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1. Introduction

In 1905, Einstein published what came to be known as the special theory of rela-
tivity, extending the Galilean-Newtonian principle of relativity for uniform motion
from mechanics to all branches of physics.1 Two years later he was ready to extend
the principle to arbitrary motion. He felt strongly that there can only be relative
motion, as is evidenced, for instance, by his opening remarks in a series of lectures
in Princeton in 1921, published in heavily revised form the following year (Einstein
1922c). A typescript based on a stenographer’s notes survives for the first two,
non-technical lectures. On the first page of this presumably verbatim transcript
we find Einstein belaboring the issue of the relativity of motion in a way he never
would in writing:2

Whenever we talk about the motion of a body, we always mean
by the very concept of motion relative motion . . . These conditions
are really quite trivial . . . we can only conceive of motion as relative
motion; as far as the purely geometrical acceleration is concerned,
it does not matter from the point of view of which body we talk
about it. All this goes without saying and does not need any further
discussion (CPAE 7, Appendix C, [p. 1]).

Although Einstein insists that these points are trivial, we shall see that they are
not even true. What makes his comments all the more remarkable is that by
1921 Einstein had already conceded, however grudgingly, that his general theory
of relativity, worked out between 1907 and 1918, does not make all motion relative.

In a paper entitled “Is “general relativity” necessary for Einstein’s theory of
gravitation?” published in one of the many volumes marking the centenary of
Einstein’s birth, the prominent relativist Sir Hermann Bondi (1979) wrote: “It
is rather late to change the name of Einstein’s theory of gravitation, but general
relativity is a physically meaningless phrase that can only be viewed as a historical
memento of a curious philosophical observation” (181).3

Einstein obviously realized from the beginning that there is a difference between
uniform and non-uniform motion. Think of a passenger sitting in a train in a
railway station looking at the train next to hers. Suppose that—with respect to
the station—one train is moving while the other is at rest. If the motion is uniform
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and if the only thing our passenger sees as she looks out the window is the other
train, there is no way for her to tell which one is which. This changes the moment
the motion is non-uniform. Our passenger can now use, say, the cup of coffee in
her hand to tell which train is moving: If nothing happens to coffee, the other one
is; if the coffee spills, hers is.

The key observation on the basis of which Einstein nonetheless sought to extend
the relativity principle to non-uniform motion is that, at least locally, the effects
of acceleration are indistinguishable from the effects of gravity. Invoking this
general observation, our passenger can maintain that her train is at rest, even if
her coffee spills. She can, if she is so inclined, blame the spill on a gravitational
field that suddenly came into being to produce a gravitational acceleration equal
and opposite to what she would otherwise have to accept is the acceleration of
her own train.4 This was the idea that launched Einstein on his path to general
relativity (Einstein 1907j, Part V). A few years later, he introduced a special name
for it: The equivalence principle (Einstein 1912c, 360, 366).

This principle by itself does not make non-uniform motion relative. As Einstein
came to realize in the course of the work that led him toward the new theory, two
further conditions need to be met.

The first condition is that it should be possible to ascribe the gravitational field
substituted for an object’s acceleration on the basis of the equivalence principle
to a material source—anything from the object’s immediate surroundings to the
distant stars. Otherwise, acceleration with respect to absolute space would simply
be replaced by the equally objectionable notion of fictitious gravitational fields. If
this further condition is met, however, the gravitational field can be seen as an
epiphenomenon of matter and all talk about motion of matter in that field can be
interpreted as short-hand for motion with respect to its material sources (Maudlin
1990, 561). This condition was inspired by Einstein’s reading of the work of
the 19th-century Austrian philosopher-physicist Ernst Mach (Barbour and Pfister
1995, Hoefer 1994, Renn 2007a).

The second condition is that all physical laws have the same form for all ob-
servers, regardless of their state of motion. In particular, this should be true for
the gravitational field equations, the equations that govern what field configura-
tion is produced by a given distribution of sources. This form invariance is called
general covariance.5 Einstein had great difficulty finding field equations that are
both generally covariant and satisfactory on all other counts (Renn 2007a, Vols.
1–2). He originally settled for field equations of severely limited covariance. He
published these equations in a paper co-authored with the mathematician Marcel
Grossmann (Einstein and Grossmann 1913). They are known among historians of
physics as the Entwurf (German for ‘outline’) field equations after the title of this
paper. The precursor to general relativity with these field equations is likewise
known as the Entwurf theory. In the course of 1913, Einstein convinced himself
that the restricted covariance of the Entwurf field equations was still broad enough
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to make all motion relative. In a vintage Einstein maneuver, he even cooked up
a fallacious but ultimately profound argument, known as the hole argument (see
Section 3 and note 62), purporting to show that generally-covariant gravitational
field equations are inadmissible (Einstein and Grossmann 1914a). By the end
of 1914 he felt so sure about the Entwurf theory that he published a lengthy
self-contained exposition of it (Einstein 1914o).6 In the fall of 1915, however, he
recognized that the Entwurf field equations are untenable. In November 1915, with
the Göttingen mathematician David Hilbert breathing down his neck,7 Einstein
dashed off a flurry of short papers to the Berlin Academy, in which he proposed, in
rapid succession, three new field equations of broad and eventually general covari-
ance (Einstein 1915f, g, h, i).8 The final generally-covariant equations are known
today as the Einstein field equations. Einstein subsequently replaced the prema-
ture review article of 1914 by a new one (Einstein 1916e). This article, submitted
in March and published in May 1916, is the first systematic exposition of general
relativity.9 When Einstein wrote it, he was laboring under the illusion that, simply
by virtue of its general covariance, the new theory made all motion relative.

The other condition mentioned above, however, was not met: General covariance
in no way guarantees that all gravitational fields can be attributed to material
sources. In the fall of 1916, in the course of an exchange with the Dutch astronomer
Willem de Sitter, Einstein was forced to admit this. He thereupon modified his
field equations (without compromising their general covariance) by adding a term
with the so-called cosmological constant (Einstein 1917b). Einstein’s hope was that
these new field equations would not allow any gravitational fields without material
sources. In a brief but important paper in which he silently corrected some of his
pronouncements on the foundations of general relativity in the 1916 review article,
Einstein (1918e, 241) introduced a special name for this requirement: Mach’s
principle.10 A few months later, it became clear that even the modified equations
do not satisfy this principle. Within another year or so, Einstein came to accept
that general relativity, the crowning achievement of his career, did not banish
absolute motion from physics after all.

This, in a nutshell, is the story of Einstein’s quest for general relativity from
1907 to about 1920. His frustrations were many. He had to readjust his approach
and his objectives at almost every step along the way. He got himself seriously
confused at times, especially over the status of general covariance (see Section
3).11 He fooled himself with fallacious arguments and sloppy calculations (Janssen
2007). And he later allegedly called the introduction of the cosmological constant
the biggest blunder of his career (Gamow 1970, 149–150).12 There is an uplifting
moral to this somber tale. Although he never reached his original destination, the
bounty of Einstein’s thirteen-year Odyssey was rich by any measure.13

First of all, what is left of absolute motion in general relativity is much more
palatable than the absolute motion of special relativity or Newtonian theory.14
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Einstein had implemented the equivalence principle by making a single field repre-
sent both gravity and the structure of space-time. In other words, he had rendered
the effects of gravity and acceleration (i.e., the deviation from inertial motion) in-
distinguishable by making them manifestations of one and the same entity, now
often called the inertio-gravitational field. If Mach’s principle were satisfied, this
field could be fully reduced to its material sources and all motion would be rela-
tive. But Mach’s principle is not satisfied and the inertio-gravitational field exists
in addition to its sources. When two objects are in relative non-uniform motion,
this additional structure allows us to determine whether the first, the second, or
both are actually moving non-uniformly. In this sense, motion in general relativity
is as absolute as it was in special relativity. In his Princeton lectures, however,
Einstein (1956, 55–56) argued that there is an important difference between the
two theories: In general relativity, the additional structure is a bona fide physical
entity that not only acts but is also acted upon. As Misner, Thorne, and Wheeler
(1973, 5) put it in their textbook on general relativity: “Space acts on matter,
telling it how to move. In turn, matter reacts back on space, telling it how to
curve.”

By 1920, Einstein had probably recognized that Mach’s principle was predicated
on an antiquated 19th-century billiard-ball ontology (Hoefer 1994, Renn 2007b).
In the field ontology of the early 20th-century, in which matter was ultimately
thought of as a manifestation of the electromagnetic and perhaps other fields, it
amounts to the requirement that the gravitational field be reduced to these other
fields. A recognition of this state of affairs may have helped Einstein make his
peace with the persistence of absolute motion in general relativity. Instead of
trying to reduce one field to another, he now tried to unify the two. This can
clearly be seen in Ether and relativity, the inaugural lecture Einstein gave upon
accepting a visiting professorship in Leyden in 1920. Einstein was not pandering
to his revered senior Dutch colleague Hendrik Antoon Lorentz when he presented
the inertio-gravitational field in this lecture as a new relativistic incarnation of the
ether eliminated by special relativity (Einstein 1920j).

Special relativity combines the electric and the magnetic field into one electro-
magnetic field, and space and time into space-time. General relativity combines
the gravitational field and the space-time structure into one inertio-gravitational
field. It thus made sense to try to combine the electromagnetic field and the
inertio-gravitational field into one unified field. Einstein spent the better part of
the second half of his career searching in vain for a theory along the lines of general
relativity that would accomplish this.15

Even though general relativity does not eliminate absolute motion, the case can
be made that it does eliminate absolute space(-time). In the classic debate between
Newton (through his spokesperson Samuel Clarke) and Leibniz (Alexander 1956),
these two notions seemed to stand or fall together. Modern philosophy of space
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and time has made it clear that they do not. The appearance that they do is due
to a conflation of two related but separate issues (Earman 1989, 12–15).

The first issue is the one we have been considering so far: Is all motion relative or
is some motion absolute? This question, as we just saw, ultimately boils down to
the question whether or not the space-time structure is something over and above
the contents of space-time. To the extent that it is still meaningful to distinguish
space-time from its contents once the former has been identified with a physical
field (Rynasiewicz 1996), one would have to answer this question affirmatively.
This in turn implies that absolute motion persists in general relativity.

The second issue concerns the ontological status of space-time. Is the space-
time structure supported by a substance, some sort of container, or is it a set
of relational properties, like the marriage of me and my wife?16 The two views
thus loosely characterized go by the names of substantivalism and relationism (or
relationalism), respectively. Fairly or unfairly, Newton’s name has been associated
with substantivalism as well as with absolutism about motion, Leibniz’s name with
relationism as well as with relativism about motion. It is possible, however, to be
an absolutist about motion while being a relationist about the ontology of space-
time. Although the jury is still out on the latter count, the ontology of space-time,
represented by the inertio-gravitational field in general relativity, is probably best
understood in relational rather than substantival terms. In that case, however,
the causal efficacy implied by the slogan that space-time both acts and is acted
upon cannot be that of a substance.

If the verdicts on these two issues stand as final, the centuries-old debate between
Newtonians and Leibnizians will have ended in a draw: Newtonians were right that
there is absolute motion, Leibnizians were right that there is no absolute space.
Accordingly, the best arguments in support of their respective positions would
both be correct. Newton’s rotating-bucket experiment (see Section 4) shows that
rotation is absolute; Leibniz’s mirror or shift argument (see Section 3) shows that
space is relational. One can argue, however, that the terms of the debate have
changed so drastically since the 17th century that it does not make much sense
anymore to belatedly declare winners and losers (Rynasiewicz 1996).17

The central argument for the claim that general relativity vindicates relation-
ism can be seen as a modern version of Leibniz’s shift argument and is based on
Einstein’s resolution of the hole argument through the so-called point-coincidence
argument (see Section 3). Originally, the hole argument was nothing but a fig
leaf to cover up the embarrassing lack of covariance of the Entwurf field equations
(Janssen 2007). The point-coincidence argument likewise started out as an ex-
pedient to silence two correspondents, who took Einstein to task for publishing
generally-covariant field equations without explaining what was wrong with the
hole argument (see note 63). Despite their inauspicious origins, both arguments
have enjoyed a rich afterlife in the literature on the philosophy of space and time.
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This illustrates my general point that Einstein’s quest for general relativity was
anything but fruitless.

This becomes even clearer when we shift our attention from foundational issues
to physics proper. Even though the equivalence principle could not be used for its
original purpose of making all motion relative, Einstein did make it the corner-
stone of a spectacular new theory of gravity that is still with us today. The insight
that space-time and gravity should be represented by one and the same structure
may well turn out to be one of the most enduring elements of Einstein’s legacy
(Janssen 2002b, 511–512). In addition to laying the foundation for this theory,
Einstein, among other things, explained the anomalous advance of the perihelion
of Mercury (Einstein 1915h),18 successfully predicted both the bending of light in
gravitational fields and its gravitational redshift (Einstein 1907j, 1911h, 1915h),19

launched relativistic cosmology (Einstein 1917b),20 suggested the possibility of
gravitational waves (Einstein 1916g, 1918a),21 gravitational lensing,22 and frame-
dragging (Einstein 1913c, 1261–1262),23 came up with the first sensible definition
of a space-time singularity (Einstein 1918c),24 and caught on to the intimate con-
nection between covariance and energy-momentum conservation (Einstein 1914o,
1916o) well before Emmy Noether (1918) formulated her celebrated theorems con-
necting symmetries and conservation laws inspired by this particular application in
general relativity (Rowe 1999, Janssen and Renn 2007).25 Even Einstein’s “biggest
blunder”—the cosmological constant—has made a spectacular comeback in recent
years. It can be used to give a simple account of the accelerated expansion of the
universe. These results more than compensate for Einstein’s failure in his quest
for general relativity.

It is this quest, however, that will be the main focus of this chapter.26 Between
1907 and 1918, Einstein made at least four different attempts to make all motion
relative. In Sections 2–5, I cover these attempts and explain how and why they
failed. This raises an obvious question: How do we make sense of the success of
Einstein’s theory of gravity given that some of the main considerations that led
him to it turned out to be misguided (Renn 2007b, 21–23)? In the concluding
Section 6, I identify three factors that may help answer this question. First,
throughout the pursuit of his lofty philosophical goals, Einstein never lost sight
of the more mundane physics problem at hand, namely how to reconcile the basic
insight of the equivalence principle, the intimate connection between inertia and
gravity, with the results of special relativity.27 Second, in developing his new
theory, Einstein relied not only on his philosophical ideas but also on an elaborate
analogy between the electromagnetic field, covered by the well-established theory
of electrodynamics, and the gravitational field, for which he sought a similar theory
(Renn and Sauer 2007, Janssen and Renn 2007). Finally, as we shall see in the
course of Sections 2–5, Einstein, who could be exceptionally stubborn, displayed a
remarkable flexibility at several key junctures where his philosophical predilections
led to results that clashed with sound physical principles, such as the conservation
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laws for energy and momentum. None of this is to say that Einstein’s philosophical
objectives only served as a hindrance in the end. Without them Einstein would
probably have taken a more conservative approach, making gravity just another
field in the Minkowski space-time of special relativity rather than part of the
fabric of space-time itself. As we shall see in Section 6, however, Einstein himself
showed, through his contributions to a theory first proposed by the Finnish theorist
Gunnar Nordström, that even this more conservative approach eventually leads to
a connection between gravity and space-time curvature as in general relativity
(Einstein and Fokker 1914).28

2. First attempt: The equivalence principle

One day in 1907, at the patent office in Berne, while working on a review article on
his original theory of relativity (Einstein 1907j), it suddenly hit Einstein: Someone
falling from the roof of a house does not feel his own weight. As he wrote in a long
unpublished article intended for Nature on the conceptual development of both his
relativity theories, this triggered “the best idea of [his] life.”29 It is illustrated in
Fig. 1. The upper half shows Einstein looking out the window and meeting the
eyes of a man who moments earlier fell off his scaffold as he was cleaning windows
a few floors up. Einstein is at rest in the gravitational field of the earth, the man
is in free fall in this field, accelerating toward the pavement. For the duration of
the fall, he is experiencing something close to weightlessness. Although to this
day few have actually experienced this condition first-hand, we have all at least
experienced it vicariously through footage of astronauts in free fall toward Earth
as they orbit the planet in a space shuttle. Einstein only had his imagination to
go on. If it were not for air resistance, the unfortunate window cleaner, like the
astronaut in orbit around the earth, would feel as if he were hovering in outer
space, far removed from any gravitating matter. Moreover, on Galileo’s principle
that all bodies fall alike, he would fall with the same acceleration as his bucket
and his squeegee. These objects would thus appear to be hovering with him. In
short, moving with the acceleration of free fall in a gravitational field seems to
be physically equivalent to being at rest without a gravitational field. Likewise,
being at rest at one’s desk, resisting the downward pull of gravity, seems to be
physically equivalent to sitting at the same desk in the absence of a gravitational
field but moving upward with an acceleration equal and opposite to that of free
fall on earth. An astronaut firing up the engines of her rocket ship in outer space
will be pinned to her seat as if by a gravitational field (an experience similar to the
one we have during take-off on a plane). Einstein used observations like this for
an extension of sorts of the relativity principle for uniform motion to non-uniform
motion.

