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 Abstract. In this paper, I will show that the Miracle Argument is unsound if one assumes a certain form 

of transient underdetermination. For this aim, I will first discuss and formalize several variants of 

underdetermination, especially that of transient underdetermination, by means of measure theory. I will then 

formalize a popular and persuasive form of the Miracle Argument that is based on “use novelty”. I will then 

proceed to the proof that the miracle argument is unsound by means of a mathematical example. Finally, I will 

expose two hidden presuppositions of the Miracle Argument that make it so immensely though deceptively 

persuasive. 

 

 1. Introduction. The Miracle Argument is an important argument for the defense of 

realism in science. Its current name was introduced by Hilary Putnam (1975, 73); van 

Fraassen called it the “Ultimate Argument” (1980, 39). It is a “positive argument for realism” 

claiming that realism “is the only philosophy that doesn’t make the success of science a 

miracle” (Putnam (1975, 73)). In its clearest and strongest form, the “realism” referred to 

above is spelled out as “scientific realism” and the “success of science” referred to above as 

“(novel) predictive success of science” (see Musgrave (1999 [1988], 60)). The argument is 

then conceived of as an inference to the best explanation consisting of two steps. First, it is 

claimed that realism explains (novel) predictive success of science satisfactorily and better 

than any non-realist philosophy of science. Second, it is concluded that it is therefore justified 

to accept scientific realism. 

  Transient underdetermination claims, roughly speaking, that with respect to currently 
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available evidence, any theory T relevant for and consistent with this evidence has radically 

false rival theories equally relevant for and consistent with the same evidence. As I will show, 

transient underdetermination undermines a crucial premise of the Miracle Argument. Thus, 

transient underdetermination shows that the Miracle Argument is unsound. 

 In what follows, I will first present the version of the Miracle Argument that I will be 

discussing (section 2). I will then introduce various forms of underdetermination, especially 

three variants of transient underdetermination in sections 3 and 4. I will assume one particular 

variant of transient underdetermination as a premise for the rest of the paper. In sections 5 and 

6, I will formally analyze the consequences of transient underdetermination for the Miracle 

Argument. The result is that, under the assumption of transient underdetermination the 

Miracle Argument fails. In section 7, I will analyze why the Miracle Argument appears so 

immensely plausible, in spite of being fallacious given transient underdetermination. The 

paper closes with a short summary (section 8). Note that the paper only addresses the Miracle 

Argument as it relates to scientific realism, and is completely silent about structural realism. 

 

 2. The Miracle Argument. In somewhat more formal terms, the presumed situation in 

which the Miracle Argument is to be applied is as follows.  

 Let us assume that appropriate notions of truth and of approximate truth of theories 

have been defined, and that true and approximately true theories exist (otherwise the whole 

discussion about scientific realism would not make sense). 

Let D1 be a finite set of data.1  

Let T1 be the set of theories such that T1 := {T, T is relevant for and consistent with D1}; we 

assume that T1 ≠ Ø 

Let us now introduce a partition of T1 into two subsets: those theories which are true or 

approximately true, and those which are radically false, by which I mean that they are not 

even approximately true. Thus 
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T1
AT := {T ∈ T1, T is true or approximately true} 

T1
RF := {T ∈ T1, T is radically false} 

with T1 = T1
AT ∪ T1

RF. 

As stated above, we assume that T1
AT ≠ Ø. We further assume the idealization that there is a 

sharp boundary between true and approximately true theories on the one hand and radically 

false theories on the other, i.e., T1
AT ∩ T1

RF = Ø. Remember that even the radically false 

theories contained in T1
RF are relevant for and consistent with the data D1; their radical falsity 

does not derive from their relationship to the data D1 but concerns their status when judged 

from the presupposed notions of truth and approximate truth of theories. 

