
Measurement Theory1

The term measurement theory refers to that part of a physical theory
in which the empirical and operational content of the concepts of the
theory is determined. Measurements are analyzed both as operational
procedures defining the → observables of the theory and as physical
processes which are themselves subject to the laws of physics.

In classical physics, measurements are performed in order to deter-
mine the values of one or several observables of the physical system un-
der consideration. Classical physics allowed the idealized notion that
every physical quantity has a definite value at any time, and that this
value can be determined with certainty by measurement without influ-
encing the object system in a significant way. By contrast, in quantum
mechanics both features fail to hold without strong qualifications. Ac-
cordingly, in their seminal paper of 1935 [1], Einstein, Podolsky and
Rosen used elements of this description as a sufficient criterion of phys-
ical reality, applicable both in classical and quantum mechanics:

“If, without in any way disturbing a system, we can pre-
dict with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element of
physical reality corresponding to that physical quantity."

As far as observable elements of reality represented by quantum me-
chanics are concerned, this condition must also be regarded as neces-
sary. Hence, an observable is understood to have a definite value if
the probability that a measurement indicates a particular value of the
observable is equal to one. In quantum mechanics, this can only be sat-
isfied if the system is in an eigenstate of the observable associated with
the value in question. Moreover, it turns out that in quantum mechan-
ics the interaction between a measuring apparatus and the measured
system is generally not negligible. This leads to the necessity of re-
considering what it means that a measurement determines the value
of an observable. Here this question is discussed for the case of an
observable represented by a selfadjoint operator A (acting on a com-
plex separable Hilbert space H) with nondegenerate discrete spectrum
{a1, a2, . . . }, associated orthonormal basis of eigenvectors {ϕ1, ϕ2, . . . },
and→ spectral decomposition A =

∑
i aiPi, where Pi = |ϕi〉〈ϕi| denotes

the projection onto the one-dimensional subspace spanned by ϕi.
A minimal requirement for a physical interaction process between

an object system and an apparatus to qualify as a measurement of
A is the so-called calibration condition: whenever the system is in an
eigenstate, the apparatus should indicate the corresponding eigenvalue
unambiguously after the interaction has ceased. In quantum mechan-
ics, a measurement is modeled by representing the apparatus by a

1In: Compendium of Quantum Physics, eds. F. Weinert, K. Hentschel and
D. Greenberger, Springer-Verlag, to appear.
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Hilbert space HA, the pointer observable as a selfadjoint operator Z
acting on HA and the coupling between object and apparatus as a uni-
tary operator U acting on the tensor product Hilbert space H ⊗ HA

of the total system. Together with the initial apparatus → state TA,
these elements, collected into a quadruple 〈HA, TA, U, Z〉, constitute a
measurement scheme.

Assuming, for simplicity, that the apparatus initially is in a pure
state, described by a unit vector φ, the calibration condition can be
formalized as follows: the measurement scheme has to be such that for
any eigenstate ϕi of A there is an associated (normalized) eigenstate
φi of the pointer Z so that U effects the following transition:

(1) ϕi ⊗ φ→ U(ϕi ⊗ φ) = ψi ⊗ φi.

Here ψi is some normalized vector state in H, and the φi are mutually
orthogonal. Thus, if the observable A initially has a definite value ai,
the pointer observable of the apparatus will indicate this value with
probability equal to one, in accordance with the → Born probability
rule. If condition (1) is satisfied for all ϕi, the given measurement
scheme is called a premeasurement of A.

If the system is initially in a vector state ϕ which is not an eigenstate
of A, then ϕ is a superposition of eigenstates of A, that is, ϕ =

∑
i ciϕi

with more than one of the ci nonzero. Together with the linearity of U ,
the rule (1) still determines unambiguously the final state of the total
system:

(2) ϕ⊗ φ =
∑

i

ciϕi ⊗ φ→ Uϕ⊗ φ =
∑

i

ciψi ⊗ φi.

The final state is a superposition of mutually orthogonal states, and
the probability for the pointer to indicate a value ai is equal to |ci|2 =
|〈ϕ|Piϕ〉|2, thus justifying the Born probability interpretation of the
latter expression.

This simplified description also highlights the fundamental dilemma
of quantum measurement theory known as the quantum measurement
problem, the problem of objectification, or the collapse problem: if an
observable A does not have a definite value, then according to quantum
mechanics, a premeasurement of A will leave the object-plus-apparatus
system in an → entangled state in which the pointer observable does
not have a definite value – in stark contrast to the fact that every real
measurement ends with a definite pointer position. This leaves one
with the following alternative: on the one hand, if one requires that
quantum mechanics should include an account of its measuring pro-
cesses – that is, this theory should be semantically complete – then it
turns out that the occurrence of definite measurement outcomes contra-
dicts the quantum mechanical account of the measurement dynamics
– that is, this theory is semantically inconsistent; on the other hand, if
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one requires semantical consistency, then quantum mechanics cannot
be semantically complete [8]. In the first case, a modification of the
axioms of quantum mechanics is required. In the second case, there
is no consistent quantum measurement theory, unless an appropriate
reinterpretation of what it means for an observable to have a definite
value can be found.

