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Abstract: In this paper I present a game-theoretical approach to the problem of induction. I investi-
gate the comparative success of prediction methods by mathematical analysis and computer pro-
gramming. Hume's problem lies in the fact that although the success of object-inductive prediction 
strategies is quite robust, they cannot be universally optimal. My proposal towards a solution of the 
problem of induction is meta-induction. I show that there exist meta-inductive prediction strategies 
whose success is universally optimal, modulo short-run losses which are upper-bounded. I then turn 
to the implications of my approach for the evolution of cognition. In the final section  I suggest a 
revision of the paradigm of bounded rationality by introducing the distinction between local, gen-
eral and universal prediction strategies. 
 
 
1. Introduction: the Best-Alternative Approach to Induction 

 

In an  inductive inference, a property, regularity, or frequency is transferred from the 

observed to the unobserved, or from the past to the future. How can we rationally  

justify  inductive inferences? This is the famous  problem of induction, or Hume's 

problem. David Hume has shown that all standard methods of justification fail when 

applied to the task of justifying induction. (1.) Obviously, inductive inferences cannot 

be justified by deductive logic, since it is logically possible that the future is com-

pletely different from the past. (2.) Induction cannot be justified by induction from 

observation, by arguing that induction has been successful in the past, whence − by 

induction − it will be successful in the future. For this argument is circular, and circu-

lar arguments are without any justificatory value (Salmon (1957, 46, has shown that 

also anti-induction may be pseudo-justified in such a circular manner). (3.) It is 

equally impossible to demonstrate that the conclusion of an inductive inferences is at 

least highly probable − for in order to show this, one must presuppose that the rela-

tive event frequencies observed so far can be transferred to the unobserved future, 

which is nothing but an inductive inference. These were the reasons which led Hume 
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to the skeptical conclusion that induction cannot be rationally justified, but is merely 

the result of psychological habit.  

 There have been several attempts to solve or dissolve Hume's problem, which 

cannot be discussed here. It seems that so far, none of these attempts has been suc-

cessful in giving a positive solution to the problem of induction, which establishes in 

a non-circular manner that the inductive method is a superior prediction method in 

terms of its success frequencies. Given that it is impossible to demonstrate that induc-

tion must be successful (Hume's lesson), and that there are various alternative predic-

tion methods, then it seems to follow that the only approach to Hume's problem for 

which one can at least uphold the hope that it could succeed if it were adequately de-

veloped is Reichenbach's best alternative approach (Reichenbach 1949, – 91; Salmon 

1974). This approach does not try to show that induction must be successful, but it 

attempts to establish that induction is an optimal prediction method − its success will 

be maximal among all competing methods in arbitrary possible worlds. Or in simpli-

fied words: if any method of prediction will work, then the inductive method will 

work (Rescher 1980, 207ff). It must be emphasized that in demonstrating optimality 

one must allow all possible worlds, in particular all kinds of para-normal worlds in 

which perfectly successful future-tellers do indeed exist. Restricting the set of worlds 

to 'normal' or uniform worlds would destroy the enterprise of justifying induction. 

For then we would have to justify inductively that our real world is one of these 

'normal' worlds, and we would end up in exactly that kind of circle or infinite regress 

in which according to the Humean skeptic all attempts of justifying induction must 

end up.   

 Reichenbach did not succeed in establishing the best alternative argument with 

respect to the goal of single event predictions. He only demonstrated this argument 

with respect to the goal of inferring an event's frequency limit in the long run. With 

respect to that goal, his argument is almost trivial: if the sequence of events has a fre-

quency limit, then inductive methods will long-run approximate this limit while other 

non-inductive methods may or may not approximate the limit; and if the sequence 
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does not have a frequency limit, then no method can find the limit (Reichenbach 

1949, 474f). However, our ability to infer approximately correct frequency limits is 

practically not significant. What is of practical significance is our success in true pre-

dictions. In this respect, Reichenbach's approach fails: nothing in Reichenbach's ar-

gument excludes the possibility that a perfect future-teller may have perfect success 

in predicting random tossings of a coin, while the inductivist can only have a predic-

tive success of 0.5 in this case (cf. also Reichenbach 1949, 476f; Skyrms 1975, ch. 

III.4).  

 By object-induction (abbreviated as OI) I understand methods of induction applied 

at the level of events − the 'object level'. Generally speaking, the problem of Rei-

chenbach's account lies in the fact that it is impossible to demonstrate that object-

induction is an approximately (optimal) prediction method  − which is also a lesson 

of formal learning theory (see – 2). In contrast to Reichenbach's approach, my ap-

proach is based in the idea of meta-induction. The meta-inductivist (abbreviated as 

MI) applies the inductive method at the level of competing prediction methods. More 

precisely, the meta-inductivist bases her predictions on the predictions and the ob-

served success rates of the other (non-MI) players and tries to derive therefrom an 

'optimal' prediction. The simplest type of meta-inductivist predicts what the presently 

best prediction method predicts, but one can construct much more refined kinds of 

meta-inductivistic prediction strategies. 

 One should expect that for meta-induction the chances of demonstrating optimal-

ity are much better than for object-induction. Is it possible to design a version of 

meta-induction which can be proved to be an optimal prediction method? The signifi-

cance of this question for the problem of induction is this: if the answer is positive, 

then at least meta-induction would have a rational and non-circular justification based 

on mathematical-analytic argument. But this analytic justification of meta-induction 

would at the same time yield an a posteriori justification of object-induction in our 

real word: for we know by experience that in our real world, non-inductive prediction 

strategies have not been successful so far, whence it would be meta-inductively justi-
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fied to favor object-inductivistic strategies. In other words: the common-sense argu-

ment in favor of object-induction which is based on its past success record would no 

longer be circular, given that we had a non-circular justification of meta-induction.  