Fig. 1 depicts the four physical states described above. Both in situation (I),
near the surface of the earth, and in situation (II), somewhere in outer space, the
man on the left (a) and the man on the right (b) can both claim to be at rest as long
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Figure 1. The equivalence principle.
This and all other diagrams in this chapter by Laurent Taudin.
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as they agree to disagree on whether or not there is a gravitational field present.
For Einstein sitting at his desk in situation (I), there is a gravitational field, he is
at rest, and the other man is accelerating downward. For the falling man, there is
no gravitational field, he is at rest, and Einstein is accelerating upward. Situation
(II) fits the exact same description.

This extended relativity principle, however, is very different from the relativity
principle for uniform motion. The situations of two observers in uniform motion
with respect to one another are physically fully equivalent. This is not true for
non-uniform motion. Resisting and giving in to the pull of gravity (Ia and Ib,
respectively) feel differently; so do accelerating and hovering in outer space (IIa
and IIb, respectively). In fact, the equivalence captured in Fig. 1 is not between
different observers in the same situation—i.e., between observers (a) and (b) in
situation (I) or (II)—but between different situations for the same observers—i.e.,
between situations (I) and (II) for observer (a) or (b).

We call the uniform motion of one observer with respect to another relative
because the situation is completely symmetric. It is therefore arbitrary in the final
analysis (even if hardly ever in practice) which one we label ‘at rest’ and which
one we label ‘in motion’. There is no such symmetry in the case of non-uniform
motion. Non-uniform motion is thus not relative in the sense that uniform motion
is. What is relative in this sense in the situations illustrated in Fig. 1 is the presence
or absence of a gravitational field. Situations (I) and (II) can both be accounted
for with or without a gravitational field. From the perspective of observer (a),
both situations involve a gravitational field; from the perspective of observer (b),
there is none in either.

If we try to extend the descriptions of situations (I) and (II) to include all
of space, the equivalence of the description with and the description without a
gravitational field breaks down. Contrary to what Einstein thought in 1907, we
cannot fully reduce inertial effects, the effects of acceleration, to gravitational
effects. As mentioned in the introduction, however, general relativity in its final
form does trace inertial and gravitational effects to the same structure, the inertio-
gravitational field.

In Newtonian physics particles get their marching orders, figuratively speaking,
from the space-time structure and from forces acting on them. According to New-
ton’s first law (the law of inertia), a particle moves in a straight line at constant
speed as long as there are no forces acting on it. This is true regardless of its size,
shape, or other properties. Forces cause a particle to deviate from its inertial path.
By how much depends on its susceptibility to the particular force (e.g., an elec-
tric force will only affect charged particles) and on its resistance to acceleration.
The marching orders issued by forces are thus specific to the particles receiving
them. There is one force in Newtonian physics, however, giving marching orders
that are as indiscriminate and universal as those issued by the space-time struc-
ture: Gravity. Newton accounted for this universality by setting inertial mass, a
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measure for a particle’s resistance to acceleration, equal to gravitational mass, a
measure for its susceptibility to gravity.30 Newton did some pendulum experiments
to test this equality, now known as the weak equivalence principle. It was tested
with much greater accuracy in a celebrated experiment of the Hungarian physicist
Baron Loránd von Eötvös (1890). Einstein was still unaware of this experiment in
July 1912. He first cited it in his 1913 paper with Grossmann (CPAE 4, 340, note
3).

The equality of inertial and gravitational mass, without which Galileo’s principle
that all bodies fall alike would not hold, is an unexplained coincidence in Newtonian
physics. To Einstein it suggested that there is an intimate connection between
inertia and gravity. The universality of gravity’s marching orders makes it possible
to move gravity from the column of assorted forces to the column of the space-time
structure. General relativity combines the space-time structure (more accurately:
The inertial structure of space-time) and the gravitational field into one inertio-
gravitational field. This field specifies the trajectories of particles on which no
additional forces are acting. Einstein thus removed the mystery of the equality of
inertial and gravitational mass in Newton’s theory by making inertia and gravity
two sides of the same coin.

In the passage from the unpublished Nature article of 1920 referred to at the be-
ginning of this section, Einstein drew an analogy with electromagnetism to explain
the situation:

Like the electric field generated by electromagnetic induction, the
gravitational field only has a relative existence. Because, for an
observer freely falling from the roof of a house, no gravitational field
exists while he is falling, at least not in his immediate surroundings
(CPAE 7, Doc. 31, [p. 21], Einstein’s italics).31

He had explained the example from electromagnetism in the preceding para-
graph.32 It is the thought experiment, illustrated in Fig. 2, with which Einstein
(1905r) opened his first paper on special relativity.

Consider a bar magnet and a conductor—say, a wire loop with an ammeter—in
uniform motion with respect to one another. In pre-relativistic electrodynamics,
it made a difference whether the conductor or the magnet is at rest with respect
to the ether, the medium thought to carry electric and magnetic fields. In case
(a)—with the conductor at rest in the ether—the magnetic field at the location of
the wire loop is growing stronger as the magnet approaches. Faraday’s induction
law tells us that this induces an electric field, producing a current in the wire,
which is registered by the ammeter. In case (b)—with the magnet at rest in the
ether—the magnetic field is not changing and there is no induced electric field.
The ammeter, however, still registers a current. This is because the electrons in
the wire are moving in the magnetic field and experience a Lorentz force that
drives them around in the wire. It turns out that the currents in cases (a) and
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Figure 2. The magnet-conductor thought experiment

(b) are exactly the same, even though their explanations are very different in
pre-relativistic theory.

Einstein found this unacceptable. He insisted that situations (a) and (b) are one
and the same situation looked at from two different perspectives. It follows that the
electric field and the magnetic field cannot be two separate fields. After all, there
is both a magnetic and an electric field in situation (a), while there is no electric
field in situation (b). Einstein concluded that there is only an electromagnetic field
that breaks down differently into electric and magnetic components depending on
whether the person making the call is at rest with respect to the magnet or with
respect to the conductor. The equivalence principle in its mature form can be
formulated in the exact same way. There is only an inertio-gravitational field that
breaks down differently into inertial and gravitational components depending on
the state of motion of the person making the call.33 This is what Einstein meant
when he wrote in 1920 that “the gravitational field only has a relative existence.”
This statement must sound decidedly odd to the ears of many modern relativists.
The modern criterion for the presence or absence of a gravitational field—does
the so-called curvature tensor have non-vanishing components or not?—leaves no
room for disagreement between different observers (see Section 3).

It took Einstein more than a decade to articulate the mature version of the
equivalence principle (Einstein 1918e).34 In the meantime, the general insight that
acceleration and gravity are intimately linked had guided Einstein on his path to
the new theory. The equivalence principle, seen now as a heuristic principle, al-
lowed him to infer effects of gravity from effects of acceleration in Minkowski space-
time, the space-time of special relativity (Norton 1985).35 The mature equivalence
principle retroactively sanctioned such inferences, at least qualitatively. From the
point of view of general relativity, the space-time structure of special relativity is
nothing but a specific inertio-gravitational field.
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Rotation in Minkowski space-time formed the starting point of the most fruitful
application of this type of reasoning. The inertial effects due to centripetal accel-
eration (which one experiences, for instance, when trying not to be thrown off a
merry-go-round) can, in the spirit of the equivalence principle, be re-interpreted
as due to a centrifugal gravitational field. The situation is illustrated in Fig. 3.

Figure 3. The rotating disk

The first drawing shows a circular disk rotating in Minkowski space-time.36 The
inward pointing arrows represent the centripetal acceleration. They give the direc-
tion in which the velocity of a person on the rotating disk is changing. The second
drawing shows the same disk from the point of view of this person, who, appealing
to the equivalence principle, considers herself at rest in a centrifugal gravitational
field. This field is represented by outward pointing arrows. Special relativity tells
us what happens in the situation in the first drawing. The equivalence principle
tells us that the same things will happen in the peculiar gravitational field in the
second. By determining in this manner what special relativity has to say about
this particular gravitational field, we can expect to gain insights about gravita-
tional fields in general, such at the gravitational field of the sun shown in the third
drawing in Fig. 3. Such insights gave Einstein valuable clues about features of a
new theory of gravity that goes beyond Newton’s.

First, we examine the consequences of the special-relativistic effect of time dila-
tion for gravitational theory. Compare two clocks on the rotating disk, clock A at
the center and clock B on the circumference. B is moving, while A is practically
at rest (it is spinning on its own axis with a velocity much smaller than that of B).
According to special relativity, moving clocks tick at a lower rate than clocks at
rest. One revolution of the disk thus takes less time on B than it takes on A. This
is just a variant of the famous twin paradox in special relativity.37 The equivalence
principle tells us that the gravitational field pointing from A to B in the second
drawing likewise causes clock B to tick at a lower rate than clock A. The same
will be true for the gravitational field of the sun pictured in the third drawing.



Einstein’s quest for general relativity, 1907–1920 13

The ticking of a clock will slow down as it is lowered in the sun’s gravitational
field. The frequency of light emitted by atoms will be subject to this same effect.
Hence, the frequency of light emitted by an atom close to the sun (at B) will
be lower than the frequency of light emitted in the same process by an identical
atom farther away from the sun (at A). If an atom is lowered in a gravitational
field, the frequency of the light it emits will shift to the red end of the spectrum.
This phenomenon is known as gravitational redshift. The conclusion of this simple
argument based on the equivalence principle is confirmed by general relativity in
its final form.38

An equally simple argument establishes that gravity will bend the path of light.39

Suppose a light signal is sent from the center A of the rotating disk in the direction
of the line connecting A and B, which is painted on the disk. The light will travel
in a straight line, but, since the disk is rotating under it, it will not follow the line
AB. The light will cross the circumference slightly behind B. The equivalence
principle tells us that the light will follow this exact same path across the disk
at rest with the centrifugal gravitational field shown in the second drawing in
Fig. 3. It will start out in the direction AB but veer off to the right (i.e., in the
direction opposite to that of the disk’s rotation in the first drawing). The light
will travel along a path that is bent. What is true for this particular gravitational
field will be true for gravitational fields in general. This conclusion is confirmed,
at least qualitatively, by general relativity in its final form. The phenomenon is
known as light bending. When British astronomers announced in 1919 that the
effect had been detected during a solar eclipse, it made headlines on both sides of
the Atlantic. Einstein became an overnight sensation, the world’s first scientific
superstar.40

I turn to the consequences of the special-relativistic effect of length contraction
for gravitational theory. Suppose we put measuring rods on the radius and on the
circumference of the rotating disk. According to special relativity, moving objects
contract in the direction of motion. This does not affect the length of the rods on
the radius since the radius is perpendicular to the motion of the disk. The length
of the rods on the circumference, however, will be affected. The number of rods
that a person on the rotating disk can fit on the disk’s circumference is thus greater
than the number of rods that a person standing next to the disk can fit on a circle
under the rotating disk with the same diameter. Have both observers measure
the ratio of the circumference and the diameter of the disk. The person next to
the disk will find the Euclidean value π. The person on the disk will find a ratio
greater than π. The equivalence principle tells us that someone in the centrifugal
gravitational field in the second drawing in Fig. 3 will likewise find a value greater
than π. This means that the spatial geometry in this particular gravitational field is
non-Euclidean. We should expect this to be true for gravitational fields in general.
The rotating disk is, in all likelihood, what first suggested to Einstein to represent
gravity by curved space-time (Stachel 1989).41 This in turn suggested a new way
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of trying to make all motion relative. Before turning to this new attempt, I briefly
discuss how Einstein came to abandon his original idea of reducing all non-uniform
motion to gravity.

In 1912, partly in response to a special-relativistic theory of gravity published
by Max Abraham (1912),42 Einstein proposed his first formal new theory of grav-
ity based on the equivalence principle. Up to that point, he had only explored
isolated applications of the principle. The centerpiece of Einstein’s theory was
its gravitational field equation. One requirement the equation had to fulfill was
that the static homogeneous gravitational field corresponding to uniform so-called
Born acceleration in Minkowski space-time be a vacuum solution (i.e., a solution
for the case without any gravitating matter). The equation that Einstein (1912c)
initially published met this requirement. As Einstein quickly discovered, however,
the equation violated energy conservation. The equivalence of energy and mass,
expressed in special relativity’s most famous equation, E = mc2, demands that all
energy, including the energy of the gravitational field itself, acts as a source of grav-
ity. In the original field equations of Einstein’s 1912 theory only the mass-energy
of matter entered as a source. Einstein (1912d) had to add a term representing
the mass-energy of the gravitational field itself. Unfortunately, the gravitational
field corresponding to Born acceleration is only locally a vacuum solution of these
amended equations. This made Einstein reluctant to add the extra term (ibid.,
455–456). It meant that the equivalence principle, even for constant acceleration
and static homogeneous gravitational fields, only held in infinitely small regions
of space (Norton 1984, 106).43 Einstein faced a choice between the philosophical
promise of the equivalence principle to make all motion relative and the physical
requirement of energy conservation. He opted for the latter: Physics trumped
philosophy.

3. Second attempt: General covariance

To implement the insight that gravity is intimately connected with the geom-
etry of space(-time) in a formal theory, Einstein turned to the mathematics of
curved surfaces developed by Gauss. As a student at the Eidgenössische Techni-
sche Hochschule (ETH) in Zurich, he had studied this subject relying on notes of
his classmate Grossmann. As luck would have it, when Einstein realized that this
was the kind of mathematics he needed, the two of them were about to be reunited
at their alma mater. In early 1912, Einstein was appointed professor of theoretical
physics at the ETH, where Grossmann was professor of mathematics. Grossmann
familiarized Einstein with the extension of Gauss’s theory to higher dimensions
by Riemann, Christoffel, and others.44 Einstein supposedly told his friend: “You
must help me or else I’ll go crazy” (Pais 1982, 212; Stachel 2002b, 107).

The central quantity in the geometry of Gauss and Riemann is the metric tensor
or metric for short. In general relativity it does double duty. It gives the geometry
of space-time—or, to be more precise, its chrono-geometry—and the potential for
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the gravitational field. The description of a 3+1D locally Minkowskian curved
space-time (three spatial and one temporal dimension) with the help of a metric
is completely analogous to that of a 2D locally Euclidean curved surface, such as
the surface of the earth.

Figure 4. Mapping the earth

Fig. 4 shows a simple way of making a map of a miniature copy of this surface.
A sheet of paper is rolled around the equator of a globe, forming a snug-fitting
cylinder (as indicated by the dashed lines in the figure). The surface of the globe
is projected horizontally on this cylinder mantle. The sheet is rolled out and a grid
of regularly spaced horizontal and vertical lines is drawn on the part containing
the image of the globe. With the help of this grid a unique pair of coordinates
can be assigned to every point of the globe except for the two poles. To turn
this grid into a useful map, instructions must be provided for converting distances
in terms of (fractions of) steps on the grid to actual distances on the globe. In
standard terminology, coordinate distances must be converted to proper distances.
The conversion factors are given by the metric. They vary with direction and
they vary from point to point. Right at the equator, where the map touches the
globe, the conversion factors are equal to 1 in all directions. Everywhere else, the
distance between lines of equal longitude is larger on the map than on the globe,
while the distance between lines of equal latitude is smaller on the map than on the
globe. In both cases, the discrepancy between distance on the map and distance
on the globe gets larger as one moves away from the equator. Hence, the ‘east-west
conversion factor’ gets smaller and the ‘north-south conversion factor’ gets larger
as one moves away from the equator.