 Now let N be novel data relative to the data D1 and the set of theories T1.
2 The sense of 

novelty relevant in the context of the Miracle Argument is not temporal novelty but what has 

been dubbed “use novelty” (or “strong predictive success”; see, e.g., Worrall (1985); Worrall 

(1989, 148-9); Carrier (1991, 26-28); Earman (1992, 114-5); Leplin (1997); Psillos (1999, 

106)). The data N are not only different from the original data D1 but they have also not been 

used in the construction of the theories contained in T1 (these theories have only been adapted 

to the data D1). This concept of use-novelty is sometimes vague and ambiguous in its 

application (see, e.g., Earman (1992, 115)) but this fact does not have to concern us here 

because the existing clear-cut cases will suffice to get the Miracle Argument off the ground. 

Let us now assume that there is a theory T* ∈ T1, i.e., a theory that is relevant for and 

consistent with the original data D1, that is capable of predicting the novel data N although it 

has not been adapted to this task. How can this fact be explained? A possible explanation is 

that T* ∈ T1
AT, i.e., that T* is true or approximately true. In fact, if T* gets something of the 

world approximately or even completely right, it is not surprising that it can predict certain 

data that have not been used in its construction; thus the proposed explanation is satisfactory. 

Moreover, it seems impossible that a radically false theory could generate novel successful 
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predictions—it simply lacks the resources to do so. Thus, the proposed explanation is better 

than any possible rival—it may even be the best and only explanation. This concludes the 

first step of the Miracle Argument, which shows that realism explains novel predictive 

success of science satisfactorily and better than any non-realist philosophy of science. The 

second step of the argument, which is not immediately important at this point, then infers the 

superiority of realism over anti-realism by an inference to the best explanation. 

 

 3. Underdetermination. Let us now bring underdetermination into the picture. One 

form of underdetermination is called “radical” or “strong” or “Quinean” underdetermination. 

It states that for any theory T, there are always empirically totally equivalent theories that are 

not compatible with T. In other words, on the basis of any conceivable empirical data, we are 

unable to decide which of these rival theories we should accept. Given that these theories may 

come with radically different ontologies, strong underdetermination is a very serious threat to 

scientific realism. Given empirically equivalent theories with different ontologies, we cannot 

rationally prefer one or the other set of theoretical entities that these theories imply, based on 

empirical data (see, e.g., Quine (1951, sect. VI); however, see Severo (2008) on the 

difficulties to exactly pin down Quine’s position and its reception). Thus, any choice between 

different sets of theoretical entities lacks an empirical basis, making scientific realism 

extremely problematic. 

 As strong underdetermination is a very strong concept indeed, its existence has been a 

matter of controversy (see, e.g., Stanford (2006, 11-16). However, rather than trying to 

resolve this controversy, another strategy has been to weaken the concept of 

underdetermination so as to produce a concept whose applicability appears less controversial. 

The result is typically called “weak” underdetermination or, as introduced by Lawrence Sklar, 

“transient” underdetermination (of theories by data) (Sklar (1975, 380-381)). Transient 

underdetermination holds if and only if, with respect to currently available evidence, any 
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theory T relevant for and consistent with this evidence has rival theories equally relevant for 

and consistent with the same evidence. This sort of underdetermination is transient because 

any data available in the future may destroy the equivalence of T and its rivals with respect to 

the then available evidence. Some authors claim that transient underdetermination is a fairly 

uncontroversial and empirically confirmed fact of science. Sklar writes that “[e]ven those 

skeptical of the very possibility of radical underdetermination are likely to admit that transient 

underdetermination is a fact of epistemic life” (1975, 381). Kyle Stanford even suggests “that 

the historical record of scientific inquiry provides compelling evidence that recurrent, 

transient underdetermination is our actual epistemic predicament in theoretical science rather 

than a speculative possibility” (2006, 18). Or: “the historical record of scientific inquiry itself 

provides us with abundant empirical evidence that there are probably scientifically plausible 

alternatives to even the best contemporary fundamental scientific theories that are equally 

well-confirmed by the evidence available to us” (2009, 2). The reason is that quite often 

scientifically acceptable competitors for theories that were accepted in their time but are 

obsolete now, were invented only later. These competitors were conceptually out of reach at 

the earlier time – they were “unconceived alternatives”, as Stanford calls them. The important 

point here is that these unconceived alternatives to well-confirmed theories are by no means 

bizarre philosophical constructions that no scientist would ever consider. Just the opposite: 

they are the theories that were later accepted as direct or indirect successors of the theories in 

question. 

