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Abstract

Here, we examine hole-freeness – a condition sometimes imposed to
rule out seemingly artificial spacetimes. We show that under existing
definitions (and contrary to claims made in the literature) there exist
inextendible, globally hyperbolic spacetimes which fail to be hole-free.
We then propose an updated formulation of the condition which en-
ables us to show the intended result. We conclude with a few general
remarks on the strength of the definition and then formulate a precise
question which may be interpreted as: Are all physically reasonable
spacetimes hole-free?

Hole-freeness is a condition sometimes imposed to rule out seemingly ar-
tificial spacetimes. The idea, roughly, is that spacetime should be such that
the Cauchy development of any spacelike surface is “as large as it can be”.
The condition is of interest because, without it, it seems that a failure of
determinism in general relativity threatens even before one considers more
interesting questions of global structure such as the cosmic censorship hy-
pothesis.1 The first precise formulation of hole-freeness was due to Geroch
(1977):2

Definition. A spacetime (M, gab) is said to be hole-free if, for any spacelike
surface S ⊂ M , and for any metric preserving embedding θ : D(S) → M ′

∗I wish to thank John Earman and Robert Geroch for helpful discussions on this topic.
1See Earman (1995, p. 97-98).
2In addition to Geroch (1977), precise definitions of hole-freeness can be found in Clarke

(1976, 1986, 1993) and Earman (1986, 1995). For other discussions of hole-freeness, see
Clarke and Schmidt (1977) and Ellis and Schmidt (1977).
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into another spacetime (M ′, g′ab), θ(D(S)) = D(θ(S)).3

To see the definition at work, one can verify that Minkowski spacetime
(R4, ηab) is hole-free. On the other hand, consider the spacetime (R4 −
{p}, ηab) where p is any point in R4. This spacetime is Minkowski space-
time with a point removed and clearly it is not hole-free. One naturally
wonders about the strength of the definition. Geroch (1977) noted that this
formulation may be too weak – Minkowski spacetime to the past of a null
plane counts as hole-free. Similarly, the definition may also be too strong.
It has been noted by Clarke (1976), for example, that there are spacetimes
representing spherically symmetric radiating stars which are counted as not
hole-free.4 However, it was suggested by Ellis and Schmidt (1977) that every
inextendible, globally hyperbolic spacetime is hole-free (a proof of this claim
was later given in Clarke (1993)). Thus, it seemed that at least a large class
of physically reasonable spacetimes must be hole-free. However, we will show
here that contrary to these claims, a spacetime may indeed be inextendible,
globally hyperbolic, and not hole-free.5

Proposition 1. There exists an inextendible, globally hyperbolic spacetime
which is not hole-free.

Proof. Let (R2, ηab) be (two-dimensional) Minkowski spacetime in standard
(t, x) coordinates. Now let p ∈ R2 be the origin point (0, 0) and consider
the set J−(p) ⊂ R2. Call K the set J−(p) − {p}. Finally, let M be the
set {(t, x) : t < 0}. Consider the (smooth, strictly positive) scalar function
Ω : M → R such that (i) Ω(t, x) = 1 for all (t, x) ∈ K (ii) Ω|M−K(t, x) → 0
as t → 0. Let gab = Ω2ηab and consider the spacetime (M, gab). Clearly,
such a spacetime cannot be extended. Consider the (achronal) set of points
Σ = {(t, x) ∈ M : t = −1}. Because (M, gab) is conformally flat, it can
be easily verified that D(Σ) = M . So, Σ is a Cauchy surface and therefore
(M, gab) is globally hyperbolic.

Finally, we show that (M, gab) is not hole-free. Consider the achronal

3Here D(S) is the domain of dependence of S. For the sake of continuity later, we
define D(S) as does Wald (1984).

4See Steinmüller, King, and Lasota (1975) for details.
5Although Clarke’s (1993) proof utilized a variant definition of hole-freeness, it can

be easily verified that the counterexample presented below applies just as well to this
alternate formulation.
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set S = Σ ∩ K in M . Clearly, D(S) ⊂ K and thus, for each point in
D(S), we have gab = ηab. Let θ : D(S) → R2 be an isometric embedding of
D(S) into Minkowski spacetime (R2, ηab) such that θ = id. We claim that
θ(D(S)) 6= D(θ(S)) and hence, that (M, gab) is not hole-free. One can see
this by noting that the origin point p = (0, 0) ∈ R2 is such that p ∈ D(θ(S))
but p /∈ θ(D(S))). Thus, there exists an inextendible spacetime which is
globally hyperbolic and not hole-free. �

This result is surprising not only because it contradicts assertions made in
the literature, but because it seems to contradict our intuitions concerning the
intended relationship between inextendibility, global hyperbolicity, and hole-
freeness. To help emphasize the point, consider that, for intuitive reasons,
inextendible spacetimes are sometimes called “maximal”, globally hyperbolic
spacetimes are sometimes called “deterministic”, and hole-free spacetimes
are sometimes called “determinism maximal”.6 With this seemingly benign
translation available, we can restate the theorem above as follows: There are
deterministic, maximal spacetimes which are not determinism maximal!

Of course, there is no serious problem here. We simply must find an alter-
nate (weaker) formulation of hole-freeness which seems to capture the spirit
of the definition and, at the same same, allows one to prove the intended
theorem. Such an alternate definition has been provided by Geroch.7 We
present the updated formulation here in two stages.

Definition. Let (M, gab) be a globally hyperbolic spacetime. Call an exten-
sion (M ′, g′ab) of (M, gab) effective if, for some Cauchy surface S in (M, gab),
the set int[D(S)] in the extension (M ′, g′ab) is such that (i) S remains achronal
and (ii) M ( int[D(S)].