 Note that the optimality of a prediction method alone is compatible with the exis-

tence of other equally optimal methods. Nevertheless, the optimality of meta-

induction would already be sufficient for its rational justification, because as Rei-

chenbach (1949, 475f) has pointed out, meta-induction is the only prediction strategy 

for which optimality can be rationally demonstrated. Of course, it would be desirable 

to extend an optimality result for meta-induction (if we had it) to a (weak) dominance 

result, i.e. to a result showing that meta-induction is the only optimal prediction 

method. But it is hard find a non-trivial version of dominance for meta-induction (cf. 

Schurz 2008, – 6), and therefore I will concentrate on the question of optimality. 

 Let me finally emphasize that my notion of optimality is restricted to accessible 

prediction methods. There might be possible worlds in which alternative players do 

not give away their predictions but keep them secret. Indeed, this is possible, and so I 

have to restrict my claim to accessible methods. What I intend to show is that among 

all prediction methods (or strategies) who's output is accessible to a given person, the 

meta-inductivistic strategy is always the best choice. But I argue that this restriction 

is not a drawback. For methods whose output is not accessible to a person are not 

among her possible actions and, hence, are without relevance for the optimality ar-

gument. 

 

2. Prediction Games  

 

My prediction games shall cover binary as well as real-valued prediction games. A 

prediction game consists of: 

(1.) An infinite sequence (e) := (e1, e2,…) of events en ∈ [0,1] which are coded or 

measured by elements of the unit interval [0,1]; hence (∀n≥1:) en ∈ [0,1]. For exam-

ple, (e) may be a sequence of daily weather conditions, stock values, or coin tossings.    
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(2.) A set of players Π = {P1, P2, …, xMI (xMI1, xMI2,…)}, whose task is  to predict 

future events of the event sequence. pn(P) denotes the prediction of player P for time 

n, which is delivered at time n−1. Also the admissible predictions pn are assumed to 

be elements of [0,1]. The deviation of the prediction pn  from the event en is measured 

by a normalized loss function l(pn,en) ∈ [0,1]. The natural loss-function is defined as 

the absolute difference between prediction and event, l(pn,en) := |pn−en|. However, my 

theorems will not depend on natural loss functions but hold for arbitrary (and in case 

of theorems 3+4 for convex) normalized loss-functions.  

 In binary prediction games, predictions as well as events must take one of the two 

values 0 and 1 which code instantiations of a binary event-type E ('1' for 'E obtains' 

and '0' for 'E does not obtain'). Further notation: The score s(pn,en) obtained by pre-

diction pn given event en is defined as 1 minus loss, s(pn,en) := 1 − l(pn,en); the abso-

lute success an(P) achieved by player P at time n is defined as P's sum of scores until 

time n, an(P) := Σ1≤i≤n s(pn(P),en), and the success rate sucn(P) of player P at time n is 

defined as sucn(P) := an(P)/n.  ne : = (Σ1≤i≤n en)/n denotes the event's mean value at 

time n, and e  := limn→∞ ne denotes the event's limit mean value, provided the mean 

values converge to a limit. For binary prediction games, (i) sucn(P) coincides with the 

relative frequency of P's correct predictions until time n, (ii) ne with the relative fre-

quency fn(E) of event E at time n, and (iii) e  with E's limiting frequency.    

 The players in Π include: 

(2.1) One or several object-inductivists, abbreviated as OI (OI1,…,OIr). They have 

informational access to past events; their first prediction (at n=1) is a guess. 

(2.2) A subset of alternative players Pr+1, Pr+2,…; for example, persons who rely on 

their instinct, God-guided future-tellers, etc. In para-normal worlds, these alternative 

players may have any success and any information you want, including information 

about future events and about the meta-inductivist's favorites. − Players of type (2.1) 

or (2.2) are called non-MI-players. 
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(2.3) One or several meta-inductivists, whose denotation has the form 'xMI', where 'x' 

is a variable (possibly empty) expression specifying the type of the meta-inductivist. 

The meta-inductivist has access to the past events and the past and present predictions 

of the non-MI-players. 

 The simplest type of meta-inductivist from which I start my inquiry is abbreviated 

as MI. At each time, MI predicts what the non-MI-player with the presently highest 

predictive success rate predicts. If P is this presently best player, then I say that P is 

MI's present favorite, or simply that MI favors P. If there are several best players, MI 

chooses the first best player in an assumed ordering. MI changes his favorite player 

only if another player becomes strictly better; otherwise he sticks to his present favor-

ite. favn(MI) denotes MI's favorite for time n, that is, the player with the first-best 

success-rate at time n−1 among the non-MI-players; observe that MI's favorite for 

time n is determined at time n−1. MI's first favorite is OI. I assume that MI has al-

ways access to OI: even if no person different from MI plays OI, MI may constantly 

simulate OI's predictions and use them their success rate is in favorite-position.  

 MI belongs to the class of so-called one-favorite meta-inductivists, which choose 

at each time a non-MI-player as their favorite for the next time and predict what their 

favorite predicts. In contrast, multiple-favorite meta-inductivists base their predic-

tions on the predictions of several 'attractive' non-MI-players.  

 The simplest object-inductive prediction method, abbreviated as OI, is based on 

the already mentioned straight rule. In the case of real-valued events, this inductive 

rule transfers the observed mean value to the next event, i.e. pn+1(OI) = ne . In the case 

of binary events, the straight rule is merely used for conjecturing the frequency limit 

(cf. Salmon 1974, 89-95; Rescher 1980, ch. VI.3). For the purpose of single event 

predictions one needs in addition the so-called maximum rule, which requires to pre-

dict an event with maximal conjectured frequency (cf. Reichenbach 1938, 310f). For 

binary events, this generates the prediction rule pn(OI) = 1 if fn(E) ≥ 1, and else = 0, 

which can be summarized by saying that OI predicts the integer-rounding [ ne ] of ne . 
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OI's prediction rule is appropriate as long as the event sequence is a random se-

quence; in this case OI's success rate converges in the binary case against the maxi-

mum of P(E) and P(¬E), and in the real-valued case against the limiting mean value 

of the absolute deviations, limn→∞ (Σ1≤i≤n |ei−e | / n). For non-random sequences re-

fined object-inductivistic prediction strategies exist, whose success dominates OI's 

success (see – xx). 