The ‘east-west’ component of the metric will vanish at the poles. Since all
points on the horizontal line at the top of the grid correspond to the north pole,
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the conversion factor multiplying the finite distances between them must be zero.
The metric has a so-called coordinate singularity at the poles. In Section 5, we
shall encounter an example of such a singularity in space-time.

For an arbitrary 2D curved surface, three conversion factors are needed at every
point. For an arbitrary n-dimensional curved space(-time) this number is 1

2
n(n+1).

This then is the number of components of the metric that need to be specified.
The standard notation for the components of the metric in general relativity is
gµν .

45 The Greek indices take on integer values from 1 to n (or, equivalently, from
0 to n − 1). So gµν has a total of n2 components, i.e., 16 in the case of 3+1D
space-time. However, since the metric tensor is symmetric (i.e., for all values of
µ and ν, gµν = gνµ), only 1

2
n(n + 1) of those components are independent, i.e.,

10 for 3+1D space-time. This means that the gravitational potential in Einstein’s
theory likewise has 10 components.

The metric field gµν(x
ρ) assigns values to the components gµν of the metric to

points labeled with coordinates xρ ≡ (x1, . . . , xn). In 3D Euclidean space these
could be the familiar Cartesian coordinates, (x1, x2, x3) = (x, y, z). In the case of
the 2D surface in Fig. 4, the coordinates (x1, x2) refer to the grid drawn on the
sheet. There are infinitely many other grids that can be used to assign a unique
pair of coordinates to points of this or any other surface. It is not necessary (and
often impossible) to cover the entire surface with one map. An atlas of partly
overlapping maps will do. Any one-to-one mapping from a region of the surface to
a region of the plane R2 = R×R (where R is the set of real numbers) will do as a
map. With any map a metric field gµν(x

1, x2) needs to be specified that gives the
corresponding conversion factors from coordinate distances to proper distances.

Gauss made the remarkable discovery that at every point of an arbitrary 2D
surface one can define curvature without reference to the surface’s 3D Euclidean
embedding space. He also found that this intrinsic so-called Gaussian curvature is
the same function of the components of the metric field and its first- and second-
order derivatives with respect to the coordinates in all coordinate systems.46

The transformation rules for translating the metric field and other quantities
encoding the geometry of the surface from one coordinate system to another are
also the same for all coordinate systems. The geometry of any curved surface can
thus be described in the exact same way regardless of the choice of coordinates.
In other words, the Gaussian theory of curved surfaces is generally covariant.
The same holds for the Riemannian extension of the theory to higher-dimensional
spaces, such as 3+1D space-time.47

Once a metric has been introduced, the length of lines in space(-time) can be
computed. The lines of extremal length—the shortest ones in ordinary space, the
longest ones in space-time—are called (metric) geodesics. In Riemannian geom-
etry these are also the straightest lines, called affine geodesics. Which lines are
the geodesics in a given Riemannian space is determined by the geodesic equation.
This equation involves the Christoffel symbols, a sum of three terms, each of which
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is a gradient of the metric. In electricity theory, the field is the gradient of the
potential. Since the components of the metric double as the gravitational poten-
tials in Einstein’s theory, the Christoffel symbols are the natural candidates for
representing the components of the gravitational field.

It was only in 1915 that Einstein adopted this definition of the gravitational
field (see Section 6). In the following years the mathematicians Gerhard Hessen-
berg, Tullio Levi-Civita, and Hermann Weyl worked out the general concept of an
(affine) connection (Stachel 2007, 1044–1046).48 This quantity allows one to pick
out the straightest lines directly, without the detour via the metric and lines of
extremal length. In Riemannian geometry, the connection is given by the Christof-
fel symbols but it can be defined more generally and independently of the metric.
Since what matters for the equivalence principle are the straightest rather than
the longest lines in space-time, one can argue that general relativity is most nat-
urally formulated in terms of the connection (Stachel 2007, 1041). Since Einstein
formulated his theory in terms of the metric (and to this day textbooks tend to
follow his lead), it looks as if the mathematical tools he needed were right at hand.
In hindsight, it may be more accurate to say that he made do with the tools he
had (Stachel 2002b, 86).

With the help of the notion of a geodesic, metric or affine, the situations illustrat-
ing the equivalence principle in Fig. 1 can readily be characterized in geometrical
language. The worldlines, the trajectories through space-time, of an observer hov-
ering freely in outer space far away from gravitating matter (IIb) or in free fall on
earth (Ib) are (timelike49) geodesics, the worldlines of an observer accelerating in
outer space (IIa) or resisting the pull of gravity on earth (Ia) are non-geodesics. As
the examples illustrate, moving on a geodesic is physically different from moving
on a non-geodesic.

In both situations, flat Minkowski space-time (II) and curved space-time (I),
both observers, non-geodesic (a) and geodesic (b), can use their own worldline as
the time axis of a coordinate system providing a map of the space-time region in
their immediate vicinity. The metric field will be given by different functions of
the coordinates for the two observers, but, because of the general covariance of
Riemannian geometry, they will use the same equations involving the same func-
tions of the metric field to describe the situation. This suggested to Einstein that
the property of general covariance itself could be used to extend the principle of
relativity from uniform to accelerated motion. In special relativity in its standard
form, two inertial observers in uniform motion with respect to one another can use
the same equations if they use special coordinate systems related to one another
through special coordinate transformations called Lorentz transformations. By
allowing arbitrary coordinates and arbitrary coordinate transformations, Einstein
thought, one automatically extends the principle of relativity from uniform to arbi-
trary motion. Unlike Lorentz transformations in Minkowski space-time, however,
the transformations between the coordinate systems of observers like (a) and (b)
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in situations (I) and (II) in Fig. 1 are not between physically equivalent states of
motion. We already saw this in Section 2. The point can be made succinctly
in terms of the geometrical language introduced in this section: No coordinate
transformation turns a geodesic into a non-geodesic or vice versa.

Erich Kretschmann (1917), a former student of Max Planck who had become
a high school teacher, took Einstein to task for his conflation of general covari-
ance and general relativity.50 Given enough mathematical ingenuity, Kretschmann
pointed out, just about any space-time theory, with or without absolute motion,
can be written in generally-covariant form. Einstein (1918e) granted this criticism
but predicted that the generally-covariant version of, say, Newtonian theory would
look highly artificial compared to a theory such as general relativity that is nat-
urally expressed in generally-covariant form. This expectation was proven wrong
when generally-covariant formulations of Newtonian theory were produced in the
1920s (Norton 1993b, Sec. 5.3). Kretschmann also put his finger on the crucial
difference between the invariance under Lorentz transformations of the standard
description of Minkowski space-time in special relativity and the invariance under
arbitrary coordinate transformations of the standard description of curved space-
times in general relativity. Only the former transformations capture a symmetry
of the space-time. They map the set of all inertial states—in geometrical terms:
The set of all geodesics representing all possible inertial paths—back onto itself.
The state of rest in one coordinate system will be mapped onto a state of uni-
form motion in another, but, since all such states are physically equivalent, that
does not make any difference. This then is how Lorentz invariance expresses the
relativity of uniform motion. General relativity allows many different space-times
depending on the matter distribution. The set of all geodesics of all these space-
times has no non-trivial symmetries. The theory’s general covariance therefore is
not associated with a relativity-of-motion principle in this way.51

General covariance, however, is important for the relativity of the gravita-
tional field expressed in the mature version of Einstein’s equivalence principle.52

Once again consider Fig. 1. Both in situation (I) and in situation (II), observer
(a)—Einstein, sitting at his desk, moving on a non-geodesic—will say that there
is a gravitational field while observer (b)—the falling-window-cleaner/hovering-
astronaut moving on a geodesic—will say that there is none. If we want to insist
that there are no grounds for preferring the judgment of one over the other, it had
better be the case that the laws of physics are the same for both of them. General
covariance guarantees that this is true for all observers.53

Both in the Minkowski space-time of situation (II) and in the curved space-
time of situation (I), observer (b) can, at least in his immediate vicinity, use spe-
cial relativity in standard coordinates, using his own worldline as the time axis.
This is because locally curved space-time is indistinguishable from flat Minkowski
space-time, just as the surface of the earth or any other curved surface is locally
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indistinguishable from a flat Euclidean plane. In Minkowski space-time in stan-
dard coordinates the components of the metric are constants, so all gradients and
hence the Christoffel symbols are zero. Representing the gravitational field by
the Christoffel symbols, observer (b) concludes, in situation (I) as well as in sit-
uation (II), that there is no gravitational field and that the inertio-gravitational
effects experienced by observer (a) are due to inertial forces. For observer (a), the
Christoffel symbols do not vanish, neither in situation (I) nor in situation (II),
and he will ascribe the inertio-gravitational effects he experiences to gravitational
forces. General covariance and the identification of the Christoffel symbols as the
gravitational field thus implement the relativity of the gravitational field of the
mature equivalence principle.

Many modern relativists see things differently. They would say that there is
only a gravitational field in situation (I) and not in the flat Minkowski space-time
of situation (II). They would also object to having the presence or absence of a
gravitational field depend on which observer is making the call. In the spirit of
general covariance, they would prohibit such coordinate-dependent notions and
insist that only quantities transforming as tensors be used to represent physically
meaningful quantities. One consequence of the transformation rules for tensors is
that, if all components of a tensor vanish in one coordinate system, they vanish in
all of them. The Christoffel symbols then are clearly not tensors. For many modern
relativists, this disqualifies them as candidates for the mathematical representation
of the gravitational field. Instead, as mentioned in Section 2, the non-vanishing of
the curvature tensor is used as a coordinate-independent criterion for the presence
of a gravitational field. To the end of his life, however, Einstein preferred to use
the Christoffel symbols instead.54

By late 1912, for reasons good and bad, general covariance, or at least a co-
variance broad enough to cover arbitrary states of motion, had become central to
Einstein’s quest for general relativity. That winter he set out to find field equa-
tions for his new theory. He hoped to extract field equations of broad covariance
from generally-covariant ones. The fruits of his labor, in which he was assisted by
Grossmann, have been preserved in what is known as the Zurich notebook (CPAE
4, Doc. 10).55 Despite considerable effort, he could not find physically sensible
field equations of broad covariance and ruefully settled for equations of severely
limited covariance. They were first published in May 1913 (Einstein and Gross-
mann 1913). It was only in November 1915 that Einstein replaced these Entwurf
field equations by the generally-covariant field equations named after him. The
Zurich notebook shows that almost three years earlier he had come within a hair’s
breadth of these generally-covariant equations. As he told some of his colleagues in
1915,56 he had rejected them at the time because they did not seem to be compat-
ible with energy-momentum conservation or reduce to the equations of Newtonian
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gravitational theory for weak static fields. In 1913, Einstein thus saw another at-
tempt to generalize the principle of relativity foiled because he could not get the
physics to work out.

The restricted covariance of the Entwurf field equations, however, continued to
bother him until, in late August 1913, he convinced himself through the ingenious
“hole argument” that such restrictions are unavoidable.57 Generally-covariant field
equations, the argument purported to show, cannot do the basic job of uniquely
determining the space-time geometry once the matter distribution has been speci-
fied. After his return to general covariance in November 1915, Einstein produced an
equally ingenious escape from the hole argument, known as the “point-coincidence
argument.”58

Figure 5. The hole argument

Fig. 5 illustrates how Einstein’s hole argument works. It shows a 1+1D space-
time (one spatial and one temporal dimension) with two coordinate systems, one
with unprimed coordinates, (x1, x2), referring to the (lighter) grid with straight
lines and one with primed coordinates, (x′1, x′2), referring to the (darker) grid with
swiggly lines. The two grids coincide except in the shaded oval-shaped region.
This region, devoid of matter, is the hole from which the hole argument derives its
name. All candidate field equations are local in the sense that they set functions
of the metric field and its derivatives, all evaluated at the same point, equal to
functions describing the field’s material sources evaluated at that same point. If
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such equations are generally covariant, the hole argument seems to show, the
matter distribution does not uniquely determine the geometry inside the hole.

The functions describing the matter distribution in this case are the same in both
coordinate systems. This is because, outside the hole, the two coordinate systems
coincide, and, inside the hole, these functions are identically zero. Let gµν(x

1, x2),
abbreviated g(x), be a solution of the field equations for this particular matter
distribution in terms of the unprimed coordinates. Let g′

µν(x
′1, x′2), abbreviated

g′(x′), describe the same geometry in terms of the primed coordinates. If the
field equations are generally covariant, this will be a solution for the same matter
distribution. So far, we do not have different geometries, only different descriptions
of the same geometry.59 It takes one more step to get a different geometry: If
g′(x′) is a solution, then g′(x) is a solution as well. More explicitly, g′(x′) remains
a solution for the same matter distribution if we read the primed coordinates as
referring to the straight grid rather than to the swiggly grid for which they were
originally introduced.60

Consider the three labeled points in Fig. 5. The point O is chosen as the
origin of both coordinate grids. The coordinates of P with respect to the straight
grid are (x1, x2) = (3, 2). Its coordinates with respect to the swiggly grid are
(x′1, x′2) = (2, 1). The solution g(x) assigns the metric gµν(3, 2) to P . The solution
g′(x′) assigns the metric g′

µν(2, 1) to that same point P . The curvature at P
computed from those two metrics is the same. This will be true for all points
in the hole. This is just a different way of saying that g(x) and g′(x′) describe
the same geometry. The solution g′(x), it seems, does not. This solution assigns
the metric g′

µν(2, 1) to the point Q with coordinates (x1, x2) = (2, 1) with respect
to the straight grid. So the curvature assigned to one point (P ) by both g(x)
and g′(x′) is assigned to another point (Q) by g′(x). The solutions g(x) and
g′(x) thus do seem to describe different geometries inside the hole. To block this
violation of determinism, Einstein argued, the covariance of the field equations
needs to be restricted. Field equations that preserve their form under coordinate
transformations affecting only matter-free regions must be ruled out.61

Einstein used this argument in print on several occasions to defend the re-
stricted covariance of the Entwurf field equations.62 In November 1915, however,
he published generally-covariant field equations without losing a word about the
hole argument. Einstein (1915f, g, i) focused on demonstrating that his new field
equations respect energy-momentum conservation and are compatible with New-
ton’s theory in the appropriate limit. Problems on these two counts had made
him forego general covariance in the first place. When his friends Michele Besso
and Paul Ehrenfest reminded him of the hole argument, Einstein rolled out a new
argument, the point-coincidence argument.63 The hole argument was never men-
tioned in print again, but a version of this new argument was included in the first
systematic presentation of the new theory a few months later (Einstein 1916e,
776–777).
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The printed version of the point-coincidence argument is disappointing. Its
premise is that all we ever observe are spatio-temporal coincidences, such as the
intersections of worldlines.64 Since there is no reason to privilege one coordinati-
zation of a set of point coincidences over any other, the argument continues, all
physical laws, including the field equations, should be generally covariant.65 This
does provide an escape from the hole argument. The different geometries found
for the same matter distribution agree on all point coincidences. If that exhausts
all we can ever observe, we have no empirical means of telling these geometries
apart. We still have indeterminism but of a benign kind. If we deny reality to
anything but point coincidences, there is no indeterminism at all. This way of
avoiding indeterminism, however, comes at the price of “a crude verificationism
and an impoverished conception of physical reality” (Earman 1989, 186).66

The letters to Besso and Ehrenfest suggest a more charitable interpretation of
Einstein’s resolution of the hole argument. In these letters, it seems, Einstein
used point coincidences to put his finger on an unwarranted implicit assumption
without which no indeterminism can be inferred in the first place. Consider, once
again, Fig. 5. Suppose that, in the solution g(x), two worldlines cross at P . In the
solution g′(x), the corresponding worldlines cross at Q. This is a different state
of affairs only if there is some way of identifying Q other than by referring to it
as the point where these two worldlines meet. It is at this juncture that the hole
argument starts to unravel.

