dieckmann and Law describe this as follows:

“The si, with i = 1, ..., N denote adaptive
trait values in a community comprising N species.
The Wi(s′i, s) are measures of fitness of individuals
with trait values s′i in the environment determined
by the resident trait values s, and the Ki(s) are
non-negative coefficients, possibly distinct for each
species, that scale the rate of evolutionary change.
Adaptive dynamics [of this kind] have frequently
been postulated, based either on the notion of a hill-
climbing process on an adaptive landscape or some
other sort of plausibility argument...”

When this equation is set equal to zero, so there is no time
dependence, one obtains what are characterized as ‘evolution-
ary singularities’, i.e. stationary points.

Dieckmann and Law contend that their formal derivation
of this equation satisfies four critical requirements: [1] The
evolutionary process needs to be considered in a coevolution-
ary context. [2] A proper mathematical theory of evolution
should be dynamical. [3] The coevolutionary dynamics ought
to be underpinned by a microscopic theory. [4] The evolu-
tionary process has important stochastic elements.

Our equation (31) seems clearly within this same ballpark,
although we have taken a much different route, one which in-
deed produces elaborate patterns of phase transition punctu-
ation in a highly natural manner. Champagnat et al. (2006),
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in fact, derive a higher order canonical approximation extend-
ing equation (32) which is very much closer equation to (31),
that is, a stochastic differential equation describing evolution-
ary dynamics. Champagnat et al. (2006) go even further,
using a large deviations argument to analyze dynamical co-
evolutionary paths, not merely evolutionary singularities:

“In general, the issue of evolutionary dynam-
ics drifting away from trajectories predicted by the
canonical equation can be investigated by consider-
ing the asymptotic of the probability of ‘rare events’
for the sample paths of the diffusion. By ‘rare events’
we mean diffusion paths drifting far away from the
canonical equation. The probability of such rare
events is governed by a large deviation principle...:
when [a critical parameter ε] goes to zero, the prob-
ability that the sample path of the diffusion is close
to a given rare path φ decreases exponentially to 0
with rate I(φ), where the ‘rate function’ I can be ex-
pressed in terms of the parameters of the diffusion...

This result can be used to study long-time behav-
ior of the diffusion process when there are multiple
attractive evolutionary singularities... [under proper
conditions] the most likely path followed by the dif-
fusion when exiting [a basin of attraction] is the one
minimizing the rate function I over all the [appro-
priate] trajectories... The time needed to exit [the
basin is] of the order [exp(H/ε) where H is a quasi-
potential representing the minimum of the rate func-
tion I over all possible trajectories]...”

An essential fact of large deviations theory is that the rate
function I which Champagnat et al. (2006) invoke can al-
most always be expressed as a kind of entropy, that is, in
the form I ∝

∑
j Pj log(Pj) for some probability distribution.

This result goes under a number of names; Sanov’s Theorem,
Cramer’s Theorem, the Garnter-Ellis Theorem, the Shannon-
McMillan Theorem, and so forth (e.g. Dembo and Zeitouni,
1998). Here we will use it, in combination with the cognitive
paradigm for gene expression, to suggest the possibility of sec-
ond order effects in coevolutionary process. That is, gene ex-
pression, because of its underlying cognitive nature, may be
an even more central aspect of coevolutionary process than
is currently understood: The fluctuational paths defined by
the system of equations in (31) may, under some conditions,
become serially correlated outputs of an information source
driven by cognitive gene expression. In particular, the co-
evolutionary pressures inherent to equation (31) may in fact
strongly select for significant cognition in gene expression.

8.4 Higher order coevolution

We begin with a recapitulation of large deviations and fluc-
tuation formalism.

Information source uncertainty, according to the Shannon-
McMillan Theorem, serves as a splitting criterion between
high and low probability sequences (or pairs of them) and
displays the fundamental characteristic of a growing body of

work in applied probability often termed the Large Deviations
Program, (LDP) which seeks to unite information theory, sta-
tistical mechanics and the theory of fluctuations under a single
umbrella.

Following Dembo and Zeitouni, (1998, p.2), let
X1, X2, ...Xn be a sequence of independent, standard
Normal, real-valued random variables and let

Sn =
1
n

n∑
j=1

Xj .

(33)

Since Sn is again a Normal random variable with zero mean
and variance 1/n, for all δ > 0

lim
n→∞

P (|Sn| ≥ δ) = 0,

(34)

where P is the probability that the absolute value of Sn is
greater or equal to δ. Some manipulation, however, gives

P (|Sn| ≥ δ) = 1− 1√
2π

∫ δ
√
n

−δ
√
n

exp(−x2/2)dx,

(35)

so that

lim
n→∞

logP (|Sn| ≥ δ)
n

= −δ2/2̇

(36)

This can be rewritten for large n as

P (|Sn| ≥ δ) ≈ exp(−nδ2/2).

(37)
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That is, for large n, the probability of a large deviation
in Sn follows something much like the asymptotic equipar-
tition relation of the Shannon-McMillan Theorem, i.e. that
meaningful paths of length n all have approximately the same
probability P (n) ∝ exp(−nH[X]).

Questions about meaningful paths appear suddenly as for-
mally isomorphic to the central argument of the LDP which
encompasses statistical mechanics, fluctuation theory, and in-
formation theory into a single structure (Dembo and Zeitouni,
1998).

Perhaps the cardinal tenet of large deviation theory is that
the rate function −δ2/2 can, under proper circumstances,
be expressed as a mathematical entropy having the standard
form

−
∑
k

pk log pk,

(38)

for some set of probabilities pk. Again, this striking result
goes under various names at various levels of approximation –
Sanov’s Theorem, Cramer’s Theorem, the Gartner-Ellis The-
orem, the Shannon-McMillan Theorem, and so on (Dembo
and Zeitouni, 1998).

Next we briefly recapitulate part of the standard treatment
of large fluctuations (Onsager and Machlup, 1953; Fredlin and
Wentzell, 1998).

The macroscopic behavior of a complicated physical system
in time is assumed to be described by the phenomenological
Onsager relations giving large-scale fluxes as

∑
i

Ri,jdKj/dt = ∂S/∂Ki,

(39)

where the Ri,j are appropriate constants, S is the system
entropy and the Ki are the generalized coordinates which
parametize the system’s free energy.

