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Abstract

This paper addresses the actual practice of justifying definitions in mathe-

matics. First, I introduce the main account of this issue, namely Lakatos’s

proof-generated definitions. Based on a case study of definitions of random-

ness in ergodic theory, I identify three other common ways of justifying def-

initions: natural-world-justification, condition-justification and redundancy-

justification. Also, I clarify the interrelationships between the different kinds

of justification. Finally, I point out how Lakatos’s ideas are limited: they fail

to show that various kinds of justification can be found and can be reason-

able, and they fail to acknowledge the interplay between the different kinds

of justification.
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1 Introduction

Mathematical practice suggests that mathematical definitions are not arbi-

trary: for definitions to be worth studying there have to be good reasons.

Moreover, definitions are often regarded as important mathematical knowl-

edge [cf. Tappenden, 2008a and 2008b]. Reasoning and knowledge are classi-

cal philosophical issues; hence reflecting on the reasons given for definitions

is philosophically relevant.

These considerations motivate the guiding question of this paper: in what

ways are definitions in mathematics justified, and are these kinds of justifica-

tion reasonable? By a justification of a definition we mean a reason provided

for the definition. We will concentrate on explicit definitions, which intro-

duce a new expression by stipulating that it be semantically equivalent to

the definiens consisting of already-known expressions. We won’t deal with

their complement, implicit definitions, which assign meaning to expressions

by imposing constraints on how to use sentences (or other longer expressions)

containing them [Brown, 1999, p. 97].

Generally, attempting to justify definitions is reasonable: as we will see,

if definitions were not justified, the mathematics involving these definitions

would be much less meaningful to us than mathematics involving definitions

which were justified. Thus given our limited resources, it is better to con-

centrate on definitions which we can justify.1

When a mathematician formulates a definition she or he has not known

before, we speak of a formulation of the definition. The way a formulation of

a definition is guided usually corresponds to the way the definition is justi-

fied when it is formulated. Thus all that will be said about the justification

of definitions has a natural counterpart in terms of the guidance of the for-

mulation of definitions. Since the guidance of the formulation of definitions

derives from the justification, the latter is the main issue, and in what follows

we will focus on the justification of definitions.2

1What this means for the ontology of mathematical definitions depends on the ontology
adopted: platonists may hold that both definitions which we can and cannot justify are
real, but it is better to concentrate on the former for pragmatic reasons; constructivists
may hold that only definitions which we can justify are real.

2Strictly speaking, the justification and the guidance of formulation are conceptually
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In this paper, in section 2, we will first discuss the state of the art of theo-

rising about the actual mathematical practice of how definitions are justified

in articles and books. There is hardly any philosophical discussion on this

issue apart from Lakatos’s ideas on proof-generated definitions, and hence we

will concentrate on them. While Lakatos’s ideas are important, this paper

aims to show how they are limited. My criticism of Lakatos starts from a case

study of notions of randomness in ergodic theory, which will be introduced

in section 3. Based on this case study, in section 4 I will introduce three

other ways in which definitions are commonly justified: natural-world jus-

tification, condition-justification and redundancy-justification; two of them,

to my knowledge, have not been discussed before. In section 5 I will clarify

the interrelationships between the different kinds of justification, an issue

which also has not been addressed before. In particular, I argue that in

different arguments the same definition can be justified in different ways.

Finally, in section 6 I point out how Lakatos’s ideas are limited: his ideas fail

to show that often, as for notions of randomness in ergodic theory, various

kinds of justification are found and that various kinds of justification can be

reasonable. Furthermore, they fail to acknowledge the interplay between the

different kinds of justification.

This research is in the spirit of ‘phenomenological philosophy of mathe-

matics’ as recently characterised by Larvor [2001, pp. 214–215] and Leng [2002,

pp. 3–5]: it looks at mathematics ‘from the inside’ and on this basis asks

philosophical questions.

2 Lakatos’s Proof-Generated Definitions

In the relatively recent literature Larvor [2001, p. 218] at least mentions

the importance of researching the justification of mathematical definitions.

Corfield [2003, chapter 9] discusses the related issue of what makes fun-

damental concepts but does not provide conceptual reflection on our ques-

tion. Tappenden [2008a and 2008b] treats the related issues of naturalness

distinct. For instance, it could be that a definition which captures an important preformal
idea was randomly formulated by a computer; then there was no way the formulation of
the definition was guided, but there is a convincing initial justification.
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of definitions and how to decide between different definitions. In our context

Tappenden’s [2008a] conclusion is relevant: namely, that judgments about

definitions mainly depend not on the rules of logic but on detailed knowledge

about the mathematics involved. Furthermore, several philosophers have ar-

gued that mathematical definitions should capture a valuable preformal idea

[cf. Brown, 1999, p. 109].

Apart from this, the main philosopher who has written on our guiding

question in the light of mathematical practice is Lakatos [1976]. Lakatos

develops an approach of informal mathematics, which includes an account

of mathematical progress called proofs and refutations. Most importantly,

Lakatos is also concerned with how definitions are justified. His key idea is the

notion of a proof-generated definition. Here his main example are definitions

of polyhedron which are justified because they are needed to make the proof

of the Eulerian conjecture work: viz. that for every polyhedron the number

of vertices minus the number of edges plus the number of faces equals two

(V − E + F = 2).

What is a proof-generated definition? Unfortunately, Lakatos does not

state exactly what he means by this. Clearly, mathematical definitions justi-

fied in any way are eventually involved in proofs. Therefore, the trivial idea

that definitions are justified because they are involved in proofs cannot be

what interested Lakatos.

To find out more, consider the Carathéodory definition of measurable sets,

another proof-generated definition Lakatos discusses. The mathematician

Halmos [1950, p. 44] remarks on this definition: “The greatest justification

of this apparently complicated concept is, however, its possibly surprising

but absolute complete success as a tool of proving the extension theorem”.

Lakatos [1976, p. 153] comments:

as we learn from the second part [Halmos’s remark above], this

concept is a proof-generated concept in Carathéodory’s theorem

about the extension of measures [...]. So whether it is intuitive or

not is not at all interesting: its rationale lies not in its intuitive-

ness but in its proof-ancestor.

This quote and the rest of the discussion of proof-generated definitions sug-
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gests that a proof-generated definition is a definition which is needed in order

to prove a specific conjecture regarded as valuable [Lakatos, 1976, pp. 88–92,

pp. 127–133, pp. 144–54]. This idea is also hinted at by Polya [1954, p. 148].

The final theorems which involve proof-generated definitions often, but not

always, result from a series of trials and revisions.

Lakatos [1976, pp. 33–50, p. 127] rightly argues that lemma-incorporation

produces proof-generated definitions: assume that a conjecture, known not

to hold for all objects of a domain, should be established. Then if conditions

which are needed in order to prove the conjecture are identified, i.e. lemmas

are incorporated, proof-generated definitions arise. For instance, consider

the conjecture that the limit function of a convergent sequence of continu-

ous functions is continuous. This conjecture can be proven if ‘convergent’ is

understood as uniformly convergent but not if it is understood as the more

obvious, weaker pointwise convergent; hence the definition of uniformly con-

vergent is proof-generated [Lakatos, 1976, pp. 144–146].