The identity of a point, one can argue, though the issue remains controversial,
lies in the sum total of the properties assigned to that point by the metric field
and all matter fields. It cannot be identified or individuated independently of
those properties. It only has suchness and no primitive thisness or haecceity.
Since candidate field equations are local in the sense specified above, all properties
assigned to P by g(x) are assigned to Q by g′(x). But then P and Q are only
different labels for one and the same space-time point, and g(x) and g′(x) are only
different descriptions of the same geometry. Generally-covariant field equations
can be perfectly deterministic after all.

In modern terms, all fields are defined on a so-called differentiable manifold,
which, for our purposes, one can think of as an amorphous set of points with
little more than a topology defined on it. The manifold still needs to be “dressed
up” by a metric field if it is to represent space-time. Metric fields such as g(x)
and g′(x) generated in the hole argument dress up different points of the bare
manifold to become a particular space-time point. If points of the bare manifold
could be individuated independently of the fields defined on it, these differently
dressed-up manifolds would represent distinct though empirically indistinguishable
space-times and we would have (a benign form of) indeterminism. We can avoid
this consequence by denying that bare manifold points can be individuated in this
way. That, in turn, means that we cannot think of the bare manifold as some
kind of container. The combination of the hole argument and (the sophisticated
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version of) the point-coincidence argument thus amounts to an argument against
a substantival and in favor of a relational account of the ontology of space-time.67

This argument for relationism can be seen as a modern version of a classic argu-
ment against absolute space given by Leibniz in the course of his correspondence
with Clark (Alexander 1956, 26).68 One way to make the argument is the follow-
ing. Newtonian space is the same everywhere, so the location of the world’s center
of mass makes no observable difference. This seems to violate Leibniz’s principle
of sufficient reason. For no reason whatsoever, God had to make one point rather
than another the center of mass of the universe. To avoid such consequences, Leib-
niz insisted on his principle of the identity of indiscernibles. Since it is impossible
to tell two worlds apart that differ only in the position of their center of mass,
they must be one and the same world. But then Newtonian space cannot be some
kind of container. In the hole argument, a violation of determinism replaces the
deity’s violation of the principle of sufficient reason that so exercised Leibniz. In
the point-coincidence argument, determinism is restored through an account of
the identity and individuation of space-time points in the spirit of the principle of
the identity of indiscernibles with which Leibniz restored the principle of sufficient
reason. So, even though general covariance does not eliminate absolute motion,
Einstein’s struggles with general covariance did produce what would appear to be
a strong argument against absolute space(-time).

4. Third attempt: A Machian account of Newton’s bucket

When it looked as if general covariance was not to be had, Einstein explored
another strategy for eliminating absolute motion. This one was directly inspired
by his reading of Mach’s attempt to get around a classic argument for the absolute
character of acceleration, an argument based on Newton’s thought experiment of
the rotating bucket in the Scholium on space and time in the Principia (Cohen
and Whitman 1999, 412–413). Looking back on this period, Einstein wrote:

Psychologically, this conception [that a body’s inertia is due to its
interaction with all other matter in the universe] played an important
role for me, since it gave me the courage to continue to work on the
problem when I absolutely could not find covariant field equations
(Einstein to De Sitter, 4 November 1916 [CPAE 8, Doc. 273]).69

Consider a bucket of water set spinning. As the water catches up with the rota-
tion of the bucket, it will climb up the side of the bucket. Since the effect increases
as the relative rotation between water and bucket decreases and is maximal when
both are rotating with the same angular velocity, Newton argued, the effect cannot
be due to this relative rotation.70

Fig. 6 illustrates a different way of making the same point. The bucket exper-
iment is broken down into four stages, the fourth being a flourish added by later
authors (Laymon 1978, 405). In stage (I) the bucket and the water are at rest. In
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Figure 6. The rotating-bucket experiment

stage (II) the bucket has started to rotate but the water has yet to catch up with
it. In stage (III) it has. In stage (IV) the bucket is abruptly stopped while the
water continues to rotate. Comparison of these four stages shows that the shape of
the water surface cannot be due to the relative rotation of the water with respect
to the bucket. In stages (I) and (III) there is no relative rotation, yet the surface
is flat in one case and concave in the other. In stages (II) and (IV) there is relative
rotation, yet, once again, the surface is flat in one case and concave in the other.

The concave shape of the spinning water, Newton argued, is due to its rotation
with respect to absolute space. Three centuries later, Mach resurrected another
option briefly considered but rejected by Newton: Rotation with respect to other
matter in the universe. “Try to fix Newton’s bucket and rotate the heaven of
fixed stars,” Mach (1960, 279) asked his readers to imagine, “and then prove the
absence of centrifugal forces.” The implication is that it should make no difference
whether the bucket or the “heaven of fixed stars” is rotating: In both cases the
water surface should become concave. Mach’s idea is illustrated in Fig. 7, depicting
the earth, the bucket, and the water at the center of a spherical shell, much larger
than shown in the figure, representing all other matter in the universe. On the left
(situation I), the bucket and the water are rotating and the earth and the shell
are at rest. On the right (situation II), it is the other way around.

The problem with Mach’s proposal is that, according to Newtonian theory, the
rotation of the shell will have no effect whatsoever on the water in the bucket, so
the water surface on the right in Fig. 7 (situation II) should have been drawn flat.
For most of the reign of the Entwurf theory and beyond, Einstein was convinced
that this was a problem not for Mach’s analysis but for Newton’s theory and that
his own theory vindicated a Machian account of the bucket experiment.
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Figure 7. Machian account of Newton’s rotating-bucket experiment

Einstein thought, mistakenly, that his theory reduced the two situations pictured
in Fig. 7 to one and the same situation viewed from the point of view of two
different observers, one at rest with respect to the shell, the other at rest with
respect to the bucket. He thought this followed from two more specific claims.
First, the metric field of Minkowski space-time in rotating coordinates is a vacuum
solution of the field equations, i.e., a solution in which there is no gravitating matter
at all. Second, this is the metric field that a spherical shell rotating in the opposite
direction with the same angular speed would produce near its center. We need to
take a closer look at both claims as well as at the conclusion Einstein drew from
them.

We can take the space-time in which we perform the bucket experiment to be
Minkowskian even though the tell-tale shape of the water surface obviously de-
pends on the gravitational field of the earth (cf. note 36). The metric field of
Minkowski space-time in the standard coordinates for an observer at rest with
respect to the shell is a vacuum solution of the field equations. This is true both
for the Entwurf field equations of 1913 and the Einstein field equations of 1915.
For the two situations in Fig. 7 to be equivalent, it is necessary—though not
sufficient—that this metric field also be a vacuum solution, at least near the cen-
ter of the shell, in the coordinates used by the observer at rest with respect to the
bucket. The Einstein field equations automatically satisfy this requirement. Their
general covariance guarantees that an arbitrary solution in some coordinate system
remains a solution under arbitrary transformations to other coordinate systems.
This is not true for the Entwurf field equations. Einstein had to check whether this
specific solution, the Minkowski metric in standard coordinates, remains a solution
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under the specific transformation to a rotating coordinate system. In this context,
Einstein and Grossmann (1914b, 221) talked about “justified transformations” be-
tween “adapted coordinate systems” (i.e., adapted to the metric field). Earlier,
Einstein had distinguished such transformations for specific solutions from the
usual transformations for arbitrary solutions by labeling them “non-autonomous”
and “autonomous,” respectively.71 This terminology reflects that the former de-
pend on the metric field that is being transformed while the latter do not. Already
in the Zurich notebook, Einstein had retreated to field equations invariant under
non-autonomous transformations whenever he could not find equations invariant
under ordinary autonomous transformations (Renn 2007a, Vol. 2, 495–496, 533–
535).

Einstein went back and forth for more than two years on whether or not the
transformation to rotating coordinates in the special case of Minkowski space-time
is a justified transformation in the Entwurf theory; in other words, whether or not
the rotation metric, the metric field of Minkowski space-time in rotating coordi-
nates, is a vacuum solution of the Entwurf field equations (Janssen 2007). A sloppy
calculation preserved in the so-called Einstein-Besso manuscript (cf. note 18) and
probably dating from early 1913 reassured him that it is (CPAE 4, Doc. 14, [pp.
41–42]). In a letter to Lorentz of August 1913, Ehrenfest reported that Einstein
had meanwhile done this calculation “five or six times,” finding “a different result
almost every time” (Janssen 2007, 833). Einstein appears to have accepted for a
few months late in 1913 that the rotation metric is not a solution, but by early
1914 he had convinced himself on general grounds that it had to be.72 In the au-
thoritative exposition of the Entwurf theory of late 1914, this result, erroneous as
it turns out, is hailed as a vindication of a Machian account of the bucket experi-
ment (Einstein 1914o, 1031). In September 1915, Einstein redid the calculation of
1913 once more, this time without making any errors, and discovered to his dismay
that the rotation metric is not a solution (Janssen 1999). He thereupon carefully
reexamined the Entwurf theory, discovered a flaw in a uniqueness argument for the
Entwurf field equations that he had published the year before, and used the leeway
this gave him to introduce new field equations of broad covariance preserving their
form under ordinary autonomous transformations to rotating coordinates (Janssen
and Renn 2007).

The rotation metric was now a vacuum solution of the field equations. Is it
also the metric field that a rotating shell produces near its center? It is not,
neither according to the Entwurf field equations nor according to the Einstein field
equations. To calculate the metric field for a given matter distribution one typically
needs boundary conditions, the values of the metric field at spatial infinity. When
Einstein calculated the metric field of a rotating shell in 1913, he uncritically
took those values to be Minkowskian (CPAE 4, Doc. 14, [pp. 36–37]; Einstein
1913c, 1260–1261). He thus started with Minkowski space-time and calculated
only how the rotating shell would curve this Minkowski space-time in its interior.
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This curvature, it turns out, is much too small to make the water surface concave.
More importantly, treating the effect of the rotating shell as a small perturbation
of the metric field of Minkowski space-time defeats the purpose of producing a
Machian account of the bucket experiment. Only a small part of the metric field is
due to the rotating shell this way; most of it is due to absolute space-time, albeit
of the Minkowskian rather than the Newtonian variety. To put it differently, only
a small part of the inertia of particles near the center of the shell is due to their
interaction with the rest of the matter in the universe, represented by the shell;
most of it is determined by the absolute Minkowskian space-time. The theory thus
fails to satisfy what Einstein (1913c, 1261) called the “hypothesis of the relativity
of inertia” (see also Einstein 1912e and Einstein 1917b, 147).73 This problem
will arise for any physically plausible boundary conditions. At this point, Einstein
clearly had a blind spot for the role of boundary conditions in his theory, something
that would come back to haunt him (see Section 5).

As long as the rotation metric is a solution of the field equations, however, the
relativity of the gravitational field expressed by the mature equivalence principle
does hold for a bucket rotating in Minkowski space-time. The analysis is similar
to that of the rotating disk in Section 2. Consider situation (I) on the left in Fig.
7 from the perspective of two observers, one at rest with respect to the shell and
one at rest with respect to the bucket. As we just saw, the latter perspective on
situation (I) is not the same as situation (II) depicted on the right in Fig. 7. For
one thing, the water surface should have been drawn almost flat in situation (II).
Furthermore, the metric field, which is not represented in Fig. 7, is very different in
the two situations. Focus on situation (I). For an observer at rest with respect to
the shell, the components of the metric field are constants, there is no gravitational
field, the concave shape of the water surface is due to inertial forces, and the
particles forming the shell are hovering freely in outer space. For an observer at
rest with respect to the bucket, the components of the metric vary and there is
a gravitational field. As we go to infinity, the values of the metric field become
infinite, a clear indication that we are not dealing with situation (II) in which
these values are assumed to remain perfectly finite. These degenerate non-physical
values of the metric field need not bother us here, since we are only interested in the
large but finite region occupied by the shell. For the observer at rest with respect
to the bucket, the shape of the water surface is due to gravitational forces while
the particles forming the shell are in free fall in this gravitational field.74 Note
that there is no need for cohesive forces keeping the particles of the rotating shell
together, another clear indication that we are not dealing with situation (II), which
does require such cohesive forces. To drive home this point one last time, note
that the gravitational field for the observer rotating with the bucket in situation
(I) does not have the shell as its source.

Einstein conflated the situation on the left in Fig. 7, redescribed in a coordinate
system in which the bucket is at rest, with the very different situation on the right.
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He believed accordingly that the metric field of a rotating shell would automatically
be the rotation metric as long as the field equations used to compute this field
preserve their form under the transformation to a frame rotating with the bucket.
As he told Besso in July 1916, it is “obvious given the general covariance of the
[field] equations,” that the metric field near the center of a rotating ring, a case
analogous to that of a rotating shell, is just the rotation metric. It is therefore, he
added,

of no further interest whatsoever to actually do the calculation.
This is of interest only if one does not know whether rotation-
transformations are among the “allowed” ones, i.e., if one is not
clear about the transformation properties of the equations, a stage
which, thank God, has definitively been overcome (Einstein to Besso,
31 July 1916 [CPAE 8, Doc. 245]).

Correspondence between Einstein and the Austrian physicist Hans Thirring in
1917 reveals that this misconception persisted for at least another year and a
half. When Thirring first calculated the metric field inside a rotating shell, he
was puzzled, as he told Einstein,75 that he did not recover the rotation metric,
as he expected on the basis of remarks in the introduction of Einstein’s (1914o)
exposition of the Entwurf theory. In his reply Einstein failed to straighten out
Thirring and in a follow-up letter he explicitly confirmed Thirring’s expectation.76

By the time he published his final results, Thirring (1918, 33, 38) had realized
that the metric field inside a rotating shell and the rotation metric correspond to
completely different boundary conditions. He cited Einstein (1917b) and De Sitter
(1916b) in this context. As we shall see shortly, the role of boundary conditions
was at the heart of the debate between Einstein and De Sitter. Yet, Einstein did
not breathe a word about them in his letters to Thirring.77

Thirring’s work serves as a reminder that, as with Einstein’s first two attempts,
something good came of Einstein’s third failed attempt to eliminate absolute mo-
tion. Following up on his study of the effect of a rotating hollow shell on the
metric field inside of it, Thirring studied the effect of a rotating solid sphere on
the metric field outside of it (Lense and Thirring 1918). Einstein (1913c, 1261)
had also pioneered calculations of this effect, now known as “frame dragging.”78

In April 2004, NASA launched a satellite carrying the special gyroscopes of an
experiment called Gravity Probe B aimed at detecting it. The data analysis has
not been completed as this volume goes to press, but the scientists involved are
confident that the experiment will confirm the predictions of general relativity.

5. Fourth attempt: Mach’s principle and cosmological constant

The period from late 1915 to the fall of 1916 can be seen as an idyllic interlude
in Einstein’s quest for general relativity. The first systematic exposition of the
theory dates from this period (Einstein 1916e). This widely-read article is probably
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one of the reasons that the impression has lingered that with general relativity
Einstein succeeded in banishing absolute motion from physics.79 With the new
field equations of November 1915, the entire theory was generally covariant at
last. Einstein believed that this automatically extended the relativity principle
for uniform motion, associated with Lorentz invariance, to arbitrary motion (see
Section 3). He also believed that it sufficed for a Machian account of Newton’s
bucket experiment (see Section 4). Kretschmann disabused him of the first illusion
in 1917; De Sitter of the second in the fall of 1916.80

General relativity retains vestiges of absolute motion through the boundary
conditions at infinity needed to determine the metric field for a given matter dis-
tribution. During a visit to Leyden in the fall of 1916, Einstein was confronted
with this problem by De Sitter. The solution he initially proposed was so far-
fetched that he never put it in print. We only know of it through the ensuing
correspondence81 and through two papers of De Sitter (1916b,c).82

To ensure that the metric field has the same boundary conditions for every ob-
server, Einstein argued, the value of all its components at spatial infinity must
be either 0 or ∞. He imagined there to be masses outside the visible part of the
universe that would contribute to the metric field in such a way that these degen-
erate values turn into Minkowskian values at the edge of the observable universe.
De Sitter derided this proposal. This was a cure worse than the disease. It just
replaced Newton’s absolute space by invisible masses. What if better telescopes
made more of the universe visible? Would these special masses then have to be
pushed even farther out?