Entropy is defined from free energy F by a Legendre trans-
form – more of which follows below:

S ≡ F −
∑
j

Kj∂F/∂Kj ,

where the Kj are appropriate system parameters.
Neglecting volume problems for the moment, free energy

can be defined from the system’s partition function Z as

F (K) = log[Z(K)].

The partition function Z, in turn, is defined from the sys-
tem Hamiltonian – defining the energy states – as

Z(K) =
∑
j

exp[−KEj ],

where K is an inverse temperature or other parameter and
the Ej are the energy states.

Inverting the Onsager relations gives

dKi/dt =
∑
j

Li,j∂S/∂Kj = Li(K1, ...,Km, t) ≡ Li(K, t).

(40)

The terms ∂S/∂Ki are macroscopic driving forces depen-
dent on the entropy gradient.

Let a white Brownian noise ε(t) perturb the system, so that

dKi/dt =
∑
j

Li,j∂S/∂Kj + ε(t)

= Li(K, t) + ε(t),

(41)

where the time averages of ε are < ε(t) >= 0 and <
ε(t)ε(0) >= Dδ(t). δ(t) is the Dirac delta function, and we
take K as a vector in the Ki.

Following Luchinsky (1997), if the probability that the sys-
tem starts at some initial macroscopic parameter state K0 at
time t = 0 and gets to the state K(t) at time t is P (K, t),
then a somewhat subtle development (e.g. Feller, 1971) gives
the forward Fokker-Planck equation for P :

∂P (K, t)/∂t = −∇ · (L(K, t)P (K, t)) + (D/2)∇2P (K, t).

(42)

In the limit of weak noise intensity this can be solved using
the WKB, i.e. the eikonal, approximation, as follows: take
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P (K, t) = z(K, t) exp(−s(K, t)/D).

(43)

z(K, t) is a prefactor and s(K, t) is a classical action satis-
fying the Hamilton-Jacobi equation, which can be solved by
integrating the Hamiltonian equations of motion. The equa-
tion reexpresses P (K, t) in the usual parametized negative
exponential format.

Let p ≡ ∇s. Substituting and collecting terms of similar
order in D gives

dK/dt = p+ L, dp/dt = −∂L/∂Kp

(44)

and

−∂s/∂t ≡ h(K, p, t) = pL(K, t) +
p2

2
,

(45)

with h(K, t) the Hamiltonian for appropriate boundary con-
ditions.

Again following Luchinsky (1997), these Hamiltonian equa-
tions have two different types of solution, depending on p. For
p = 0, dK/dt = L(K, t) which describes the system in the ab-
sence of noise. We expect that with finite noise intensity the
system will give rise to a distribution about this determin-
istic path. Solutions for which p 6= 0 correspond to optimal
paths along which the system will move with overwhelming
probability.

These results can, however, again be directly derived as a
special case of a Large Deviation Principle based on gener-
alized entropies mathematically similar to Shannon’s uncer-
tainty from information theory, bypassing the Hamiltonian
formulation entirely (Dembo and Zeitouni, 1998).

For a cognitive system characterized by a dual information
source, of course, there is no Hamiltonian, but the generalized
entropy or splitting criterion treatment still works. The trick
is to do with information source uncertainty what is done here
with a Hamiltonians.

Here we are concerned, not with a random Brownian dis-
tortion of simple physical systems, but, invoking cognitive
gene expression, with a possibly complex behavioral struc-
ture, in the largest sense, composed of quasi-independent ac-
tors for which meaningful/optimal paths have extremely struc-
tured serial correlation, amounting to a grammar and syntax,

precisely the fact which allows definition of an information
source and enables the use of the very sparse equipartition of
the Shannon-McMillan and Rate Distortion Theorems.

In sum, to again paraphrase Luchinsky (1997), large fluctu-
ations, although infrequent, are fundamental in a broad range
of processes, and it was recognized by Onsager and Machlup
(1953) that insight into the problem could be gained from
studying the distribution of fluctuational paths along which
the system moves to a given state. This distribution is a fun-
damental characteristic of the fluctuational dynamics, and its
understanding leads toward control of fluctuations. Fluctu-
ational motion from the vicinity of a stable state may occur
along different paths. For large fluctuations, the distribution
of these paths peaks sharply along an optimal, most probable,
path. In the theory of large fluctuations, the pattern of opti-
mal paths plays a role similar to that of the phase portrait in
nonlinear dynamics.

In this development meaningful paths driven by cognitive
gene expression can play something of the role of optimal
paths in the theory of large fluctuations which Champagnat et
al. (2006) have invoked, but without benefit of a Hamiltonian.

The spread of the possible spectrum of cognitive gene ex-
pression within a species, affecting the ability to adapt to
changing ecological niches, then becomes central to the miti-
gation of selection pressures generated by coevolutionary dy-
namics: too limited a response repertoire will cause a species
to become fully entrained into high probability dynamical
fluctuational paths leading to punctuated extinction events.
A broad spectrum allows a species to ride out much more of
the coevolutionary selection pressure.

A sufficiently broad repertoire of cognitive gene expression
responses leads, however, to the necessity of a second order
coevolution model in which the high probability fluctuational
paths defined by the system of equations (31) are, in fact,
themselves the output of some information source. This is a
model closely analogous to the second order cognitive struc-
tures needed to explain animal consciousness (e.g. Wallace,
2005a). Intuitively, this transition to ‘cognitive coevolution’
would be particularly likely under the influence of a strong
system of epigenetic inheritance, that is, an animal culture
extending the niche spectrum offered by cognitive gene ex-
pression alone. Thus we could expand this development to
one encompassing biocultural coevolution, in particular the
development of agriculture, matters to be pursued in subse-
quent work.

9 Discussion and conclusions

The basic point is the inevitability of punctuation in gener-
alized coevolutionary interactions, representing fundamental
structural changes in underlying manifolds, roughly analo-
gous to the topological hypothesis of Pettini (2007). Thus
evolution, resilience, and cognitive phenomena, which can all
be (at least crudely) represented by information sources, are
inherently subject to punctuated equilibrium phenomena es-
sentially similar to ecosystem resilience. This pattern will
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involve each individually, as well as their interactions, a con-
sequence of the fundamental homology between information
source uncertainty and free energy density.

Holling (1992) describes the particular role of the mesoscale
in ecological structures as follows:

“[Analysis suggests] The Extended Keystone Hy-
pothesis: All ecosystems are controlled and orga-
nized by a small number of key plant, animal, and
abiotic processes that structure the landscape at dif-
ferent scales.

