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Abstract

A decade ago, Isham and Butterfield proposed a topos-theoretic approach to quan-
tum mechanics, which meanwhile has been extended by Döring and Isham so as to
provide a new mathematical foundation for all of physics. Last year, three of the
present authors redeveloped and refined these ideas by combining the C*-algebraic
approach to quantum theory with the so-called internal language of topos theory (see
arXiv:0709.4364). The goal of the present paper is to illustrate our abstract setup
through the concrete example of the C*-algebra Mn(C) of complex n × n matrices.
This leads to an explicit expression for the pointfree quantum phase space Σn and
the associated logical structure and Gelfand transform of an n-level system. We also
determine the pertinent non-probabilisitic state-proposition pairing (or valuation) and
give a very natural topos-theoretic reformulation of the Kochen–Specker Theorem.

In our approach, the nondistributive lattice P(Mn(C)) of projections in Mn(C)
(which forms the basis of the traditional quantum logic of Birkhoff and von Neumann)
is replaced by a specific distributive latticeO(Σn) of functions from the poset C(Mn(C))
of all unital commutative C*-subalgebras C of Mn(C) to P(Mn(C)). The lattice
O(Σn) is essentially the (pointfree) topology of the quantum phase space Σn, and as
such defines a Heyting algebra. Each element of O(Σn) corresponds to a “Bohrified”
proposition, in the sense that to each classical context C ∈ C(Mn(C)) it associates
a yes-no question (i.e. an element of the Boolean lattice P(C) of projections in C),
rather than being a single projection as in standard quantum logic. Distributivity
is recovered at the expense of the law of the excluded middle (Tertium Non Datur),
whose demise is in our opinion to be welcomed, not just in intuitionistic logic in the
spirit of Brouwer, but also in quantum logic in the spirit of von Neumann.

Motto

‘All departures from common language and ordinary logic are entirely avoided
by reserving the word “phenomenon” solely for reference to unambiguously
communicable information, in the account of which the word “measurement”
is used in its plain meaning of standardized comparison.’ (N. Bohr [4])
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1 Introduction

The main novelty of quantum mechanics, which also lies at the root of the difficulties in
interpreting this theory, is the property that its truth attributions are ontologically (and
not just epistemically) probabilistic. That is, if a ∈ ∆ denotes the proposition that an
observable a (represented by a self-adjoint operator on a Hilbert space H) takes values in
a (measurable) subset ∆ ⊂ R, then even a pure state ψ (represented by a unit vector Ψ
in H) only gives a probabilistic truth attribution through the Born rule

〈ψ, a ∈ ∆〉 = ‖[a ∈ ∆]Ψ‖2. (1.1)

Here the left-hand side denotes the probability that a ∈ ∆ is true in the state ψ, and the
expression [a ∈ ∆] in the right-hand side stands for the spectral projection defined by a
and ∆ (often written as E(∆) with a understood). In particular, unless Ψ lies either in the
image of [a ∈ ∆] (so that the right-hand side equals one), or in the orthogonal complement
thereof (in which case it is zero), one cannot say without running into contradictions
whether or not the proposition a ∈ ∆ is true.

One of the aims of the topos-theoretic approach to quantum theory initiated by Isham
and Butterfield [16] (and subsequently extended by Döring and Isham so as to provide
a new mathematical foundation for all of physics [9]) is to define non-probabilistic truth
attributions. Since one cannot just go back to classical physics, the price one has to
pay for this is that such attributions do not take values in the set {0, 1} (identified with
{false, true}), but in some more general and abstract “truth object” Ω. Topos theory1

provides natural candidates for such objects (under the name of subobject classifiers),
and therefore seems to provide an appropriate tool for the search for the non-probabilistic
essence of quantum theory.

To explain our setup, let us go back to classical physics for a moment. Let M be the
phase space of some physical system, with topology O(M) (i.e. the subset of the power set
of M consisting of all open sets in M). We represent observables by continuous functions
a : M → R, and once again consider propositions of the form a ∈ ∆, with ∆ ⊂ R open.
For a pure state x ∈ M , we say that a ∈ ∆ is true in x iff a(x) ∈ ∆ or, equivalently, iff
x ∈ a−1(∆). Otherwise, a ∈ ∆ is false. We now claim that the above truth attribution to
the proposition a ∈ ∆ by the pure state x, which we call 〈x, a ∈ ∆〉, may be captured in
categorical terms in the following way [14]:

(
1

〈x,a∈∆〉
−→ Ω

)
=

(
1

[a∈∆]
−→ O(M)

Jδx=1K
−→ Ω

)
. (1.2)

First, all objects and arrows are taken to be in Sets. For example, 1 denotes an arbitrary
but fixed singleton set; elements a ∈ A are identified with arrows a : 1 → A. Thus
〈x, a ∈ ∆〉 : 1 → Ω on the left-hand side denotes a specific element of the set Ω = {0, 1}
(identified with {true, false}, as above). Similarly, [a ∈ ∆] : 1→ O(M) denotes an element
of the set O(M), i.e. an open subset of M , namely a−1(∆). Subsequently, let δx be the
Dirac measure on M , defined by δx(U) = 1 if x ∈ U and δx(U) = 0 if not. For technical

1This paper requires some familiarity with elementary category theory at the level of the first few
chapters of [25]. The Appendix below contains sufficient information on topos theory to read this paper;
as a general introduction to topos theory we recommend [11] for beginners and [26] for readers already
familiar with category theory. For the moment, it suffices to know that a topos is a category in which most
mathematical reasoning that one is familiar with in the category Sets of sets and functions continues to
make sense, with the exception that all proofs now have to be constructive (in the sense that in principle
neither the law of excluded middle nor the axiom of choice may be used).
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reasons, like all probability measures we regard δx as a map δx : O(M)→ R+ (rather than
as a map defined on all measurable subsets of M ; this entails no loss of generality if M is
locally compact and Hausdorff). The notation Jδx = 1K : O(M)→ Ω stands for

Jδx = 1K = χ{U∈O(M)|x∈U}, (1.3)

i.e. the function that maps U ∈ O(M) to 1 whenever δx(U) = 1, i.e. whenever x ∈ U , and
to 0 otherwise. Finally, (1.2) means that the arrow on the left-hand side is defined as the
composition of the two arrows on the right-hand side; we invite the reader to check that
the ensuing element 〈x, a ∈ ∆〉 ∈ {0, 1} indeed equals 1 when a(x) ∈ ∆ and equals zero
otherwise.

Returning to the opening of this Introduction, in von Neumann’s approach to quantum
mechanics, phase spaceM is replaced by Hilbert spaceH, its topology O(M) is replaced by
the lattice P(B(H)) of projections on H, x ∈M becomes a unit vector Ψ ∈ H, the arrow
[a ∈ ∆] : 1 → P(B(H)) now stands for the spectral projection E(∆) defined by a, and
Ω = {0, 1} is turned into the interval [0, 1]. Finally, the pertinent map P(B(H)) → [0, 1]
is given by p 7→ ‖pΨ‖2. This recovers the Born rule (1.1), but the categorical formulation
does not add anything to its understanding. Instead, our slogan is: truth is prior to

probability. Thus we will first construct a non-probabilistic state-proposition pairing, which
only in a second step will presumably reproduce the Born rule.2

Our main ingredient is a novel quantum analogue of classical phase space, or rather of
its topology, given by the notion of a frame (see Appendix A.3). A frame is a generalized
topology, so that we will denote the frame representing our quantum phase space by O(Σ),
even though there is no actual underlying space Σ whose topology it is; we will occasionally
even use the symbol Σ itself and refer to it as a “virtual” (or “pointfree”) space.3 The
main reason why we prefer frames to lattices of projections on Hilbert space (or to more
general orthomodular lattices) is that in their guise of Heyting algebras, frames offer an
intuitionistic logic for quantum mechanics, which in being distributive is superior to the
traditional quantum logic of Birkhoff and von Neumann. Namely, we feel the latter is:

• too radical in giving up distributivity (for one thing rendering it problematic to
interpret the logical operations ∧ and ∨ as conjunction and disjunction, respectively);

• not radical enough in keeping the law of excluded middle (so that it falls victim to
Schrödinger’s cat and the like).

Indeed, the quantum logical structure carried by our quantum phase space Σ has exactly
the opposite features: it is distributive but drops the law of excluded middle.4

In principle, our formalism is capable of coping with the most general quantum systems,
described by some unital C*-algebra A of observables, but in what follows the reader may
simply keep the case A = Mn(C) in mind, to which we will specialize in the main body
of the paper. The construction of O(Σ) is based on a specific reading of Bohr’s ‘doctrine
of classical concepts’ [3], which, roughly speaking, expresses that the quantum world can
only be seen through classical glasses. We adopt a very specific mathematical reading of

2To accomplish this, the derivation of the Born rule in [24] will have to be combined with the results of
the present paper. The idea of a non-probabilistic state-proposition pairing (or valuation, as they called
it) is due to Isham and Butterfield [16].