Lakatos [1976, pp. 90–92, p. 128, pp. 148–149, p. 153] thinks that for his

examples of proof-generated definitions the justification was reasonable be-

cause the corresponding conjectures are valuable. Generally, if the conjecture

is mathematically valuable, proof-generation is a reasonable kind of justifica-

tion.3 A proof-generated definition can be regarded as providing knowledge

since it answers the question of which notion is needed to prove a specific

conjecture.

Lakatos [1976, pp. 14–33, pp. 83–87] also discusses four other ways of

justifying definitions. Imagine that counterexamples are presented to a con-

jecture of interest, and that the conjecture is defended by claiming that these

are no “real” counterexamples because a definition in the conjecture has been

wrongly understood. Properly understood, it is argued, the definition ex-

cludes a class of objects which includes the alleged counterexamples, where

the exclusions are made independent of any proof of the conjecture (and thus

it is unknown whether the conjecture indeed holds true for the definition).

Then the definition is justified via monster-barring. The second kind of jus-

3For the proof-generated definitions discussed in Lakatos [1976] and in this it is argued
why the conjectures are valuable. Yet answering the question of what constitutes valuable
conjectures at a general level would require further research.
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tification is exception-barring. Here the definition is defended by excluding,

with the extant definition, a class of objects which are counterexamples to

the conjecture; again, this is independent of any proof of the conjecture.4

The third kind of justification is monster-adjustment. Here the definition is

defended by reinterpreting, independent of any proof of the conjecture, the

terms of the extant definition such that counterexamples to the conjecture

are no longer counterexamples any longer. The fourth and final kind of jus-

tification is monster-including. Here the definition is defended by extending

the definition to include a new class of objects; this class of objects is defined

using properties which are shared by examples for which the conjecture holds

true; and again, this is independent of any proof of the conjecture.

Monster-barring, exception-barring and monster-adjustment are all ways

of dealing with counterexamples to conjectures. And I agree with Lakatos

that for this purpose they are inferior to proof-generation because they do

not take into account how the conjectures are proved; and therefore, it is

even unclear whether the conjecture is true for the definition under consid-

eration. Monster-including is a way of generalising conjectures. Yet again,

since it neglects how conjectures are proved, I agree with Lakatos that for

this purpose it is inferior to proof-generation. Furthermore, Lakatos thought

that any of these kinds of justification were applied only because the better

way of justifying definitions, namely with proof-generation, was not known

[Lakatos 1976, pp. 14–42, pp. 136–140]. Because of their inadequacies and

since they play no role in our case study, I shan’t say any more about these

kinds of justification in this paper.

Unfortunately, Lakatos [1976] never explicitly states how widely he thinks

that his ideas on proof-generated definitions apply. General claims such as

Progress indeed replaces naive classification by [...] proof-generated

[...]classification. [...]Naive conjectures and naive concepts are su-

perseded by improved conjectures (theorems) and concepts (proof-

generated [...] concepts) growing out of the method of proofs and

refutations [Lakatos, 1976, pp. 91–92; see also p. 144].

4Contrary to exception-barring, in the case of monster-barring it is denied that the
counterexamples are actual counterexamples. This is how monster-barring differs from
exception-barring.
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suggest that mathematical definitions should be, and after the discovery of

proof-generation are generally proof-generated, and some have interpreted

him as saying this [Brown, 1999, pp. 110–111]. However, as Larvor [1998]

has pointed out, Lakatos stresses in his PhD-thesis, on which his 1976 book

is based, that his account of informal mathematics does not apply to all of

mathematics. What is clear is that Lakatos thought that there are many

mathematical subjects with some proof-generated definitions and that there

are many mathematical subjects with some definitions which should be proof-

generated.5 Maybe Lakatos also believed something stronger, and this would

explain his strong claims such as in the above quote, namely that there are

many subjects where proof-generation should be the sole important way in

which definitions are justified; and that there are many subjects created

after the discovery of proof-generation where proof-generation is the sole

important way in which definitions are justified. In what follows, I will show

in which ways Lakatos’s ideas on justifying definitions are limited; and for

this it won’t matter much whether or not he endorsed the stronger claim.

Corfield [1997, pp. 111–115] argues that Lakatos did not think that his

account of informal mathematics, which includes his ideas on justifying def-

initions, extends to established branches of mathematics of “the twentieth

century and up to the present day”. Yet Corfield’s claim is implausible.

Lakatos [1976, p. 5, pp. 152–154] states that his ideas on informal mathemat-

ics apply to modern metamathematics and to Carathéodory’s [1914] investi-

gations on measurable sets. And substantial parts of established mathematics

of the twentieth century up to the present day are not more formalised than

that mathematics: e.g. ergodic theory, which will be relevant later. Thus

Lakatos indeed thought that his ideas could apply to substantial parts of es-

tablished branches of mathematics of the twentieth century up to the present

day. But I agree with Corfield’s [1997] main point that Lakatos failed to see

that his ideas are also relevant for highly formalised mathematics. For this

reason this paper is not restricted to informal mathematics.

This discussion highlights that there is little work on the actual practice

of how definitions are justified in articles and books. Furthermore, although

5Of course, the question remains what a ‘mathematical subject’ is; I will say more
about this later [cf. section 4.4].
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Lakatos’s account of proofs and refutations has been challenged [Corfield,

1997; Leng, 2002], his ideas on proof-generated definitions have hardly been

criticised. My contribution on the guiding question and my criticism of

Lakatos’s ideas on justifying definitions will be based on a case study of

notions of randomness in ergodic theory. Let me now introduce this case

study.

3 Case Study: Randomness in Ergodic The-

ory

My case study is on notions of randomness in ergodic theory. Ergodic the-

ory originated from work in statistical mechanics, in particular Boltzmann’s

kinetic theory of gases. Boltzmann’s work relied on the assumption that the

time-average of a function equals its space average, but no acceptable argu-

ment was provided for this. Generally, the possible random motion of clas-

sical systems was a constant theme in statistical mechanics. Ergodic theory

arose in the early 1930s when von Neumann and Birkhoff proved the famous

mean and pointwise ergodic theorem, respectively. Among other things, they

found that ergodicity was the sought-after concept guaranteeing the equality

of time and space averages for almost all states of the system. Motivated

by these results, an investigation into the random behaviour of classical sys-

tems began. Of particular importance here was the study of randomness by

a group of mathematicians around Kolmogorov in Russia. From the 1960’s

onwards, ergodic theory became prominent, and was further developed, as a

mathematical framework for studying chaotic behaviour, i.e. unpredictable

and random behaviour of deterministic systems. Overall, ergodic theory had

less impact on statistical mechanics than expected, partly because of the

doubts, and the difficulty of proving, that the relevant systems are ergodic.

But it developed into a discipline with its own internal problems and had,

and continues to have, considerable impact on probability theory and chaos

research [Aubin and Dahan-Dalmedico, 2002; Mackey, 1974].

Why do notions of randomness in ergodic theory constitute a valuable case

study? First, several of Lakatos’s assertions, e.g. that mathematics is driven
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by counterexamples, have been criticised in the following way: while they

may be correct for older mathematics, they do not hold true for twentieth

century mathematics [Leng, 2002, p. 10]. As also Lakatos [1976, pp. 136–140]

suggests, how definitions are justified may depend on when they were formu-

lated because reasoning changes with the advancement of mathematics. To

ensure that claims on the justification of definitions escape the criticism of

not applying to twentieth century mathematics, I choose mathematics, like

ergodic theory, which was created in the twentieth century. Second, con-

cerning the justification of definitions the picture for notions of randomness

in ergodic theory appeared different to that proposed by Lakatos, and this

picture seemed prevalent in mathematics.