Einstein came to accept these criticisms. As he told De Sitter in February
1917: “I have completely abandoned my views, rightfully contested by you, on the
degeneration of the gµν . I am curious to hear what you will have to say about
the somewhat crazy idea I am considering now.”83 This “crazy idea” was actually
quite ingenious: If boundary conditions at spatial infinity are the problem, why not
eliminate spatial infinity? Einstein thus explored the possibility that the universe
is spatially closed.84 He considered the simplest example that he could think of.
In the Einstein universe, as this first relativistic cosmological model came to be
known, the spatial geometry is that of the 3D hyper-surface of a hyper-sphere in
4D Euclidean space. This hyper-surface is analogous to the ordinary 2D surface
of an ordinary sphere in 3D Euclidean space. It is also analogous to a circle, the
1D boundary of a round disk in 2D Euclidean space.

Suppressing two spatial dimensions, we can visualize the spatially closed 1+1D
Einstein universe as a circle of some large radius R persisting through all eternity,
forming an unbounded cylinder mantle, as illustrated in Fig. 8. The Einstein
universe is therefore also known as the cylinder universe. It is a static world. The
diameter R of the cylinder does not change over time. De Sitter emphasized a few
months later that our universe is almost certainly not static.85 Einstein ignored
these warnings.
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Figure 8. Einstein’s cylinder universe

Before Einstein could use the cylinder universe as a new solution to the problem
of boundary conditions, he had to check whether it was allowed by his theory, and,
if so, for what matter distribution. He computed the components of the metric
field of the cylinder universe in a convenient coordinate system and inserted them
into the field equations. In this coordinate system the matter distribution is at rest
and fully characterized by its mass density ρ. In general, the matter distribution
is described by the ten independent components of the so-called (stress-)energy-
momentum tensor Tµν . The energy density—or, equivalently, the mass density—is
just one of those.

The result of Einstein’s calculation was that the metric field of the cylinder uni-
verse is not a solution of the field equations as they stood. It is a solution, however,
of slightly altered equations. A term proportional to gµν , the so-called cosmological
term, needs to be added. The proportionality constant lambda—nowadays used
both in lower (λ) and in upper (Λ) case—is the infamous cosmological constant.
It has to be exceedingly small so as not to disturb general relativity’s agreement
with Newton’s theory of gravity in the limit of slow motion and weak fields. The
cosmological constant determines both the radius R and the mass density ρ of
the cylinder universe: λ = 1/R2 = κρ/2 (where kappa is Einstein’s gravitational
constant). The radius of the cylinder universe is thus constant and large, its mass
density constant and small.

When Einstein first considered tinkering with his field equations, he must have
anticipated renewed criticism from De Sitter. While abandoning his nebulous
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distant masses, he was now helping himself to an arbitrary new constant of nature.
Mathematically, it turns out, the cosmological term is a natural addition to the
Einstein field equations, but that was not immediately clear. In the paper in which
he introduced the cosmological constant, however, Einstein (1917b) masterfully
preempted the predictable charge of arbitrariness.

The title of the paper, “Cosmological considerations on the general theory of
relativity,” suggests that Einstein’s aim was simply to apply his new theory to
cosmology. Today the paper is indeed remembered and celebrated for launch-
ing modern relativistic cosmology. It did have a hidden agenda, however, which
Einstein revealed in a letter to De Sitter about a month after its publication:

From the standpoint of astronomy, I have, of course, built nothing
but a spacious castle in the sky. It was a burning question for me,
however, whether the relativity thought can be carried all the way
through or whether it leads to contradictions. I am satisfied now
that I can pursue the thought to its conclusion, without running
into contradictions. Now the problem does not bother me anymore,
whereas before it did so incessantly. Whether the model I worked
out corresponds to reality is a different question (Einstein to De
Sitter, 12 March 1917 [CPAE 8, Doc. 311]).

This hidden agenda explains why the order of presentation in the paper is the
opposite of the order in which the results presented had been found. In the context
of discovery, to borrow Hans Reichenbach’s (1938, 6–7) terminology, Einstein had
conceived of the cylinder universe first, had added the cosmological term to make
sure the model is allowed by the field equations, and had only then started to worry
about making the extra term plausible. In the context of justification, preempting
the kind of criticism he could expect from De Sitter, Einstein argued for the extra
term first and then showed that the field equations with the cosmological term do
indeed allow the cylinder universe.

Einstein’s justification for adding the cosmological term turned on an analogy
with Newtonian cosmology.86 To prevent a static universe from collapsing, he
argued, a gravitational repulsion needs to be added, both in Newtonian theory
and in general relativity. The cosmological term provides this repulsion. Arthur
S. Eddington (1930) was the first to point out in print that the equilibrium thus
produced in Einstein’s cylinder universe is unstable. Much to the surprise of
modern commentators (Weinberg 2005, 31), Einstein failed to recognize this.

What did De Sitter make of Einstein’s new proposal? In response to the letter
from which I quoted above, he wrote:

As long as you do not want to force your conception on reality, we
are in agreement. As a consistent train of thought, I have nothing
against it and I admire it. I cannot give you my final approval before
I have had a chance to calculate with it (De Sitter to Einstein, 15
March 1917 [CPAE 8, Doc. 312]).
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Five days later, De Sitter had done his calculations. They had led him to an
alternative solution of Einstein’s amended field equations. He communicated this
result in a letter to Einstein,87 which served as the blueprint for a paper submitted
to the Amsterdam academy shortly thereafter (De Sitter 1917a).

Figure 9. De Sitter’s hyperboloid universe

Following a suggestion by Ehrenfest, De Sitter considered a natural analogue of
the cylinder universe in which time is treated in a similar way as the three spatial
dimensions. This De Sitter universe has the space-time geometry of the 3+1D
hypersurface of a hyper-hyperboloid in 4+1D Minkowski space-time. It is therefore
also known as the hyperboloid universe. Fig. 9 shows a lower-dimensional version of
this space-time, the 1+1D surface of a hyperboloid embedded in 2+1D Minkowski
space-time. All points on the hyperboloid have the same spatio-temporal distance
to its center in the embedding space (the origin of the coordinate axes shown in
the figure). A hyperboloid in 2+1D Minkowski space-time is thus the analogue of
a sphere in 3D Euclidean space.88

As Einstein had done for the cylinder universe, De Sitter checked whether the
hyperboloid universe was allowed by the field equations with the cosmological term.
He found that it was, provided that the radius R of the ‘waist’ of the hyperboloid
satisfies the relation λ = 3/R2 and the mass density ρ equals zero everywhere. De
Sitter had thus found a vacuum solution of the new field equations.
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This defeated the purpose of Einstein’s introduction of the cosmological term.
The inertia of test particles in De Sitter’s hyperboloid universe is due to space-time
rather than to their interaction with distant matter. It was crucial for Einstein’s
new attempt to implement the relativity of arbitrary motion that this be impossi-
ble. As he wrote to De Sitter:

It would be unsatisfactory, in my opinion, if a world without matter
were possible. Rather, it should be the case that the gµν-field is fully
determined by matter and cannot exist without the latter. This is the
core of what I mean by the requirement of the relativity of inertia
(Einstein to De Sitter, 24 March 1917 [CPAE 8, Doc. 317]).

De Sitter got Einstein’s permission to quote this passage in a postscript to his
paper (De Sitter 1917a). The second sentence is the first explicit statement of what
Einstein (1918e) dubbed “Mach’s principle” the following year. If this principle
were satisfied, absolute motion would finally be eradicated. A body’s motion is
defined with respect to the metric field. If Mach’s principle is true, this field is
nothing but an epiphenomenon of matter and all talk about motion with respect
to it is nothing but a façon de parler about motion with respect to the matter
generating it (Maudlin 1990, 561). Vacuum solutions were therefore anathema
and Einstein immediately set out to find grounds to dismiss the one De Sitter had
purportedly found.

Einstein eventually fastened on to the so-called static form of the solution, an al-
ternative way of mapping the hyperboloid universe in which it can more readily be
compared to Einstein’s cylinder universe (De Sitter 1917b, c).89 The hyperboloid
universe looks anything but static in Fig. 9. Consider horizontal cross-sections of
the hyperboloid. These circles represent space at different times. Going from the
distant past to the distant future, we see that these circles get smaller until we
reach the waist of the hyperboloid and then get larger again. It thus looks as if
the hyperboloid universe contracts and then re-expands. One has to keep in mind,
however, that this conclusion is based on an arbitrary choice of space and time
coordinates.

Fig. 10 shows an alternative coordinatization of the hyperboloid universe. In
these static coordinates, De Sitter’s universe, shown on the right, is represented
by a cylinder, just as Einstein’s, shown on the left. In both worlds, space is
represented by a circle of radius R at all times. In these coordinates, the spatial
part of the metric field of the De Sitter universe is exactly the same as that of metric
field of the Einstein universe in its standard coordinatization. The temporal part,
however, is different.

Compare the components g44 of the two metric fields, the conversion factors
from coordinate time to proper time, at t = 0. The situation will be same for any
other value of t. Space at t = 0 is represented by the circles through O and P ,
the positions at that time of an observer and of the ‘horizon’ or ‘equator’ for that
observer, respectively. In the Einstein universe, the time conversion factor is the



34 Michel Janssen

Figure 10. Comparing Einstein’s cylinder universe and De Sitter’s
hyperboloid universe

same everywhere: g44 = 1. For all points on the circle, one unit of proper time,
represented by the vertical line segments in Fig. 10, corresponds to one unit of
coordinate time. In the De Sitter universe, the time conversion factor varies from
point to point: g44 = cos2(r/R) (where the distance r from point O runs from 0
to πR). It is equal to 1 for r = 0, then steadily decreases until it vanishes at the
horizon P at distance r = (π/2)R. As indicated on the right in Fig. 10, when we
go from O to P , segments of coordinate time of increasing length correspond to
one unit of proper time. At the horizon P we need a segment of infinite length.

Einstein used this odd behavior of the temporal component of the metric to argue
that the De Sitter world is not empty after all. That the vertical line segments in
the drawing on the right in Fig. 10 get longer and longer as we go from O to P
means that it takes an increasing amount of coordinate time for a clock to advance
one unit of proper time. It thus looks as if clocks are slowing to a crawl as they
approach the horizon. This is reminiscent of the gravitational redshift experienced
by clocks brought ever closer to some massive object (see Section 2). Einstein
concluded that a large amount of matter must be tucked away at the horizon in
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the De Sitter universe. The main difference between the Einstein universe and
the De Sitter universe, he thought, was that in the former matter was spread out
evenly, while in the latter it was concentrated at the horizon.

On the postcard on which Einstein first spelled out this line of reasoning, De
Sitter scribbled in the margin: “That would be distant masses yet again!”90 And
on the back he elaborated: “How large does the “mass” of this matter have to
be? I suspect ∞! I do not adopt such matter as ordinary matter. It is materia
ex machina to save Mach’s dogma” (ibid., my italics; the pun—ex Machina—was
probably unintended). For all the exasperation one senses in these comments, De
Sitter could not put his finger on the error in Einstein’s argument.

The analysis of the static form of the De Sitter solution strengthened Einstein
in his belief that the field equations with cosmological term do not allow vacuum
solutions. In March 1918, he submitted two short papers in response to De Sitter’s
challenge to his latest attempt to eliminate absolute motion. In the first, Einstein
(1918e) reworked the foundations of his theory91 and officially introduced Mach’s
principle. In the second, he conjectured that the De Sitter solution, an apparent
counter-example to Mach’s principle,

may not correspond to the case of a matter-free world at all, but
rather to that of a world, in which all matter is concentrated on
the surface r = (π/2)R:92 This could well be proven by consider-
ing the limit of a spatial matter distribution turning into a surface
distribution (Einstein 1918c, 272).

It was Weyl who took up the challenge of producing such a proof.93

Less than two months later, on the very same day that Einstein sent Weyl a
letter in which he expressed his satisfaction over the latest version of this proof,
another mathematician, Felix Klein, sent Einstein a letter in which he showed that
the singular behavior of the metric field of the De Sitter world in static coordinates
is just an artifact of those coordinates.94 It may come as a surprise that this had
not been clear to all parties involved right away. As we saw above, De Sitter had
found his solution by considering a completely regular hypersurface embedded in
a 4+1D Minkowski space-time. It follows that any singularity in any coordinate
representation of the solution has to be a coordinate singularity and cannot be an
intrinsic singularity (cf. the poles in the example in Fig. 4). Einstein and De Sitter
had, in fact, recognized the degeneration of the metric field of the hyperboloid
universe in other coordinates as pathologies of those coordinates.95 And in his
paper on the De Sitter solution, Einstein (1918c) had taken a significant first step
toward formulating a sensible criterion to distinguish intrinsic singularities from
coordinate singularities.96 Yet, despite all of this, Einstein did not immediately
appreciate Klein’s point. In his response he wrote that Weyl had just furnished the
proof for his conjecture that there must be a large amount of mass at the horizon
of the hyperboloid universe.97
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Figure 11. Mapping a double-wedge region of De Sitter’s hyper-
boloid universe onto a cylinder

In his next letter, Klein reiterated the point of the previous one in simpler
terms.98 Klein’s reasoning is illustrated in Fig. 11.99 The figure shows geometri-
cally how to get from the original hyperboloid (Fig. 9) to the static form of the De
Sitter solution (Fig. 10). This is done through a clever choice of time slices of the
hyperboloid. Imagine that the plane cutting the hyperboloid horizontally at the
waist, i.e., the plane through the circle with O and P on the left in Fig. 11, can
pivot around the coordinate axis of the embedding space-time going through P .
Rotate this plane from −45o to +45o around this axis and let its successive cross-
sections with the hyperboloid represent time slices from past to future infinity. In
the figure, these cross-sections look like ellipses that get ever more elongated as
their angle with the horizontal plane increases until they degenerate into a pair of
parallel lines for angles of ±45o. In terms of the metric of Minkowski space-time,
however, for all angles between −45o and +45o, they have the exact same shape
as the circle that forms the hyperboloid’s waist (recall that all points on the hy-
perboloid have the same spatio-temporal distance to its center in the embedding
space-time). Stacking up these circles we arrive at the cylinder mantle on the right
in Fig. 11, which is just the static form of the De Sitter solution.
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As Fig. 11 shows, these static coordinates only cover the shaded double-wedge-
shaped region of the hyperboloid. More importantly for our purposes, we can now
see why the time conversion factor in these coordinates vanishes at the two points
on the edge of these wedges. The times slices all intersect at P (like the lines of
equal longitude on earth at the poles). This one point on the hyperboloid thus
gets mapped onto a vertical line on the cylinder mantle (like the horizontal line
representing the poles on the map in Fig. 4). The distance between different points
on this line needs to be multiplied by zero to reflect that they all represent the
same point P on the hyperboloid. This is why g44 = 0 at P . There is nothing
special about P . We could go through the exact same argument using a different
set of axes in the embedding space-time and g44 would be zero at some other pair
of points. Contrary to what Einstein and Weyl believed at the time, there is no
mass anywhere in the De Sitter universe.

To Einstein’s credit, he immediately accepted this dire consequence of Klein’s
analysis once Klein had explained it to him in terms he understood. On the
half-empty verso of Klein’s letter, Einstein drafted his response. Testifying to his
supreme surefootedness as a writer, the draft does not contain a single deletion
and is virtually identical to the actual letter sent a few days later. The letter
begins:

You are completely right. The De Sitter world in and of itself is free
of singularities and all its points are equivalent. A singularity only
arises from the substitution which gives the transition to the static
form of the line element . . . My critical comment on the De Sitter
solution stands in need of a correction; there actually is a singularity
free solution of the gravitational equations without matter (Einstein
to Klein, 20 June 1918 [CPAE 8, Doc. 567]).

Einstein then retreated to the position that the De Sitter solution could still be
ruled out as a model of our universe precisely because it cannot be turned into a
static model without the introduction of a singularity.