 Be that as it may, transient underdetermination as just introduced appears to be a 

pretty clear concept. However, it turns out that there are different variants of this concept 

available which differ in strength and, consequently, in their possible roles in arguments 

relevant to the debate about scientific realism. Before entering this debate, it is thus advisable 

to distinguish some of these variants. 
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4. Variants of transient underdetermination. Before introducing these variants, let us fix our 

notation. As in section 2, let D1 be a finite set of data and let T1 be the set of theories relevant 

for and consistent with D1. In its weakest form, transient underdetermination (TU) states that 

for every theory T from T1 there exists another theory T′ from T1 that is not compatible with 

T. In more formal terms: 

 

Definition 1 of TU: 

TU holds iff ∀ T [(T ∈ T1) → ∃ T′ (T′∈ T1 ∧ ¬(T′ ∧ T))]. 

 

Note that “¬(T′ ∧ T)” means that T′ and T are not compatible but the source of this 

incompatibility is not specified. An obvious candidate is, of course, logical incompatibility 

but another candidate can be incommensurability if it is specified such that it implies 

incompatibility (as intended by Kuhn and Feyerabend, for instance). Definition 1 of TU is 

very weak indeed because it is already fulfilled by two minimally differing theories consistent 

with the given data, for instance the true theory and one minimally differing from it at one 

point, i.e., an approximately true theory. Definition 1 is, in fact, only a necessary condition for 

an adequate definition of TU because TU posits the existence of radically false alternatives 

that are nevertheless relevant for and consistent with the given data, to (approximately) true 

theories. The basic idea is that in a given historical situation, there are also theories operating 

with radically false basic assumptions in spite of their agreement with the available data. For 

instance, at some historical time, phlogiston theory may have been in good agreement with 

the available data in spite of its radical falsity, as seen from today’s point of view. The idea of 

the existence of radically false alternatives, relevant for and consistent with the given data, to 

a true theory can easily be articulated by means of the partition of T1 into the two subsets: 

those theories which are true or approximately true, and those which are radically false. We 

will denote these subsets as T1
AT and T1

RF, respectively, and assume, as in section 2, T1
AT ≠ 
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Ø. The second attempt at a definition of TU, stronger than the first attempt, reads: 

 

Definition 2 of TU: 

TU holds iff T1
RF ≠ Ø. 

 

For the purposes of my argument, definition 2 of TU is still too weak: it does not 

capture the idea that transient underdetermination means that there must be “quite a few” 

radically false theories in T1. In the literature, there are a variety of arguments to the effect 

that for a given set of data, there are many more radically false theories than (approximately) 

true theories fitting these data. I am not going to review, let alone to evaluate, these arguments 

in this paper. I am rather assuming this form of transient underdetermination, and shall try to 

give it a precise form and evaluate its consequences for the Miracle Argument.  

In order to precisely articulate the different magnitudes of the theory sets in question, I 

need the mathematical concept of a measure on a space of theories. A measure is a 

generalization of the familiar concept of volume which is defined for the 3-dimensional 

Euclidean space. In other words, a measure states how big a subset of a space is, for more 

general spaces than just 3-dimensional Euclidean space. By means of a measure on the theory 

space T1, we can express the idea about the differing relative size of the theory sets T1
AT and 

T1
RF. According to our supposition, the measure µ of T1

RF, i.e. µ(T1
RF), will be much larger 

than µ(T1
AT). So underdetermination in this form tells us that µ(T1

AT) << µ(T1
RF). Thus, we 

may formulate this variant of transient underdetermination in the following way: 

 

Definition 3 of TU: 

TU holds iff µ(T1
AT) << µ(T1

RF). 