The Entrainment Hypothesis: Within any one
ecosystem, the periodicities and architectural at-
tributes of the critical structuring processes will es-
tablish a nested set of periodicities and spatial fea-
tures that become attractors for other variables...

...The degree to which small, fast events influence
larger, slower ones is critically dependent upon...
mesoscale disturbance processes.”

Our lowest common denominator information theoretic ap-
proach to coevolutionary interaction between genes, embed-
ding ecosystem, and cognitive process identifies ecosystem
phenomena as the driving mesoscale: cognitive phenomena
are much faster, and (for large animals) genetic change much
slower.

That is, punctuated changes in ecosystem structure, the
traditional purview of ecological resilience, appear able to en-
train both Darwinian genetic and cognitive phenomena – in-
cluding gene expression, triggering similarly punctuated out-
comes, on top of the punctuation naturally inherent to these
information systems.

Thus, while discontinuous phase transitions are ‘natural’
at all scales of biological information process, we argue here
that punctuated changes in embedding ecosystem resilience
regime will be particularly effective at entraining faster cog-
nitive and slower Darwinian genetic structural phenomena.
In particular, punctuated changes in ecosystem structure can
write images of themselves onto genetic sequence structure in
a punctuated manner, resulting in punctuated population ex-
tinction and/or speciation events on geologic timescales, and
in sudden changes in gene expression and other cognitive phe-
nomena on more rapid timescales.

This is not an entirely new idea. Laland et al. (1999) have
used a different methodology to reach similar conclusions:

“There is increasing recognition that all organ-
isms modify their environments... a process that
we call ‘niche construction’. Such modifications can
have profound effects on the distribution and abun-
dance of organisms, the influence of keystone species,
the control of energy and material flows, residence
and return times, ecosystem resilience, and specific
trophic relationships... The consequences of envi-
ronment modification by organisms, however, are
not restricted to ecology, and organisms can affect
both their own and each other’s evolution by mod-
ifying sources of natural selection in their environ-
ments... Lewontin... points out that many of the

activities of organisms, such as migration, hoarding
of food resources, habitat selection, or thermoregu-
latory behavior, are adaptive precisely because they
dampen statistical variation in the availability of en-
vironmental resources...

Hitherto, it has not been possible to apply evo-
lutionary theory to ecosystems, because of the pres-
ence of nonevolving abiota in ecosystems. We sus-
pect this obstacle has been largely responsible for
preventing the full integration of ecosystem ecology
with population-community ecology... However...
adding the new process of niche construction to
the established process of natural selection... en-
ables the incorporation of both abiotic environmen-
tal components and interactions among populations
and abiota in ecosystems into evolutionary models...
[an approach] equally applicable to both population-
community ecology and ecosystem-level ecology...”

More recently Dercole et al. (2006) have addressed the
problem using their version of equation (32) to produce very
complex dynamical patterns:

“Understanding the determinants of population
dynamics is an important theme throughout biol-
ogy, from human health to conservation. In studying
population dynamics, much research has addressed
how ecological interactions affect population stabil-
ity yet ignoring the genetic diversity and ensuing
evolvability of populations... The dynamical inter-
play of ecology and evolution prompts three general
questions...: (i) how does evolution of adaptive traits
affect the ecological stability of a community? (ii)
Under which conditions are ecological interactions
expected to beget fluctuations in a population’s ge-
netic state? (iii) How do eco-evolutionary dynam-
ics respond to environmental change?... [A] unified
analysis of eco-evolutionary dynamics in communi-
ties containing ‘slow’ and ‘fast’ populations... allows
us to relax the ecological equilibrium assumption.

Slow-fast systems are composed of populations
whose ecological fluctuations develop on contrasting
time-scales...”

Whitham et al. (2006), in parallel with our approach, take
a genetic framework associated with ecologically-dominant
keystone species to examine what they call community and
ecosystem phenotypes:

“Can heritable traits in a single species affect
an entire ecosystem? Recent studies show that
such traits... have predictable effects on community
structure and ecosystem processes. Because these
community and ecosystem phenotypes have a ge-
netic basis and are heritable, we can begin to ap-
ply the principles of population and quantitative ge-
netics to place the study of complex communities
and ecosystems within an evolutionary framework.
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This... could allow us to understand, for the first
time, the genetic basis of ecosystem processes, and
the effect of such phenomena as climate change and
introduced transgenetic organisms on entire commu-
nities.”

Whitham et al. (2006) go on to define community evolution
as a genetically based change in the ecological interactions
that occur between species over time.

Here, by contrast, although we too focus on keystone scales,
our particular innovation has been to reduce the dynam-
ics of genetic inheritance, ecosystem persistence, and gene
expression to a least common denominator as information
sources operating at markedly different rates, but coupled by
crosstalk into a broadly coevolutionary phenomenon marked
at all scales by emergent ‘phase transition’ phenomena gen-
erating patterns of punctuated equilibrium.

We have, at times, grossly simplified the mathematical
analysis. Invocation of equivalence class arguments leads
naturally into deep groupoid structures and related topo-
logical generalizations, including Morse theory (Wallace and
Fullilove, 2008). Taking a ‘mean number’ rather than the
mean field approach of the Mathematical Appendix generates
a qualitatively different class of exactly solvable models, based
on giant component phase transitions in networks. Hybrids of
the two are possible, and evolutionary process is unlikely to
be at all constrained by formal mathematical tractability. In
addition higher cognitive phenomena like individual or group
consciousness require second order models analogous to hier-
archical regression. Much of this is described in Wallace and
Fullilove (2008).

From a larger perspective, however, what we have devel-
oped is really a class of ‘necessary conditions’ statistical mod-
els based on the Shannon McMillan and Rate Distortion The-
orems. These are, in spirit, much like regression models based
on the Central Limit Theorem. The scientific utility of such
things is not as some universal theoretical solvent, or as the
biological equivalent of a unified field theory, but rather as em-
pirical models fitted to data. The science then emerges, with
the usual difficulties, from comparisons of one system under
different conditions, or between different systems under sim-
ilar conditions. At best, treating what we have developed as
conceptual models, E.C. Pielou’s (1977) important warning
regarding the role of mathematical speculation in biological
theory remains relevant:

“...[Mathematical models] are easy to devise;
even though the assumptions of which they are con-
structed may be hard to justify, the magic phrase ‘let
us assume that...’ overrides objections temporarily.
One is then confronted with a much harder task:
How is such a model to be tested? The correspon-
dence between a model’s predictions and observed
events is sometimes gratifyingly close but this can-
not be taken to imply the model’s simplifying as-
sumptions are reasonable in the sense that neglected
complications are indeed negligible in their effects...