 I identify prediction games with possible worlds. Apart from the definition of a 

prediction game, I make no assumptions about these possible worlds. The stream of 

events (e) can be any sequence you like. Should (e) be non-random, then more re-

fined object-inductivistic strategies may exist (as explained), but nothing which con-

cerns the behaviour of xMI hangs on that question. I also do not assume a fixed list of 

players − the list of players may vary from world to world, except that it always con-

tains xMI and the (virtual) OI. I make the realistic assumption that xMI has finite 

computational means, whence I restrict my investigation to prediction games with 

finitely many players. 

 According to my knowledge, the use of prediction games for epistemological pur-

poses is new in the philosophical literature. There are, however, three related ap-

proaches in related fields: 

 1) In formal learning theory (cf. Kelly 1996) only one player, an object-inductive 

scientist, plays against a stream of events, and it is investigated which cognitive tasks 

can reliably be achieved under which conditions on the stream of events. For induc-

tive prediction tasks the general result is negative, because of the possibility of 'de-

monic' streams of events which at every time n produce the opposite of the object-

inductivist's prediction. This insight goes back to Putnam (1963), and it is a variant of 

Hume's lesson.
1
 In contrast, my prediction games consist of several prediction me-

                                                 
1
  Cf. cf. Friend et al. 2007, ix). In formal learning theory one considers especially hypotheses 

evaluation tasks which are not considered here. Kelly's major result about prediction tasks is this: an 
infinite stream of events (e) is correctly predictable by a scientific method after some finite time iff 
(e) is among a recursively enumerable set of possible data streams (1996, 260ff).    
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thods playing against each other, and my investigation does not focus on the question 

of the reliability but of the optimality of methods. Even if for every meta-inductive 

prediction method there exist suitably chosen 'demonic' streams of events for which 

its predictive success is zero, such a method may still be optimal, provided one can 

prove that in all 'demonic' cases also al other accessible methods must have zero suc-

cess.   

 2) A second field which comes very close to our approach, although it has not 

been related to the problem of induction, is the non-probabilistic variant of the theory 

of universal prediction (cf. Merhav/Feder 1998), which has been developed in the 

fields of decision and learning theory (for an overview Bianchi and Lugosi 2006). In 

this approach one considers online predictions based on expert advice: a forecaster 

(who corresponds to our meta-inductivist) predicts an arbitrary event sequence based 

on the predictions of a set of experts (who correspond to our 'non-MI-players'). One 

speaks of 'universal' prediction theory because the event-sequence may be arbitrary; 

and the setting is called 'online learning' because the players have simultaneously to 

learn from past events to make new predictions. In – xx we make use of a central 

theorem achieved in this field. 

 3) A third related field is the comparative investigation of the efficiency of predic-

tion methods by Gigerenzer and the ABC-research group (for 'Adaptive Behavior and 

Cognition') by real experiments and computer simulations. Although this approach 

focuses on object-inductive prediction methods, some of my results bear tight rela-

tions to this approach.  

 

3. Simple Meta-Induction,  Take-the-Best, and Its Limitations 

 

For one-favorite meta-inductivists, binary prediction can be obtained as a subclass of 

real-valued prediction games, by restricting to event sequences containing only bi-

nary events, and to non-MI-players predicting only binary values. This implies that 

also the meta-inductivist delivers a binary prediction, because she predicts what her 
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favorite predicts. Therefore, our theorems about one-favorite meta-inductivists apply 

to real-valued as well as to binary prediction games.  

 I have investigate the prediction game with help  mathematical analysis as well as 

computer simulations. The performance of a type of meta-inductivist has always two 

sides: (i) its long-run behavior, which is of central significance, and (ii) its short-run 

performance, which is also important: although one should be willing to buy some 

short-run losses of a prediction method for sake of its long-term optimality, these 

short-run losses should not be too large, and they should be under rational control.   

 In this section I investigate the performance of MI and its relative, Gigerenzer's 

prediction rule TTB (for Take-the-Best). From now on, maxsucn denotes the maximal 

success rate of the non-MI-players at time n. The set of non-MI-players is said to 

contain a (unique) best player B ∈ {P1,…,Pm} iff there exists a time point nB such that 

for all later times B's success rate is greater than the success rate of all other non-MI-

players. nB is called B's winning time. The central result about MI is theorem (1.1), 

which tells us that MI predicts long-run optimal whenever there exists a best non-MI-

player. 

 

Theorem 1: For each prediction game  ((e), {P1,…,Pm, MI} whose player-set contains 

a best player B, the following holds:  

(1.1) (Long-run:) MI's success rate approximates the maximal success of the non-MI-

players (from below): limn→∞( maxsucn − sucn(MI) = 0. 

(1.2) (Short-run:) (∀n≥1:) sucn(MI) ≥ maxsucn − (nB/n), where nB is B's winning 

time.  

  

The proof of theorem 1 is obvious and just explained informally: after the time point 

nB MI's favorite will be B forever, but until time nB MI's success may be zero in the 

worst case, due to switching favorites (see below). This yields theorem (1.2), and 

(1.1) follows.  

 In determining her favorites the meta-inductivist must buy some losses, compared 
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to the best non-MI-method. These losses result from the fact that in order to predict 

for time n+1, the meta-inductivist can only take into account the non-MI-players' 

success rates until time n. Whenever MI recognizes that her present favorite P1 has 

lost one point compared to some new best player P2, then MI has also lost this one 

point compared to P2, before MI decides to switch to P2. So for each switch of favor-

ites MI looses a score of 1 in the binary prediction game, and a non-zero score ≤ 1 in 

the real-valued game, compared to the best non-MI-player. These losses may accu-

mulate. The assumption of theorem 1 excludes that MI can have more than finitely 

many losses due to switching favorites; so these losses must vanish in the limit. Theo-

rem 1.2 informs us about the maximal short-run loss of MI. Since the time point nB 

may come arbitrary late, MI's cumulative short run loss may be arbitrarily high. Nev-

ertheless, the result of theorem (1.2) is at least something, because it shows that a 

high short-run loss of MI is caused by a late arrival of B's winning time. In conclu-

sion, MI's optimality is restricted to prediction games which contain a best player 

whose winning time doesn't occur to late.  