As widely acknowledged, the main notions of randomness in ergodic the-

ory are [cf. Berkovitz et al., 2006; Sinai, 2000, p. 21, pp. 41–46; Walters,

1982, pp. 39–41, pp. 86–87, pp. 105–107]:

weak mixing (three versions), strong mixing (two versions), Kolmogorov-

mixing, Kolmogorov-system, Bernoulli-system (two versions), Kolmogorov-

Sinai entropy.

I studied how the definitions listed above are justified and whether they are

reasonably justified. I also examined the way the definitions were initially

justified.6

In the remaining sections of this paper the insights on the justification

of definitions which derive from this case study will be presented. The def-

initions of the above list which are italicised will be discussed in detail. A

detailed investigation of them will suffice to illustrate these insights. Hence

for the remaining listed definitions I will just state how they are justified.

Basic knowledge of measure theory will suffice to understand the mathemat-

ics that follows. Yet the claims can also be grasped without understanding

6I did not investigate the use of these definitions elsewhere in mathematics. The main
reason for such an investigation would have been to understand how the justification of
definitions varies in different contexts. Yet I could find out about this by considering only
how definitions were initially justified and later justified as notions of randomness. Going
further would have required an enormous amount of work without considerable gain.
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the relevant mathematics if close attention is paid to the verbal commentary

on the definitions.

First of all, the unit of analysis in ergodic theory, namely measure-

theoretic dynamical systems, needs to be introduced. Generally, dynamical

systems are mathematical models consisting of a phase space, the set of all

possible states of the system, and an evolution equation which describes how

solutions evolve in phase space. Dynamical systems usually model natural

systems.

There are discrete and continuous dynamical systems. For discrete sys-

tems time increases in discrete steps. Continuous systems involve a contin-

uous time parameter; they typically arise from differential equations. Only

for one definition of randomness in ergodic theory there is a considerable

difference between the discrete and continuous version, and here I will dis-

cuss both versions. All other notions of randomness are essentially the same

for discrete and continuous time, and hence, for simplicity, we confine our

attention to the discrete notions.

Ergodic theory is concerned with measure-theoretic dynamical systems.

A discrete measure-theoretic dynamical system is a quadruple (X, Σ, µ, T )

where X is a set (phase space), Σ is a σ-algebra on X, µ is a measure with

µ(X) = 1 and T : X → X (evolution equation) is bijective measurable map

which is measure-preserving, i.e. µ(T (A)) = µ(A) for all A ∈ Σ. A continuous

measure-theoretic dynamical system is a quadruple (X, Σ, µ, Tt) where X is

a set (phase space), Σ is a σ-algebra on X, µ is a measure with µ(X) = 1,

and Tt : X → X, t ∈ R, (evolution equation) is a group of measurable

and measure-preserving bijective maps such that additionally the function

Φ(x, t) := Tt(x) is measurable on X × R [cf. Cornfeld et al. 1982, pp. 3–6].

With this background we can now discuss the kinds of justification which

occur in my case study. They illustrate that not only proof-generation is

important.
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4 Kinds of Justification of Definitions

4.1 Natural-World-Justification

I claim, first, that definitions in my case study are frequently justified be-

cause they capture a preformal idea regarded as valuable for describing or

understanding the natural world. Here I will speak of natural-world-justified

definitions. Natural-world-justified definitions are a special case of the gen-

eral idea discussed in the literature that mathematical definitions should

capture a valuable preformal idea [cf. Brown, 1999, p. 109].

If the preformal idea is valuable for describing or understanding the natu-

ral world, natural-world-justification is reasonable. It is important to realise

that natural-world-justification does not mean that there is a ‘best’ definition

of a vague idea. There can be several different definitions expressing a vague

idea without a clearly ‘best’ one. Natural-world-justified definitions can be

regarded as providing knowledge in the following sense: they are a possible

formalisation of a preformal idea which is valuable.

Many definitions of the list of notions of randomness [cf. section 3] are

natural-world-justified: we will now discuss weak mixing (one version), Bernoulli-

system (one version) and the Kolmogorov-Sinai entropy in detail. For illus-

trating natural-world-justification, it would suffice to consider the Kolmogorov-

Sinai entropy. The discussion of the remaining two definitions is crucial in

order to provide the necessary background for the next sections. Moreover, all

versions of strong mixing [Berkovitz et al., 2006, p. 676; Hopf, 1932a, p. 205]

and Kolmogorov-mixing [Sinai, 1963, p. 66] are natural-world-justified.

4.1.1 Weak Mixing

Definition 1 (X, Σ, µ, T ) is weakly mixing iff for all A, B ∈ Σ there is a

P ⊆ N of density zero such that

lim
n→∞, n/∈P

µ(T n(A) ∩B) = µ(A)µ(B),

where P ⊆ N is of density zero iff limn→∞#(P ∩ {i | i ≤ n, i ∈ N})/n = 0.

For (X, Σ, µ, T ) and A ∈ Σ define At as the event that the system’s state

is in A at time t, and let p(...) denote the probability of events. Because time
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is discrete, we can denote time points by tn, n ∈ Z. Assume, as it is often

done, that the measure can be interpreted as time-independent probability:

p(At) = µ(A) and p(At&Bt) = µ(A ∩ B) for all t and all A, B ∈ Σ [see

Werndl, 2009, for more on this]. Then it follows that for all tm, tn, tm ≥ tn,

and all A, B ∈ Σ:7

p(Atn&Btm) = µ(Tm−n(A) ∩B). (1)

By writing out the definition of limit, the definiens of Definition 1 says

that for any A, B ∈ Σ and any ε > 0 there is a n0 ∈ N and a set P of density

zero with |µ(T n(A) ∩ B)−µ(A)µ(B)|< ε for all n ≥ n0, n /∈ P . Equation

(1) thus tells us that Definition 1 captures the following idea of random-

ness: given an arbitrary level of precision ε > 0 any event is approximately

independent of almost any event that is sufficiently past. Independence is un-

derstood here as in probability theory. This randomness might apply, e.g. to

systems in meteorology and make it hard to predict them.

Von Neumann [1932, p. 591, p. 594] lists the main statistical properties of

classical systems discussed in ergodic theory and that time. In this context

he remarks that Definition 1 captures the preformal idea of approximate

independence of almost all events explained above. Thus he argues that it is

natural-world justified. This justification grew in importance with the rise of

chaos research in the 1960s [cf. Berkovitz et al., 2006, p. 688]. It also appears

in a few standard books on ergodic theory [e.g. Walters, 1982, p. 45], although

in books often no justification is provided for weak mixing [e.g. Arnold and

Avez, 1968, pp. 21-22; Cornfeld et al., 1982, pp. 22–23; Sinai, 2000, p. 21].

Especially before the rise of chaos research weak mixing appears to be

mostly not naturally-world justified. We will see this in section 4.2, where

we will also discuss the key contexts in which weak mixing was introduced.

The next definition relates to the important topic of equivalence of measure-

theoretic systems.