3Similarly, in noncommutative geometry it has become quite customary to speak of “noncommutative
spaces” without there actually being an underlying space in the classical sense.

4See [5] for an apparently different intuitionistic perspective on quantum logic.
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this philosophy, namely that a noncommutative algebra of observables A of some quantum
system has to be studied through its (unital) commutative C*-subalgebras [23]. Hence we
form the poset C(A) of all such subalgebras, partially ordered by (set-theoretic) inclusion
(i.e. C ≤ D iff C ⊆ D). We then form the topos

T (A) = Sets
C(A) (1.4)

of (covariant) functors from C(A), seen as a category, to Sets (cf. Appendix A.1). We will
underline objects in T (A). As a case in point, we define the tautological functor

A : C 7→ C, (1.5)

which maps a point C ∈ C(A) to the corresponding commutative C*-algebra C ⊂ A (seen
as a set); for C ⊆ D the map A(C ≤ D) : A(C) → A(D) is just the inclusion C →֒ D.
We call A the Bohrification of A. The key point is that A is a commutative C*-algebra
in T (A) under natural operations (see [14]), so that according to the general theory of
commutative C*-algebras in topoi [1] it has a Gelfand spectrum. The latter, called O(Σ),
is a frame and hence at the same time a Heyting algebra in the topos T (A), carrying the
(intuitionistic) logical structure of A. This structure is defined within the topos T (A) (i.e.,
“internally”), and as such is hard to understand. Fortunately, O(Σ) admits a so-called
“external” description through an associated frame (and hence Heyting algebra) in Sets,
called O(Σ), which in many ways behaves like the topology of an underlying “quantum
phase space” Σ of the system. Its explicit description (3.5) is one of the central results
of this paper. Even if A is a von Neumann algebra (which is the case in our running
example A = Mn(C)), so that the projection lattice P(A) is a quantum logic in the sense
of Birkhoff and von Neumann [27], the intuitionistic (and hence distributive) quantum
logic carried by O(Σ) as a Heyting algebra is quite different from the (nondistributive)
quantum logic defined by P(A).

In the classical case of a commutative C*-algebra A in Sets, the Riesz representation
theorem yields a bijective correspondence between states on A and probability measures
µ on the Gelfand spectrum Σ of A (i.e. the locally compact Hausdorff space for which
A ∼= C(Σ,C)). This generalizes: a state on the initial (possibly noncommutative) C*-
algebra A in Sets defines a probability measure µ on the spectrum Σ of the Bohrification
A of A [14]. To make this analogy technically correct, though, one has to redefine the
notion of a measure on a topological space as a map whose domain is the collection of
open sets (rather than Borel sets), and whose image is the set of positive lower reals R+

l

(rather than Dedekind reals) [19]. This redefinition is obvious in one direction:5 a measure
µ in the usual sense may simply be restricted to the open sets, and some value q = µ(U)
defines the lower real ↓q = {r ∈ Q | r < q} ∈ Rl.

Consequently, each state ψ on A defines a probability “measure” µ on Σ in the technical
sense of an arrow

O(Σ)
µ
→ R+

l (1.6)

in T (A), where R+
l denotes the positive lower reals in the topos T (A) (cf. Appendix A.3).

One has an obvious arrow 1
↓1
→ R+

l (where 1 is the terminal object in T (A), see Appendix
A.2), and hence a composite arrow

(
O(Σ)

1
→ R+

l

)
=

(
O(Σ)

∃!
−→ 1

↓1
→ R+

l

)
. (1.7)

5See [8] for the general theory. It would be more correct to speak of a valuation rather than a measure.
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Now, whenever one has a pair of arrows X
σ
→ Y and X

τ
→ Y in a topos T , one obtains

an arrow X
Jσ=τ K
−→ Ω, where Ω is the subobject classifier in T [26]. Applying this to (1.6)

and (1.7), we obtain an arrow O(Σ)
Jµ=1K
−→ Ω, which we compose with an arrow 1

S
→ O(Σ);

the latter plays the role of an open subset S of Σ and defines an elementary propositions,
exactly as in classical physics.

Our non-probabilistic state-proposition pairing 〈ψ, S〉, then, is obtained by combining
these arrows as in (

1
〈ψ,S〉
−→ Ω

)
=

(
1

S
→ O(Σ)

Jµ=1K
−→ Ω

)
. (1.8)

This is our Umdeutung [13] or “quantum-mechanical reinterpretation” of the corresponding
classical expression

(
1

〈x,S〉
−→ Ω

)
=

(
1

S
−→ O(M)

Jδx=1K
−→ Ω

)
, (1.9)

which is obtained from (1.2) by replacing the open subset [a ∈ ∆] = a−1(∆) by an arbitrary
open S ∈ O(M).6

The plan of this paper is as follows.
Following some preliminary calculations in Section 2, we explicitly compute the Gelfand

spectrum of Mn(C) in Section 3. By definition, this yields our quantum phase space, both
in its internal description O(Σ) and in its external description O(Σ). The latter carries the
intuitionistic logical structure of an n-level quantum system, which is explicitly described
in Section 4. In fact, this section can be understood without any knowledge of topos
theory, based as it is on the concrete expression (3.5) for O(Σ).

Section 5 is a rather technical intermezzo, in which we explicitly compute the Gelfand
transform of the Bohrification A. This material is instructive in itself, but it is also
necessary preparation for Section 6, which elaborates our formulation of the Kochen–
Specker Theorem [14] in the spirit of Isham and Butterfield [16], i.e. as claiming the
nonexistence of points of a certain “space”. Our space, however appears to us to be much
more natural than the one in [16]. Furthermore, our reformulation suggests a new proof of
the Kochen–Specker Theorem on the basis of intrinsic tools from topos theory (as opposed
to previous topos-theoretic reformulations of this theorem [16, 14] whose proofs relied on
the original theorem [22]). In Section 7 we compute the non-probabilistic state-proposition
pairing explained above, leading to the explicit formula (7.2). Section 8 gives a concrete
parametrization of the poset C(A) of unital commutative C*-subalgebras of A.

Finally, the Appendix in three parts gives some background on sheaf theory, topos
theory, and Heyting algebras and frames, respectively.
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2 A fresh look at the spectrum of Cn

We assume all C*-algebras to have a unit. The Gelfand spectrum ΣA of a commutative
C*-algebra A (denoted by Σ whenever it is clear which A is meant) is usually defined
as the set of nonzero multiplicative linear functionals on A, and coincides with the pure
state space of A. It is necessary for our purposes to deal with the (Gelfand) topology
O(ΣA) directly, equipped with its natural structure as a frame (cf. Appendix A.3). This
frame can be constructed in a way that generalizes to commutative C*-algebras in topoi,
as follows [6, 7]:

1. The positive cone A+ of a commutative C*-algebra A is a distributive lattice. Define
an equivalence relation ∼ on A+ by putting a ∼ b whenever there are integers
n,m ∈ N such that a ≤ nb and b ≤ ma. The quotient

LA = A+/ ∼ (2.1)

is again a distributive lattice.

2. For a ∈ A+ with image [a] ∈ LA and U ∈ P(LA) (i.e. the power set of LA), we
say that [a] ⊳ U if for all [b] ≪ [a] there exists a finite subset U0 of U such that
[b] ≤

∨
U0, where [b]≪ [a] iff [b] ≤ [a− q · 1] for some rational q > 0.

3. The frame O(ΣA) is given by

O(ΣA) = {U ∈ DLA | x ⊳ U ⇒ x ∈ U}, (2.2)

where DLA is the poset of all lower sets in LA, ordered by set-theoretic inclusion.

This procedure simplifies when A is finite-dimensional, in which case LA is a finite
lattice. In that case, since [a − q] = [a] for small enough q, one simply has x ⊳ U iff
x ≤

∨
U , and the condition x ⊳ U ⇒ x ∈ U in (2.2) holds iff U is a (principal) down set,

i.e. U =↓ x for some x ∈ LA (not the same x as the placeholder x in (2.2)). Hence for
finite-dimensional A we have

O(ΣA) = {↓x | x ∈ LA}. (2.3)

For A = Cn, step 1 yields A+ = (Rn)+. One has (r1, . . . , rn) ∼ (s1, . . . , sn) just in
case that ri = 0 iff si = 0 for all i = 1, . . . n. Hence each equivalence class under ∼ has
a unique representative of the form [k1, . . . , kn] with ki = 0 or ki = 1; the preimages of
such an element of LA in A+ under the natural projection A+ → A+/ ∼ are the diagonal
matrices whose i’th entry is zero if ki = 0 and any nonzero positive number if ki = 1.
The partial order in LA is pointwise, i.e. [k1, . . . , kn] ≤ [l1, . . . , ln] iff ki ≤ li for all i.
Hence LCn is isomorphic as a distributive lattice to the lattice P(Cn) of projections in
Cn, i.e. the lattice of those projections in Mn(C) that are diagonal matrices: under this
isomorphism [k1, . . . , kn] corresponds to the diagonal matrix diag(k1, . . . , kn). If we equip
P(Cn) with the usual partial ordering of projections on the Hilbert space Cn, viz. p ≤ q
whenever pCn ⊆ qCn (which coincides with their ordering as element of positive cone of
the C*-algebra Mn(C)), then this is even a lattice isomorphism.