 

In what follows, I will presuppose transient underdetermination in this form.  
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However, before we can proceed further, I need to say something about the general 

connection between the (prior) probability of finding an element of a given set in one of its 

subsets, and the measure of this subset. This connection is straightforward: the larger the 

subset is, the larger is the probability to find an element of the given set in it. In other words: 

The probability of finding an element of a given set S in its subset A is proportional to the 

measure of A, i.e., p(s∈A|s∈S) ~ µ(A) 

 

5. Formal arguments with TU and MA. Armed with the presupposed definition 3 of TU, we 

can now approach the arguments of both the anti-realists and the realists. Using the definitions 

of T1, T1
AT, and T1

RF of section 2, the anti-realist can formulate the following argument: 

 

Argument 1 (Transient Underdetermination) 

T1 = T1
AT ∪ T1

RF and T1
AT ∩ T1

RF = Ø 

µ(T1
AT) << µ(T1

RF) 

Therefore for any T ∈ T1, it is very probable that T ∈ T1
RF.  

 

 In other words, the argument states that the probability of any theory from T1, i.e., of 

any theory that is relevant for and consistent with the data D1, being radically false is much 

higher than its being (approximately) true. As stated above, this is because the probability of 

being (approximately) true or radically false is proportional to the measures µ(T1
AT) and 

µ(T1
RF), respectively. Thus, transient underdetermination tells us that for any T ∈ T1, it is very 

probable that T ∈ T1
RF.  

Here we can see how, due to transient underdetermination, the empirical adequacy of a 

theory T with respect to some finite data set D1 (i.e., being an element of T1) does not 

translate into (approximate) truth of that theory (i.e., into T being an element of T1
AT). This is 

how scientific realism is undermined by transient underdetermination. 
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 However, the sophisticated form of the Miracle Argument specifically answers this 

move of the anti-realist by explicating the “success of science” not by mere empirical 

adequacy of a theory T* with respect to some finite data set but by the use-novel predictive 

success of science. Given T*’s successful prediction of the use-novel data N, the former 

probabilities for T*’s membership in T1
AT or T1

RF, which were solely based upon the 

consistency relation of T* to D1, are obsolete.  On the basis of the additional information (i.e., 

the use-novel data N), T*’s formerly highly probable membership in T1
RF becomes highly 

improbable (or even impossible) because it would make T*’s use-novel predictive success a 

miracle. This sort of novel predictive success has happened again and again in the history of 

science; it can’t be just a miracle but must have an intelligible cause, most likely that T* ∈ 

T1
AT. Thus, the Miracle Argument tells us that for any T* ∈ T1 that makes a use-novel 

successful prediction N, it is very probable (or even certain) that T* ∈ T1
AT.  

 Formally, the argument reads like this: 

 

Argument 2 (Miracle Argument) 

T1 = T1
AT ∪ T1

RF and T1
AT ∩ T1

RF = Ø 

∃ T* ∈ T1 such that T* makes the novel prediction N 

For any T ∈ T1
RF, it is very improbable (or even impossible) to make prediction N. 

Therefore, it is very probable (or even certain) that T* ∈ T1
AT.  

 

In a sense, the Miracle Argument even seems to be strengthened by transient 

underdetermination. Transient underdetermination brings to the fore how immense the ocean 

of radically false theories is and how unlikely it is therefore to find a theory that will have 

novel predictive success beyond the empirical data for which the theory was designed. If, 

however, we hit upon a theory T* that does indeed have use-novel predictive success, we can 
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be pretty sure (or even certain) that this theory is at least approximately true. 

 Let us have a closer look at the tension between the conclusions of Arguments 1 and 2:  

Conclusion of Argument 1:  

Therefore for any T ∈ T1, it is very probable that T ∈ T1
RF  

Conclusion of Argument 2:  

Therefore, it is very probable (or even certain) that T* ∈ T1
AT.  

It is obvious that Argument 2 overrules Argument 1 because the former’s conclusion about T* 

states a posterior probability based on additional information.3  

 

6. Transient Underdetermination, again. Let us now investigate the potential effects that 

transient underdetermination has in a situation where a theory T* that has been adapted to the 

data set D1 is capable of predicting use-novel data N. The following line of argument is very 

tempting. After the data N have been produced, scientists try to invent theories that are 

adapted to the new data set D2 := D1 ∪ N. When the situation is described in this way, it is 

completely analogous to the situation in section 2 where we discussed the relationship 

between data D1 and theories T1.  

We thus have in complete analogy with section 2:  

D2 = D1 ∪ N is a finite set of data. 

Let T2 be the set of theories such that T2 := {T, T is relevant for and consistent with D2}. 