7Tm−n(A) is the evolution of A forward in time from tn to tm, containing exactly those
points that are in A at time tn. Consequently, Tm−n(A) ∩ B consists of exactly those
points which pass A at time tn and go through B at time tm, i.e. for which Atn&Btm is
true. Therefore, p(Atn&Btm) = µ(Tm−n(A) ∩B).

12



4.1.2 Discrete-time Bernoulli-system

The idea of an infinite sequence of independent trials of an N -sided die is a

very old one. Kolmogorov [1933] gave the modern measure-theoretic formula-

tion of probability theory and laid the foundations for the theory of stochastic

processes [von Plato, 1994, pp. 230–233]. In this modern framework an in-

dependent process, i.e. a doubly-infinite sequence of independent rolls of an

N -sided die where the probability of obtaining k is pk, k∈ N̄ := {1, . . . , N},
with

∑N
k=1 pk = 1, is modeled as follows. Let X be the set of all bi-infinite

sequences (. . . x−1, x0, x1 . . .) with xi ∈ N̄ , corresponding to the possible out-

comes of an infinite sequence of independent trials. Let Σ be the set of all

sets of infinite sequences to which probabilities can be assigned, and let µ be

the probability function on Σ.8 The shift

T : X → X T ((. . . xi . . .)) = (. . . xi+1 . . .) (2)

is easily seen to be measurable and measure-preserving. (X, Σ, µ, T ) is called

a Bernoulli-shift.

In one of the first papers on ergodic theory von Neumann [1932] intro-

duced the fundamental idea of equivalence of measure-theoretic systems. He

developed the definition of isomorphic systems to capture this idea [Sinai,

1989, p. 833],9 and called for a classification of systems up to isomorphism.

Consequently, we see that the following definition captures the idea of

systems which are equivalent to a system describing an independent process,

e.g. throwing a die:

Definition 2 (X, Σ, µ, T ) is a Bernoulli-system iff it is isomorphic to a

Bernoulli shift.

8In detail: Σ is the σ-algebra generated by the cylinder-sets

Ck1...kn
i1...in

={x ∈ X |xi1 =k1, ..., xin =kn, ij ∈Z, i1 < ... <in, kj ∈ N̄ , 1≤ j≤ n}.

The sets have probability µ̄(Ck1...kn
i1...in

) = pk1pk2 . . . pkn
since the outcomes are independent.

µ is defined as the unique extension of µ̄ to a measure on Σ.
9(X1,Σ1, µ1, T1) is isomorphic to (X2,Σ2, µ2, T2) iff there are measurable sets X̄i ⊆ Xi

with µi(Xi \ X̄i) = 0 and TiX̄i ⊆ X̄i (i = 1, 2), and there is a bijection φ : X̄1→ X̄2 such
that (i) φ(A)∈Σ2 for all A∈Σ1, A ⊆ X̄1, and φ−1(B) ∈ Σ1 for all B ∈ Σ2, B ⊆ X̄2; (ii)
µ2(φ(A)) = µ1(A) for all A ∈ Σ1, A ⊆ X̄1; (iii) φ(T1(x)) = T2(φ(x)) for all x ∈ X̄1.
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In many articles Definition 2 is natural-world-justified in that way [Ornstein,

1989, p. 4; Rohlin, 1960, p. 5]. Walter’s [1982, p. 107; see also Ornstein,

1974, p. 4] comment

Since a Bernoulli shift is really an independent identically dis-

tributed stochastic process indexed by the integers we can think

of a {Bernoulli-system} as an abstraction of such a stochastic

process.10

shows that this justification is found in standard books on ergodic theory too.

Yet some books do not provide any justification for Definition 2 [e.g. Shields,

1973, p. 5].

Clearly, the Bernoulli-shifts given by choices of N and, for each N , the

choices of p1, . . . pN are Bernoulli-systems. We will say later more about when

Bernoulli-shifts are isomorphic.

The next definition illustrates that a definition can be both preformal-

justified and proof-generated.

4.1.3 Kolmogorov-Sinai Entropy

α = {a1, . . . , ak}, k ≥ 1, is a partition of a system (X, Σ, µ, T ) iff ai ∈ Σ,

ai ∩ aj = ∅ for i 6= j, 1 ≤ i, j ≤ k, and X =
⋃k

i=1 ai. Clearly, T nα :=

{T na1, . . . , T
nak}, n ∈ Z, is also a partition.

Dynamical systems and information theory can be connected as follows:

each x ∈ X produces, relative to a partition α, an infinite string of symbols

x0x1x2 . . . in an alphabet of k letters via the coding xj = αi iff T j(x) ∈
αi, j ≥ 0. Interpreting the system (X, Σ, µ, T ) as the source, the output

of the source are these strings x0x1x2 . . .. If the measure is interpreted as

time-independent probability, H(α, T ) :=

lim
n→∞

1/n
∑

ij∈{1,...,k},0≤j≤n−1

−µ(αi0 ∩ Tαi1 . . . ∩ T n−1αin−1) log(µ(αi0 . . . ∩ T n−1αin−1)) (3)

measures the average information which the system produces per step relative

to α as time goes to infinity [Petersen, 1983, pp. 233–240]. Now:

10Square brackets indicate that the original notation has been replaced by the notion
used in this paper. I will use this convention throughout.
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Definition 3 h(T ) := supα{H(α, T )} is the Kolmogorov-Sinai entropy of

the system (X, Σ, µ, T ).

It measures the highest average amount of information that the system can

produce per step relative to a coding, and a positive entropy indicates that

information is produced.

Having worked for several years on information theory, Kolmogorov [1958]

was the first to apply information-theoretic ideas to ergodic theory. He intro-

duced a definition of entropy only for what is nowadays called Kolmogorov-

systems. Based on Kolmogorov’s work, Sinai [1959] introduced a different

notion of entropy which applies to all systems, the now canonical Definition 3.

Sinai also proved—a big surprise at that time—that automorphisms on the

torus have positive entropy and thus are random because they produce infor-

mation. Kolmogorov and Sinai were motivated by finding a concept which

characterises the amount of randomness of a system [Sinai, 2007; Werndl,

forthcoming]. More specifically, as Halmos [1961, p. 76; cf. Sinai, 1959] ex-

plains: “Intuitively speaking, the entropy h(T ) is the greatest quantity of

information obtainable about the universe per day [i.e. step] by repeated

performances of experiments with a finite [...] number of outcomes”. Hence

Definition 3 is natural-world-justified by capturing the idea of the average

amount of information produced per step explained above.

Also in some standard books on ergodic theory Definition 3 is natural-

world-justified in this way [Billingsley, 1965, p. 63; Petersen, 1983, pp. 233–

240]. It should, however, be mentioned that in books Definition 3 is often

not justified at all [e.g. Arnold and Avez, 1968, pp. 35–50; Cornfeld et al.,

1982, pp. 246–257; Sinai, 2000, pp. 40–43].

Interestingly, the Kolmogorov-Sinai entropy is also proof-generated. And

it is the only notion of randomness in ergodic theory [cf. section 3] which is

proof-generated. The central internal problem of ergodic theory is the follow-

ing: which systems are isomorphic [cf. subsection 4.1.2]? Using the so-called

Koopman formalism, dynamical systems can be investigated from a spectral-

theoretic viewpoint. Systems which are equivalent from this viewpoint are

said to be spectrally-isomorphic. In the 1950s it was known that systems

with discrete spectrum are isomorphic if and only if they are spectrally-

isomorphic and that this is not so for systems with mixed spectrum. Most
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importantly, however, is the case of a continuous spectrum since dynamical

systems typically have this property [Arnold and Avez, 1968, pp. 27–32].11

For systems with continuous spectrum, e.g. Bernoulli-systems, the conjecture

emerged that spectrally-isomorphic systems are not always isomorphic, but

the problem resisted solution.