 Note that the condition of theorem 1 is rather general; for example, it does not im-

ply that the success rates of the non-MI-players have to converge to a limit. If this is 

the case, then the condition of theorem 1 is satisfied if there exists one player with 

maximal limit success. Illustrations of the behavior of MI by computer simulations 

can be found in Schurz (2008).   

 The assumption of theorem 1 is violated whenever the success rates of two or 

more leading non-MI-players oscillate endlessly around each other. There exist two 

sorts of success-oscillations: convergent oscillations and non-convergent oscillations. 

Convergent oscillations are given when two (or more) leading players oscillate in 

their success-rate around each other with constant period and diminishing amplitude; 

i.e. their success-difference converges against zero. Here MI looses one success point 

in every half oscillation period. In the worst case, two alternative players A and B 

oscillate around each other with the smallest possible period of 4 time units. In this 

worst case, MI gets systematically deceived by the alternative players, because the 
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alternative players predict incorrectly exactly when they are in the position of being 

MI's favorite. In the result, the success rates of the two alternative players converges 

against 1/2, while the meta-inductivist's success remains zero for all time. A com-

puter simulation of this scenario is shown in fig. 1.
2
 

 Theorem 1 as well as the negative result of fig. 1 can be generalized to the predic-

tion rule Take-the-Best (TTB) of the ABC-research group (Gigerenzer et al. 1999, 

chs. 2-4). Although TTB is usually treated as an object-inductive (rather than a meta-

inductive) prediction method, this difference is just one of interpretation, and not of 

substantial content. The predictions of the non-MI-players correspond to the cues in 

Gigerenzer's setting. There are the following two differences between MI and TTB as 

it is used in the Gigerenzer setting:  

 
                 

              

              

         zoom            

             
   two alternative players oscillate around each other with minimal period 
        

    MI with zero-success       
 

        Event stream: random binary  

 

Fig. 1: MI against two best alternative players in convergent oscillation 

 

 (1.) The TTB strategy works like MI except that it is assumed that the cues need 

not make a prediction at every time. Thus, TTB chooses that non-MI-player as her 
                                                 
2
  OI has been omitted in this scenario, but its addition cannot avoid MI's breakdown. If we add an 

OI with limit success 1/2 and assume that the limit success of the two oscillating players is 

slightly greater than 1/2, then MI's limit success will be slightly greater than zero.  
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favorite for time n who delivers a prediction for time n and has the first-best success 

rate among those non-MI-players who have delivered a prediction for time n. 

 (2.) Gigerenzer assumes that all frequencies converge to limiting frequencies, i.e. 

probabilities, and moreover, that the success probabilities of the cues (the so-called 

'ecological validities', see p. 130), are estimated by repeated random samplings from 

finite domains. These estimations are 'inductively safe' modulo random errors. This 

downplays the very problem of induction. In the situation of online learning one in-

ductively infers from past events to future events. This is not random sampling, be-

cause you cannot sample from future events, but only from past events. (In terms of 

sampling theory, you sample from a finite subset of an possibly infinite domain.) If 

the future is different from the past, inductive inference leads to systematic failure. If 

the rule TTB is applied to the situation of online learning in our prediction games, 

then theorem 1 can be generalized as follows: if there exists a time point n* after 

which the (strict) success ordering of the non-MI-players (or cues) remains constant, 

then TTB's success rate converges to a weighted average of the success rates of the 

non-MI-players (or cues) conditional to times when they delivered a prediction, 

weighted by their frequencies of delivering a prediction. A detailed outline of this 

generalization is left to another paper.  

 The ABC-group is especially interested in comparing the success of TTB with the 

success of refined object-inductive strategies such as linear regression or Bayes rule. 

In this paper I consider such refined rules only in the margin because they do not af-

fect my results on meta-induction. Gigerenzer has argued repeatedly that in spite of 

its simplicity, TTB is almost always as good as these refined prediction strategies. 

Hogarth and Karelaia (2006) have shown that in scenarios with highly compensatory 

cues, TTB is inferior to refined object-inductive strategies, but they point out that 

these scenarios are rare. My results, however, reveal another restriction of TTB in 

scenarios of online learning: TTB will only perform well if the success rates of the 

cues converge sufficiently fast either towards a limit or at least to a unique success-

ordering among the cues. This is assumption is implicitly granted by the explained 
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random sampling methods of the ABC-group. However, in scenarios of online learn-

ing with oscillating event frequencies and success rates, as for example in predictions 

of the stock market, 'inductive safety' cannot be assumed. In such a case it would be a 

bad recommendation to put all of one's money always on the presently most success-

ful stock, instead of leaving it on one stock for some time (which corresponds to ε-

meta-induction in – 4), or distributing it over several stocks in form of a stock portfo-

lio (which corresponds to weighted average meta-induction in – 5). Fig. 2 illustrates 

breakdown of TTB when playing against non-MI-players (cues) with convergently 

oscillating success rates of the described worst-case sort. 