Again, we introduce a partition of T2 into two subsets: those theories that are true or 

approximately true, and those that are radically false. Thus 

T2
AT := {T ∈ T2, T is true or approximately true} 

T2
RF := {T ∈ T2, T is radically false} 

with T2 = T2
AT ∪ T2

RF. 

Remember, again, that the radically false theories contained in T2
RF are also relevant for and 



 P. Hoyningen-Huene: Miracle Argument and Transient Underdetermination. Version April 20, 2009 
 

11

consistent with the data D2.  

 At this point, we can bring in transient underdetermination again. As in the case of the 

sets T1
AT and T1

RF, transient underdetermination tells us about the relative sizes of the sets 

T2
AT and T2

RF. It tells us that  

µ(T2
AT) << µ(T2

RF). 

Thus, most of the theories that manage to be relevant for and consistent with the old data D1 

and the novel data N are not even approximately true.  

Clearly, the theory T* that produces the novel prediction N (beyond being consistent 

with and relevant for D1) is a member of T2. Now the crucial question is to which subset of T2 

does T* belong, to T2
AT or to T2

RF? Judged solely on the basis that T* is a member of T2, the 

answer is clear: it is very probable that T* is a member of T2
RF (because T2 = T2

AT ∪ T2
RF, 

T2
AT ∩ T2

RF = Ø and µ(T2
AT) << µ(T2

RF)). Yet, we know more about T*: T* is not only 

consistent with and relevant for D2 := D1 ∪ N, but having been adapted only to D1 it was still 

able to predict the novel data N. Does this fact change the picture and qualify T* to be with 

very high probability a member of T2
AT as the Miracle Argument has it? To answer this 

question, we must again compare the sizes of the relevant sets. Let us first define these sets. 

 To begin, we need the set of all theories from T1 that are able to produce the use-novel 

prediction N which I call T1→2. This is the set of all theories that have been adapted to D1, 

thus they are members of T1, but nevertheless predict the new data N, i.e., they are relevant 

for and consistent with D2 := D1 ∪ N, which means that they are members of T2. This yields 

 T1→2 := {T, T∈T1, T is predictively successful with respect to N}. 

We are interested in the relation between the sizes of the subsets T1→2
AT and T1→2

RF of T1→2: 

T1→2
AT contains all (approximately) true theories of T1→2, 

 T1→2
AT := {T, T∈ T1→2 ∧ T is (approximately) true} 

whereas T1→2
RF contains all radically false theories of T1→2, 
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 T1→2
RF := {T, T∈ T1→2 ∧ T is radically false}. 

As earlier, we assume T1→2
AT ∪ T1→2

RF = T1→2 and T1→2
AT ∩ T1→2

RF = ∅. 

Thus the question is, what is the relation between µ(T1→2
AT) and µ(T1→2

RF)? According to the 

Miracle Argument, µ(T1→2
AT) >> µ(T1→2

RF) which justifies the claim that any T* that 

produces use-novel predictions is with high probability (approximately) true. 

 However, it is not too difficult to construct model examples that show that the Miracle 

Argument is unsound given transient underdetermination. In the mathematical example that I 

discuss in the appendix, the sets T1→2
AT and T1→2

RF and the corresponding measures 

µ(T1→2
AT) and µ(T1→2

RF) can be explicitly analyzed. First, it turns out that T1→2 ≡ T2. In other 

words: The set of theories that are constructed in order to fit the data D1 and are – 

unexpectedly – also able to predict the use-novel data N, is the same as the set of theories that 

have been constructed to fit the data D2 := D1 ∪ N in the first place. Second, transient 

underdetermination does not only hold for T1, but also for T2. In other words, µ(T2
AT) << 

µ(T2
RF). Third, because of T1→2 ≡ T2, it also holds that T1→2

AT ≡ T2
AT and T1→2

RF ≡ T2
RF. 

Therefore, forth, µ(T1→2
AT) << µ(T1→2

RF). In other words, a theory T* that was constructed to 

fit the data D1 and is – unexpectedly – also able to predict the use-novel data N, is still very 

likely radically false, contrary to what the Miracle Argument claims. Fifth, in the 

mathematical example discussed in the appendix the picture does not even change for 

multiple use-novel predictions. In the model case, a theory that has repeatedly produced 

independent use-novel predictions is still very likely radically false. 