Kolmogorov [1958] and Sinai [1959] were motivated by making progress

about this conjecture [Sinai, 1989, p. 834–836], and Kolmogorov’s [1958] main

result is that this conjecture is true. As hinted at by Rohlin [1960, pp. 1–2,

p. 8], the Kolmogorov-Sinai entropy can be justified as being precisely the def-

inition which is needed to prove that conjecture, i.e. it is proof-generated. The

argument, which goes back to Kolmogorov’s work, is as follows: isomorphic

system have the same Kolmogorov-Sinai entropy. Now look at Bernoulli-

shifts, whose Kolmogorov-Sinai entropy
∑

i pi log(pi) takes a continuum of

different values. Since all Bernoulli-shifts are spectrally-isomorphic, there is

a continuum of systems being spectrally-isomorphic but not isomorphic.

Billingsley’s [1965, p. 65] comment

It is essential to understand the difference between H(α, T ) and

h(T ) and why the latter is introduced. If the entropy of T were

taken to be H(α, T ) for some “naturally” selected α [...], then it

would be useless for the isomorphism problem.

shows that the justification of Definition 3 as being proof-generated made it

into standard books on ergodic theory too [see also Petersen, 1983, p. 227,

p. 246].

Let us turn to the second kind of justification I have identified.

4.2 Condition-Justification

I claim that another kind of justification abounds in my case study: a defini-

tion is justified by the fact that it is equivalent in an allegedly natural way to

a previously specified condition which is regarded as mathematically valuable.

We speak here of condition-justified definitions.

11Systems have continuous spectrum iff their only eigenfunctions are constant functions.
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If the previously specified condition is valuable and the kind of equiva-

lence is natural, condition-justification is a reasonable kind of justification.12

A condition-justified definition can be regarded as providing knowledge be-

cause it answers the question of which definition corresponds naturally to a

previously specified condition.

Two definitions of the notions of randomness in ergodic theory [cf. sec-

tion 3] are condition-justified, namely weak mixing (all versions) and Bernoulli-

system (one version) are condition-justified. Let us discuss them now.

4.2.1 Weak Mixing

Recall Definition 1 of weak mixing. Two alternative equivalent definitions

are [Petersen, 1983, pp. 65–67]:

Definition 4 (X, Σ, µ, T ) is weakly mixing iff for all A, B ∈ Σ

lim
n→∞

1

n

n−1∑
i=0

|µ(T i(A) ∩B)− µ(A)µ(B)| = 0.

Definition 5 (X, Σ, µ, T ) is weakly mixing iff for all f, g ∈ L2(X, Σ, µ)

lim
n→∞

1

n

n−1∑
i=0

|
∫

f(T i(x))g(x)dµ−
∫

f(x)dµ

∫
g(x)dµ |= 0,

where L2(X, Σ, µ) is the Hilbert space of square integrable functions on

(X, Σ, µ).

We already argued that Definition 1 can be natural-world-justified. The

first three papers discussing weak mixing seem to be Hopf [1932a], Hopf

[1932b], and Koopman and von Neumann [1932]. These papers show that

there is more to say for three reasons.

First, Hopf [1932a] starts by emphasising the importance of ergodicity

for statistical mechanics. He then considers another statistical property dis-

cussed by Poincaré: when initially a certain part of a fluid is coloured, experi-

ence shows that after a long time the colour uniformly dissolves in the fluid.

12For the condition-justified definitions of my case study we will see why the conditions
are valuable and the equivalences are natural. Yet characterising what constitutes valuable
conditions or natural kinds of equivalence at a general level would require further research.
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Mathematically, Hopf expresses this by strong mixing.13 Interested in the

interrelationship between strong mixing and ergodicity, he conjectures that

a continuous system (X, Σ, µ, Tt) is strongly mixing iff for all t the discrete-

time transformation T t is ergodic.14 Yet he is unable to prove this (it was

later shown to be false). As a result, Hopf attends to the question which

weaker statistical property is equivalent to the condition that for all t the

transformation T t is ergodic. The answer he arrives at is Definition 5. There-

fore, weak mixing is condition-justified because its justification stems from

it being equivalent in a natural way to a condition regarded as valuable.

Second, Hopf [1932b] is concerned with Gibbs fundamental hypothesis

that any initial distribution tends toward statistical equilibrium, and he de-

rives several conditions under which this hypothesis holds true. Within this

context, he becomes interested in how properties of a system (X, Σ, µ, T )

relate to the composite system (X × X, Σ × Σ, µ × µ, T × T ) comprising

two copies of the single system. Because of the importance of ergodicity, it

is natural to ask: which property of the single system is equivalent to the

composite system being ergodic? Hopf [1932b] provides the answer, namely

Definition 5 of weak mixing. Hence weak mixing is condition-justified as

Halmos [1949, p. 1022] stresses by referring to Definition 1 and 4: an “in-

dication that weak mixing is more than an analytic artificiality is in the

assertion that T is weakly mixing if and only if its direct product with itself

is indecomposable [ergodic]”.

Third, when discussing Definition 3, we encountered the property of a

continuous spectrum which arises in spectral theory. Koopman and von

Neumann [1932] emphasise the naturalness of, and devote their paper to,

this property. From the beginning of ergodic theory the correspondence of

concepts from spectral theory and set-theoretic and integral-theoretic con-

cepts from ergodic theory has been a core theme. Hence it was natural to

address the question, as Koopman and von Neumann did, which set-theoretic

13(X, Σ, µ, T ) is strongly mixing iff for all A,B ∈ Σ

lim
n→∞

µ(Tn(A) ∩B) = µ(A)µ(B).

14A system (X, Σ, µ, T ) is ergodic iff for all A ∈ Σ if T (A) = A, then µ(A) = 0 or 1.
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or integral-theoretic definition is equivalent to having a continuous spectrum.

The answer they arrived at is Definition 1 of weak mixing. Thus, again, weak

mixing is condition-justified.

I have found no book motivating weak mixing by the condition that for

all t the transformation T t is ergodic. This might be because that character-

isation does not hold for discrete systems.15 The other two interpretations

of weak mixing as condition-justified appear in standard books on ergodic

theory, e.g. Halmos [1956, p. 39] and Petersen [1983, p. 64]. The latter com-

ments:

That the concept of weak mixing is natural and important can

be seen from the following theorem, according to which a trans-

formation is weakly mixing if and only if its only measurable

eigenfunctions are the constants.

To summarise, all versions of weak mixing are condition-justified because

their justification stems from their being equivalent in a natural way to a

condition regarded as valuable. The next definition illustrates the danger of

not appreciating that a definition is condition-justified.

4.2.2 Discrete-time Bernoulli-system

Recall Definition 2 of a Bernoulli-system. The appeal to isomorphisms makes

this definition indirect. Furthermore, most states of the systems encountered

in the sciences, e.g. states of Newtonian systems, are not infinite sequences.

Thus it is often easier to work without notions referring to infinite sequences.