In my opinion the usefulness of models is great...
[however] it consists not in answer questions but in
raising them. Models can be used to inspire new
field investigations and these are the only source of
new knowledge as opposed to new speculation.”

The principal model-based speculation of this work is that
mesoscale ecosystem resilience shifts can entrain punctu-
ated events of gene expression and other cognitive phenom-
ena on more rapid time scales, and, in large part through
such mechanisms of phenotype expression, slower genetic
selection-induced changes, triggering punctuated equilibrium
Darwinian evolutionary transitions on geologic time scales.

For human populations, several other layers of information
sources, those of (Lamarckian) culture, and of individual and
group consciousness and learning, become manifest, produc-
ing a rich stew of complicated and interesting phenomena
(Wallace, 2004, 2005b; Wallace and Fullilove, 2008).

10 Mathematical Appendix

10.1 The Shannon-McMillan Theorem

According to the structure of the underlying language of
which a message is a particular expression, some messages are
more ‘meaningful’ than others, that is, are in accord with the
grammar and syntax of the language. The Shannon-McMillan
or Asymptotic Equipartition Theorem, describes how mes-
sages themselves are to be classified.

Suppose a long sequence of symbols is chosen, using the
output of the random variable X above, so that an output
sequence of length n, with the form

xn = (α0, α1, ..., αn−1)

has joint and conditional probabilities

P (X0 = α0, X1 = α1, ..., Xn−1 = αn−1)

P (Xn = αn|X0 = α0, ..., Xn−1 = αn−1).

Using these probabilities we may calculate the conditional
uncertainty

H(Xn|X0, X1, ..., Xn−1).

The uncertainty of the information source, H[X], is defined
as

H[X] ≡ lim
n→∞

H(Xn|X0, X1, ..., Xn−1).

(46)
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In general

H(Xn|X0, X1, ..., Xn−1) ≤ H(Xn).

Only if the random variables Xj are all stochastically in-
dependent does equality hold. If there is a maximum n such
that, for all m > 0

H(Xn+m|X0, ..., Xn+m−1) = H(Xn|X0, ..., Xn−1),

then the source is said to be of order n. It is easy to show
that

H[X] = lim
n→∞

H(X0, ...Xn)
n+ 1

.

In general the outputs of the Xj , j = 0, 1, ..., n are depen-
dent. That is, the output of the communication process at
step n depends on previous steps. Such serial correlation, in
fact, is the very structure which enables most of what is done
in this paper.

Here, however, the processes are all assumed stationary in
time, that is, the serial correlations do not change in time,
and the system is stationary.

A very broad class of such self-correlated, stationary, in-
formation sources, the so-called ergodic sources for which the
long-run relative frequency of a sequence converges stochas-
tically to the probability assigned to it, have a particularly
interesting property:

It is possible, in the limit of large n, to divide all sequences
of outputs of an ergodic information source into two distinct
sets, S1 and S2, having, respectively, very high and very
low probabilities of occurrence, with the source uncertainty
providing the splitting criterion. In particular the Shannon-
McMillan Theorem states that, for a (long) sequence having
n (serially correlated) elements, the number of ‘meaningful’
sequences, N(n) – those belonging to set S1 – will satisfy the
relation

log[N(n)]
n

≈ H[X].

(47)

More formally,

lim
n→∞

log[N(n)]
n

= H[X]

= lim
n→∞

H(Xn|X0, ..., Xn−1)

= lim
n→∞

H(X0, ..., Xn)
n+ 1

.

(48)

Using the internal structures of the information source per-
mits limiting attention only to high probability ‘meaningful’
sequences of symbols.

10.2 The Rate Distortion Theorem

The Shannon-McMillan Theorem can be expressed as the
‘zero error limit’ of the Rate Distortion Theorem (Dembo
and Zeitouni, 1998; Cover and Thomas, 1991), which de-
fines a splitting criterion that identifies high probability pairs
of sequences. We follow closely the treatment of Cover and
Thomas (1991).

The origin of the problem is the question of representing
one information source by a simpler one in such a way that
the least information is lost. For example we might have a
continuous variate between 0 and 100, and wish to represent
it in terms of a small set of integers in a way that minimizes
the inevitable distortion that process creates. Typically, for
example, an analog audio signal will be replaced by a ‘digital’
one. The problem is to do this in a way which least distorts
the reconstructed audio waveform.

Suppose the original stationary, ergodic information source
Y with output from a particular alphabet generates sequences
of the form

yn = y1, ..., yn.

These are ‘digitized,’ in some sense, producing a chain of
‘digitized values’

bn = b1, ..., bn,

where the b-alphabet is much more restricted than the y-
alphabet.
bn is, in turn, deterministically retranslated into a repro-

duction of the original signal yn. That is, each bm is mapped
on to a unique n-length y-sequence in the alphabet of the
information source Y :

bm → ŷn = ŷ1, ..., ŷn.

Note, however, that many yn sequences may be mapped
onto the same retranslation sequence ŷn, so that information
will, in general, be lost.

The central problem is to explicitly minimize that loss.
The retranslation process defines a new stationary, ergodic

information source, Ŷ .
The next step is to define a distortion measure, d(y, ŷ),

which compares the original to the retranslated path. For
example the Hamming distortion is

d(y, ŷ) = 1, y 6= ŷ
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d(y, ŷ) = 0, y = ŷ.

(49)

For continuous variates the Squared error distortion is

d(y, ŷ) = (y − ŷ)2.

(50)

There are many possibilities.
The distortion between paths yn and ŷn is defined as

d(yn, ŷn) =
1
n

n∑
j=1

d(yj , ŷj).

(51)

Suppose that with each path yn and bn-path retranslation
into the y-language and denoted yn, there are associated in-
dividual, joint, and conditional probability distributions

p(yn), p(ŷn), p(yn|ŷn).

The average distortion is defined as

D =
∑
yn

p(yn)d(yn, ŷn).

(52)

It is possible, using the distributions given above, to de-
fine the information transmitted from the incoming Y to the
outgoing Ŷ process in the usual manner, using the Shannon
source uncertainty of the strings:

I(Y, Ŷ ) ≡ H(Y )−H(Y |Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ).

If there is no uncertainty in Y given the retranslation Ŷ ,
then no information is lost.