Einstein never published a correction to his critical note on the De Sitter solu-
tion. But he lost his enthusiasm for Mach’s principle—and for the cosmological
constant that had been the price he paid for it—once he had been forced to admit
that the De Sitter solution is a counter-example. Looking back at this period the
year before he died, Einstein wrote:

In my view one should no longer speak of Mach’s principle at all. It
dates back to the time in which one thought that the “ponderable
bodies” are the only physically real entities and that all elements
of the theory which are not completely determined by them should
be avoided. (I am well aware of the fact that I myself was long
influenced by this idée fixe) (Einstein to Felix Pirani, 2 February
1954).100
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Although this statement dates from a much later period, the disenchantment with
Mach’s principle can already be discerned in Ether and relativity, in which Einstein
(1920j) presented the metric field as a new kind of ether, thus abandoning the
requirement that the metric field be reducible to matter. This development was
greeted enthusiastically by De Sitter (Hoefer 1994, 329).

This marks the end of Einstein’s crusade against absolute motion. After four
failed attempts he finally threw in the towel. Around 1920, he embarked on a new
project, the unification of the inertio-gravitational field and the electromagnetic
field through the extension of general relativity in various different directions.101

This project he pursued until his dying days (Pais 1982, 479).

6. Post mortem: How Einstein’s physics
kept his philosophy in check

It should be clear by now that general relativity does not generalize the relativity
principle of special relativity from uniform to non-uniform motion. The combi-
nation of the equivalence principle and general covariance leads to what can be
called the relativity of the gravitational field—the recognition that an effect due to
gravity for one observer can be due to inertia for another—not to the relativity of
arbitrary motion. Einstein’s theory also does not vindicate Mach’s suggestion that
Newton’s bucket experiment could be accounted for in terms of relative motion
with respect to distant matter. Nor is the theory such that the metric field can
be reduced to its material sources, as demanded by what Einstein called Mach’s
principle. General relativity thus failed to fulfill many of the high hopes Einstein
had nourished during the long years he had spent in search of it. The consoling
thought in all of this is that Einstein had found a tremendously successful new
theory of gravity.

The analysis so far may have left the impression that it was sheer luck that
Einstein arrived at this theory at the end of his journey. Many of the guideposts
he had relied on along the way had, after all, listed a destination that was nowhere
to be found. The aim of this concluding section is to dispel this impression. I want
to highlight three factors that help explain the success of Einstein’s search for a
new theory of gravity despite the failure of many of his philosophical objectives.
First, Einstein did not just want to eliminate absolute motion, he also wanted
to reconcile some fundamental insights about gravity with the results of special
relativity and integrate them in a new broader framework. Second, when these
efforts led him to the introduction of the metric field, he carefully modeled its
theory on the successful theory of the electromagnetic field of Maxwell and Lorentz.
Third, whenever his philosophical agenda clashed with sound physical principles,
Einstein jettisoned parts of the former instead of compromising the latter. In
short, throughout his quest for general relativity, Einstein checked whether the
philosophical goals he had set himself could be realized in a physically sensible
theory.
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Einstein’s later recollections, especially those in the lecture in Glasgow men-
tioned at the beginning of this chapter (Einstein 1933, cf. note 2), leave little
doubt that his interest in gravity predated, if not by much, his hope that the
subject might hold the key to the relativity of arbitrary motion. Special relativity
made Newton’s theory of gravity unacceptable. Like other physicists around 1905,
Einstein sought to replace this theory, based on instantaneous action-at-a-distance,
by a new theory in which, as in the electrodynamics of Maxwell and Lorentz, ac-
tion is mediated by fields propagating with the speed of light. Working out the
law for the force this field exerts on a test particle, Einstein arrived at

a result which raised my strong suspicions. According to classical
mechanics, the vertical acceleration of a body in the vertical gravita-
tional field is independent of the horizontal component of its velocity
. . . But in the theory I advanced, the acceleration of a falling body
was not independent of its horizontal velocity (Einstein 1933, 286–
287).102

The acceleration of a falling body will likewise depend on the horizontal velocities
of its constituent parts and thus on “the internal energy of a system” (ibid.). This
is at odds with Galileo’s principle that the acceleration of free fall is the same for
all bodies. Recognizing this conflict, Einstein seems to have had an epiphany:

This law, which may also be formulated as the law of the equality of
inertial and gravitational mass, was now brought home to me in all
its significance. I was in the highest degree amazed at its existence
and guessed that in it must lie the key to a deeper understanding of
inertia and gravitation (Einstein 1933, 287, my emphasis).

Einstein’s interest thus shifted from the conflict between special relativity and
Newtonian action-at-a-distance, on which his contemporaries continued to focus,
to the conflict between special relativity and Galileo’s principle (Renn 2007b, 61).
Einstein quickly gave up on the attempt to develop a theory of the gravitational
field within the framework of special relativity. Such a theory, he felt “clearly failed
to do justice to the most fundamental property of gravitation” (Einstein 1933,
287). What he would come to call the equivalence principle would have to be the
cornerstone of a truly satisfactory new theory of gravity. In his Glasgow lecture,
as in the article intended for Nature of 1920 (see note 31), Einstein still presented
the equivalence principle as intimately connected with the relativity of arbitrary
motion, but that persistent and unfortunate association does not diminish its value
as a constraint on Einstein’s theorizing about gravity.

In Einstein’s 1912 theory for static gravitational fields, a variable speed of light
plays the role of the gravitational potential. Einstein thus gave up one of the
two postulates of special relativity, the light postulate, in his effort to extend the
other, the relativity postulate (Einstein 1912h, 1062). From the point of view
of the Entwurf theory, the precursor of general relativity proposed the following
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year, the variable speed of light of the 1912 theory is one of the components of
the metric field. From this point of view, gravity had thus already become part of
the fabric of space-time in the 1912 theory. Space-time is no longer the Minkowski
space-time of special relativity.

Later that same year, Nordström (1912) published a paper in which he proposed
a theory of gravity that stays within the confines of special relativity. In this theory,
gravitational interaction, like electromagnetic interaction, is conceived of in terms
of a field in Minkowski space-time. In a note added in proof, Nordström (1912,
1129) informs the reader that Einstein had already told him (in a letter that is no
longer extant) that this theory runs afoul of the general problem with horizontal
velocities mentioned above: The acceleration of free fall of a body rotating in a
horizontal plane would be less than that of the same body without such rotation.
Nordström initially shrugged off the objection, insisting the effect was too small
to be measured.

Einstein took an active part in the further development of Nordström’s theory.103

A sizable fraction of the first two papers by Nordström (1912, 1913a) on his new
theory went into deciding on the quantity that should represent the material source
of the gravitational field. Nordström settled on the energy density. In his part of
the Entwurf paper, Einstein approvingly passed on the suggestion of Max Laue,
then at the University of Zurich, that it should be the so-called trace of the energy-
momentum tensor instead (Einstein and Grossmann 1913, 21).104 Acknowledging
both Einstein and Laue, Nordström (1913b, 533) adopted this suggestion. This
established a first parallel between the theories of Einstein and Nordström. In
Einstein’s theory, the ten independent components of the energy-momentum tensor
act as the material source for the ten independent components of the metric field.
In Nordström’s amended theory, a scalar constructed out of the energy-momentum
tensor acts as the material source for the one-component gravitational potential.

Even in the modified version of the Nordström theory, the acceleration of free fall
of a body depends on its horizontal velocity, as it must in any special-relativistic
theory of gravity (see note 102). The Einstein-Laue amendment, however, did
remove the dependence of the acceleration on a body’s rotation and on the ki-
netic energy of its constituent particles. The general treatment of stressed bod-
ies by Laue (1911a,b), of which Nordström (1913a) had already made extensive
use, shows that such dependence disappears once the internal forces that keep a
body from flying apart are taken into account.105 This illustrates a more general
point. A new theory of gravity had to incorporate the insights of special relativity
and these insights went well beyond the prohibition against instantaneous action-
at-a-distance or the inclusion of gravity among its own sources required by the
equivalence of mass and energy. The work by Laue and others on the relativistic
mechanics of continua, in which the (stress-)energy-momentum tensor takes center
stage, was especially important in this regard. In an unpublished review article on
special relativity written in 1912, Einstein appropriately called this development
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“the most important new advance in the theory of relativity” (CPAE 4, Doc. 1,
[p. 63]).106

Based on one gravitational potential and flat space-time, Nordström’s theory
was much simpler than the Entwurf theory with its ten gravitational potentials
and curved space-time. In defense of his own more complicated theory, Einstein
concocted a clever thought experiment showing that Nordström’s theory violated
energy conservation, albeit only under highly artificial circumstances (Einstein and
Grossmann 1913, 21–22).107 Einstein conceded, however, that his main reason for
preferring the Entwurf theory was that it generalized the relativity principle to
arbitrary motion (ibid.). This was a remarkable admission. To generalize the
relativity principle, Einstein thought, a theory of broad covariance was needed
(see Section 3). Yet so far he had been unable to establish whether the limited
covariance of the Entwurf theory was broad enough for his purposes. That he
nonetheless preferred his own theory over Nordström’s shows that he had the
courage of his convictions; that he carefully examined and even contributed to the
strengthening of Nordström’s theory shows that he was not dogmatic about them.

This same open-mindedness is on display in a lecture that Einstein (1913c) gave
in Vienna in September 1913. Einstein compared and contrasted the Nordström
theory and the Entwurf theory, giving roughly equal time to both. He had mean-
while found a way to restore energy conservation in his competitor’s theory. This
made it a perfectly viable alternative to the Entwurf theory. True to his belief that
Galileo’s principle held the key to a new theory of gravity, Einstein had no interest
in theories in which this principle does not hold. For this reason, he made no men-
tion of the gravitational theory proposed by Gustav Mie (1913), who predictably
took exception in question time (Einstein et al. 1913, 1262–1263).108

To decide between the Nordström theory and the Entwurf theory empirically,
Einstein (1913c, 1262) told his audience in Vienna, one had to wait for a solar
eclipse. In Nordström’s special-relativistic theory, light propagates in straight lines
at constant speed. It is not bent by gravity. Nordström’s theory thus respects the
equality of inertial and gravitational mass but does not implement the equivalence
principle.109 After all, it follows directly from the latter that gravity does bend
light (see Section 2, Fig. 3). The Entwurf theory predicts an effect half the size of
that predicted by general relativity (Einstein 1915h, 834). Einstein expressed the
hope that the solar eclipse of August 1914 would bring the decision between the
two theories.110 In the meantime, other arguments would have to do. Whereas in
the Entwurf paper, Einstein had presented his theory’s broader covariance as its
main advantage, he now pointed to the relativity of inertia, which, he argued, was
realized in the Entwurf theory but not in the Nordström theory (Einstein 1913c,
1260–1261). This reflects the shift in Einstein’s strategy for eliminating absolute
motion between May and September 1913 (cf. the quotation at the beginning
of Section 4). In the present context, the important point is that, both in the
Entwurf paper in May and in the Vienna lecture in September, Einstein argued
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that philosophical considerations gave his theory the edge over Nordström’s while
acknowledging that in terms of more mundane physical considerations it was a
toss-up.

The following year, Einstein produced a much stronger argument in favor of
moving beyond special relativity. He showed that Nordström’s theory could readily
be reformulated as a theory in which, as in his own theory, gravity is incorporated
into the space-time structure. This possibility was first brought out by the escape
Einstein found from his own argument against the Nordström theory in the Ent-
wurf paper. Einstein communicated this escape to Nordström, who presented it in
his next paper on his theory, dutifully acknowledging his source (Nordström 1913b,
543–545).111 Einstein argued that the only way to guarantee energy conservation
in the Nordström theory was to assume a universal dependence of the dimensions
of physical systems and the duration of physical processes on the gravitational
potential.112 Because of this universality, clocks and rods would no longer measure
times and distances in the flat Minkowski space-time posited by the theory but
times and distances in some curved space-time.113

Early in 1914, in a joint paper with Lorentz’s former student Adriaan D. Fokker,
Einstein reformulated Nordström’s theory using Riemannian geometry (Einstein
and Fokker 1914). In this reformulation of Nordström’s theory, as in Einstein’s
own theory, the metric field describes both the gravitational potential and the
space-time geometry. The metric field in the Nordström theory is determined
by a generally-covariant equation and an additional condition.114 The generally-
covariant equation sets the so-called curvature scalar, a quantity constructed out
of the Riemann curvature tensor involving first- and second-order derivatives of the
metric field, equal to the trace of the energy-momentum tensor. The structure of
this equation is thus similar both to the Entwurf field equations and to the Einstein
field equations. Unlike these equations, however, the equation in the Nordström
theory only has one component. To determine the ten independent components of
the metric, one needs the additional condition that any metric field allowed by the
theory can be written in the form of the product of a function of the space-time
coordinates and the constant components of the metric for Minkowski space-time
in the standard form used by inertial observers in special relativity. This extra
condition guarantees that the velocity of light is a constant, as it should be in
a special-relativistic theory. It is also what rules out the light bending required
by the equivalence principle. The conformal factor, as the function multiplying
the standard Minkowski metric is called, is just the gravitational potential in the
original formulation of the Nordström theory. The field equation of the original
formulation is recovered if this special form of the metric field is inserted into the
generally-covariant equation.

The reformulation of the Nordström theory by Einstein and Fokker shows that
even this most satisfactory of special-relativistic theories of gravity eventually leads



Einstein’s quest for general relativity, 1907–1920 43

beyond special relativity. As Norton (1992b, 1993a) as well as Giulini and Strau-
mann (2006, Sec. 5) emphasize, the new formulation turns gravity from a field in
flat Minkowski space-time to part of the fabric of curved space-time. As Einstein
and Fokker (1914, 321) put it themselves, their reformulation shows that the Nord-
ström theory is covariant under a group of transformations broader than the class
of Lorentz transformations characterizing special relativity. In Einstein’s thinking
at the time, this was tantamount to a generalization of the relativity principle. The
main difference between Nordström’s theory and his own Entwurf theory then was
that the latter not only extended the relativity principle but also implemented the
equivalence principle, reducing the equality of inertial and gravitational mass to
an essential unity—a Wesensgleichheit (see note 34)—of gravity and inertia.

Regardless of how the point is made, the recasting of Nordström’s theory in
terms of Riemannian geometry bolstered Einstein’s confidence that he was on the
right track with a theory like the Entwurf theory based on the metric tensor.
Considerations of how to reconcile the physical insights represented by Galileo’s
principle and special relativity, which had led to Einstein’s interest in Nordström’s
theory in the first place, ended up pointing in the same direction as the consid-
erations about extending the relativity principle that had guided Einstein in his
formulation of the Entwurf theory.

As noted in Section 3, Einstein gave up the search for field equations of broad
covariance in 1913 because he could not find any that were compatible both with
energy-momentum conservation and with the results of Newtonian theory in the
case of weak static fields. When he finally did publish field equations of broad
and eventually general covariance in 1915, Einstein accordingly made sure that
they passed muster on both counts. What I did not mention so far is that Einstein
used these requirements not just to check whether they were met by candidate field
equations he was considering but also to generate candidates specifically designed
to meet them. This is how Einstein arrived at the Entwurf field equations in
the Zurich notebook (Renn 2007a, Vol. 2, 706–711). Like the relativity principle
and the equivalence principle, these physical principles thus guided Einstein in his
theory building.

In a similar vein, Einstein relied strongly on the analogy with electrodynamics,
both for the further elaboration of the Entwurf theory and for the transition to the
new theory in November 1915.115 Much of Einstein’s work on the Entwurf theory
in 1913–1914 went into recasting it in a form in which it could readily be compared
with electrodynamics. This is nicely illustrated by the Vienna lecture. Einstein
(1913c, 1249–1250) began by explaining that one should expect the transition from
Newton’s theory to a new theory of gravity to be similar to the transition from
Coulomb’s electrostatics to Maxwell’s electrodynamics. In the body of the lecture,
Einstein presented the Entwurf field equations in a form that closely matches the
field equations for the electromagnetic field. He consistently used the equations in
this form in subsequent publications (Janssen and Renn 2007, 847). Like Maxwell’s
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equations, the Entwurf field equations in this new form set the divergence of the
field equal to their source.116 The equations governing the transfer of energy-
momentum between the gravitational field and matter can likewise be written in a
form that is similar to the corresponding equation in the case of the electromagnetic
field. It was, in fact, on the basis of these parallels that Einstein originally identified
the gravitational field as the gradient of the metric field.