In investigating simple systems isomorphic to Bernoulli-shifts, it became clear

that proving an isomorphism amounts to finding a partition which can be

used to code the dynamics. Hence it was natural to ask which condition that

does not appeal to isomorphisms and infinite sequences, but to partitions, is

equivalent to a Bernoulli-system. Ornstein [1970] gives the definition which

answers this question:16

15The irrational rotation of the circle is a counterexample [Petersen, 1983, p. 8].
16Strictly speaking, it is equivalent to Definition 2 only for Lebesgue spaces. Since all

spaces of interest are Lebesgue, this is considered unproblematic [Petersen, 1983, pp. 16–17
and p. 275].
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Definition 6 (X, Σ, µ, T ) is a Bernoulli system iff there is a partition α

such that

(i) T iα is an independent sequence, i.e. for any distinct i1, . . . , ir ∈ Z, and

not necessarily distinct αj ∈ α, j = 1, . . . , r (r ≥ 1):

µ(T i1α1 ∩ . . . ∩ T irαr) = µ(α1) . . . µ(αr).

(ii) Σ is generated by {T iα |i ∈ Z}.

Hence Definition 6 can be justified by the fact that it gives an answer to

the above question, i.e. it is condition-justified. Standard books on ergodic

theory also hint at that justification [Shields, 1973, p. 8, p. 11; Sinai, 2000,

p. 47].

There have been attempts to justify Definition 6 as capturing a preformal

idea of randomness. Interpreting the measure as time-independent probabil-

ity, condition (i) captures the idea that any number of finite events of a

specific partition at different times are independent. Berkovitz et al. [2006]

argue that because condition (i) can be thus interpreted, Bernoulli-systems

capture randomness;17 they do not say anything about condition (ii). Yet

since (i) is only one part of this definition, this justification of Definition 6

fails.18 Generally, if a definition does not capture the idea it is said to capture,

the justification fails because it is unclear why this definition is chosen.

Batterman’s [1991] and Sklar’s [1993, pp. 238–239] motivation for Defini-

tion 6 is also that it captures a preformal idea of randomness. Their argument

as expressed by Batterman [1991, pp. 249–250] is:

Now let us see just how random a Bernoulli system is [...] The

17Actually, a slip occurred in Berkovitz et al.’s [2006, p. 667] interpretation of condition
(i); (i) holds only for any finite number of events of a specific partition at different times,
not for any events.

18For instance, the following system fulfills (i) but not (ii): let (X, Σ, µ) be the ordinary
Lebesgue measure space of the unit cube X. Let

T (x, y, z) := (2x,
y

2
, z) if 0 ≤ x <

1
2
, (2x− 1,

y + 1
2

, z) if
1
2
≤ x ≤ 1.

Obviously, for (X, Σ, µ, T ) condition (i) of Definition 6 holds for α = {{x ∈ X |
0 ≤ x < 1

2}, {x ∈ X | 1
2 ≤ x ≤ 1}}. But (X, Σ, µ, T ) is not a Bernoulli-system since it

is not ergodic.
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Bernoulli systems are those in which knowing the entire past his-

tory of box-occupations even relative to a partition that is gen-

erating in the above sense, is insufficient (in the sense of being

probabilistically independent) for improving the odds that the

system will next be found in a given box.

As an interpretation of randomness this is puzzling. Even if it exactly cor-

responded to Definition 6,19 it is unclear, from the viewpoint of capturing

a preformal idea of randomness, why independence is required relative to

generating partitions; and I found no convincing justification for this.

It seems that the difficulty stems from the fact that Definition 6 is really

condition-justified. As we have seen for weak mixing, condition-justified

definitions may in other contexts also capture a preformal idea valuable in

some sense. However, often—and this is true for Definition 6 as discussed—

this won’t be the case. Then there is the danger of not appreciating that

a definition is condition-justified and claiming that it captures a valuable

preformal idea, when it does not. It seems that in interpreting Definition 6

Batterman and Sklar fell into this trap. This danger is similar to the one

identified by [Lakatos, 1976, p. 153], viz. claiming that a proof-generated

definition captures a valuable preformal idea when it does not.

Let us now turn to the final kind of justification I have identified.

4.3 Redundancy-Justification

We call a definition which is justified because it eliminates at least one re-

dundant condition in an already accepted definition redundancy-justified. A

redundancy-justified definition can be regarded as providing knowledge since

it shows that specific conditions in an accepted definition are redundant.

19It does not. First, their interpretation does not make clear that the matter of concern
is the existence of a partition satisfying (i) and (ii). Even if this is disregarded, their
interpretation applies to more systems than Bernoulli systems, for instance, also for to the
system and the partition α discussed in the previous footnote. Here the events constituting
any entire history of box-occupations are of probability zero. Then Batterman’s and Sklar’s
claim about the independence from the entire past history of box-occupations is trivially
true. Correct is: any finite number of events of a specific partition at different times are
independent, even though the partition is generating.
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It is obviously desirable in mathematics to find out whether there are

any redundant conditions in an already accepted definition. Typically, both

the original definition, and the one in which the redundant conditions are

eliminated, each have their own advantages. It depends on the definitions,

but the former might be easier to understand or might allow for a more fine-

grained analysis; the latter is simpler (in the sense of being more concise),

and it might be that only the latter is easier to use in proofs, allows for

natural generalizations, or suggests important analogies.

So when is it better to propound the original definition? And when is it

better to introduce instead the new definition without the redundant condi-

tions, i.e. when is redundancy-justification a reasonable kind of justification?

I think the answer depends on the definition and the context in which the

definition is considered. For the purpose of an introductory textbook it might

be better to propound the original definition because it is easier to under-

stand. Conversely, for the purpose of a research article it might be better

instead to use the new, concise definition, since it is easier to use in some

proofs. Furthermore, in many cases it does not seem to matter much whether

the original definition or the definition in which the redundant conditions are

eliminated is introduced, so long as the origin of the definition and the re-

dundant conditions are clearly pointed out.

As in the case of proof-generation and condition-justification there is the

danger of not understanding that a definition is redundancy-justified and

claiming that it captures a valuable preformal idea, when it does not.

Two definitions of the list of notions of randomness [cf. section 3] are

redundancy-justified: the continuous version of a Bernoulli-system, which we

will discuss for illustration, and a Kolmogorov-system [Sinai, 1963, pp. 64–65;

Uffink, 2006, pp. 94–96].

4.3.1 Continuous-time Bernoulli-system

We have seen that Kolmogorov [1958] and Sinai [1959] established that iso-

morphic discrete-time Bernoulli-systems have the same Kolmogorov-Sinai

entropy [cf. subsection 4.1.3]. A decade later Ornstein [1970] proved the

converse, i.e. that Bernoulli-systems with equal entropy are isomorphic.
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Having established that celebrated result, Ornstein became interested

in finding an analogous definition of a Bernoulli-system for continuous time,

and he asked whether the Kolmogorov-Sinai entropy could be used to classify

them too. The most obvious definition of a continuous system (X, Σ, µ, Tt)

describing an independent process is that for all t the discrete system (X, Σ, µ, Tt)

is a Bernoulli-system. Ornstein [1973] first introduces this definition of a

continuous Bernoulli-system, and then he shows that there are redundant

conditions in this definition because it is equivalent to the following defini-

tion:

Definition 7 (X, Σ, µ, Tt) is a Bernoulli-system iff the discrete system (X, Σ, µ, T1)

is a Bernoulli-system.