There is an enormous amount of literature dealing with the quan-
tum measurement problem, and as yet there is no generally accepted
resolution. Rigorous technical presentations of the problem and the
spectrum of interpretational options are found, for example, in [9] and
[10], whereas philosophical aspects are discussed in [11]. A valuable
cross-section of the older literature until 1980 is reprinted in the vol-
ume [12]. Interestingly, the founders of quantum mechanics (e.g., [2, 3])
identified the reality of the collapse of the wave function or state vector
but did not regard it as a conceptual problem. It was von Neumann in
1932 [4] who pointed out the tension between the collapse process as a
random event and the deterministic (unitary, linear) Schrödinger dy-
namics of a closed system. Somewhat later, Schrödinger [5] conceived
his infamous cat paradox to highlight the apparent absurdity of the
possibility, suggested by quantum mechanics, of observing macroscopic
systems in superpositions of states corresponding to such discernible
situations as a cat being dead or alive.

Adopting the collapse postulate has since been taken by many as
a pragmatic way of suspending the measurement problem. Following
this route, there remains the task for quantum measurement theory
to show that quantum mechanics entails the possibility in principle
of measuring any of its observables. For an observable represented
as a POVM (→ observable), the above calibration condition is gener-
ally not applicable. However, whenever that condition does apply, it
implies the reproduction of probabilities for the object observable in
terms of the pointer statistics. This latter condition, called probabil-
ity reproducibility condition [9], can always be taken as the defining
criterion for a measurement scheme to constitute a measurement of
a given observable. This characterization of the measurements of an
observable implements the Born interpretation (→ Born rule) of the
quantum mechanical probabilities and the idea that any observable is
identified by the totality of its statistics. The formal implementation of
these ideas, which constitute the mathematical framework of quantum
measurement theory, are briefly summarized in the text box below.
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Tools of Quantum Measurement Theory
Every measurement scheme 〈HA, TA, U, Z〉 defines a unique observable of
the object system. If the pointer observable Z is represented as a POVM
on the (Borel) sets of R (say), then for each state T of the object system,
the following defines a probability measure on the real line (X denotes
any Borel subset of R and I is the identity operator):

(3) X 7→ tr[UT ⊗ TAU∗I ⊗ Z(X)] ≡ tr[TE(X)].

This equation, valid for all states T , entails the existence of a positive
operator E(X) associated with each set X; moreover, the fact that X 7→
tr[TE(X)] is a probability measure for each T ensures that E : X 7→
E(X) is a POVM on the (Borel) subsets of R.
It is a fundamental theorem of the quantum theory of measurement that
for every observable there are measurement schemes (in fact, infinitely
many) such that (3) is fulfilled for all object states T [6].
With the existence of premeasurements for any observable thus secured,
another task of quantum measurement theory is the description of the
effect of a measurement on the object system. Given a measurement
scheme for an observable E, one can ask for the probabilities of the out-
comes of any subsequent measurement. If F is another POVM on the
(Borel) subsets of R, to be measured immediately after the E measure-
ment, the sequential joint probability for obtaining a value of E in a set
X and a value of F in a set Y is

(4) tr[UT ⊗ TAU∗F (Y )⊗ Z(X)] ≡ tr[IX(T )F (Y )].

This relation, valid for all states T , all observables F and all X, Y , deter-
mines a unique non-normalized object state IX(T ); substituting for F (Y )
the identity operator, it is seen that tr[IX(T )] = tr[TE(X)]. Dividing
the joint probability in (4) by the latter probability gives the conditional
probability for the occurrence of an outcome in Y given that the first
measurement led to an outcome in X. Thus IX(T ) can be taken to play
the role of the final object state in accordance with the collapse postulate.
The map T 7→ IX(T ) is known as a (quantum) operation, and X 7→ IX
is an operation-valued measure called the instrument induced by the given
measurement scheme [7].
Any instrument arising from a measurement scheme has the property of
complete positivity: that is, for any operation IX , if extended to a linear
map In ⊗ IX acting on the trace class operators of the Hilbert spaces
Cn ⊗ H, the extended map is positive for each n. It is another funda-
mental theorem of quantum measurement theory that every completely
positive instrument can be realized by some (in fact, infinitely many)
measurement schemes [6].

With the conceptual tools of measurement theory outlined in the
above box, it has become possible to eliminate some long-standing
myths and corroborate a number of equally long-standing folk truths.
For example, it has long been held without questioning that any mea-
surement collapses the object system into an eigenstate of the measured
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observable. Measurements with that property are called repeatable. In
the example leading to (1), repeatability is achieved by putting ψi = ϕi;
but it is by no means necessary to assume that every measurement has
this property. Moreover, according to a theorem due to Ozawa [6],
in order for an observable to admit a repeatable measurement, this
observable must be discrete, that is, have a countable set of values.

The realization that measurements necessarily disturb the object sys-
tem was made early on in the history of quantum mechanics. However,
the nature of that “disturbance" and its quantification have remained
the subject of much debate until recently, when it was realized that the
notion of instrument allows a rigorous and effective description of the
state changes due to measurements. Yet another fundamental theorem
of quantum measurement theory is given by the statement that there
is no measurement which does not change at least some of the states
of the system under investigation: a measurement scheme that leaves
unchanged all states of the object defines a trivial observable, that is
one whose probability measures do not depend on the state. Thus,
there is no information gain in quantum measurements without some
disturbance.

The trade-off between information gain and disturbance in quantum
measurements has been recognized as a resource for novel applications
of quantum measurements, particularly in quantum cryptography, a
sub-field of the new area of → quantum information science. This is
one example for the importance of quantum measurement theory as an
applied discipline besides its foundational role.

Applications of quantum measurement theory ranging from nonde-
molition measurements and analyses of basic experiments to open quan-
tum systems and quantum tomography are covered, for instance, by the
monographs [13, 14, 15, 16, 17].
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