Definition. A spacetime (M, gab) is hole-free* if, for every set K ⊆M such
that (K, gab|K) is a globally hyperbolic spacetime, if there exists an effective
extension for (K, gab|K), then (M, gab) is an effective extension for (K, gab|K).

Clearly, the spirit of hole-freeness is captured in this version of the def-
inition. That it is weaker than the traditional formulation is given by the
following proposition.

6See Earman (1995, p. 32, 44, 98).
7Private communication.
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Proposition 2. If a spacetime (M, gab) is hole-free, then it is also hole-free*.

Proof. Assume a spacetime (M, gab) is hole-free. Let K ⊆ M be such that
(K, gab|K) is a globally hyperbolic spacetime. Assume that there is an effec-
tive extension (M ′, g′ab) for (K, gab|K) and that (M, gab) is not such an effective
extension (assume it is not hole-free*). We show a contradiction. Let S be a
Cauchy surface in (K, gab|K). So, for some isometric embedding θ : K →M ′,
we have that θ(K) ( int[D(θ(S))]. Because θ(K) is open, int[θ(K)] = θ(K).
So, this implies that int[θ(K)] ( int[D(θ(S))]. But, because (M, gab) is hole-
free, then θ(D(S)) = θ(K) = D(θ(S)). So, int[θ(K)] = int[D(θ(S))] and we
have our contradiction. �

Our weakened formulation of hole-freeness allows us to prove the intu-
itive result discussed above. (Taken together, the result below along with
proposition 1 show that hole-freeness and hole-freeness* are not equivalent
definitions.)

Proposition 3. Every inextendible, globally hyperbolic spacetime is hole-
free*.

Proof. Let (M, gab) be any globally hyperbolic spacetime which fails to be
hole-free. We show that it is extendible. So there exists a K ⊆M such that
(K, gab|K) is a globally hyperbolic spacetime and (i) there exists an effective
extension (N, g′ab) of (K, gab|K) and (ii) (M, gab) is not an effective extension
for (K, gab|K).

Let K ′ ( N be such that there exists an isometry θ : K → K ′. Let S
be a Cauchy surface in (K, gab|K). By definition, K ′ ( int[D(θ(S))]. Let
N ′ = int[D(θ(S))]. Now let M ′ = (M ∪ N ′)/θ (i.e. the quotient of the
disjoint union of M and N ′ under the equivalence relation x ∼ y ≡ x = y or
θ(x) = y or θ(y) = x).

The remainder of the proof follows that of proposition 6.5.1 given by
Clarke (1993). �

We conclude with a few thoughts on the strength of hole-freeness. More
specifically, we wonder if the following statement is true in some sense: All
physically reasonable spacetimes are hole-free (call this statement the “hole-
free hypothesis”). The (strong) cosmic censorship hypothesis states that

4



every physically reasonable spacetime is globally hyperbolic.8 So, if the cos-
mic censorship hypothesis is true, one must only assume that spacetime is
inextendible to show, via the theorem above, that the hole-free hypothesis
is true. However, at present, the cosmic censorship hypothesis is still very
much an open question. Accordingly, we would like to consider the status of
the hole-free hypothesis in the event that the cosmic censorship hypothesis
is false. First, we must arrive at a precise formulation of the statement.

A natural starting place for such a task is to wonder about the prospects of
weakening the global hyperbolicity assumption in the theorem above. For ex-
ample, it would be interesting to show that every inextendible, stably causal
spacetime satisfying some relatively weak auxiliary assumptions (such as the
energy conditions, etc.) must be hole-free. However, a hole-free hypothesis
of this kind seems doomed to failure. We know, for example, that there
are spacetimes which are inextendible, stably causal, are locally isometric to
Minkowski spacetime, and also fail to be hole-free.9

A more promising formulation of the hole-free hypothesis would be to
mimic the evolutionary approach often used in framing precise statements of
the cosmic censorship hypothesis.10 Here is one such formulation.

Conjecture. If the initial data set (Σ, hab, Kab) constitutes a counterexample
to the cosmic censorship hypothesis found in Wald (1984, p. 305), then there
exists some extension to the maximal Cauchy development of (Σ, hab, Kab)
which is inextendible, hole-free, and satisfies the dominant energy condition.

The idea here is that, if it turns out that the maximal Cauchy develop-
ment (M, gab) of some initial data set (Σ, hab, Kab) is both physically rea-
sonable and extendible, then one would expect that there would be some
extension to (M, gab) which is physically reasonable. Notice that the struc-
ture of this conjecture is such that it is implied by the cosmic censorship
hypothesis.11

It might seem that this formulation of the hole-free hypothesis must cer-
tainly be true. However, Clarke (1976) has shown that not every hole-free
spacetime has a hole-free inextendible extension. Referring to Clarke’s work,

8See Wald (1984, p. 304-305).
9See Hawking and Ellis (1973, p. 58-59) for an example.

10See Geroch and Horowitz (1979) and Wald (1984) for details.
11If the cosmic censorship hypothesis is true, then the hole-free hypothesis is vacuously

true.
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Earman (1986, p. 184) speculates: “Perhaps there are plausible regularity
conditions on initial data which will rule out such latent holes but I know of
no specific results on this point.” Our conjecture above may be interpreted
as an attempt to formalize Earman’s intuitions.

It has been argued that one can have no disposition to the condition of
hole-freeness except to assume that it holds by fiat.12 But, here we have
outlined another disposition. One may have an open perspective on the
matter and attempt to show, from more basic assumptions, that hole-freeness
is a reasonable condition to be placed on spacetime.
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