Hence Definition 7 is redundancy-justified because it eliminates redundant

conditions. In this way it seems to be justified in Ornstein’s [1974, p. 56]

book too.20

Any continuous Bernoulli-system can be normalised such that it has

Kolmogorov-Sinai entropy one. Ornstein [1973] indeed showed that any (and

only a) normalised continuous-time Bernoulli-system is isomorphic to a nor-

malised continuous-time Bernoulli-system. Later it was proven that some

Newtonian systems are Bernoulli, showing how random Newtonian systems

can be [Ornstein, 1989, p. 183].

4.4 Occurrence of the Kinds of Justification

To sum up: in addition to Lakatos’s proof-generated definitions, I have iden-

tified three kinds of justification of definitions. To my knowledge, condition-

justification and redundancy-justification have not been identified before. I

do not claim that the kinds of justification we have discussed are the only

ones at work in mathematics. Further studies might unveil yet other ones.

20Ornstein [1974, p. 56] expresses this indirectly by introducing continuous Bernoulli
systems as follows; ‘We will call a flow {(X, Σ, µ, Tt)} a {continuous Bernoulli-system}
if {(X, Σ, µ, T1)} is a {Bernoulli system}. (We will prove later that if {(X, Σ, µ, T1)} is
a {continuous Bernoulli system}, then {(X, Σ, µ, Tt0)]} for each fixed t0 is a {Bernoulli
system}’).
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Two more general comments about justifying definitions should be added

here. First, for any kind of justification there are three possibilities: (i) a

definition is reasonably justified in this way; (ii) it is justified but not reason-

ably justified in this way; (iii) it is not justified in this way. As regards (ii),

for instance, if the idea of being equivalent in a measure-theoretic sense to an

independent process like throwing a die was not valuable, Definition 2 would

be natural-world-justified but not reasonably justified. Second, an already

justified definition has sometimes additional good features which support this

definition but which do not by themselves constitute a sufficient justification.

These features may also be important in deciding between different defini-

tions. For instance, it is often said that a merit of the Kolmogorov-Sinai en-

tropy is its neat connection to other notions of randomness like Kolmogorov-

systems. These are good features but not sufficient justifications; since if

there were no further reasons for studying the definition, there would still be

the question why we should regard it as worth considering [cf. Smith, 1998,

pp. 174–175].

How widely do the kinds of justification we discussed occur? To answer

this, I first comment on the notion of a mathematical subject. I think that

regardless of which plausible understanding of ‘subject’ is adopted, my claims

are true. But a possible way to operationalise this idea is the following: with

the subjects identified by the Mathematical Subject Classification21 it would

be possible to create a list of subjects of the mathematics from the nineteenth

century up to today. Then with notions of randomness in ergodic theory some

of the main definitions of the subject ‘strange attractors, chaotic dynamics’

have been investigated.

Based on my knowledge of mathematics, I endorse the following three

claims about mathematics produced in the twentieth century up to the

present day:22 first, proof-generated, condition-justified and redundancy-justified

21This is a five digits classification scheme of subjects formulated by the American
Mathematical Society; see www.ams.org/msc. For our purposes subjects concerned with
education, history or experimental studies have to be excluded.

22Starting with the twentieth century is somewhat arbitrary. All the here-discussed
kinds of justification appear also important in nineteenth century mathematics. Yet older
mathematics may be significantly different. Hence a close investigation would be necessary
to identify the role the kinds justification play in older mathematics.
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definitions are widespread. More specifically, these kinds of justification are

all found in the majority of mathematical subjects with explicit definitions.

Second, for nearly all mathematical subjects with explicit definitions which

(among other things) aim at describing or understanding the natural world,

natural-world-justified definitions are found. This includes subjects not only

from what is called applied mathematics but also from pure mathematics,

e.g. measure theory. Third, as in my case study for nearly all mathematical

subjects with explicit definitions many different ways of justifying definitions

are found and are reasonable. Indeed, I would be surprised if one subject

could be found where only one kind of justification is important. Clearly, my

case study shows that for the subject ‘strange attractors, chaotic dynamics’

these claims hold true.

For my case study the argumentation involved in justifying definitions is

typically not explicitly stated but is merely hinted at or merely implicit in

the mathematics. Because of the conventional style of mathematical writing,

this appears to be generally the case in mathematics, as also Lakatos [1976,

pp. 142–144] claimed. As we have seen, awareness of the ways of justifying

definitions is important for understanding mathematics and for preventing

mistakes. Thus it would be desirable if publications addressed this issue more

explicitly. Also, it should be mentioned that detailed knowledge of parts of

ergodic theory is necessary to assess how definitions are justified in my case

study. This confirms Tappenden’s claim that judgments about definitions

require detailed knowledge of the relevant mathematics [cf. section 2].

Let us reflect on the interrelationships between the kinds of justification,

an issue which seems not discussed in the literature.

5 Interrelationships Between the Kinds of Jus-

tification

In what follows when we speak of an argument for a definition we mean that

a reason is provided for a definition which cannot be split into two separate

reasons for this definition. Now we first ask about the interrelationships in

one argument : assume that a specific argument establishes that a definition
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is justified according to one kind of justification. Can it be that this argu-

ment implies that the definition is at the same time also justified according

to another kind of justification? Intuitively, one might think that in an argu-

ment a definition can only be justified according to one kind of justification.

Yet, as we will see, the matter is more complicated. Second, we ask about the

interrelationships between the kinds of justification in different arguments : if

different arguments justify the same definition, what combination of kinds

of justification do we find? We will discuss these two cases in the next two

subsections.

5.1 One Argument

Clearly, there are arguments where a definition is only proof-justified, natural-

world-justified, condition-justified or redundancy-justified. For example, uni-

form convergence as discussed by Lakatos [1976, pp. 131–133] is only proof-

justified, Definition 2 of a Bernoulli-system as capturing the idea of a measure-

theoretic system being equivalent to an independent process is only natural-

world-justified, weak mixing as corresponding to ergodicity of the compos-

ite system is only condition-justified, and Definition 7 of a continuous-time

Bernoulli system as eliminating redundant conditions is only redundancy-

justified.

By going back to the characterisation of the kinds of justification, we

see that the intuition that in an argument a definition can only be (reason-

ably) justified according to one kind of justification is correct except for one

case. Namely, in rare cases condition-justified definitions are at the same

time proof-generated in an argument. This is so if and only if the kind of

equivalence is regarded as natural because it occurs in the formulation of a

conjecture that should be established. For example, assume the following

conjecture is regarded as valuable: each function in a convergent sequence

of functions is continuous if and only if the limit function of the convergent

sequence is continuous. Further, assume that sequences of pointwise con-

vergent continuous functions without continuous limit functions are known.

Then mathematicians might ask: how has the notion of convergence to be

changed such that if and only if the limit function is continuous the sequence
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of continuous functions is convergent? The definition answering this question

would be clearly condition-justified. But it would also be proof-generated

since it is needed in order to prove the above conjecture.

Let us now turn to the interrelationships in different arguments.