  
   4 non-MI-players (cues) with convergently oscillating success rates 

    
  
      Event frequency (binary event) 

 

 
   TTB 

 

 

 

Fig. 2:  Breakdown of TTB with convergently success-oscillating non-MI-players 

 

4. Improvements of One-Favorite Meta-Inductivists  

 

The meta-inductivist has a simple and robust defense strategy to permanent losses 

causes by convergent oscillations: don't switch favorites if their success difference is 

practically insignificant. I call this new type of meta-inductivist the ε-meta-induc-

tivist εMI: εMI switches his favorite only if the success difference between his pre-

sent favorite and a new better favorite exceeds a small threshold ε which is consid-
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ered as practically insignificant. The performance of εMI is illustrated by the com-

puter simulation in fig. 3, in which εMI plays against the two alternative players of 

the convergent oscillation scenario of fig. 1: when the success difference between the 

alternative players has become smaller  than ε, εMI stops to switch but sticks to one 

player, with the result that εMI's success rate recovers and ε-approximates the maximum 

success of the two alternative players.  

 

 
                 

                
              convergent oscillation as in fig. 2          

 

 

               

 

        

           εMI, for ε = 0.05  

 

 Fig. 3: εMI  in the convergent oscillation scenario of fig.2  
 

The move from MI to εMI gives rise to stronger theorem than (1.1), namely theorem 

(2.1). We say that a prediction game contains a subset BP ⊆ {P1,…,Pm} of ε-best 
non-MI-players iff there exists a time nBP, the winning time of BP, such that for all 

times later than nBP, (a) each player in B is more successful than each non-MI-player 

outside BP, and (b) the successes of all BP-players are ε-close to each other. Theo-

rem (2.1) establishes that εMI ε-approximates the maximal success rate if there exists 

a subset of ε-best non-MI-players. Again note the generality of this condition: it does 

not imply, but it is implied by the convergence of the non-MI-players' success rates 

towards a limit.   
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Theorem 2: For every prediction game ((e), {P1,…,Pm, εMI}) whose non-MI-players 

set contains a subset BP  of ε-best players, the following holds:  

(2.1) (Long run:) εMI's success ε-approximates the maximal success of the non-MI-

players (from below): limn→∞(maxsucn − sucn(εMI)) ≤ ε. 

(2.2) (Short run:) (∀n≥1:) sucn(MI) ≥ maxsucn − (nBP+1/n) − 2⋅ε, where nBP is BP's 

winning time. 

 

A proof of theorem 2 is found in Schurz (2008, – 4). The worst-case bound of εMI's 

short-run loss provided by theorem (2.2) (namely n
1nBP +  − 2⋅ε) is not especially good. 

At least, theorem (2.2) tells us that εMI's short run loss decreases with an early arrival 

of the winning time nBP of the ε-best players.  

  The ε-meta-inductivist is long-run optimal in a broader class of possible worlds 

than MI, on the cost that its optimality is not strict but approximate. I think that ap-

proximate optimality is still good enough to count as a justification, because the loss 

of an approximately optimal strategy, compared to the best strategy, is always small − 

smaller than ε. Moreover, for almost all practical purposes there exists a choice of ε 

which is small enough to count as practically insignificant, and theorem (2.1) holds 

for all choices of ε. However, there exists a trade-off in respect to the short-run per-

formance, since a small ε goes usually hand in hand with a large nBP in theorem (2.2). 

So, the freedom to make ε very small is limited by the interest in keeping the short-

run loss small.   

 The assumption of a subset of ε-best players is violated in prediction games with 

non-convergent success-oscillations. Here we find the worst cases for one-favorite 

meta-induction. If the success rates of two or more leading alternative players oscil-

late around each other in a nonconvergent manner with a nondiminishing amplitude 

of δ > ε, then εMI will be deceived. The minimal periods of such nonconvergent os-

cillations must grow exponentially in time. The worst case are so-called systematic 
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deceivers: they are assumed to know (e.g., by clairvoyance) whether the meta-

inductivist will choose them as favorite for the next time, and they use this informa-

tion to deceive the meta-inductivist by delivering a worst (i.e. minimal-score) predic-

tion whenever the meta-inductivist chooses them as their favorite, while they deliver 

a correct prediction whenever they are not chosen as a favorite. For natural loss func-

tions, the worst prediction for time n is 0 if en ≥ 1, and is 1 otherwise. Hence the score 

of the worst prediction is 0 in the binary prediction and a value between 0 and 0.5 in 

the real-valued prediction game; while the score of a correct prediction is always 1.  

 If εMI is playing against k deceivers, then at each time there will be k−1 deceivers 

which predict correctly because they are not εMI's favorite. The computer simulation 

in fig. 4 shows a binary prediction game in which four alternative players deceive the 

ε-meta-inductivist. As long as a deceiver D1 is εMI's favorite, D1 predicts the wrong 

result until his success is more than ε below some deceiver D2. At this time εΜΙ 

switches his favorite from D1 to D2, D1 starts to predict correctly and D2 starts to pre-

dict wrong results, until the next switch of εMI occurs, etc. In this way, εMI's success 

rate is turned down to zero, while the mean success of the four deceivers per oscilla-

tion is 3/4. 

 
     four systematic deceivers oscillating around each other 
     with constant amplitude ε    
 

 
           OI (limsuc = 2/3)   
     
           

       εMI (ε = 0.05) 

       Event stream: random binary (P(E) = 2/3) 
 

Fig. 4: Systematic deception of εMI by non-convergent oscillations 
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The negative result of fig. 4 generalizes to all kinds of one-favorite meta-inductivists: 

they must fail to be optimal whenever they play against k ≥ 2 systematic deceivers 

(and use them as favorites), because in that case they have zero-success, while the 

deceivers will have a limit success of  k
1k− , because in the long run each deceiver is 

εMI's favorite in 1 out of k times. 