In general, this will not be true.
The information rate distortion function R(D) for a source

Y with a distortion measure d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑
(y,ŷ)

p(y)p(y|ŷ)d(y,ŷ)≤D
I(Y, Ŷ ).

(53)

The minimization is over all conditional distributions p(y|ŷ)
for which the joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies
the average distortion constraint (i.e. average distortion ≤
D).

The Rate Distortion Theorem states that R(D) is the max-
imum achievable rate of information transmission which does
not exceed the distortion D. Cover and Thomas (1991) or
Dembo and Zeitouni (1998) provide details.

More to the point, however, is the following: Pairs of se-
quences (yn, ŷn) can be defined as distortion typical ; that is,
for a given average distortion D, defined in terms of a partic-
ular measure, pairs of sequences can be divided into two sets,
a high probability one containing a relatively small number
of (matched) pairs with d(yn, ŷn) ≤ D, and a low probabil-
ity one containing most pairs. As n → ∞, the smaller set
approaches unit probability, and, for those pairs,

p(yn) ≥ p(ŷn|yn) exp[−nI(Y, Ŷ )].

(54)

Thus, roughly speaking, I(Y, Ŷ ) embodies the splitting cri-
terion between high and low probability pairs of paths.

For the theory of interacting information sources, then,
I(Y, Ŷ ) can play the role of H in the dynamic treatment
above.

The rate distortion function can actually be calculated in
many cases by using a Lagrange multiplier method – see Sec-
tion 13.7 of Cover and Thomas (1991).

10.3 Morse Theory

Morse theory examines relations between analytic behavior of
a function – the location and character of its critical points
– and the underlying topology of the manifold on which the
function is defined. We are interested in a number of such
functions, for example information source uncertainty on a
parameter space and ‘second order’ iterations involving pa-
rameter manifolds determining critical behavior, for exam-
ple sudden onset of a giant component in the mean number
model, and universality class tuning in the mean field model.
These can be reformulated from a Morse theory perspective.
Here we follow closely the elegant treatments of Pettini (2007)
and Kastner (2006).
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The essential idea of Morse theory is to examine an n-
dimensional manifold M as decomposed into level sets of some
function f : M → R where R is the set of real numbers. The
a-level set of f is defined as

f−1(a) = {x ∈M : f(x) = a},

the set of all points in M with f(x) = a. If M is compact,
then the whole manifold can be decomposed into such slices
in a canonical fashion between two limits, defined by the min-
imum and maximum of f on M . Let the part of M below a
be defined as

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a}.

These sets describe the whole manifold as a varies between
the minimum and maximum of f .

Morse functions are defined as a particular set of smooth
functions f : M → R as follows. Suppose a function f has
a critical point xc, so that the derivative df(xc) = 0, with
critical value f(xc). Then f is a Morse function if its critical
points are nondegenerate in the sense that the Hessian matrix
of second derivatives at xc, whose elements, in terms of local
coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigen-
values, so that there are no lines or surfaces of critical points
and, ultimately, critical points are isolated.

The index of the critical point is the number of negative
eigenvalues of H at xc.

A level set f−1(a) of f is called a critical level if a is a
critical value of f , that is, if there is at least one critical point
xc ∈ f−1(a).

Again following Pettini (2007), the essential results of
Morse theory are:

[1] If an interval [a, b] contains no critical values of f , then
the topology of f−1[a, v] does not change for any v ∈ (a, b].
Importantly, the result is valid even if f is not a Morse func-
tion, but only a smooth function.

[2] If the interval [a, b] contains critical values, the topology
of f−1[a, v] changes in a manner determined by the properties
of the matrix H at the critical points.

[3] If f : M → R is a Morse function, the set of all the
critical points of f is a discrete subset of M , i.e. critical
points are isolated. This is Sard’s Theorem.

[4] If f : M → R is a Morse function, withM compact, then
on a finite interval [a, b] ⊂ R, there is only a finite number of
critical points p of f such that f(p) ∈ [a, b]. The set of critical
values of f is a discrete set of R.

[5] For any differentiable manifold M , the set of Morse func-
tions on M is an open dense set in the set of real functions of
M of differentiability class r for 0 ≤ r ≤ ∞.

[6] Some topological invariants of M , that is, quantities that
are the same for all the manifolds that have the same topology
as M , can be estimated and sometimes computed exactly once
all the critical points of f are known: Let the Morse numbers

µi(i = 1, ...,m) of a function f on M be the number of critical
points of f of index i, (the number of negative eigenvalues of
H). The Euler characteristic of the complicated manifold M
can be expressed as the alternating sum of the Morse numbers
of any Morse function on M ,

χ =
m∑
i=0

(−1)iµi.

The Euler characteristic reduces, in the case of a simple
polyhedron, to

χ = V − E + F

where V,E, and F are the numbers of vertices, edges, and
faces in the polyhedron.

[7] Another important theorem states that, if the interval
[a, b] contains a critical value of f with a single critical point
xc, then the topology of the set Mb defined above differs from
that of Ma in a way which is determined by the index, i, of
the critical point. Then Mb is homeomorphic to the manifold
obtained from attaching to Ma an i-handle, i.e. the direct
product of an i-disk and an (m− i)-disk.

Again, Pettini (2007) contains both mathematical details
and further references. See, for example, Matusmoto (2002)
or the classic by Milnor (1963).

10.4 The mean field model

Wallace and Wallace (1998; 1999) have addressed how a lan-
guage, in a large sense, ‘spoken’ on a network structure, re-
sponds as properties of the network change. The language
might be speech, pattern recognition, or cognition. The
network might be social, chemical, or neural. The proper-
ties of interest were the magnitude of ‘strong’ or ‘weak’ ties
which, respectively, either disjointly partitioned the network
or linked it across such partitioning. These would be analo-
gous to local and mean-field couplings in physical systems.

Fix the magnitude of strong ties – again, those which
disjointly partition the underlying network into cognitive or
other submodules – but vary the index of nondisjunctive weak
ties, P , between components, taking K = 1/P .

Assume the piecewise, adiabatically stationary ergodic in-
formation source (or sources) dual to cognitive process de-
pends on three parameters, two explicit and one implicit. The
explicit are K as above and, as a calculational device, an ‘ex-
ternal field strength’ analog J , which gives a ‘direction’ to
the system. We will, in the limit, set J = 0. Note that many
other approaches may well be possible, since renormalization
techniques are more philosophy than prescription.