5.2 Different Arguments

In our case study different arguments establish that weak mixing is condition-

justified: weak mixing corresponds to ergodicity of the composite system, to

the set-theoretic or integral-theoretic condition equivalent to having a con-

tinuous spectrum, and for continuous systems to the condition that for all

t the transformation T t is ergodic. Generally, one and the same definition

can be (reasonably) justified in the same way in different arguments by re-

ferring to different conjectures, preformal ideas etc. For proof-generation

Lakatos [1976, pp. 127–128] recognises this pattern.

What is more, we have seen that in different arguments Definition 1

of weak mixing is justified in different ways: as mentioned above, it is

condition-justified but also natural-world-justified, expressing the idea that

almost all sufficiently past events are approximately independent. Likewise,

the Kolmogorov-Sinai entropy is natural-world-justified, expressing the idea

of the highest average amount of information produced per step relative

to a coding; but it is also proof-generated concerning the conjecture that

spectrally-isomorphic systems are not always isomorphic. Generally, one

and the same definition can in different arguments be (reasonably) justified

in different ways.

Finally, a definition which is justified in any way can be used to (rea-

sonably) justify a definition in an arbitrary way. In this sense the different

kinds of justification are closely connected. For example, the natural-world-

justified Definition 2 of a Bernoulli-system is used to justify the condition-

justified Definition 6 of a Bernoulli-system.

A special case of this is when for proof-generated definitions preformal-

ideas shine through (which can be, but does not have to be the case). For

instance, consider definitions of polyhedron as discussed by Lakatos [1976].

Early definitions of polyhedron, which seem to be justified because they cap-
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ture the preformal idea of a solid with plane faces and straight edges, were

eventually replaced by definitions which are needed to prove the Euler con-

jecture. For these proof-generated definitions, to some extent, the preformal

idea of the old definitions still shine through. Hence Lakatos’s [1976, p. 90]

claim “In the different proof-generated theorems we have nothing of the naive

concept” is an unfortunate exaggeration.

We now return to Lakatos’s ideas on justifying definitions.

6 Assessment of Lakatos’s Ideas on Proof-

Generated Definitions

First, in focusing on proof-generated definitions, Lakatos fails to recognise the

interplay between the different kinds of justification of definitions, which we

discussed in section 5. In particular, Lakatos never indicates that in different

arguments the same definition can be justified in different ways.

Second, Lakatos fails to show, as we did for notions of randomness in

ergodic theory, that often various kinds of justification can be found and that

a variety of kinds of justification can be reasonable. We argued that Lakatos

may have believed the following [cf. section 2]: there are many mathemati-

cal subjects where proof-generation should be the sole important way that

definitions are justified; and there are many subjects after the discovery of

proof-generation where proof-generation is the sole important way that defi-

nitions are justified. From our claim that for nearly all mathematical subjects

many different ways of justifying definitions are found and are reasonable fol-

lows that this must be wrong [cf. section 4.4]. That is, subjects created after

the discovery of proof-generation where solely proof-generated definitions are

found and are reasonable appear to be exceptional.

Indeed, Lakatos could have shown with his case studies that often various

kinds of justification are found and that various kinds of justification can be

reasonable. To demonstrate this, I will now show that even for the subjects

discussed by Lakatos [1976] not only proof-generation but also other kinds

of justification are important. Because of lack of space, I show this here

only for the subjects to which the definition of uniform convergence and the
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Carathéodory definition of measurable sets belong. But this hypothesis can

easily seen to be also true for the subjects to which the other proof-justified

definitions Lakatos discusses (namely polyhedron, bounded variation and the

Riemann integral) belong.

Lakatos [1976, pp. 144–146] argues that uniform convergence is proof-

generated, also by referring to textbooks. This definition falls under the

subject ‘convergence and divergence of series and sequences of functions’.23

A definition discussed in this subject is the radius of convergence of a power

series. A power series is of the form
∑∞

k=0 ak(x− x0)
k, where ak ∈ R.

Definition 8 Its radius of convergence is the unique number R ∈ [0,∞] such

that the series converges absolutely if |x−x0| < R and diverges if |x−x0| > R.

The radius of convergence is often defined differently as follows. The root

test is a powerful criterion for the convergence of infinite series. Hence the

question arises whether there is a definition which is equivalent to the radius

of convergence as defined above but which gives an explicit way to calculate

this radius by referring to the root test. The answer is yes, namely:

Definition 9 For a power series the radius of convergence is

R := 1/ lim sup
k→∞

k
√
|ak|.

Thus Definition 9 is condition-justified, as, for example, hinted at in Marsden

and Hoffman’s [1974, pp. 289–290] standard analysis book: “The reason for

the terminology in {Definition 9} is brought out by the following result [that

by applying the root test, Definition 9 is equivalent to Definition 8].”

Lakatos [1976, pp. 152–154], mainly by referring to Halmos’s [1950] book,

argues that the Carathéodory definition of measurable sets is proof-generated.

This definition falls under the subject ‘classes of sets in measure theory.24 The

definition of a σ-algebra clearly belongs to this subject. The basic idea of a

σ-algebra is to have a collection of subsets of X including X which is closed

under countable set-theoretic operations. Thus a usual definition is [Cohn,

1980, pp. 1–2]:

23In the terms of the Mathematical Subject Classification.
24‘Classes of sets, measurable sets, Suslin sets, analytic sets’ in the terms of the Math-

ematical Subject Classification.
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Definition 10 A set Σ of subsets of X is a σ-algebra iff

(i) X ∈ Σ,

(ii) for all A ⊆ X if A ∈ Σ, then X \ A ∈ Σ,

(iii) for all sequences (Ak)k≥0 if Ak ∈ Σ for all k ≥ 0, then
⋃∞

i=0 Ak∈Σ,

(iv) for all sequences (Ak)k≥0 if Ak ∈ Σ for all k ≥ 0, then
⋂∞

i=0 Ak∈Σ.

Now one can easily see that the conditions (i), (ii) and (iii) imply (iv). Conse-

quently, many use the following definition because it eliminates a redundant

condition.

Definition 11 A set Σ of subsets of a set X is a σ-algebra iff (i), (ii) and

(iii) hold.

Clearly, it is redundancy-justified as, for instance, in Ash’s [1972, p. 4] stan-

dard book on measure theory.

To conclude, even for the subjects discussed by Lakatos various kinds of

justification are found and are reasonable.

7 Conclusion

This paper addressed the actual practice of how definitions in mathematics

are justified in articles and books and whether the justification is reasonable.

In section 2 I discussed the main account of these issues, namely Lakatos’s

ideas on proof-generated definitions. While important, this paper showed

how they are limited. My assessment of Lakatos and my thoughts on jus-

tifying definitions are based on a case study of notions of randomness in

ergodic theory, which was introduced in section 3. In section 4 I identified

three other important and common ways of justifying definitions: natural-

world-justification, condition-justification and redundancy-justification. To

my knowledge, condition-justification and redundancy-justification have not

been discussed so far. Also, we have seen that awareness of the ways def-

initions are justified is important for mathematical understanding and for

avoiding mistakes. Then in section 5 I discussed the interrelationships be-

tween the different kinds of justification of definitions, an issue which has not

been addressed before. In particular, I argued that in different arguments
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the same definition can be justified in different ways. Finally, in section 6 I

criticised Lakatos’s ideas on proof-generated definitions. They fails to recog-

nise the interplay between the kinds of justification. Furthermore, they fail

to show that often various kinds of justification are found and that a variety

of kinds of justification can be reasonable.
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