 In spite of this drawback of εMI I wish to emphasize that εMI is an important im-

provement over MI. Convergent oscillations of success rates  (or more generally, 

relative frequencies) are nut 'unrealistic' in our real world: they occur under condi-

tions which involve periodic developments, e.g. as in trajectories of predator-prey-

systems. In contrast, non-convergent oscillations of relative (success) frequencies 

with exponentially growing periods are rather strange and presumably extremely rare 

in our real world.   

 i have tried to improve the performance of εMI further by assuming that εMI does 

never favor non-MI-players who deceive to him a certain degree, which means that 

their success-rate conditional on times at which their where εMI's favorites is more 

than a certain threshold below their unconditional success rate. I have called this kind 

of meta-inductivist the avoidance meta-inductivist aMI, and it can be shown that aMI 

predicts optimal with respect to non-deceiving non-MI-players, even if deceiving non-

MI-players are present (cf. Schurz 2008, –  5). However, the fact remains that neither 

aMI nor any other one-favorite meta-inductive method can predict optimally in re-

gard to deceivers.  

 Do meta-inductivists strategies exist which are indeed universally optimal? Our 

negative result about one-favorite meta-inductivists entails that if they exist, they 

must be found in the class of multiple-favorite meta-inductivists. In the next section 

we investigate their most important variant: weighted average meta-inductivists.  

 

 



  18 

5. Weighted Average Meta-Induction  

 

A weighted average meta-inductivist predicts a weighted average of the predictions 

of the non-MI-players. Since the weighted average of several predictions of zeros and 

ones is a real value between 0 and 1, this method cannot be applied to binary predic-

tion games, in which all predictions must be either '0' or '1'. It can only be applied to 

real-valued prediction games. In this form, the method of weighted average predic-

tion has been studied in the theory of (non-probabilistic) universal prediction which 

was mentioned in – 2. The results in this literature have not at all been related to the 

problem of induction, but the problem setting is similar to my prediction games.   

 The weighted average meta-inductivist is abbreviated as wMI and defined as fol-

lows. For every non-MI-player P we define atn(P) := sucn(P) 㬘  sucn(wMI) as P's at-

tractiveness (as a favorite) at time n. Let PP(n) be the set of all non-MI-players with 

positive attractiveness at time n. Then wMI's prediction for time 1 is set to 1/2, and 

for all times >1 with non-empty PP(n) ≠ ∅ it is defined as follows: 

 

Definition of weighted average prediction:  

∀n≥1:  pn+1(wMI) =  
∑

∑
∈

∈
⋅

)PP(nP

)PP(nP

(P)nat 

(P)np(P)nat 
 

In words: wMI's prediction for the next round is the attractiveness-weighted average 

of the attractive players' predictions for the next round. Should it happen that PP(n) 

gets empty, pn+1(wMI) is reset to 1/2.  

 

Informally explained, the reason why wMI cannot be deceived is the following: a 

non-MI-player who tries to deceive wMI would be one who starts to predict incor-

rectly as soon as his attractiveness for wMI is higher than a certain threshold. The 

success rates of such wMI-adversaries must oscillate around each other. But wMI 

does not favor just one of them (who predicts incorrectly in turn), but wMI predicts 

according to an attractiveness-weighted average of correctly and incorrectly predict-
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ing adversaries, and therefore wMI's long-run success must approximate the maximal 

long-run success of his adversaries.   

 The next theorem (theorem 3) does not hold for arbitrary but only for those loss 

functions l(pn,en) which are convex in pn. By definition, l(pn,en) is convex in its argu-

ment pn iff (for fixed weights) the loss of the weighted average of two predictions is 

smaller-equal than the weighted average of the losses of the two predictions. It is easy 

to see that the natural loss-function l(pn,en) := |pn−en| is convex. There exist many 

other convex loss-functions, e.g. |pn−en|q for q≥1, and theorem 3 applies to all of them. 

Theorem 3.1 establishes that wMI is indeed a universally long-run optimal prediction 

strategy, even in the strict (and not approximate) sense. Also wMI's short-run per-

formance is good, as theorem 3.2 reveals. The number m of non-MI-players (or 

strategies) is under complete control and the worst-case short-run loss m/n  quickly 

vanishes for times n >>m.   

  

Theorem 3: For every prediction game ((e), {P1,…,Pm,wMI}) whose loss-function 

l(pn,en) is convex in the argument pn, the following holds:  

(3.1) (Long-run:) sucn(wMI) (strictly) approximates the non-MI-players' maximal 

success: limn→∞ (maxsucn − sucn(wMI)) = 0. 

(3.2) (Short run:) (∀n≥1:) sucn(wMI) ≥ maxsucn − m/n . 

 

The proof of theorem 3 is found in Schurz (2008, – 5); it rests on corollary 2.1 of 

Cesa-Bianchi and Lugosi (2006, 12f). In prediction games satisfying the conditions of 

theorem 1, the strategy wMI will soon converge to the simple MI-strategy, since after 

some time, only the best player will have positive attractiveness, whence wMI will 

predict as if she would favor this best player forever.   

 Theorem 3 does not apply to binary prediction games, because even under the as-

sumption that the events and the non-MI-player's predictions are binary, wMI's pre-

dictions are not binary. The failure of theorem 3 for binary prediction games can be 
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recognized from the following example by Cesa-Bianchi and Lugosi (2006, 67): as-

sume a meta-inductivist playing against two non-MI-players, one of them constantly 

predicting 1 and the other constantly predicting 0, and a 'demonic' event-sequence 

produces constantly the opposite of the meta-inductivist's predictions. Then whatever 

the meta-inductivist predicts, his success rate will be constantly zero, while the maxi-

mal success rate of the two non-MI-players must always be ≥ 0.5. Thus, we have ob-

tained a second general negative result: a meta-inductive strategy which predicts 

long-run optimal for an individual player in arbitrary binary prediction games does 

not exist. In combination with theorem 3 this is a deep result, insofar it shows that a 

continuous nature is more friendly to the inductivist than a discrete nature.  