Consequently, O(ΣCn) consists of all sets of the form ↓ p, p ∈ P(Cn), partially ordered
by inclusion. Of course, this means that

O(ΣCn) ∼= P(Cn), (2.4)
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under the further identification of ↓ p ∈ P(P(Cn)) with p ∈ P(Cn). This starts out just as
an isomorphism of posets, and turns out to be one of frames (which in the case at hand
happen to be Boolean). To draw the connection with the usual spectrum Ĉn = {1, 2, . . . , n}
of Cn, we note that the right-hand side of (2.4) is isomorphic to the discrete topology
O(Ĉn) = P(Ĉn) of Ĉn under the isomorphism (of lattices and even of frames)

P(Cn)
∼=
→ O(Ĉn);

diag(k1, . . . , kn) 7→ {i ∈ {1, 2, . . . , n} | ki = 1}. (2.5)

We now describe the Gelfand transform, which in general is given by

A
∼=
→ C(Σ,C);

a 7→ â;

â(ω) = ω(a). (2.6)

Let a = (a1, . . . , an) ∈ Cn
sa = Rn (throughout this paper, Asa denotes the self-adjoint

part of a C*-algebra A). With Σ realized as Ĉn, this just reads

â(i) = ai, (2.7)

for â : Ĉn → C. The induced frame map is given by

â−1 : O(C) → O(Ĉn);

U 7→ {i ∈ {1, 2, . . . , n} | ai ∈ U}. (2.8)

By (2.5), this is equivalent to

â−1 : O(C) → P(Cn);

U 7→ diag(χU (a1), . . . , χU (an)). (2.9)

For a = a∗ we may regard the Gelfand transform as an isomorphism Asa
∼=
→ C(Σ,R), and

(2.9) may be rewritten as

â−1 : O(R) → P(Cn);

U 7→ [a ∈ U ], (2.10)

where U ∈ O(R), and the right-hand side denotes the spectral projection χU (a) defined
by the self-adjoint operator a on the Hilbert space Cn.

Finally, we write the usual correspondence between states ψ on a commutative C*-
algebra A and probability measures µψ ≡ µ on its spectrum Σ in a way that can be
generalized to topos theory. In the usual setting, one may define the value of µ on each
open E ∈ O(Σ) by means of

µ(E) = sup{ψ(a) | 0 ≤ a ≤ 1, supp(â) ⊂ E}, (2.11)

where instead of 0 ≤ a ≤ 1 we could just as well write 0 ≤ â ≤ 1. Using (2.4), for A = Cn

this implies that µ : P(Cn)→ R+ is given by

µ(p) = ψ(p). (2.12)
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3 Spectrum of the Bohrification of Mn(C)

We now use the insights of the previous section to compute the spectrum ΣA — more
precisely, its associated frame O(ΣA) — of the Bohrification A of A = Mn(C) in the topos
T (A). This may be done by implementing the three-step program of the previous section,
giving the appropriate topos-theoretical meanings to the various constructions involved.7

For simplicity we write L for the lattice LA in T (A); similarly, Σ stands for ΣA.
To begin with, for arbitrary A the lattice L can be computed “locally”, in the sense

that L(C) = LC [14], so that by (2.1) one has L(C) = C+/ ∼. Let P(C) be the (Boolean)
lattice of projections in C, and consider the functor C 7→ P(C), where the arrow C ⊆ D
in C(A) induces the inclusion map P(C) →֒ P(D). It follows (cf. the preceding section)
that we may identify L(C) with P(C) and hence we may identify the functor L with the
functor P. We will make this identification in what follows.

Second, whereas in Sets (2.3) makes O(Σ) a subset of L, in the topos T (A) the frame
O(Σ) is a subobject O(Σ) ֌ ΩL, where Ω is the subobject classifier in T (A). It then
follows from (A.14) that O(Σ)(C) is a certain subset of Sub(P↑C), the set of subfunctors
of the functor P : C(A)→ Sets restricted to ↑C ⊂ C(A). To explain which subset, define

Subd(P↑C) = {S̃ ∈ Sub(P↑C) | ∀D ⊇ C ∃xD ∈ P(D) : S̃(D) =↓xD}; (3.1)

In other words, Subd(P↑C) consists of those subfunctors S of P↑C that are locally (princi-
pal) down-sets. It then follows from (2.3) and the local interpretation of the relation ⊳ in
T (A) [14] that the subobject O(Σ) ֌ ΩL in T (A) is the functor

O(Σ)(C) = Subd(P↑C); (3.2)

the map
O(Σ)(C ≤ D) : O(Σ)(C)→ O(Σ)(D),

defined whenever C ⊆ D, is inherited from ΩL (of which O(Σ) is a subobject), and hence
is just given by restricting an element of O(Σ)(C) to ↑D.

Writing

Subd(P) = {S̃ ∈ Sub(P) | ∀D ∈ C(A) ∃xD ∈ P(D) : S̃(D) =↓xD}, (3.3)

it is convenient to embed Subd(P↑C) ⊆ Subd(P) by requiring elements of the left-hand
side to vanish whenever D does not contain C. We also note that if S̃ is to be a subfunctor
of P↑C , one must have S̃(D) ⊆ S̃(E) whenever D ⊆ E, and that ↓xD ⊆↓xE iff xD ≤ xE
in P(E). Thus one may simply describe elements of O(Σ)(C) via maps S : C(A)→ P(A)
such that:

1. S(D) ∈ P(D);

2. S(D) = 0 whenever D /∈↑C (i.e. whenever C * D);

3. S(D) ≤ S(E) whenever C ⊆ D ⊆ E.

The corresponding element S̃ of O(Σ)(C) is then given by

S̃(D) = ↓S(D), (3.4)

7Technically, this means that one has to use the internal or Mitchell-Bénabou language of the topos.
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seen as a subset of P(D). Hence it is convenient to introduce the notation

O(Σ) = {S : C(A)→ P(A) | S(D) ∈ P(D), S(D) ≤ S(E) ifD ⊆ E}; (3.5)

O(Σ)↑C = {S : ↑C → P(A) | S(D) ∈ P(D), S(D) ≤ S(E) ifD ⊆ E}, (3.6)

in terms of which we have isomorphisms

O(Σ)(C · 1) ∼= O(Σ); (3.7)

O(Σ)(C) ∼= O(Σ)↑C (3.8)

of posets and even of frames, provided we define the partial order on O(Σ) and O(Σ)↑C
pointwise with respect to the usual ordering of projections, i.e.

S ≤ T ⇔ S(D) ≤ T (D) for all D ∈ C(A). (3.9)

Although (3.5) and (3.7) are special cases of (3.6) and (3.8), respectively (namely for
C = C · 1), we have singled them out for two reasons:

1. O(Σ) plays a special role because of the isomorphism

Hom(1,O(Σ)) ∼= O(Σ)(C · 1), (3.10)

according to which each element S in (3.5) may be seen as an “open” 1
S
→ O(Σ).

2. O(Σ) is the key to the “external” description of O(Σ) (see Appendix A.3).

Namely, equipping the poset C(A) with the Alexandrov topology,8 this description is given
by the frame map

π∗Σ : O(C(A))→ O(Σ), (3.11)

given on the basic opens ↑D ∈ O(C(A)) by

π∗Σ(↑D) = χ↑D : E 7→ 1 (E ⊇ D);

E 7→ 0 (E + D). (3.12)

The external description of O(Σ) will be put to good use in Sections 5 and 6.

4 Intuitionistic quantum logic of Mn(C)

Our claim is that O(Σ) as given by (3.5) with A = Mn(C) describes the correct quantum
logic of an n-level system. Mathematically, this follows from our general theory [14] and
the identification (3.7). Physically, a possible justification for this claim would be that
whereas in the traditional approach to quantum mechanics due to von Neumann each
projection p ∈ P(A) defines a proposition, in Bohr’s approach the choice of a classical
context C has to be taken into account, so that a “Bohrian” proposition would be a choice
of projection S(C) for each C. In any case, we will now explicitly determine the Heyting
algebra structure of O(Σ).