The implicit parameter, r, is an inherent generalized
‘length’ characteristic of the phenomenon, on which J and
K are defined. That is, J and K are written as functions
of averages of the parameter r, which may be quite complex,
having nothing at all to do with conventional ideas of space.
For example r may be defined by the degree of niche parti-
tioning in ecosystems or separation in social structures.
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For a given generalized language of interest having a well
defined (adiabatically, piecewise stationary) ergodic source
uncertainty, H = H[K,J,X].

To summarize a long train of standard argument (Binney
et al., 1986; Wilson, 1971), imposition of invariance of H
under a renormalization transform in the implicit parameter
r leads to expectation of both a critical point in K, written
KC , reflecting a phase transition to or from collective behavior
across the entire array, and of power laws for system behavior
near KC . Addition of other parameters to the system results
in a ‘critical line’ or surface.

Let κ ≡ (KC−K)/KC and take χ as the ‘correlation length’
defining the average domain in r-space for which the informa-
tion source is primarily dominated by ‘strong’ ties. The first
step is to average across r-space in terms of ‘clumps’ of length
R =< r >. Then H[J,K,X]→ H[JR,KR,X].

Taking Wilson’s (1971) analysis as a starting point – not
the only way to proceed – the ‘renormalization relations’ used
here are:

H[KR, JR,X] = f(R)H[K,J,X]

χ(KR, JR) =
χ(K,J)
R

,

(55)

with f(1) = 1 and J1 = J,K1 = K. The first equation sig-
nificantly extends Wilson’s treatment. It states that ‘process-
ing capacity,’ as indexed by the source uncertainty of the sys-
tem, representing the ‘richness’ of the generalized language,
grows monotonically as f(R), which must itself be a dimen-
sionless function in R, since both H[KR, JR] and H[K,J ] are
themselves dimensionless. Most simply, this requires replac-
ing R by R/R0, where R0 is the ‘characteristic length’ for the
system over which renormalization procedures are reasonable,
then setting R0 ≡ 1, hence measuring length in units of R0.

Wilson’s original analysis focused on free energy density.
Under ‘clumping,’ densities must remain the same, so that
if F [KR, JR] is the free energy of the clumped system, and
F [K,J ] is the free energy density before clumping, then Wil-
son’s equation (4) is F [K,J ] = R−3F [KR, JR],

F [KR, JR] = R3F [K,J ].

Remarkably, the renormalization equations are solvable
for a broad class of functions f(R), or more precisely,
f(R/R0), R0 ≡ 1.

The second equation just states that the correlation length
simply scales as R.

Again, the central feature of renormalization in this con-
text is the assumption that, at criticality, the system looks
the same at all scales, that is, it is invariant under renormal-
ization at the critical point. All else flows from this.

There is no unique renormalization procedure for informa-
tion sources: other, very subtle, symmetry relations – not
necessarily based on the elementary physical analog we use
here – may well be possible. For example, McCauley (1993,
p.168) describes the highly counterintuitive renormalizations
needed to understand phase transition in simple ‘chaotic’ sys-
tems. This is important, since biological or social systems
may well alter their renormalization properties – equivalent
to tuning their phase transition dynamics – in response to
external signals. We will make much use of a simple version
of this possibility, termed ‘universality class tuning,’ below.

To begin, following Wilson, take f(R) = Rd, d some real
number d > 0, and restrict K to near the ‘critical value’ KC .
If J → 0, a simple series expansion and some clever algebra
(Wilson, 1971; Binney et al., 1986) gives

H = H0κ
α

χ =
χ0

κs
,

(56)

where α, s are positive constants. More biologically relevant
examples appear below.

Further from the critical point, matters are more compli-
cated, appearing to involve Generalized Onsager Relations,
‘dynamical groupoids’, and a kind of thermodynamics asso-
ciated with a Legendre transform of H: S ≡ H −KdH/dK
(Wallace, 2002a). Although this extension is quite important
to describing behaviors away from criticality, the mathemati-
cal detail is cumbersome. A more detailed discussion appears
at the end of this chapter.

An essential insight is that regardless of the particular
renormalization properties, sudden critical point transition is
possible in the opposite direction for this model. That is, go-
ing from a number of independent, isolated and fragmented
systems operating individually and more or less at random,
into a single large, interlocked, coherent structure, once the
parameter K, the inverse strength of weak ties, falls below
threshold, or, conversely, once the strength of weak ties pa-
rameter P = 1/K becomes large enough.

Thus, increasing nondisjunctive weak ties between them
can bind several different cognitive ‘language’ functions into a
single, embedding hierarchical metalanguage containing each
as a linked subdialect, and do so in an inherently punctuated
manner. This could be a dynamic process, creating a shifting,
ever-changing pattern of linked cognitive submodules, accord-
ing to the challenges or opportunities faced by the organism.

This heuristic insight can be made more exact using a
rate distortion argument (or, more generally, using the Joint
Asymptotic Equipartition Theorem) as follows:

Suppose that two ergodic information sources Y and B be-
gin to interact, to ‘talk’ to each other, to influence each other
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in some way so that it is possible, for example, to look at
the output of B – strings b – and infer something about the
behavior of Y from it – strings y. We suppose it possible to de-
fine a retranslation from the B-language into the Y-language
through a deterministic code book, and call Ŷ the translated
information source, as mirrored by B.

Define some distortion measure comparing paths y to paths
ŷ, d(y, ŷ). Invoke the Rate Distortion Theorem’s mutual in-
formation I(Y, Ŷ ), which is the splitting criterion between
high and low probability pairs of paths. Impose, now, a
parametization by an inverse coupling strength K, and a
renormalization representing the global structure of the sys-
tem coupling. This may be much different from the renormal-
ization behavior of the individual components. If K < KC ,
where KC is a critical point (or surface), the two information
sources will be closely coupled enough to be characterized as
condensed.

In the absence of a distortion measure, the Joint Asymp-
totic Equipartition Theorem gives a similar result.

Detailed coupling mechanisms will be sharply constrained
through regularities of grammar and syntax imposed by limit
theorems associated with phase transition.

10.4.1 Biological renormalization

Next the mathematical detail concealed by the invocation
of the asymptotic limit theorems emerges with a vengeance.
Equation (55) states that the information source and the cor-
relation length, the degree of coherence on the underlying
network, scale under renormalization clustering in chunks of
size R as

H[KR, JR]/f(R) = H[J,K]

χ[KR, JR]R = χ(K,J),

with f(1) = 1,K1 = K,J1 = J , where we have slightly
rearranged terms.