 Nevertheless I have found a way to apply theorem 3 indirectly also to the predic-

tion of binary events, namely by means of assuming a collective of k meta-

inductivists, abbreviated as cwMI1,…,cwMIk, and by considering their mean success 

rate ('cwMIi' stands short for 'collective weighted-average meta-inductivist no. i'). I 

regard wMI's real-valued prediction as an ideal (though non-admissible) prediction, 

which is approximated by the mean value of the k binary predictions of the collective 

of cwMI-meta-inductivists as follows: [pn⋅k] cwMI's predict 1, and k − [pn⋅k] cwMI's 

predict 0. In this way, one obtains a universal optimality result for the mean success 

rate of collective of cwMI's, abbreviated as ucs n(cwMI), which is formulated in theo-

rem 4 (proof in Schurz 2008, – 8). The additional worst-case loss term k2
1
⋅  reflects 

the maximal loss due to approximation of the ideal prediction by k binary predictions; 

this loss can be made arbitrarily small by increasing the number of meta-inductivists. 

 

Theorem 4: For every binary prediction game ((e), {P1,…,Pm, cwMI1,…,cwMIk}):  

(4.1) (Long run:) ucs n(cwMI) k2
1
⋅ -approximates the non-MI-players' maximal suc-

cess: limn→∞ ( ucs n(cwMI)  − maxsucn)  ≤  k2
1
⋅ . 

 (4.2) (Short run:)  (∀n≥1:) ucs n(cwMI)  ≥  maxsucn − m/n  − k2
1
⋅ . 
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 (logarithmic) 

 

Figure 5 shows a computer simulation of a collective of ten cwMI's playing against 4 

specially designed cwMI-adversaries, who predict incorrectly as soon as their attrac-

tiveness gets higher than a variable threshold.   
    

 

           

        4 worst-case deceivers (thick-grey) 

       10 cwMIs (thin)    

    cwMI's mean success (bold) approximates maximal success 

         Event-sequence: binary 

 

Fig. 5: Ten cwMI's against four cwMI-adversaries. 
 
 

The relation of the cwMI-strategy to the situation of an individual meta-inductivist in 

binary prediction games is the following. The cwMI-adversaries may conspire against 

a particular individual, say against cwMI3, and constantly deceive cwMI3 (alterna-

tively, a 'demonic' event sequence may constantly deceive cwMI3). But the cwMI-

adversaries cannot deceive the other cwMI's at the same time, and their anti-cwMI3-

conspiration will not affect the optimality result for the cwMI's mean success.  

 The collective actions of the cwMI's may be based on rational agreement. But it is 

sufficient to assume that the frequency of cwMI's who favor a non-MI-player P is 

proportional to P's attractiveness (provided this is positive). In the latter perspective, 

theorem 4 describes the predictive success of a  population of cwMI's in a typical evo-

lutionary setting as described in – 7.    
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6. Conclusions for Epistemology 

  

Table 1 summarizes the results on the optimality of meta-induction. Thereby, I rela-

tivize the notion of approximate optimality to a class of strategies Σ w.r.t. which xMI 

is optimal, and to a class of worlds W in which the strategies in Σ are played.  

 

xMI-           kind of         strategies in Σ are     worlds in W contain finitely many 
strategy:      optimality:  xMI-accessible and:  xMI-accessible players satisfying: 

MI  (th.1) strict opt.  no condition      ∃ best non-MI-player 

εMI (th.2)    ε-opt.  no condition      ∃ set of ε-best non-MI-players 

wMI (th.3) strict opt. no condition      real-valued game 

cwMI (th.4)  k2
1
⋅ -opt.  no condition      binary game 

Table 1: Optimality of xMI w.r.t. Σ in W  
 

I think the achieved results on the optimality of meta-induction are strong enough to 

show that a non-circular justification of meta-induction is possible. As I have ex-

plained in – 2, this analytic justification of meta-induction implies an a posteriori jus-

tification of object-induction in our real word, because so far object-induction has 

turned out to be the most successful prediction strategy.   

 As I have remarked in – 1, the meta-inductivists of table 1 are not generally domi-

nant (w.r.t the respective Σ and W). The main reason for this fact is the existence of 

refined (meta-) inductive strategies, which I call their conditionalized versions. They 

exploit correlations in non-random worlds which obtain between the events en and 

prior events, internal or external to the sequence (e), with help of Reichenbach's prin-

ciple of the narrowest reference class (1949, –  72). Assume {R1,…,Rr} is a partition 

of the events prior to the given time, such that the given person has reliable informa-

tion about which cell of Ri was realized before the given time, and the cells are statis-

tically relevant for the events of the sequence E (i.e., ne |Ri ≠ ne |Rj for j≠i, where 
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ne |Ri is the Ri-conditionalized mean value of e up to time n. Let R:|N→{R1,…,Rr} be 

the function which assigns to each time n the cell R(n) of the partition which was re-

alized before time n. Then the conditionalized OI-strategy transfers the conditional-

ized mean value ne |R(n), and in the binary case its integer-rounding [ ne |R(n)], to the 

next time (note that [ ne |R(n)] coincides with the conditional frequency fn(E|R(n)). 

Provided that all involved mean values and frequencies converge to a limit, one can 

prove that conditionalizing to reference partitions may only improve the success, 

compared to the simple OI (cf. Good 1983, ch. 17).  

 Also the conditionalized meta-inductivist works with a reference partition, but she 

conditionalizes the success frequencies of the other players to the cells of this parti-

tion. For example, the conditionalized εMI favors the first-best player P in the list of 

non-MI-players whose conditional success rate sucn(P|R(n)) is maximal modulo ε, or 

the conditionalized wMI computes the attractivenesses of the non-MI-players in 

terms of their conditional success rates sucn(P|R(n)). While a simple xMI ε-

approximates the maximal success always from below, the success rate of a condi-

tionalized xMI may be even strictly greater than the success rates of all other players. 

This fact does not affect the approximate optimality of the simple xMI, because we 

assume that refined meta-inductivistic techniques, if they are accessible, are among 

the methods of the alternative players. Hence with a "non-xMI-player" we mean a 

"non-simple-xMI-player". However, the fact shows that a simple meta-inductivist can 

improve his results by getting access to refined meta-inductivist (or object-

inductivist) techniques. This will become important in the next section in which we 

consider evolution-theoretic applications of prediction games. 