8 Let P be a poset. The open subsets of P in the Alexandrov topology are the upper sets, i.e. those
U ⊆ P for which x ∈ U and x ≤ y implies y ∈ U . Basic examples of such opens are up-sets U = ↑x = {y ∈
P | x ≤ y}, which form a basis of the Alexandrov topology. In fact, ↑x is the smallest open containing x.
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First, the top and bottom elements of O(Σ) are given by

⊤(C) = 1 for all C; (4.1)

⊥(C) = 0 for all C. (4.2)

The logical operations on O(Σ) may be computed from the partial order; cf. [26, §I.8].
First, we obtain

(S ∧ T )(C) = S(C) ∧ T (C); (4.3)

(S ∨ T )(C) = S(C) ∨ T (C) (4.4)

for inf and sup. The operation of (Heyting) implication (A.18) is given by the more
interesting expression9

(S → T )(C) =
∨
{p ∈ P(C) | p ≤ S(D)⊥ ∨ T (D) ∀D ⊇ C} ≡

P(C)∧

D⊇C

S(D)⊥ ∨ T (D); (4.5)

recall that each S is some projection in D, so that S(D)⊥ = 1 − S(D). The derived
operation of negation (A.17) is therefore equal to

(¬S)(C) =

P(C)∧

D⊇C

S(D)⊥, (4.6)

which yields

(¬¬S)(C) =

P(C)∧

D⊇C

P(D)∨

E⊇D

S(E). (4.7)

In general, this is by no means equal to S(C), so that our new quantum logic is indeed
intuitionistic (as general topos theory suggests). The failure of the law of excluded middle
may be illustrated by the following example for A = M3(C). In that case, one has (see
Section 8)

C(A) = C · 1 ∪ {U ·D2 · U
∗ | U ∈ SU(3)} ∪ {U ·D3 · U

∗ | U ∈ SU(3)}, (4.8)

with

D2 = {diag(a, a, b) | a, b ∈ C};

D3 = {diag(a, b, c) | a, b, c ∈ C}. (4.9)

Now define S : C(A)→ P(A) by

S(C · 1) = 0;

S(U ·D2 · U
∗) = U · diag(1, 1, 0) · U∗;

S(U ·D3 · U
∗) = 1. (4.10)

This indeed defines an element of O(Σ); see (3.5). Then (4.7) yields

(¬¬S)(C · 1) = 1, (4.11)

which is clearly different from S(C · 1) = 0.

9Naively, one would expect the right-hand side of (4.5) to be S(C)⊥ ∨ T (C), but that would not define

an element of O(Σ). The notation
VP(C) in (4.5) indicates that one takes a greatest lower bound over all

S(D)⊥ ∨ T (D) that is constrained to lie in P(C). Analogously for the lowest upper bound
WP(D) in (4.7).
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5 Gelfand transform

We now compute the Gelfand transform for A. For a general commutative C*-algebra
A in a topos T with spectrum Σ (which, we repeat, is really given by the corresponding
frame O(Σ)) one has [1]

Asa
∼= C(Σ,R) ≡ Frm(O(R),O(Σ)), (5.1)

where the right-hand side is the definition of the middle term (which is just a convenient
notation). This reduces to the usual Gelfand transform in the topos Sets, where C(Σ,R)
happens to have its usual meaning of continuous functions of Σ to R.10 To understand
the general case, one has to distinguish between:

1. the set HomFrm(O(R),O(Σ)) of internal frame maps from the frameO(R) of (Dedekind)
real numbers in T to the frame O(Σ) (i.e., the set of those arrows from O(R) to
O(Σ) that happen to be frame maps as seen from within T );

2. the object Frm(O(R),O(Σ)) in T defined as the subobject of the exponentialO(Σ)O(R)

consisting of (internal) frame maps from O(R) to O(Σ).

The connection between 1. and 2. is given by the bijective correspondence [26, p. 20]
between C → BA and A× C → B; taking C = 1 (the terminal object in T ), we see that
an element of the set Hom(A,B) corresponds to an arrow 1→ BA.

We now take T = T (A), in which case (A.12) yields

Frm(O(R),O(Σ))(C) = NatFrm(O(R)↑C ,O(Σ)↑C), (5.2)

the set of all natural transformations between the functors O(R) and O(Σ), both restricted
to ↑ C ⊂ C(A), that are frame maps. This set can be computed from the external
description of frames and frame maps explained in Appendix A.3. As before, the poset
C(A) and its open subsets of the type ↑C are equipped with the Alexandrov topology.

First, the frame O(R)↑C has external description

π−1
R

: O(↑C)→ O(↑C × R), (5.3)

where πR : ↑C × R→↑C is projection on the first component. The special case C = C · 1
yields the external description of O(R) itself, namely

π−1
R

: O(C(A))→ O(C(A) ×R), (5.4)

where this time (with some abuse of notation) the projection is πR : C(A) × R→ C(A).
Second, the frame O(Σ)↑C has external description

π∗Σ : O(↑C)→ O(Σ)↑C , (5.5)

given by (3.12) with the understanding that D ⊇ C (the special case C = C · 1 then
recovers the external description (3.11) of O(Σ) itself).

It follows that there is a bijective correspondence between frame maps

ϕ∗
C

: O(R)↑C → O(Σ)↑C

10 This is because in Sets both Σ ≡ Σ and R ≡ R are so-called sober spaces [26, Def. IX.3.2], in which
case C(Σ,R) is isomorphic to Frm(O(R),O(Σ)) through f ↔ f−1.
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in T (A) and frame maps
ϕ∗
C : O(↑C ×R)→ O(Σ)↑C (5.6)

in Sets that for any D ⊇ C satisfy the condition

ϕ∗
C(↑D × R) = χ↑D. (5.7)

Indeed, such a map ϕ∗
C defines an element ϕ∗

C
of Nat(O(R)↑C ,O(Σ)↑C) in the obvious way:

for D ∈↑C, the components ϕ∗
C
(D) : O(R)(D)→ O(Σ)(D) of the natural transformation

ϕ∗
C
, i.e.

ϕ∗
C
(D) : O(↑D × R)→ O(Σ)↑D, (5.8)

are simply given as the restriction of ϕ∗
C to O(↑D×R) ⊂ O(↑C×R); cf. (A.26) in Appendix

A.3. This is consistent, because (5.7) implies that for any U ∈ O(R) and C ⊆ D ⊆ E one
has

ϕ∗
C(↑E × U)(F ) ≤ ϕ∗

C(↑D × R)(F ), (5.9)

which by (5.7) vanishes whenever F + D. Consequently,

ϕ∗
C(↑E × U)(F ) = 0 ifF + D, (5.10)

so that ϕ∗
C
(D) actually takes values in O(Σ)↑D (rather than in O(Σ)↑C , as might be

expected).
Denoting the set of frame maps (5.6) that satisfy (5.7) by Frm′(O(↑C ×R),O(Σ)↑C),

we obtain a functor Frm′(O(↑− × R),O(Σ)↑−) : C(A)→ Sets, given by

C 7→ Frm′(O(↑C × R),O(Σ)↑C), (5.11)

with the stipulation that for C ⊆ D the induced map

Frm′(O(↑C × R),O(Σ)↑C)→ Frm′(O(↑D × R),O(Σ)↑D)

is given by restricting an element of the left-hand side to O(↑D × R) ⊂ O(↑C × R); this
is consistent by the same argument (5.10).

The Gelfand isomorphism (5.1) therefore becomes an arrow

A
∼=
−→ Frm′(O(↑− × R),O(Σ)↑−), (5.12)

which, using (1.5), means that one has a compatible family of isomorphisms

C
∼=
−→ Frm′(O(↑C × R),O(Σ)↑C);

a 7→ â−1 : O(↑C × R)→ O(Σ)↑C . (5.13)

On basic opens ↑D × U ∈ O(↑C ×R), with D ⊇ C, we obtain

â−1(↑D × U) : E 7→ [a ∈ U ] if E ⊇ D;

E 7→ 0 if E + D, (5.14)

where [a ∈ U ] is the spectral projection of a in U (cf. (2.10)); as it lies in P(C) and
C ⊆ D ⊆ E, [a ∈ U ] certainly lies in P(E), as required. We extend â−1 to general opens
in ↑C × R by the frame map property, and note that (5.7) for ϕ∗

C = â−1 is satisfied.11

11It is not quite obvious that the Gelfand transform is an isomorphism, but this follows from the general
theory [1]. In the special case that C is maximal, though, in which case ↑C = {C}, the isomorphism
property is a consequence of the fact that any frame map O(R) → P(C) is of the form U 7→ [a ∈ U ] for
some a ∈ Csa (there is an analogous statement for spectral measures). To prove this, note that C ∼= Cn,
so that P(C) ∼= O({1, 2, . . . , n} (in the discrete topology). Then because both {1, 2, . . . , n} and R are
sober, there is a bijection between frame maps λ−1 : O(R) → O({1, 2, . . . , n}) and (continuous) functions
λ : {1, 2, . . . , n} → R. The λ(i) are the eigenvalues of a, and the given map O(R) → P(C) provides the
pertinent spectral projections.
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6 Kochen–Specker Theorem

We now work out our abstract formulation [14] of the Kochen–Specker Theorem [22], with
an indication how to prove it. Our reformulation is in the spirit of Isham and Butterfield
[16], but we feel our version is more natural. Indeed, it is suggested by our formalism:

For n > 2, the Gelfand spectrum Σ of Mn(C) has no points.