The following year, Einstein developed a more general formalism to analyze
various properties of the Entwurf field equations (Einstein and Grossmann 1914b,
Einstein 1914o).117 He derived a set of conditions in this formalism that, on
the one hand, determine under which (non-autonomous) transformations the field
equations are invariant and, on the other, ensure that the field equations imply
energy-momentum conservation.118 The central quantity in this formalism is the
so-called Lagrangian. Specification of the Lagrangian for the gravitational field is
tantamount to the specification of the vacuum field equations. Einstein modeled
the Lagrangian for the gravitational field in the Entwurf theory on the Lagrangian
for the electromagnetic field in Maxwell’s theory. It is essentially the same qua-
dratic expression in the components of the field in both cases.

When, sometime in October 1915, Einstein finally came to accept that the rota-
tion metric is not a vacuum solution of the Entwurf field equations (see Section 4),
he held on to his general formalism, including the expression for the Lagrangian
in terms of the gravitational field. He only changed the definition of the field from
the gradient of the metric to the Christoffel symbols (see Section 3). The resulting
new field equations were of broad covariance. Purely mathematical considerations
had already led Einstein to consider these equations three years earlier. They
can be found in the Zurich notebook. At that time, physical considerations had
steered Einstein away from these equations and toward the Entwurf field equa-
tions. Now the formalism that Einstein had developed for the Entwurf theory,
relying heavily on the analogy with electrodynamics, not only led him back to the
equations rejected earlier, but also provided him with all the guidance he needed
to demonstrate that they are compatible with energy-momentum conservation af-
ter all. Moreover, the connection between energy-momentum conservation and
the covariance of the field equations, one of the key insights enshrined in his gen-
eral formalism, gave Einstein the decisive clue for solving the other problem that
had defeated him before, namely to show that these field equations reproduce the
results of Newtonian theory in the case of weak static fields. With both these
problems taken care of, Einstein rushed his rediscovered field equations into print
(Einstein 1915f). Within days he realized that they were still not quite right.
Guided once again by his general formalism, Einstein fixed the remaining prob-
lems in two further communications to the Berlin academy in November 1915
(Einstein 1915g, i).

This whole chain of events was triggered by Einstein’s redefinition of the grav-
itational field. One can thus understand his assessment at the time that the old
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definition had been a “fateful prejudice” (Einstein 1915f, 782) and that the new one
had been the “key to the solution.”119 Einstein later downplayed the importance
of the physical considerations encoded in his general formalism for the transition
from the Entwurf field equations to the Einstein field equations. The way he came
to remember it was that he had chosen the new equations purely on grounds of
mathematical elegance (Janssen and Renn 2007, Sec. 10).

Ultimately, it was probably the convergence of physical and mathematical lines
of reasoning that reassured Einstein that the field equations of his fourth communi-
cation of November 1915 were the right ones. Confident that no further corrections
would be needed, he could afford to poke fun at the way victory had at long last
been achieved. As he told Ehrenfest in late December: “It’s convenient with that
fellow Einstein, every year he retracts what he wrote the year before.”120 This self-
deprecating comment nicely captures the flexibility we have seen Einstein exhibit
at several junctures on his road to the new theory. Three days later, Einstein
likewise told his Polish colleague W ladys law Natanson: “I once again toppled my
house of cards and built a new one.”121 In terms of Einstein’s philosophical objec-
tives, the new structure indeed turned out to be yet another house of cards. As a
physical theory, however, it has proved to be remarkably sturdy and durable.
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Notes

1See Norton’s contribution to this volume as well as Appendix A.
2Otherwise, Einstein’s introduction of general relativity here is similar to the one he gave over

a decade later in a lecture in Glasgow. In the published text of the latter we read: “[O]nly a
relative meaning can be assigned to the concept of velocity” and “[f]rom the purely kinematical
point of view there was no doubt about the relativity of all motions whatsoever” (Einstein 1933,
286). Page references to this lecture are to the reprint in Einstein (1954).
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3See also Fock (1959, xviii). Bondi’s remarks and similar ones by Synge, another leading
relativist of the same era (see note 35), are quoted and discussed by Schücking and Surowitz
(2007, 19). In his article Bondi tried to preempt criticism of sacrilegiousness: “one may surely
admire and embrace Einstein’s theory of gravitation while rejecting his route to it, however
heuristically useful he himself found it” (Bondi 1979, 180).

4Einstein (1918k) produced an account of the twin paradox along these lines (Janssen 2005,
64, note 23). Gustav Mie used the example of the passenger in the accelerating train to criticize
this way of extending the relativity of uniform motion to accelerated motion in the discussion
following a lecture by Einstein in Vienna in 1913 (Einstein et al. 1913, 1264; cf. note 52). See
also Weyl (1924, 199; cf. note 33).

5In Section 3 below, we shall see how Einstein came to equate general covariance with gen-
eral relativity. For an insightful review of the decades-long debate over the status of general
covariance, see Norton (1993b).

6For expressions of his strong confidence in the theory at this point, see Einstein to Heinrich
Zangger, [after 27 December 1914] and 11 January 1915 (CPAE 10, [Vol. 8, Doc. 41a] and [Vol.
8, Doc. 45a]).

7See Sauer (1999, 2005b), Renn and Stachel (2007) and Brading and Ryckman (2008) for
comparisons of the relevant contributions of Einstein and Hilbert.

8For a reconstruction of these developments, see Janssen and Renn (2007).
9Along with the Princeton lectures (Einstein 1922c) and his popular book on relativity (Ein-

stein 1917a), this is Einstein’s best known exposition of general relativity. It is included in The
Principle of Relativity, an anthology still in print today (Einstein et al. 1952). For detailed
commentary, see Janssen (2005) and Sauer (2005a).

10The characterization of Einstein’s project given above in terms of the equivalence principle,
Mach’s principle, and general covariance follows this paper. This was the first time that Einstein
explicitly separated the three notions involved. In a footnote he conceded that he had not clearly
distinguished the relativity principle, identified with general covariance, from Mach’s principle
before (Einstein 1918e, 241). See Lehner (2005) for a somewhat different take on the changes in
the status of and the relation between these three principles in Einstein’s thinking in this period.

11This is nicely captured in the title of a paper by Earman and Glymour (1978), “Lost in the
tensors,” even though the paper itself was quickly superseded by papers of Stachel (1980) and
Norton (1984). For the first publication of the former and a reprint of the latter, see Howard
and Stachel (1989).

12For more on the checkered history of the cosmological constant, see Smeenk’s contribution
to this volume.

13The story of Einstein’s quest for general relativity thus simultaneously confirms the first and
refutes the second part of the observation in Bob Dylan’s 1965 song Love minus zero/no limit
that “there’s no success like failure and that failure is no success at all.”

14One can argue that absolute motion is already less objectionable in special relativity than it
was in Newtonian theory (Dorling 1978). Once again, consider the two passengers whose trains
are in non-uniform motion with respect to one another. According to Newtonian theory, these
two observers, using ideal rods and clocks (i.e., ideal in the sense of measuring intervals in the
space and time posited by Newtonian theory), will arrive at equivalent descriptions of the motion
of the other observer, the only difference being the direction of the motion. Yet, the effects of
the motion (e.g., whether or not the coffee in their cups spills) is different for the two observers.
This, Einstein (1916e, 771–773) pointed out, amounts to a violation of the principle of sufficient
reason: Two motions that look the same have different effects. This, Einstein suggested, is what
makes absolute motion so objectionable. If this were all there is to the problem of absolute
motion, Einstein had already solved it in 1905 (Dorling 1978). According to special relativity,
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given the behavior of ideal clocks and rods posited by the theory, the two observers will describe
the motion of the other observer differently. Contrary to what Einstein claims in the passages
from the lectures in Princeton and Glasgow quoted at the beginning of this chapter, in both
special and general relativity it does matter, even “from the purely kinematic point of view” or
in terms of the “purely geometrical acceleration” (i.e., acceleration as determined by ideal rods
and clocks in the space-time posited by the relevant theory) “from the point of view of which
body we talk about [non-uniform motion].” Since the two motions under consideration here look
different according to special relativity, it is not surprising that their effects are different as well.
There is no violation of the principle of sufficient reason. For further discussion, see Janssen
(2005, 62–63).

15For discussion of Einstein’s work on unified field theory, see Sauer’s contribution to this
volume.

16This analogy nicely illustrates that being a set of relational properties does not make a
structure any less real. One need only think of adultery.

17See, e.g., DiSalle (2006) for an attempt to parse the philosophical debate over these issues
in a new way.

18For accounts of Einstein’s work on the perihelion problem, see the editorial note, “The
Einstein-Besso Manuscript on the Motion of the Perihelion of Mercury” (CPAE 4, 344–359),
Earman and Janssen (1993), and Janssen (2003).

19See Earman and Glymour (1980a,b) and CPAE 9 (introduction, secs. III–V) for discussions
of these two classical tests of general relativity (the third being the prediction of an additional
advance of the perihelion of Mercury of some 43 seconds of arc per century [see the preceding
note]).

20See Smeenk’s contribution to this volume.
21See Kennefick’s contribution to this volume.
22See Renn et al. (1997); Renn and Sauer (2003).
23Pfister (2007) convincingly argues that Einstein actually deserves most of the credit for what

is usually referred to as the Lense-Thirring effect (Lense and Thirring 1918).
24See Earman and Eisenstaedt (1999) and Earman (1995).
25See, e.g., Brading (2002) for analysis of Noether’s theorems.
26In his contribution to this volume, Friedman places the development of general relativity in

the context of the history of the philosophy of geometry.
27For a concise overview of the development of general relativity that largely focuses on this

strand of the story rather than on the failed quest for general relativity, see Giulini and Straumann
(2006).

28See Norton (1992b, 1993a) and, drawing on this work, Giulini and Straumann (2006, Sec. 5,
145–151). The first of Norton’s two papers is reprinted in Renn (2007a, Vol. 3, 413–542) along
with translations of the original papers by Nordström (1912, 1913a,b).

29CPAE 7, Doc. 31, [p. 21]. A literal translation of the German original (“der glücklichste
Gedanke meines Lebens”) would be: “the happiest thought of my life,” where ‘happy’ is to be
taken in the sense of ‘fortunate’. Einstein also told this story in a lecture in Kyoto in 1922 (Abiko
2000, 15).

30To be more precise, this is a particle’s passive gravitational mass, a measure of how strongly
it is attracted by other particles. Its active gravitational mass measures how strongly it attracts
other particles. These two quantities also have the same numerical value.

31In the next sentence, Einstein admittedly still suggested that this consideration leads to an
extension of the relativity principle to non-uniform motion. Old habits die hard. For further
discussion, see Janssen (2002b, 507–508).
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32The relevant passage is quoted and discussed in sec. 4.1 in Norton’s contribution to this
volume, where a variant of the thought experiment shown in Fig. 2 is analyzed.

33In a remarkable semi-popular article, Hermann Weyl (1924, 198–199) put the notion of
what he called a “guiding field” that cannot be split uniquely into inertial and gravitational
components at the center of his discussion of the foundations of general relativity.

34As Einstein (1918e, 241) put it, “Inertia and gravity are of the exact same nature.” Six
years earlier, Einstein (1912h, 1063) had already written about the equivalence of inertial and
gravitational mass and the equivalence of a static gravitational field and the acceleration of a
frame of reference using the same term, wesensgleich, which I translated as “of the exact same
nature” (Norton 1992b, 447, note 42). Page references to this paper are to the reprint in Renn
(2007a, Vol. 3).

35In the preface of his textbook on general relativity, J. L. Synge admitted that he had never
been able to define the equivalence principle in a way that would not make it either trivial or
false, but he still recognized its heuristic value: “The Principle of Equivalence performed the
essential office of midwife at the birth of general relativity . . . I suggest that the midwife be now
buried with appropriate honours and the facts of absolute space-time faced” (Synge 1960, ix–x).
He spoke for many when he observed that “the word ‘relativity’ now means primarily Einstein’s
theory and only secondarily the obscure philosophy which may have suggested it originally”
(ibid., ix). Cf. the comment by Bondi quoted in the introduction.

36We can still continue to think of the situation on an ordinary merry-go-around even though
that involves a gravitational field perpendicular to the plane of the disk, while in Minkowski
space-time there is no gravitational field at all. Since we only consider what happens in the
plane of the disk, the difference is of no consequence for our arguments.

37See sec. 2.7 in appendix A on special relativity for an analysis of the twin paradox. This
appendix also provides elementary explanations of time dilation and length contraction.

38The experimental verification of the effect was much more contentious. See Hentschel (1993);
Pound (2000, 2001); and CPAE 9, xxxvii–xl.

39Einstein himself established this by considering linear acceleration rather than rotation.
40See Rowe’s contribution to this volume.
41See also Einstein’s correspondence with the mathematician Vladimir Varićak about the ro-

tating disk and related issues in 1910–1912 (Sauer 2007).
42For discussion of Abraham’s theory and Einstein’s criticism of it, see the editorial note, “Ein-

stein on Gravitation and Relativity: The Static Field” (CPAE 4, 122–128), and Renn (2007d).
43Page references to this paper are to the reprint in Howard and Stachel (1989). Three years

earlier, in response to criticism by Max Planck of the definition of constant acceleration in his
1907 review article, Einstein (1908b) had already been forced to accept a restriction of the
principle to bodies at rest in the accelerated frame (Schücking and Surowitz 2007, 7).

44The Göttingen mathematician Felix Klein later noted that this had been a rather one-sided
introduction to the field (Renn 2007a, Vol. 2, 611, note 212). For an account of how his
collaboration with Grossmann began, see Einstein’s Kyoto lecture (Abiko 2000, 16, cf. note 29).

45Richard Feynman once boasted that he had found his way to the 1957 conference on general
relativity at Chapel Hill by asking a cab driver to take him to the same place the man had taken
others going ‘gee-mu-nu, gee-mu-nu’ (Feynman and Leighton 1985, 258–259).

46Gaussian curvature would be meaningful to critters constrained to the surface, such as ants
crawling along on it. Without leaving the surface, they could ascertain that they live on a curved
surface by measuring the angles of triangles drawn on it and noting that these angles do not add
up to π.

47Since space-time is locally Minkowskian or pseudo-Euclidean, it is, strictly speaking, only
pseudo-Riemannian.
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48For an English translation of the key parts of Levi-Civita’s (1917) paper on the subject,
see (Renn 2007a, 1081–1088). With the help of the connection the old Gaussian interpretation
of curvature in terms of angular excess of geodetic triangles (cf. note 46) was replaced by the
modern interpretation in terms of parallel displacement (Janssen 1992). In curved spaces a vector
transported parallel to itself around a closed loop will no longer point in the same direction as
the original vector.

49Cf. Appendix A, Sec. 2.5
50Norton (1999a), building on some of his earlier work (Norton 1992a), argues that the con-

flation was the result of the collision in Einstein’s work of two different traditions in geometry,
one going back to Klein’s famous Erlangen program, the other going back to Riemann (Janssen
2005, 61–62).

51For further discussion of Kretschmann’s paper, see Norton (1992a, 1993b) and Rynasiewicz
(1999). See Anderson (1967, Secs. 4.2–4.4) for a classic discussion of covariance groups and
symmetry groups.

52Mie (1917) defended a similar view of the role of general covariance in Einstein’s theory (see
CPAE 8, Doc. 346, note 3). Mie completely agreed with Kretschmann (1917) and recommended
the latter’s paper to Einstein (Mie to Einstein, 17 February 1918 [CPAE 8, Doc. 465]).

53Dieks (2006) defends Einstein against the charge of conflating general covariance and general
relativity by arguing that his goal was to eliminate preferred frames of references in the sense of
laws taking on a special form in them rather than in the sense of their special states of motion.

54See, e.g., Einstein to Max von Laue, 12 September 1950 (AE 16 148), quoted by Stachel
(2002a, 256) in a supplementary note to a reprint of his paper on the rotating disk (Stachel 1989).
Einstein likewise saw no problem representing the energy and momentum of the gravitational
field by a quantity that is not a tensor. Since the mature equivalence principle makes the presence
of a gravitational field coordinate-dependent, it is only natural that its energy and momentum
are too. Einstein (1918f) defended his pseudo-tensor of gravitational energy-momentum against
criticism of various colleagues, including Levi-Civita, Lorentz, and Klein. Part of this debate
over the pseudo-tensor is covered by Cattani and De Maria (1993). Trautman (1962) provides a
concise overview of subsequent work on energy and momentum conservation in general relativity.