 Defenders of the Miracle Argument may object that the mathematical example I give 

in the appendix is so artificial and contrived that it has no real meaning for actual science 

whatsoever. I strongly disagree. I think that the situation of classical physics, for instance in 

the 18th and 19th century, bears structural similarity to my idealized mathematical example. In 

these two centuries, classical physics produced one use-novel prediction after the other. As is 

well-known, some physicists were so impressed that they believed that the fundamental 
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principles of physics were secured once and for all, and only some mopping up work was left. 

However, as we now know, all these repeated predictive successes were no indicators for 

success (or even truth), regarding areas outside of contemporary technical reach (there may 

even be a more general lesson to be learned about (heuristic) predictivism, see (Harker 

2008)). On three fronts, classical physics collapsed: at very high velocities, at very strong 

gravitational fields, and at very small energies. This situation is completely general. If some 

physical theory is extremely successful regarding the prediction of use-novel phenomena 

within a certain range of accuracy, nothing can be inferred about this theory’s potential, let 

alone its truth, when the experimental accuracy is increased by one, by two, or by twenty-six 

orders of magnitude.  

 

 7. Why does the Miracle Argument appear to be so plausible? The obvious question 

now is, how can we account for the impression that despite its existing fundamental 

weakness, the Miracle Argument appears to be so plausible?4 I think that its plausibility 

derives from two (hidden) presuppositions that are built in to the Miracle Argument. Let us 

look at Hilary Putnam’s classic statement of the Miracle Argument: “The positive argument 

for realism is that it is the only philosophy that doesn’t make the success of science a miracle” 

(Putnam 1975, 73). Firstly, note that the question, Why is science successful? (in the sense of 

use-novel predictive success) is a general question concerning all cases of successful use-

novel predictions. Note further that in his statement, Putnam presupposes that this question 

has a uniform answer, i.e., an answer on the level of a philosophy. In other words, Putnam 

immediately looks for an answer in terms of some very general conception of science, and not 

in terms of a detailed case-to-case analysis that may yield different answers for different 

cases. Clearly, this is a dubitable presupposition. Secondly, by naming his candidate answer, 

realism, Putnam implies what pair of philosophies he has in mind, namely realism and anti-

realism. Putnam suppresses the fact that the contrast to realism is not just one philosophy but 



 P. Hoyningen-Huene: Miracle Argument and Transient Underdetermination. Version April 20, 2009 
 

14

an extremely heterogeneous class of philosophies some of which might have the potential to 

explain the success of science while others might not. In Putnam’s statement, these two 

presuppositions are taken for granted such that the possibility or even necessity of critical 

discussion of their appropriateness does not come to mind. Let us now discuss these 

presuppositions in turn. 

 The existence of a uniform answer to the question why some theories are successful in 

producing novel predictions, i.e., an answer that identifies a feature possessed by all those 

theories and only by them, is highly dubitable. There are several substantially different 

possibilities why a particular theory may appear to be capable of producing successful novel 

predictions. Firstly, in rare cases the source of successful novel predictions may indeed be a 

pure coincidence: a lucky combination of numbers or of mathematical features, a cancelling 

of falsities, an unjustified but nevertheless successful extrapolation, etc. Secondly, the 

supposed use novelty of the prediction may be the result of ignorance and not really a case of 

novelty. Looked upon with a better understanding of the very same theory or from the vantage 

point of a successor theory, what appeared use-novel at some point in time may later turn out 

to have been implicitly inbuilt into the theory. Thirdly, a theory may have relevant similarities 

to a later, empirically more successful theory that translate into successful use-novel 

predictions, in spite of the two theories’ possibly fundamental ontological discrepancies 

(examples are presented and discussed, e.g., in (Carrier 1991) and (Lyons 2006)). Notice that 

from the point of view of the later theory, the earlier theory may be in some areas just a good 

numerical approximation to the later theory, in spite of being ontologically utterly divergent 

from it. Notice further that the later theory does not have to be (approximately) true for this 

situation to hold. Finally, in principle a theory may indeed be (approximately) true and 

therefore be able to make novel predictions. Thus, there are quite a few different possibilities 

why some theory may be capable of making successful use-novel predictions. The 

(approximate) truth of a theory is but one of several possibilities.  