Some explanation is in order. We recall that the “space” Σ is really defined by its associ-
ated “topology”, namely the frame O(Σ). Informally, a point of Σ is an arrow σ : 1→ Σ
in the topos T (A), but in the absence of Σ this formally denotes a frame map

σ∗ : O(Σ)→ O(1) ≡ Ω (6.1)

in T (A). Here Ω is the truth object or subobject classifier in T (A). Hence our Kochen–
Specker Theorem states that there are no such frame maps.

To show that this claim is equivalent to the usual Kochen–Specker Theorem, we use
the external description of frames and frame maps (see Appendix A.3 and the previous
sections). The external description of O(Σ) has already been given in (3.11); the external
description of Ω is simply the identity map12

id : O(C(A))→ O(C(A)), (6.2)

where O(C(A)) is the Alexandrov topology on the poset C(A). Hence the external descrip-
tion of (6.1) is a frame map

σ∗ : O(Σ)→ O(C(A)) (6.3)

in Sets that satisfies the constraint

σ∗ ◦ π∗Σ = idO(C(A)). (6.4)

If we regard (3.11) as the inverse image map π∗Σ = π−1
Σ of a “virtual” bundle

πΣ : Σ→ C(A), (6.5)

and similarly look at (6.3) as the inverse image map σ∗ = σ−1 of a “virtual” continuous
map σ : C(A)→ Σ, then the constraint (6.4) is just the pullback of the rule πΣ ◦ σ = idΣ

defining a continuous cross-section σ : C(A)→ Σ of the virtual bundle (6.5). In this virtual
(or pointfree) sense, our Kochen–Specker Theorem therefore states that the bundle (6.5)
has no continuous cross-sections.

Using (3.12), we see that (6.4) is explicitly given by

σ∗(χ↑C) =↑C (6.6)

for all C ∈ C(A). We identify O(Σ)↑C in (3.6) with

O(Σ)↑C = {S ∈ O(Σ) | S(D) = 0 ∀D + C}

= {S ∈ O(Σ) | S ≤ χ↑C}. (6.7)

12For any space (or even locale) X, the external description of the subobject classifier in Sh(X) is
id : O(X) → O(X).
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Since σ∗ is a frame map, if S ∈ O(Σ)↑C and hence S ≤ χ↑C , then σ∗(S) ≤ σ∗(χ↑C) =↑C
by (6.6), so that σ∗ restricts to a frame map

σ∗C : O(Σ)↑C → O(↑C). (6.8)

Now take a ∈ Csa. Combining (6.8) with the Gelfand transform (5.13), we obtain a frame
map

σ∗C ◦ â
−1 : O(↑C × R)→ O(↑C). (6.9)

It can be shown that any frame map O(↑C ×R)→ O(↑C) is the inverse image map of a
continuous function ↑C →↑C × R,13 so that

σ∗C ◦ â
−1 = Ṽ −1

(a,C), (6.10)

for some continuous Ṽ(a,C) :↑C →↑C × R. Furthermore, the constraint (5.7) satisfied by

ϕ∗
C = â−1 and the constraint (6.4) satisfied by σ∗C imply that Ṽ(a,C) takes the form

Ṽ(a,C)(D) = (D,VC(a)), (6.11)

for some VC(a) ∈ R. For fixed C and a ∈ Csa, for each D ⊇ C and U ∈ O(R) we define
S(D,U) ∈ O(Σ)↑C by

S(D,U)(E) = [a ∈ U ] if E ⊇ D;

= E 7→ 0 if E + D. (6.12)

Using (5.14) and (6.11), we then find that (6.10) is equivalent to the following requirement:

σ∗C(S(D,U)) = ↑D if VC(a) ∈ U ;

= ∅ if VC(a) /∈ U, (6.13)

for all D ⊇ C and U ∈ O(R). Using the property

[f(a) ∈ U ] = [a ∈ f−1(U)] (6.14)

for each (bounded measurable) function f : R → R, we infer that (6.13) can only be
consistent if

VC(f(a)) = f(VC(a)). (6.15)

Finally, take D ⊇ C. Because σ∗C and σ∗D are both restrictions of the same map σ∗ (see
(6.8)), we have

VC(a) = VD(a). (6.16)

13This is because C(A) and R are both sober; see footnote 10. For R this is well known; we provide a
proof for C(A). A space X is sober iff each irreducible closed subset S ⊂ X is the closure of a unique
point in S. The closed subsets of a poset in the Alexandrov topology are the lower sets, and the closure
of a point x is the downset ↓ x. The irreducible closed subsets are the directed lower sets S (i.e. S is a
lower set and if a, b ∈ S then there exists c ∈ S such that a ≤ c and b ≤ c (cf. [20, p. 291]). We apply
this to X = C(A). The directed sets S in C(A) are those sets whose elements are mutually commuting
subalgebras, and for which C,D ∈ S implies the existence of E ∈ S containing C∗(C,D). Hence each
directed lower set contains C∗(C,D) whenever it contains C and D. Since for A = Mn(C) each subset of
C(A) that consists of mutually commuting subalgebras is finite, it follows that each directed lower set S is
the downset of the C*-algebra generated by the elements of S. This proves that C(A) is sober.
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Hence we may simply write VC(a) = VD(a) = V (a), and regard the map a 7→ V (a) as
a valuation that assigns a sharp value to each observable a ∈ Mn(C)sa. This valuation
satisfies the ‘functional composition principle’ (6.15) and the ‘noncontextuality require-
ment’ (6.16), which are exactly the assumptions of the original Kochen–Specker Theorem
[22] (see also [28] for a very clear discussion of these assumptions). We conclude that the
statement that “Σ has no points” is equivalent to the Kochen–Specker Theorem.

We close this section by giving yet another reformulation of it, which might have the
advantage of admitting a direct proof (in our opinion, the known proofs of the Kochen–
Specker Theorem are obscure). Following the literature [20, 26, 19], we introduce14

pt(Σ) = {frame maps p∗ : O(Σ)→ O(1)}, (6.17)

simply defined in Sets; recall that 1 denotes any singleton set 1 = {∗}. The set pt(Σ) is
topologized by declaring that the open sets are those of the form

pt(S) = {p∗ ∈ pt(Σ) | p∗(S) = ∗}, (6.18)

for each S ∈ O(Σ); see [26, §IX.3]. An alternative description of pt(Σ) is as a subset Pt(Σ)
of O(Σ), consisting of all P ∈ O(Σ) that satisfy the conditions:

1. P 6= ⊤ (see (4.1));

2. U ∧ V ≤ P implies U ≤ P or V ≤ P .

The topology on Pt(Σ) is given by the opens

Pt(S) = {P ∈ Pt(Σ) | S � P}. (6.19)

A homeomorphism pt(Σ)↔ Pt(Σ), denoted by p↔ P , is given by

P =
∨
{S ∈ O(Σ) | p∗(S) = ∅}; (6.20)

p∗(S) = ∅ if S ≤ P ; (6.21)

= ∗ if S � P. (6.22)

The point of introducing the space pt(Σ) is that any frame map σ∗ : O(Σ) → O(X)
into the topology of a genuine space X (which will be C(A) in what follows) factors as

σ∗ = σ−1 ◦ pt, (6.23)

for some continuous function σ : X → pt(Σ), where pt : O(Σ) → O(pt(Σ)) is given by
(6.18). Conversely, any continuous σ defines a frame map σ∗ by (6.23) and hence one
has a bijective correspondence between frame maps σ∗ : O(Σ) → O(X) and continuous
functions σ : X → pt(Σ). Similarly with σ̃ : X → Pt(Σ). Taking (6.4) into account, our
reformulation of the Kochen–Specker Theorem may then be expressed as follows:

There exists no continuous map σ : C(A) → pt(Σ) that for each C ∈ C(A)
satisfies σ−1(pt(χ↑C) =↑C.

Using Pt(Σ) instead of pt(Σ) (which has the advantage that continuity of σ̃ : C(A)→ Pt(Σ)
translates into inverse monotonicity), the Kochen–Specker Theorem reads:

There exists no map σ̃ : C(A)→ Pt(Σ) that for each inclusion C ⊆ D satisfies

σ̃(D) ≤ σ̃(C) and for each pair C,D ∈ C(A) satisfies σ̃(D) � χ↑C ⇔ C ⊆ D.