55This notebook is the centerpiece of Renn (2007a, Vols. 1 and 2), where it is presented in
facsimile with a transcription and a detailed commentary. High-quality scans of the notebook
are available at the Einstein Archives Online.

56See Janssen and Renn (2007, 913–914) for the relevant passages from letters to Michele
Besso, Hilbert, and Arnold Sommerfeld.

57An embryonic version of the hole argument can be found on a page in Besso’s hand dated
28 August 1913 (Janssen 2007).

58For historical discussion of these arguments, see, e.g., Stachel (1980); Norton (1984, 1987);
Howard (1999); Janssen (2007). For philosophical debate, see, e.g., Earman and Norton (1987);
Stachel (1986, 2002c); Earman (1989); Maudlin (1990); Rynasiewicz (1992); Howard (1999);
Saunders (2003); Rickles and French (2006); Pooley (2006). For a good introduction to the debate
and further references, see the entry on the hole argument in the on-line Stanford Encyclopedia
of Philosophy (Norton 2008).

59Before Stachel (1980) and Norton (1984), commentators, including Pais (1982, 222), thought
that this was the indeterminism lurking in the hole argument and they therefore dismissed Ein-
stein’s argument as a beginner’s blunder of someone who has just learned Riemannian geometry.

60This extra step is already present in the embryonic version of the hole argument mentioned
in note 57 (Janssen 2007, 821–823).
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61That it is far from trivial to spot the flaw in this argument was forcefully demonstrated by
the discovery of page proofs of Hilbert’s (1916) first paper on general relativity, which show that
even the great mathematician had originally fallen for it (Corry et al. 1997).

62Einstein and Grossmann (1914a, 260; 1914b, 217–218); Einstein (1914e, 178; 1914o, 1067).
63See Einstein to Ehrenfest, 26 December 1915 and 5 January 1916 (CPAE 8, Docs. 173 and

180) and Einstein to Besso, 3 January 1916 (CPAE 8, Doc. 178).
64Einstein in all likelihood got the notion of point coincidences from a paper by Kretschmann

(1915) that was published just days before Einstein wrote the letter in which the new argument
makes it first appearance (Howard and Norton 1993, 54). As can be inferred from the manuscript
mentioned in note 57, Einstein had rejected a similar escape from the hole argument two years
earlier (Janssen 2007, Sec. 4).

65Two years later, Einstein elevated this observation to the statement of the relativity principle
itself: “The laws of nature are nothing but statements about spatio-temporal coincidences; they
therefore find their only natural expression in generally-covariant equations” (Einstein 1918e,
241).

66Howard (1999) draws attention to the harmful influence of this reading of the point-coincidence
argument in philosophy of science. It was not just readers of Einstein’s 1916 review article, how-
ever, who interpreted the argument this way. It was also how Lorentz interpreted the original
argument in Einstein’s letters to Ehrenfest, Lorentz’s successor in Leyden. It was this version
of the argument that convinced Lorentz of the need of general covariance (Kox 1988, Janssen
1992).

67The argument, however, does leave the determined substantivalist plenty of wiggle room.
First, the account of identity and individuation that it is based on remains controversial: Can
identity truly be a matter of suchness alone or does it always involve some thisness as well
(Maudlin 1990)? Second, the argument specifically targets substantivalists committed to the
reality of bare manifold points as the ultimate carriers of all physical properties. One can argue
that this is not the right way to assign physical meaning to bare manifold points (Wilson 1993).
Or one could opt for a more sophisticated form of substantivalism that avoids commitment to
the reality of bare manifold points. Both moves, however, would seem to end up blurring the
distinction between substantivalism and relationism (Rickles and French 2006, 3–4).

68See Earman (1989, Ch. 6) for discussion
69For other discussions of Einstein’s efforts to implement Machian ideas in his new theory of

gravity, see, e.g., Barbour (1992, 2007), Hoefer (1994, 1995), Barbour and Pfister (1995), and
Renn (2007c).

70For Newton the bucket experiment was first and foremost an argument against the Cartesian
concept of motion rather than an argument for absolute acceleration (Laymon 1978; Huggett
2000, Ch. 7). For discussion of the responses of Huygens, Leibniz, Berkeley, Kant, Maxwell,
Mach, and Poincaré to Newton’s bucket experiment, see Earman (1989, Ch. 4).

71Einstein to Lorentz, 14 August 1913 (CPAE 5, Doc. 467).
72Einstein to Lorentz, 23 January 1915 (CPAE 8, Doc. 47).
73In the early 1960s, the small increase of inertia that Einstein did find as a result of interaction

with distant matter was shown to be an artifact of the coordinates he used (Torretti 1978, 20).
74The gravitational field will exert both centrifugal and Coriolis forces. The latter are twice

the size of the former and point in the opposite direction, thus keeping the particles in orbit
(Janssen 2005, notes 24 and 44).

75Thirring to Einstein, 11–17 July 1917 (CPAE 8, Doc. 361).
76Einstein to Thirring, 2 August 1917 and 7 December 1917 (CPAE 8, Docs. 369 and 405).

See also Einstein to Eduard Hartmann, [27 April 1917] (CPAE 8, Doc. 330).
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77What is also puzzling is that Einstein mentioned that he was working on the problem of
boundary conditions in a letter to Besso of 14 May 1916 (CPAE 8, Doc. 219), i.e., several
months before the exchange with De Sitter.

78See also the Einstein-Besso manuscript (CPAE 4, Doc. 14, [pp. 18–24, 32–35, 41–42, 45–49]).
For further discussion, see Pfister (2007).

79Another factor, I suspect, is that early critics may have been reluctant to take Einstein to
task on this score for fear of being lumped in with Anti-Relativists, whose attacks on Einstein
had more nefarious motives (see Rowe’s contribution to this volume and Wazeck [2009]).

80See the correspondence between Einstein and De Sitter in 1916–1918 published in CPAE 8
and the editorial note, “The Einstein-De Sitter-Weyl-Klein Debate” (ibid., 351–357). For another
concise account of the developments discussed in this section, see Giulini and Straumann (2006,
sec. 6.6).

81De Sitter to Einstein, 1 November 1916; Einstein to De Sitter, 4 November 1916 (CPAE 8,
Docs. 272 and 273).

82The second of these was the second installment of a trilogy in the Monthly Notices of the
Royal Astronomical Society that first introduced British scientists to Einstein’s new theory (De
Sitter 1916a, c, 1917c).

83Einstein to De Sitter, 2 February 1917 (CPAE 8, Doc. 293).
84He had mentioned this possibility the year before in the letter to Besso cited in note 77.
85De Sitter to Einstein, 1 April 1917 (CPAE 8, Doc. 321).
86For more detailed discussion of these considerations, see Norton (1999b) and Smeenk’s con-

tribution to this volume. Drawing on his historical analysis of the difficulties with Newtonian
cosmology, Norton (1995, 2003) shows that there is a class of cosmological models in which the
arbitrariness of the split between inertial and gravitational effects expressed in the mature equiv-
alence principle amounts to a true relativity of acceleration. The particles in relative acceleration
toward one another in these models all move on geodesics.

87De Sitter to Einstein, 20 March 1917 (CPAE 8, Doc. 313).
88Cf. Appendix A, Sections 2.5 and 2.6 and Fig. 27.
89See also De Sitter to Einstein, 20 June 1917 (CPAE 8, Doc. 355).
90Einstein to De Sitter, 8 August 1917 (CPAE 8, Doc. 370).
91This may be the reason that this paper was published in Annalen der Physik, in which

Einstein (1916e) had published his big review article, while most of his papers on general relativity
during this period appeared in the proceedings of the Berlin academy (Janssen 2005, 60).

92In the 1+1D version of the model the horizon consists of two points rather than a 2D surface.
93Einstein corresponded with Weyl about this proof and it is referred to in the section on

cosmology in the first edition of Space-time-matter (Weyl 1918, Sec. 33). Although Weyl thus
helped Einstein defend Mach’s principle, he later explicitly distanced himself from it (see, in
particular, the popular article mentioned in note 33).

94Einstein to Weyl, 31 May 1918; Klein to Einstein, 31 May 1918 (CPAE 8, Docs. 551 and
552).

95Einstein to De Sitter, 24 March 1917, and De Sitter to Einstein, 1 April 1917 (CPAE 8,
Docs. 317 and 321).

96For discussion, see, e.g., Earman (1995, sec. 1.2) or Earman and Eisenstaedt (1999, sec. 3).
97Einstein to Klein, [before 3 June 1918] (CPAE 8, Doc. 556).
98Klein to Einstein, 16 June 1918 (CPAE 8, Doc. 566).
99The following analysis follows Schrödinger (1956).

100This passage and a similar passage from the autobiographical notes (Einstein 1949a, 29) are
quoted and discussed by Hoefer (1994, 330) and Renn (2007c, 61).

101See Sauer’s contribution to this volume.
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102See Norton (1993a, 6–11) for a reconstruction of how Einstein presumably derived the result
that the acceleration of a falling body decreases when it is moving sideways. The paper also
provides diagrams illustrating the effect (ibid., Figs. 1 and 2). Einstein first alluded to this
problem with special-relativistic theories of gravity in print in the course of his polemic with
Abraham (Einstein 1912h, 1062–1063). Renn (2007b, 55) presents a more elementary argument
that shows that the acceleration of free fall must depend on a body’s horizontal velocity in any
special-relativistic theory of gravity (see also Giulini [2006, 16]). Consider two trains traveling
in opposite directions on parallel tracks with constant speeds. The moment a passenger in one
train comes face to face with a passenger in the other train, they each drop some object from
the same height. The relativity of simultaneity implies that, if the objects were to hit the floor
of the respective trains simultaneously according to the passenger in one train, they would not
do so according to the passenger in the other train. Since the situation of the two passengers is
completely symmetric, it follows that the objects must hit the floor one after the other for both
passengers. One easily verifies that both observers will claim that the object they themselves
dropped hit the floor first (consider Fig. 26 in Appendix A and let the events P and Q represent
the two objects hitting the floor of their respective trains).

103My discussion of Einstein’s engagement with the Nordström theory follows Norton (1992b,
1993a). For insightful further discussion, see Giulini (2006).

104The trace of the energy-momentum tensor is the sum of its diagonal components, T11, T22,
. . . It turns out that this quantity is invariant under Lorentz transformations. In other words,
it transforms as a scalar under such transformations.

105For detailed discussion, see Norton (1992b, Secs. 9–10, 437–450) and Giulini (2006, Sec. 6).
106For further discussion of these developments, see, e.g., Janssen and Mecklenburg (2006,

107–111).
107See Norton (1993a, Sec. 5) for discussion of Einstein’s objection and a helpful diagram (ibid.,

Fig. 5).
108The following year, Mie (1914) published a sharp critique of the Entwurf theory. By 1917,

however, he had abandoned his own theory and accepted general relativity, though not Einstein’s
interpretation of general covariance in terms of relativity of motion (see note 52). See Smeenk
and Martin (2007) for an introduction to some of Mie’s papers on gravity presented in English
translation in Renn (2007a, Vol. 4, 633–743).

109In modern terms, Nordström’s theory satisfies the weak but not the strong equivalence
principle.

110The following year, Erwin Freundlich, a Berlin astronomer and Einstein’s protégé, set out for
the Crimea to observe this eclipse, but then World War I broke out and Freundlich was interned
by the Russians. Another expedition was rained out (Earman and Glymour 1980a, 60–62). In a
sense, this was a fortunate turn of events for Einstein since the effect predicted by the Entwurf
theory was too small (Earman and Janssen 1993, 129).

111The paper was submitted from Zurich, so Nordström would have had the opportunity to
discuss his theory in person with both Einstein and Laue (Norton 1992b, 455).

112See Norton (1993a, Sec. 6) for discussion and another helpful diagram (ibid., Fig. 6). Giulini
(2006, 26) takes issue with Einstein’s claim that this is the only way to save energy conservation
in the Nordström theory.

113This is similar to the situation in Lorentz’s ether theory of electrodynamics out of which
special relativity grew. By 1899, Lorentz assumed that any moving system contracts by a factor
depending only on the ratio of the system’s velocity with respect to the ether and the velocity of
light and that any process in a moving system takes longer than the same process in the system
at rest by that same factor (Janssen 2002a, 425). As a result, clocks and rods in Lorentz’s theory
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measure times and distances in the Minkowski space-time posited by special relativity rather
than times and distances in the Newtonian space-time posited by Lorentz’s own theory.

114See Norton (2007, 775–776) for discussion. Einstein thought that the Entwurf field equations
could likewise be recovered from the combination of generally-covariant equations and additional
conditions (Einstein and Fokker 1914, 328). In the case of the Entwurf theory, Einstein knew
the additional conditions (these were the conditions for “adapted coordinates” mentioned in
Section 4) but not the generally-covariant equations that together with these conditions would
give the Entwurf field equations. See Janssen and Renn (2007, 842–843; 866–867) for further
discussion of Einstein’s understanding during this period of how field equations could be extracted
from generally-covariant equations, which by themselves were inadmissible as field equations on
account of the hole argument.

115Einstein had already used the electrodynamical analogy when he was looking for a general-
ization of his 1912 theory for static gravitational fields to stationary fields. See, in particular,
Einstein (1912e), where the electrodynamical analogy is mentioned in the title, and Einstein to
Besso, 26 March 1912 (CPAE 5, Doc. 377).

116There is still an important difference between the two cases: The source of the electromag-
netic field is the electric charge-current density, while the source of the gravitational field is the
energy-momentum density, both of matter and of the gravitational field itself. In his contribution
to this volume, Kennefick emphasizes the importance of both analogies and disanalogies between
gravity and electromagnetism in the later debate over gravitational waves.

117The discussion of the developments of 1914–1915 below is based on Janssen and Renn (2007).
Our account of how Einstein found the generally-covariant field equations now named after him
deviates at key points from the one given in a classic paper by Norton (1984). For a short version
of our new still controversial account, see Janssen (2005, 75–82).

118Two years later, Einstein (1916o) used this same formalism to show that the general covari-
ance of the Einstein field equations is directly related to energy-momentum conservation (Janssen
and Renn 2007, Sec. 9).

119Einstein to Sommerfeld, 28 November 1915 (CPAE 8, Doc. 153).
120Einstein to Ehrenfest, 26 December 1915 (CPAE 8, Doc. 173).
121Einstein to Natanson, 29 December 1915 (CPAE 8, Doc. 175).
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Earman, John, and Norton, John D. (1987). “What Price Space-Time Substan-
tivalism? The Hole Story.” British Journal for the Philosophy of Science 38,
515–525.

Eddington, Arthur S. (1930). “On the instability of Einstein’s spherical world.”
Monthly Notices of the Royal Astronomical Society, 90, 668–678.

Einstein, Albert (1905r). “Zur Elektrodynamik bewegter Körper.” Annalen der
Physik, 17, 891–921 (CPAE 2, Doc. 23). English translation in Einstein et al.
(1952, 37–65)
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(Gemeinverständlich). Braunschweig: Vieweg. English translation: Einstein
(1959).

Einstein, Albert (1917b). “Kosmologische Betrachtungen zur allgemeinen Rela-
tivitätstheorie.” Königlich Preußische Akademie der Wissenschaften (Berlin).
Sitzungsberichte, 142–152 (CPAE 6, Doc. 43). English translation in Einstein et
al. (1952, 177–188).
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Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen
Gravitationstheorie.” Physikalische Zeitschrift 19, 156–163.

Levi-Civita, T. (1917). “Nozione de parallelismo in una varietà qualunque e con-
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drecht: Reidel.
Trautman, Andrzej (1962). “Conservation Laws in General Relativity.” In Grav-

itation: An Introduction to Current Research. Louis Witten, ed. New York,
London: John Wiley & Sons, 169–198.

Wazeck, Milena (2009). Einsteins Gegner. Die öffentliche Kontroverse um die Re-
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