Differentiating these two equations with respect to R, so
that the right hand sides are zero, and solving for dKR/dR
and dJR/dR gives, after some consolidation, expressions of
the form

dKR/dR = u1d log(f)/dR+ u2/R

dJR/dR = v1JRd log(f)/dR+
v2
R
JR.

(57)

The ui, vi, i = 1, 2 are functions of KR, JR, but not explic-
itly of R itself.

We expand these equations about the critical value KR =
KC and about JR = 0, obtaining

dKR/dR = (KR −KC)yd log(f)/dR+ (KR −KC)z/R

dJR/dR = wJRd log(f)/dR+ xJR/R.

(58)

The terms y = du1/dKR|KR=KC
, z =

du2/dKR|KR=KC
, w = v1(KC , 0), x = v2(KC , 0) are

constants.
Solving the first of these equations gives

KR = KC + (K −KC)Rzf(R)y,

(59)

again remembering that K1 = K,J1 = J, f(1) = 1.
Wilson’s essential trick is to iterate on this relation, which

is supposed to converge rapidly near the critical point (Binney
et al., 1986), assuming that for KR near KC , we have

KC/2 ≈ KC + (K −KC)Rzf(R)y.

(60)

We iterate in two steps, first solving this for f(R) in terms
of known values, and then solving for R, finding a value RC
that we then substitute into the first of equations (55) to
obtain an expression for H[K, 0] in terms of known functions
and parameter values.

The first step gives the general result

f(RC) ≈ [KC/(KC −K)]1/y

21/yR
z/y
C

.

(61)

Solving this forRC and substituting into the first expression
of equation (55) gives, as a first iteration of a far more general
procedure (Shirkov and Kovalev, 2001), the result
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H[K, 0] ≈ H[KC/2, 0]
f(RC)

=
H0

f(RC)

χ(K, 0) ≈ χ(KC/2, 0)RC = χ0RC ,

(62)

which are the essential relationships.
Note that a power law of the form f(R) = Rm,m = 3,

which is the direct physical analog, may not be biologically
reasonable, since it says that ‘language richness’ can grow
very rapidly as a function of increased network size. Such
rapid growth is simply not observed.

Taking the biologically realistic example of non-integral
‘fractal’ exponential growth,

f(R) = Rδ,

(63)

where δ > 0 is a real number which may be quite small,
equation (6.17) can be solved for RC , obtaining

RC =
[KC/(KC −K)][1/(δy+z)]

21/(δy+z)

(64)

for K near KC . Note that, for a given value of y, one might
characterize the relation α ≡ δy + z = constant as a ‘tunable
universality class relation’ in the sense of Albert and Barabasi
(2002).

Substituting this value for RC back into equation (61) gives
a complex expression for H, having three parameters: δ, y, z.

A more biologically interesting choice for f(R) is a loga-
rithmic curve that ‘tops out’, for example

f(R) = m log(R) + 1.

(65)

Again f(1) = 1.

Using Mathematica 4.2 or above to solve equation (61) for
RC gives

RC = [
Q

LambertW [Q exp(z/my)]
]y/z,

(66)

where

Q ≡ (z/my)2−1/y[KC/(KC −K)]1/y.

The transcendental function LambertW(x) is defined by the
relation

LambertW (x) exp(LambertW (x)) = x.

It arises in the theory of random networks and in renormal-
ization strategies for quantum field theories.

An asymptotic relation for f(R) would be of particular bi-
ological interest, implying that ‘language richness’ increases
to a limiting value with population growth. Such a pattern
is broadly consistent with calculations of the degree of allelic
heterozygosity as a function of population size under a bal-
ance between genetic drift and neutral mutation (Hartl and
Clark, 1997; Ridley, 1996). Taking

f(R) = exp[m(R− 1)/R]

(67)

gives a system which begins at 1 when R = 1, and ap-
proaches the asymptotic limit exp(m) as R → ∞. Mathe-
matica 4.2 finds

RC =
my/z

LambertW [A]
,

(68)

where

A ≡ (my/z) exp(my/z)[21/y[KC/(KC −K)]−1/y]y/z.

These developments indicate the possibility of taking the
theory significantly beyond arguments by abduction from sim-
ple physical models, although the notorious difficulty of im-
plementing information theory existence arguments will un-
doubtedly persist.
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10.4.2 Universality class distribution

Physical systems undergoing phase transition usually have rel-
atively pure renormalization properties, with quite different
systems clumped into the same ‘universality class,’ having
fixed exponents at transition (Binney et al., 1986). Biological
and social phenomena may be far more complicated:

If the system of interest is a mix of subgroups with different
values of some significant renormalization parameter m in the
expression for f(R,m), according to a distribution ρ(m), then
the first expression in equation (55) should generalize, at least
to first order, as

H[KR, JR] =< f(R,m) > H[K,J ]

≡ H[K,J ]
∫
f(R,m)ρ(m)dm.

(69)

If f(R) = 1 +m log(R) then, given any distribution for m,

< f(R) >= 1+ < m > log(R)

(70)

where < m > is simply the mean of m over that distribu-
tion.

Other forms of f(R) having more complicated dependencies
on the distributed parameter or parameters, like the power
law Rδ, do not produce such a simple result. Taking ρ(δ) as
a normal distribution, for example, gives

< Rδ >= R<δ> exp[(1/2)(log(Rσ))2],

(71)

where σ2 is the distribution variance. The renormalization
properties of this function can be determined from equation
(61), and the calculation is left to the reader as an exercise,
best done in Mathematica 4.2 or above.

Thus the information dynamic phase transition properties
of mixed systems will not in general be simply related to those
of a single subcomponent, a matter of possible empirical im-
portance: If sets of relevant parameters defining renormaliza-
tion universality classes are indeed distributed, experiments

observing pure phase changes may be very difficult. Tun-
ing among different possible renormalization strategies in re-
sponse to external signals would result in even greater am-
biguity in recognizing and classifying information dynamic
phase transitions.

Important aspects of mechanism may be reflected in the
combination of renormalization properties and the details of
their distribution across subsystems.

In sum, real biological, social, or interacting biopsychoso-
cial systems are likely to have very rich patterns of phase
transition which may not display the simplistic, indeed, liter-
ally elemental, purity familiar to physicists. Overall mecha-
nisms will, however, still remain significantly constrained by
the theory, in the general sense of probability limit theorems.