14If Σ were a genuine space whose topology is sober, each frame map in (6.17) arises from a map
p : 1 → Σ, i.e. from a point of Σ. Hence the name pt(Σ).
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7 State-proposition pairing

We now compute the particular state-proposition pairing (1.8), which we repeat for con-
venience: (

1
〈ψ,S〉
−→ Ω

)
=

(
1

S
→ O(Σ)

Jµ=1K
−→ Ω

)
. (7.1)

Here ψ is a state on the C*-algebra Mn(C), and µ is the induced probability measure (more
precisely: valuation) on Σ; see the Introduction. As opposed to the usual probabilistic
pairing taking values in the interval [0, 1], the pairing (7.1) takes values in the subobject
classifier Ω of T (A). It can be shown (cf. Appendix A.2) that Ω(C) consists of all upper
sets in ↑C, which means that each element X ∈ Ω(C) is a subset of C(A) with the
properties that D ∈ X must satisfy D ⊇ C, and that if D ∈ X and E ⊇ D, then E ∈ X.
Each Ω(C) is a Heyting algebra in Sets, partially ordered by set-theoretic inclusion, with
the empty upper set ∅ as bottom element, and the maximal one ↑C as top element.

In principle, 〈ψ, S〉 is a natural transformation with components 〈ψ, S〉(C) at each
C ∈ C(A), but by naturality these are all given once the component at the bottom element
C · 1 of C(A) is known. In somewhat sloppy notation, we may therefore regard 〈ψ, S〉,
identified with 〈ψ, S〉(C · 1), as an element of the set Ω(C · 1) of all upper sets in C(A).
Consequently, 〈ψ, S〉 is simply a certain upper set in C(A), which turns out to be

〈ψ, S〉 = {C ∈ C(A) | ψ(S(C)) = 1}. (7.2)

In words, the “truth” of 〈ψ, S〉 consists of those classical contexts C in which the proposi-
tion S(C) is true in the state ψ in the usual sense (i.e. has probabilty one). Here we have
identified the arrow S : 1→ O(Σ) in (7.1) with an element of O(Σ) as given by (3.5) (see
Section 3), so that S(C) ∈ P(C) ⊂Mn(C), and hence ψ(S(C)) is defined.

Let us note that (7.2) indeed defines an upper set in C(A). If C ⊆ D then S(C) ≤ S(D),
so that ψ(S(C)) ≤ ψ(S(D)) by positivity of states,15 so that ψ(S(D)) = 1 whenever
ψ(S(C)) = 1 (given that ψ(S(D)) ≤ 1, since ψ(p) ≤ 1 for any projection p).16

To derive (7.2), we note that µ : O(Σ) → R+
l is a natural transformation, defined by

its components µC : O(Σ)(C) → R+
l (C). It follows from [19, Corollary D4.7.3] that

R+
l (C) = L(↑ C,R+), the set of all lower semicontinuous functions from ↑ C to R+.

Generalizing (2.12) and making the identification (3.8), it is easy to show that

µC : O(Σ)(C)→ L(↑C,R+)

is given by
µC(S) : ↑D 7→ ψ(S(D)), (7.3)

for D ⊇ C (see also Section 6 of [14]). Finally, for σ : O(Σ) → R+
l and τ : O(Σ) → R+

l

one needs a formula for Jσ = τKC : O(Σ)(C)→ Ω(C), namely17

Jσ = τKC(S) = {D ∈↑C | σD(S) = τD(S)}. (7.4)

15In case that ψ is a vector state induced by a unit vector Ψ ∈ Cn, this is the trivial property that
Ψ ∈ S(C)Cn implies Ψ ∈ S(D)Cn.

16In the vector state case, this means that C contributes to the upper set 〈ψ, S〉 iff Ψ lies in the image
of the projection S(C) in Cn. This is reminiscent of certain ideas in [15].

17Let C be a category with associated topos Sets
C

op

. Let X,Y : C
op → Sets be presheaves in this

topos, let σ, τ : X → Y and take A ∈ C and x ∈ X(A). Then the natural transformation Jσ = τK : X → Ω
is given by its components Jσ = τKA : X(A) → Ω(A) as x 7→ {f : B → A | σB(Xf(x)) = τB(Xf(x))}.
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8 Parametrization of C(Mn(C))

We start with a computation of the poset C(M2(C)) of unital C*-subalgebras of M2(C).
It is elementary that M2(C) has a single one-dimensional unital C*-subalgebra, namely
C · 1, the multiples of the unit. Furthermore, any two-dimensional unital C*-subalgebra
is generated by a pair of orthogonal one-dimensional projections. The one-dimensional
projections in M2(C) are of the form

p(x, y, z) =
1

2

(
1 + x y + iz
y − iz 1− x

)
, (8.1)

where (x, y, z) ∈ R3 satisfies x2 + y2 + z2 = 1. Thus the one-dimensional projections in
M2(C) are precisely parametrized by S2. We obviously have 1−p(x, y, z) = p(−x,−y,−z),
and since the pairs (p, 1 − p) and (1 − p, p) define the same C*-subalgebra, it follows
that the two-dimensional elements of C(M2(C)) may be parametrized by S2/ ∼, where
(x, y, z) ∼ (−x,−y,−z) (in other words, antipodal points of S2 are identified). This space,
in turn, is homeomorphic with the real projective plane RP2, i.e. the set of lines in R3

passing through the origin, or, equivalently, the space of great circles on S2. This space has
an interesting topology, but in the present paper we ignore this aspect and just conclude
that we may parametrize

C(M2(C)) ∼= ∗ ∪ RP2, (8.2)

where ∗ stands for C · 1. A point [x, y, z] ∈ S2/ ∼ then corresponds to the C*-algebra
C[x,y,z] generated by the projections {p(x, y, z), p(−x,−y,−z)}. The poset structure of
C(M2(C)) is evidently given by ∗ ≤ [x, y, z] for any [x, y, z] and no other relations.

Let us now generalize the argument to determine C(Mn(C)) for any n. In general, one
has

C(Mn(C)) =
∐

k=1,...,n

C(k, n), (8.3)

where C(k, n) denotes the collection of all k-dimensional commutative unital C*-subalgebras
of Mn(C). To parametrize C(k, n), we note that each of its elements C is a unitary rotation
C = UDU∗, where U ∈ SU(n) and D is some subalgebra contained in the algebra of all
diagonal matrices. This follows from the case k = n, since each element of C(k, n) with
k < n is contained in some maximal abelian subalgebra.18 Hence

C(n, n) = {U ·Dn · U
∗ | U ∈ SU(n)}, (8.4)

with Dn = {diag(a1, . . . , an) | ai ∈ C}. For k < n, C(k, n) is obtained by partitioning
{1, . . . , n} into k nonempty parts, and demanding ai = aj for i, j in the same part. How-
ever, because of the conjugation with arbitrary U ∈ SU(n) in (8.4), two such partitions
induce the same subalgebra precisely when they permute parts of equal size. Such per-
mutations may be handled using Young tableaux [10]. As the size of a part is of more
interest than the part itself, we define

Y (k, n) = {(i1, . . . , ik) | 0 < i1 < i2 < · · · < ik = n, ij+1 − ij ≤ ij − ij−1}

18For k = n, note that C ∈ C(n, n) is generated by n mutually orthogonal projections p1, . . . , pn, each of
rank 1. Each pi has a single unit eigenvector ui with eigenvalue 1; its other eigenvalues are 0. Put these ui

as columns in a matrix, called U . Then U∗piU is diagonal for all i: if (ei) is the standard basis of Cn, one
has Uei = ui for all i and hence U∗piUei = U∗piui = U∗ui = ei, while for i 6= j one finds U∗piUej = 0.
Hence the matrix U∗piU has a one at location ii and zero’s everywhere else. All other elements a ∈ C are
functions of the pi, so that U∗aU is equally well diagonal. Hence C = UDnU

∗, with Dn the algebra of all
diagonal matrices.
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(where i0 = 0) as the set of partitions inducing different subalgebras. Hence

C(k, n) ∼=
{
(p1, . . . , pk) : pj ∈ P(Cn), (i1, . . . , ik) ∈ Y (k, n)

| dim(Im(pj)) = ij − ij−1, pj ∧ pj′ = 0 for j 6= j′
}
.

Now, since d-dimensional orthogonal projections in Cn bijectively correspond to the d-
dimensional (closed) subspaces of Cn they project onto, we can write

C(k, n) ∼=
{
(V1, . . . , Vk) : (i1, . . . , ik) ∈ Y (k, n), Vj ∈ Gr(ij−ij−1, n) | Vj∩Vj′ = 0 for j 6= j′

}
,

where
Gr(d, n) = U(n)/(U(d) × U(n− d)) (8.5)

is the well-known Grassmannian, i.e. the set of all d-dimensional subspaces of Cn [12]. In
terms of the partial flag manifold

G(i1, . . . , ik;n) =

k∏

j=1

Gr(ij − ij−1, n− ij−1), (8.6)

for (i1, . . . , ik) ∈ Y (k, n) (see [10]), we finally obtain

C(k, n) ∼= {V ∈ G(i;n) : i ∈ Y (k, n)}/ ∼, (8.7)

where i ∼ i′ if one arises from the other by permutations of equal-sized parts.
Let us show how (8.2) is recovered from the above method. First, for any n the set

C(1, n) has a single element ∗, as there is only one Young tableau for k = 1. Second, we
have Y (2, 2) = {(1, 2)}, so that

C(2, 2) ∼= G(1, 2; 2)/S(2) = Gr(1, 2) ×Gr(1, 1)/S(2) ∼= Gr(1, 2)/S(2) ∼= CP1/S(2) ∼= RP2.