 

6. Applications to the Evolution of Cognition 

 

In order for prediction games to make sense in an evolutionary setting, I change two 

interpretations of them and add one additional restriction. 
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 (Interpretation 1:) I consider inductive strategies are strategies of learning within 

the individuals lifetime, while non-inductive strategies correspond to genetically de-

termined strategies which cannot be modified by individual learning.  

 (Interpretation 2:) Meta-inductivistic strategies are strategies of learning from the 

performance of other successful individuals of one's population.  

 Under interpretation 2, the success of meta-inductivistic techniques reflects ex-

actly the advantage of populations which possess the capability of cultural evolution, 

i.e. evolution by imitation and learning (in the sense of Richard Dawkins concept of 

'memes'; cf. 1989, ch. 11). Several evolutionary theorists have discussed the question 

under which conditions generation-wise cultural evolution is superior to individual 

learning or to genetically determined strategies (cf., e.g., Boyd und Richerson 1985, 

127). One such condition is, for example, that environmental condition do not com-

pletely change from one generation to the next one. However, my results on the op-

timality of meta-induction provide a general argument why the imitation of the suc-

cessful members of one's population − which is the general basis of cultural evolution 

−  brings an advantage to the mean success of the members of a population. In other 

words, meta-induction and cultural evolution are two sides of the same coin, and the 

optimality of meta-induction provides a general argument for the advantage of popu-

lations being capable of cultural evolution.   

  (Additional restriction:) Perfect clairvoyants, which have to be considered for the 

sake of the epistemological argument, do not play any realistic role in the evolution-

theoretic setting. Evolutionary organisms are never perfect. I therefore assume the 

constrain of imperfection which says that for each non-MI-strategy there exist some 

environmental conditions in which its success is very low, and/or some environments 

in which their success is very high. Under this condition, the conditionalized meta-

inductive strategy which I have explained before turns out to be not only weakly but 

even strongly dominant. In what follows, condMI denotes the conditionalized version 

of MI; it is strongly dominant (given the constraint of imperfection) under the condi-

tion of theorem 1; otherwise one has to use the conditionalized version of wMI).  Fig. 
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6 illustrates conMI at hand of a prediction game with 5 different environments which 

change in the average after 50 rounds, but in an unpredictable way. conMI's success 

rates climbs high above the success rates of the non-MI-players, because in each 

given environment condMI takes advantage of exactly that strategy which performs 

best in this environment. For sake of comparison, fig. 6 informs also about success 

rate of the unconditional MI under the hypothetical assumption that condMI's predic-

tions are not accessible to MI − otherwise MI would of course predict equally good 

as conMI (apart from a small short-run loss).  
    ConMI   MI (ConMI not accessible to MI) 

       

 

 

     Five environment-dependent forecasters 

 

 

Fig. 7: CondMI in an evolutionary scenario with five changing environments   

 

A further application to cognitive psychology arises when we compare the success of 

one-favorite meta-induction with the weighted average meta-induction. In fact, we 

find both strategies in humans as members of cultural evolution: some people tend to 

choose one authority whom they believe everything; others compare the opinions of 

several authorities and weigh them. What is the better strategy? Our results tell us 

that MI and TTB are not robust in situations of oscillating success rates. Indeed, hu-

mans who tend to believe one authority do not easily change the authority in which 

they believe − they behave more like εMI, which is a much more robust one-favorite 

strategy than MI. In the end we have seen that the superior though more complicated 

meta-induction method is weighted average meta-induction, although for binary pre-
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diction games, this method does not work at the individual but only at the collective 

level.  

 

8. Local, General and Universal Prediction Strategies: Revising the Paradigm of 

Bounded Rationality 

 

The bounded rationality paradigm of the ABC-group maintains that all prediction 

methods, whether complex or simple, are ecological in the sense that their success is 

restricted to certain environmental conditions. We have seen that this claim is not 

generally valid. I want to suggest a more refined picture, by distinguishing between 

three kinds of prediction strategies with respect to the range of worlds in which they 

are optimal.   

 (1.) Local strategies are those whose optimality is restricted to particular kinds of 

situations, or worlds. They presuppose that certain correlations hold and fail when-

ever these correlations don't hold. Local strategies cannot learn, they are genetically 

determined or elsewhere dogmatically fixed strategies. For example, the strive of an 

insect towards light is a local strategy; the insect cannot change this strategy in an 

environment of electric light bulbs in which this strategy kills it. (Note that I  speak of 

learning at the level of the individual, not at the global level of evolution itself). An-

other example of a local strategy is Gigerenzer's recognition heuristics (1999, p. 

37ff.), insofar this strategy presupposes that the layman's recognitions of events are 

statistically correlated with certain comparative properties of these events; e.g. with 

the size of recognized cities. For example, it would be a bad recommendation to ap-

ply the recognition heuristics to the mathematical intelligence of recognized persons 

or the attractiveness of recognized tourist places in nature. 

 (2.) Object-inductive strategies can learn: they can change their beliefs about cor-

relations and cues in the light of new evidence. Hence, the optimality of these strate-

gies is certainly not local, but they are more-or-less general (with 'general' I do not 

mean 'strictly universal' but general in the 'more-or-less' sense). The existence of cog-
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nitive general-purpose mechanisms has also been emphasized by cognitive psy-

chologists (e.g. Over 2003). Nevertheless, all object-inductive strategies fail in cer-

tain worlds, whence they are not  universally optimal.   

 (3.) Universally optimal would be a prediction strategy if it predicts optimal in 

every possible environmental condition. According to the bounded rationality para-

digm of the ABC-research group, universally optimal strategies don't exist. We have 

seen that although this is true for object-inductive strategies, it is false for meta-

inductive strategies, since weighted average meta-induction is indeed universally op-

timal among all accessible prediction methods. The restriction to "accessibility" is, of 

course, crucial, and without this restriction a universal optimality result can impossib-

ly be achieved.   
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