10.4.3 Punctuated universality class tuning

The next step is to iterate the general argument onto the
process of phase transition itself, producing a model of con-
sciousness as a tunable neural workspace subject to inherent
punctuated detection of external events.

As described above, an essential character of physical sys-
tems subject to phase transition is that they belong to par-
ticular ‘universality classes’. Again, this means that the ex-
ponents of power laws describing behavior at phase transition
will be the same for large groups of markedly different sys-
tems, with ‘natural’ aggregations representing fundamental
class properties (Binney et al., 1986).

It appears that biological or social systems undergoing
phase transition analogs need not be constrained to such
classes, and that ‘universality class tuning’, meaning the
strategic alteration of parameters characterizing the renor-
malization properties of punctuation, might well be possible.
Here we focus on the tuning of parameters within a single,
given, renormalization relation. Clearly, however, wholesale
shifts of renormalization properties must ultimately be con-
sidered as well, a matter for future work.

Universality class tuning has been observed in models of
‘real world’ networks. As Albert and Barabasi (2002) put it,

“The inseparability of the topology and dynam-
ics of evolving networks is shown by the fact that
[the exponents defining universality class] are related
by [a] scaling relation..., underlying the fact that a
network’s assembly uniquely determines its topol-
ogy. However, in no case are these exponents unique.
They can be tuned continuously...”

Suppose that a structured external environment, itself an
appropriately regular information source Y, ‘engages’ a mod-
ifiable cognitive system. The environment begins to write an
image of itself on the cognitive system in a distorted manner
permitting definition of a mutual information I[K] splitting
criterion according to the Rate Distortion or Joint Asymp-
totic Equipartition Theorems. K is an inverse coupling pa-
rameter between system and environment. At punctuation –
near some critical point KC – the systems begin to interact
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very strongly indeed, and, near KC , using the simple physical
model of equation (56),

I[K] ≈ I0[
KC −K
KC

]α.

For a physical system α is fixed, determined by the under-
lying ‘universality class.’ Here we will allow α to vary, and,
in the section below, to itself respond explicitly to signals.

Normalizing KC and I0 to 1,

I[K] ≈ (1−K)α.

(72)

The horizontal line I[K] = 1 corresponds to α = 0, while
α = 1 gives a declining straight line with unit slope which
passes through 0 at K = 1. Consideration shows there are
progressively sharper transitions between the necessary zero
value at K = 1 and the values defined by this relation for
0 < K,α < 1. The rapidly rising slope of transition with
declining α is of considerable significance:

The instability associated with the splitting criterion I[K]
is defined by

Q[K] ≡ −KdI[K]/dK = αK(1−K)α−1,

(73)

and is singular at K = KC = 1 for 0 < α < 1. Following
earlier work (Wallace and Wallace, 1998, 1999; Wallace and
Fullilove, 1999; Wallace, 2002a), we interpret this to mean
that values of 0 < α� 1 are highly unlikely for real systems,
since Q[K], in this model, represents a kind of barrier for
‘social’ information systems, in particular interacting neural
network modules, a matter explored further below.

On the other hand, smaller values of α mean that the sys-
tem is far more efficient at responding to the adaptive de-
mands imposed by the embedding structured environment,
since the mutual information which tracks the matching of
internal response to external demands, I[K], rises more and
more quickly toward the maximum for smaller and smaller α
as the inverse coupling parameter K declines below KC = 1.
That is, systems able to attain smaller α are more responsive
to external signals than those characterized by larger values,
in this model, but smaller values will be harder to reach, prob-
ably only at some considerable physiological or opportunity
cost. Focused conscious action takes resources, of one form
or another.

Wallace (2005a) makes these considerations explicit, mod-
eling the role of contextual and energy constraints on the
relations between Q, I, and other system properties.

The more biologically realistic renormalization strategies
given above produce sets of several parameters defining the
universality class, whose tuning gives behavior much like that
of α in this simple example.

Formal iteration of the phase transition argument on this
calculation gives tunable consciousness, focusing on paths of
universality class parameters.

Suppose the renormalization properties of a language-on-
a network system at some ‘time’ k are characterized by a
set of parameters Ak ≡ αk1 , ..., α

k
m. Fixed parameter val-

ues define a particular universality class for the renormal-
ization. We suppose that, over a sequence of ‘times,’ the
universality class properties can be characterized by a path
xn = A0, A1, ..., An−1 having significant serial correlations
which, in fact, permit definition of an adiabatically piece-
wise stationary ergodic information source associated with the
paths xn. We call that source X.

Suppose also, in the now-usual manner, that the set of ex-
ternal (or internal, systemic) signals impinging on conscious-
ness is also highly structured and forms another information
source Y which interacts not only with the system of interest
globally, but specifically with its universality class properties
as characterized by X. Y is necessarily associated with a set
of paths yn.

Pair the two sets of paths into a joint path, zn ≡ (xn, yy)
and invoke an inverse coupling parameter, K, between the
information sources and their paths. This leads, by the ar-
guments above, to phase transition punctuation of I[K], the
mutual information between X and Y, under either the Joint
Asymptotic Equipartition Theorem or under limitation by a
distortion measure, through the Rate Distortion Theorem.
The essential point is that I[K] is a splitting criterion under
these theorems, and thus partakes of the homology with free
energy density which we have invoked above.

Activation of universality class tuning, the mean field
model’s version of attentional focusing, then becomes itself
a punctuated event in response to increasing linkage between
the organism and an external structured signal or some par-
ticular system of internal events.

This iterated argument exactly parallels the extension of
the General Linear Model to the Hierarchical Linear Model
in regression theory (Byrk and Raudenbusch, 2001).

Another path to the fluctuating dynamic threshold might
be through a second order iteration similar to that just above,
but focused on the parameters defining the universality class
distributions given above.

10.4.4 A network of dynamic manifolds and its tun-
ing

The set of universality class tuning parameters, Ak, defines
a manifold whose topology could also be more fully analyzed
using Morse theory. That is an equivalence class of dynamic
manifolds is determined, not by universality class, which is
tunable, but by the underlying form of the renormalization
relation, in the sense of the many different possible renormal-
ization symmetries described above. Thus the possible higher
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level dynamic manifolds in this model are characterized by
fixed renormalization relations, but tunable universality class
parameters. One can then invoke a crosstalk coupling within
a groupoid network of different dynamic manifolds defined by
these renormalization relations, leading to the same kind of
Morse theoretic analysis of the higher level topological struc-
ture.
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