A Sheaves, topoi and Heyting algebras

A.1 Basic sheaf theory

We will only use a few basic categories:

1. The category P defined by a partially ordered set (also called P ), which is seen as
a category by saying that p, q ∈ P are connected by a single arrow iff p ≤ q, with
special cases:

(a) P = O(X), the topology on a space X, the partial order being by set-theoretic
inclusion;

(b) P = C(A), the poset of unital commutative C*-subalgebras of a unital C*-
algebra A (which in this paper is usually A = Mn(C), the C*-algebra of n× n
complex matrices), again partially ordered by set-theoretic inclusion.

2. The category Sets of sets (as objects) and functions (as arrows), based on the usual
ZF-axioms.

3. For any category C, the category Ĉ = Sets
Cop

of (covariant) functors Cop → Sets,
with natural transformations as arrows,19 with obvious special cases:

19Here Cop is the opposite of a category C, which has the same objects as C and also the same arrows,
but the latter go in the opposite direction. If C = P is a poset, this just means that in P op the partial
order is reversed.
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(a) T (A) = Sets
C(A);

(b) Ô(X) = Sets
O(X)op , the category of so-called presheaves on a space X;

(c) The category Sh(X) of sheaves on X, which is the full subcategory of Ô(X)
defined by the following condition: a presheaf F : O(X)op → Sets is a sheaf
if for any open U ∈ O(X), any open cover U = ∪iUi of U , and any family
{si ∈ F (Ui)} such that F (Uij ≤ Ui)(si) = F (Uij ≤ Uj)(sj) for all i, j, there is
a unique s ∈ F (U) such that si = F (Ui ≤ U)(s) for all i. Here Uij = Ui ∩ Uj
and F (V ≤ W ) : F (W ) → F (V ) is the arrow part of the functor F , defined
whenever V ⊆W . Using the concept of a limit, we may write this as

F (U) = lim←−iF (Ui). (A.1)

4. The category E(X) of étale bundles π : B → X over X, where π is a local ho-
meomorphism,20 and the arrows between πY : Y → X and πZ : Z → X are those
continuous maps ψ : Y → Z that satisfy πZ ◦ ψ = πY .

It is important for some of the more technical arguments in this paper that for any
poset P , the category Sets

P is equivalent to the category Sh(P ) of sheaves on P with
respect to the so-called Alexandrov topology (see footnote 8). The equivalence

Sets
P ≃ Sh(P ) (A.2)

is given by mapping a functor F : P → Sets to a sheaf F : O(P )op → Sets by defining
the latter on basic opens by

F (↑x) = F (x), (A.3)

extended to general Alexandrov opens by (A.1). Vice versa, a sheaf F on P immediately
defines F by reading (A.3) from right to left. In particular, we have

T (A) ≃ Sh(C(A)), (A.4)

where C(A) is understood to be equipped with the Alexandrov topology.
Another useful equivalence isE(X) ≃ Sh(X). The functor E(X)→ Sh(X) establishing

half of this equivalence is given by F̃ 7→ F , F (U) = Γ(U, F̃ ), that is, the set of continuous
cross-sections U → F̃ , with functoriality given by restriction. In the opposite direction,
the pertinent functor Sh(X) → E(X) associates a bundle F̃ to a sheaf F whose fiber (or
“stalk”) at x ∈ X is

F̃x = lim−→Ox(X)F (U) ∼= {[s]x | s ∈ F (U), U ∈ Ox(X)}. (A.5)

Here the colimit in the first expression is taken over all U ∈ Ox(X), the set of all open
neighbourhoods of x. The right-hand side provides an explicit expression for this colimit,
in which the equivalence class [s]x (the germ of s at x) is defined by saying that s ∼x t
for s ∈ F (U) and t ∈ F (V ), U, V ∈ Ox(X), when there exists W ∈ Ox(X) such that
W ⊆ U ∩ V and s|W = t|W . The topology on F̃ is given by declaring that

B(F̃ ) := {ṡ(U) | U ∈ O(X), s ∈ F (U)} (A.6)

20That is, each p ∈ B has an open neighbourhood U for which π(U) is open in X and homeomorphic to
U through π [26, §II.6].
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is a basis of O(F̃ ), where the cross-section ṡ : U → F̃ is defined by ṡ(x) = [s]x. See
[26, §II.6]. This equivalence assumes a particularly simple form when X = P is a poset
equipped with the Alexandrov topology [11, §14.1]. In that case, the bundle defined by a
functor F : P → Sets, or rather by the associated sheaf F as in (A.3), has fibers

F̃x = F (x) (A.7)

and a topology generated by the basis

B(F̃ ) = {Bx,s | x ∈ P, s ∈ F (x)};

Bx,s = {F (x ≤ y)(s) | y ∈ P, x ≤ y}, (A.8)

where F (x ≤ y) : F (x) → F (y) is the arrow part of F . This follows from (A.6) because
for U, V ∈ Ox(X) there is a smallest W ⊆ U ∩ V containing x, namely ↑x. Consequently,
if U =↑x and s ∈ Γ(U, F̃ ) in the above analysis, one has ṡ = F (x ≤ y)(s), which leads to
(A.8).

For example, our internal C*-algebra A may be described as an étale bundle Ã. It is
immediate from (1.5) and (A.7) that the fibers of Ã are

ÃC = C, (A.9)

so that in passing from A ∈ T (A) to Ã ∈ E(C(A)) we have replaced the tautological
functor by the tautological bundle. According to (A.8), the topology on Ã is generated
by the basis opens

Ba,C = {a ∈ D | D ⊇ C}. (A.10)

Here a ∈ C, and the open (A.10) tracks this element as it embeds in all possible D’s in
which C is contained; here a ∈ D is an element of the fiber ÃD above D, to be distinguished
from a ∈ C which lies in the fiber ÃC above C.

A.2 Basic topos theory

This paper is mainly concerned with the categories T (A) and Sh(C(A)), the latter with
respect to the Alexandrov topology. These categories are examples of topoi. The advan-
tage of working in a topos is that most set-theoretic reasoning can be carried out, with
the restriction that all proofs need to be constructive (i.e. cannot make use of the law of
the excluded middle or the Axiom of Choice). Specifically, a topos is a category with the
following ingredients (all unique up to isomorphism):

1. Terminal object. This is an object called 1 such that for each object A there is a
unique arrow A → 1. In Sets this is any singleton set ∗. In T (A) and Sh(C(A))
(and more generally in Ĉ), it is the constant functor taking the value ∗.

2. Pullbacks. These generalize the fibered product B ×A C = {(b, c) ∈ B × C | f(b) =

g(c)} of B
f
→ A and C

g
→ A in Sets into a pullback square with appropriate

universality property. Cartesian products are a special case. In Ĉ (and hence in
T (A) and Sh(C(A))), pullbacks may be computed “pointwise”; see [26, §I.3].

3. Exponentials. These generalize the idea that the class BA of functions from a set A
to a set B is itself a set, and hence an object in Sets, equipped with the evaluation
map ev : A×BA → B. In Sh(X) one may take [26, §II.8]

FG(U) = Nat(G|U , F|U ), (A.11)
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the set of natural transformations between the functors G and F , both restricted
to O(U) (i.e. defined on each open V ⊆ U instead of all V ∈ O(X)). The map
evU : G(U)×Nat(G|U , F|U )→ F (U) is the obvious one, sending (g, θ) to θU (g). By
(A.4), in T (A) one analogously has

FG(C) = Nat(G↑C , F ↑C) (A.12)

at each C ∈ C(A), where F ↑C is the restriction of the functor F : C(A) → Sets to
↑ C ⊆ C(A). In particular, since C · 1 is the bottom element of the poset C(A), one
has

FG(C · 1) = Nat(G,F ). (A.13)

4. Subobject classifier. This generalizes the idea that one may characterize a subset A ⊆
B by its characteristic function χA : B → {0, 1}. Subsets generalize to subobjects,
i.e. monic (“injective”) arrows A ֌ B, and in a topos there exists an object Ω

(the subobject classifier) with associated arrow 1
⊤
→ Ω (“truth”) such that for any

subobject A ֌ B there is a unique arrow B
χA−→ Ω for which B

f
← A → 1 is a

pullback of B
χA−→ Ω and 1

⊤
→ Ω. Conversely, given any arrow B

χ
→ Ω there exists

a subobject A ֌ B of B (unique up to isomorphism) whose classifying arrow χB
equals χ. The subobject classifier in a topos play the role of a “multi-valued truth
object”, generalizing the simple situation in Sets, where Ω = {0, 1} = {false, true}).

In Sh(X) the subobject classifier is the sheaf Ω : U 7→ O(U) with Ω(V ≤ U) :
O(U) → O(V ) given by W 7→ W ∩ V whenever V ⊆ U ; see [26, §II.8]. The truth

map 1
⊤
→ Ω is given at U by ⊤U (∗) = U . Hence in our topos T (A) the subobject

classifier Ω is the functor assigning to C ∈ C(A) the collection UC of upper sets
on C,21 and to an arrow C ⊆ D in C(A) the obvious map UC → UD given by
X 7→ X∩ ↑D.

Combining the third and fourth points, one has

ΩF (C) ∼= Sub(F ↑C), (A.14)

the set of subfunctors of F ↑C . In particular, like in (A.13) we find

ΩF (C · 1) ∼= Hom(F,Ω) ∼= Sub(F ), (A.15)

the set of subfunctors of F itself. If C ⊆ D, then the map ΩF (C) → ΩF (D) defined by
ΩF , identified with a map Sub(F ↑C) → Sub(F ↑D), is simply given by restricting a given
subfunctor of F ↑C to ↑D.

A.3 Heyting algebras and frames

A Heyting algebra is a distributive lattice L with a map→: L×L → L (called implication)
satisfying

x ≤ (y → z) iff x ∧ y ≤ z. (A.16)

Every Boolean algebra is a Heyting algebra, but not vice versa; in fact, a Heyting algebra
is Boolean iff ¬¬x = x for all x, which is the case iff ¬x ∨ x = ⊤ for all x. Here negation
is a derived notion, defined by

¬x = (x→⊥). (A.17)

21This means that X ⊂ C(A) lies in UC if X ⊆↑C and if D ∈ X and D ⊂ E implies E ∈ X.
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A Heyting algebra is complete when arbitrary joins (i.e. sups) and meets (i.e. infs) exist.
A frame is a complete distributive lattice such that x∧

∨
λ yλ =

∨
λ x∧ yλ for arbitrary

families {yλ} (and not just for finite ones, in which case the said property follows from
the definition of a distributive lattice). For example, if X is a topological space, then the
topology O(X) of X is a frame with U ≤ V if U ⊆ V . A frame map preserves finite
meets and arbitrary joins; this leads to the category Frm of frames and frame maps. For
example, if f : X → Y is continuous then f−1 : O(X) → O(Y ) is a frame map. For this
reason, frames are often denoted by O(X) and frame maps are written f−1 or f∗, even if
the frame does not come from a topological space.

Any frame is at the same time a complete Heyting algebra, with implication

x→ y =
∨
{z | z ∧ x ≤ y}. (A.18)

In particular, it follows from (A.17) and (A.18) that

¬x =
∨
{z | z ∧ x = ⊥}. (A.19)

Conversely, the infinite distributivity law in a frame is automatically satisfied in a Heyting
algebra, so that frames and complete Heyting algebras are essentially the same things.22

Frames can be defined internally in any topos, and those in Sh(X) can be described
explicitly [17, 21] (see also [19, §C1.6]). Namely, there is an equivalence

FrmSh(X) ≃ (FrmSets/O(X))op (A.20)

between the category of internal frames in Sh(X) and the category of frame maps in Sets

with domain O(X), where the arrows between two such maps

π∗Y : O(X)→ O(Y ); (A.21)

π∗Z : O(X)→ O(Z); (A.22)

are the frame maps
ϕ∗ : O(Z)→ O(Y ) (A.23)

satisfying23

ϕ∗ ◦ π∗Z = π∗Y . (A.24)

In this paper, this characterization is used to compute the frame maps in FrmSh(X), whose
internal characterization is rather indirect.

The equivalence (A.20) comes about as follows. First, a frame map π∗Y : O(X)→ O(Y )
defines an internal frame O(Iπ) in the topos Sh(X) as the sheaf

O(Iπ) : U 7→ ↓π∗(U) ≡ {W ∈ O(Y ) |W ≤ π∗(U)}, (A.25)

with O(Iπ)(U ≤ V ) : ↓ π∗(V ) →↓ π∗(U) given by intersection with π∗(U). Given frame
maps (A.21) -(A.23), one obtains an internal frame map ϕ∗ : O(IπZ

)→ O(IπY
) in Sh(X)

by defining its components as a natural transformation by

ϕ∗(U) : ↓π∗Z(U) → ↓π∗Y (U);

S 7→ ϕ∗(S). (A.26)

22They do not form isomorphic or even equivalent categories, though, for frame maps do not necessarily
preserve the implication → defining the Heyting algebra structure.

23This looks more palpable in terms of the “virtual” underlying spaces. If (A.21) - (A.23) are seen as
inverse images π∗ = π−1 of maps πY : Y → X , πZ : Z → X and ϕ : Y → Z, then (A.24) corresponds to
πZ ◦ ϕ = πY .
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Conversely, let O(Σ) be an internal frame in Sh(X). Consider

O(Σ) = O(Σ)(X), (A.27)

which is a frame in Sets. Define a map

π∗Σ : O(X)→ O(Σ) (A.28)

by

π∗Σ(U) =
∧
{S ∈ O(Σ) | O(Σ)(U ≤ X)(S) = ⊤}, (A.29)

where ⊤ is the top element of the complete lattice O(Σ)(U), and the map

O(Σ)(U ≤ X) : O(Σ)(X)→ O(Σ)(U)

is defined by the arrow part of the functor O(Σ) : O(X)op → Sets. Then (A.28) is a frame
map, whose corresponding internal frame IπΣ

is isomorphic to O(Σ). The map (A.28) is
called the external description of O(Σ).24

In order to determine specific frames in Sh(X), we need a further result from topos
theory. The Dedekind real numbers Rd and the lower real numbers Rl (which describe
sets of the type x < q, q ∈ Q) can both be axiomatized by what is called a geometric
propositional theory T. In any topos T (with so-called natural numbers object), such
a theory determines a certain frame O(T)T , whose “points” are defined as frame maps
O(T) → Ω, where Ω is the subobject classifier in T (more precisely, the object of points
of O(T) in T is the subobject of ΩO(T) consisting of frame maps). For example, if TRd

is
the theory axiomatizing Rd, in Sets one simply has

O(TRd
)Sets = O(R), (A.30)

whose points comprise the set R.
The key result is as follows. Let πT : X × O(T)Sets → X be projection on the first

component, with associated frame map π∗
T
≡ π−1

T
: O(X)→ O(X ×O(T)Sets). Then

O(T)Sh(X) = IπT
. (A.31)

Using (A.30), this yields that the frame of Dedekind real numbers O(Rd) ≡ O(TRd
) is the

sheaf
O(Rd)Sh(X) : U 7→ O(U ×R), (A.32)

whereas the Dedekind real numbers object is the sheaf

(Rd)Sh(X) : U 7→ C(U,R). (A.33)

Similarly, for the lower real numbers (whose frame we will not need) one obtains

(Rl)Sh(X) : U 7→ L(U,R), (A.34)

24An important application is the external reformulation of internal properties of O(Σ) in terms of set-
theoretic properties of the map (A.28). For example, the general theory of [1] requires that the Gelfand
spectrum O(Σ) of our internal C*-algebra A has a technical property called regularity (which is a frame-
theoretic generalization of the well-known corresponding property for topological spaces) [20]. This internal
property may indeed be verified from the external version of regularity given in [18].
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the set of all lower semicontinuous functions from U to R that are locally bounded from
above [19, Corollary D4.7.3]. Using (A.3), such results may immediately be transferred to
Sets

P and hence to T (A). For example, one has

O(Rd) ≡ O(Rd)T (A) : C 7→ O((↑C)× R). (A.35)

Since Alexandrov-continuous functions must be locally constant, it follows from (A.33)
that

Rd : C 7→ R. (A.36)

For the lower reals, however, (A.34) yields

Rl : C 7→ L(↑C,R). (A.37)
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[9] A. Döring and C.J. Isham, A topos foundation for theories of physics: I. Formal
languages for physics, J. Math. Phys. 49:053515 (2008); II. Daseinisation and the lib-
eration of quantum theory, J. Math. Phys. 49:053516 (2008); III. The representation
of physical quantities with arrows, J. Math. Phys. 49:053517 (2008); IV. Categories
of Systems, J. Math. Phys. 49:053518 (2008).

[10] W. Fulton, Young Tableaux (Cambridge University Press, 1997).

[11] R. Goldblatt, Topoi: The Categorial Analysis of Logic, Second edition (North-
Holland, Amsterdam, 1984).



REFERENCES 25

[12] P. Griffiths & J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1994).
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