 P. Hoyningen-Huene: Miracle Argument and Transient Underdetermination. Version April 20, 2009 
 

15

 The second presupposition of the Miracle Argument is that even among the uniform 

answers, only the alternatives of realism and anti-realism are considered. However, as has 

been discussed in the literature, among the anti-realist positions there are variants available 

that are also able to explain the success of science – realism is just not the only game in town. 

For instance, Timothy Lyons has discussed possible alternatives competing with realism in 

their explanatory role for the novel success of theories (Lyons 2003). His view is that serious 

competitors to realism include empirical adequacy, strong surrealism, and modest surrealism; 

Lyons himself favors the latter account (Lyons (2002, 78-79); Lyons (2003, 900-901)). Be 

that as it may, my point here is that the Miracle Arguments gains much of its persuasive force 

by making invisible possible competitors to realism that are located within the set of anti-

realist positions. 

 

8. Conclusion. Given our result, under the (plausible) supposition of transient 

underdetermination the Miracle Argument as an argument for scientific realism fails. First, 

our idealized example suggested that due to transient underdetermination, theories capable of 

making successful use-novel predictions are nevertheless most likely radically false. Second, 

in the previous section I have more concretely sketched several ways in which radically false 

theories may nevertheless be capable of producing successful novel predictions. Thus, 

(approximate) truth is not a candidate for uniformly explaining novel predictive success. 

Third, if scientific realism does not explain novel predictive success, we cannot proceed to the 

second step in the Miracle Argument, namely, that it is justified to accept scientific realism 

(see section 1). Thus, on the supposition of transient underdetermination, the Miracle 

Argument for scientific realism collapses. 
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Appendix 

Let us assume that the unknown “true theory” is a real-valued function y = f(x), 

defined for 0 ≤ x ≤ 10. Let us further assume that we have a set of functions fa1, …, a100(x) with 

100 free parameters ai and that f(x) can also be represented in this form (think, for example, of 

polynomials of degree 100, i.e., functions of the form fa1, …, a100(x) = ∑i=0,…,100 ai x
i). We want 

to get the true function f(x) by fitting the parameters ai to given data. For simplicity, let us 

assume that the parameters to be considered have a lower bound L and an upper bound U, i.e., 

∀i = 1, …, 100 L ≤ ai ≤ U. We are thus considering a set of functions T0 := {f a1, …, a100(x), L ≤ ai ≤ 

U, i = 1, …, 100}.  Any such function fa1, …, a100(x) is thus described by the values of the 100 

parameters, and any set of such functions is described by a set of values of the 100 

parameters. A natural measure for such a set of functions fa1, …, a100 is the Euclidean volume in 

the respective 100-dimensional parameter space. More explicitly, let F be a set of functions 

fa1, …, a100(x) characterized by a set P of parameter values, then the measure µ100 (the Euclidian 

volume in the 100-dimensional parameter space) of the set F is defined as µ100(F) := ∫P 

da1⋅⋅⋅da100. For instance, the measure of all functions fa1, …, a100 in a certain parameter range ∆a 

= (∆a1, …, ∆a100) (a 100-dimensional cuboid) is  ∫∆a da1⋅⋅⋅da100 = ∏i=0,…,100 ∆ai. Due to our 

restriction on the values of the parameters ai by the lower bound L and the upper bound U, the 

total measure of the function space T0 is finite: µ(T0) = (U – L)100. 

Let us now assume that for 10 different values of x between 0 and 1, we have correct 

measurements of f(x), i.e., we have correct data points (xj, yj), j = 1, 2, …, 10. Thus D1 := 

{(x j,yj), 0 ≤ xj < 1, j = 1, 2, …, 10}. Now we look for all functions fa1, …, a100(x) from T0 that fit 

the data set D1, i.e., these functions must fulfill the ten equations fa1, …, a100(xj) = yj, j = 1, 2, 

…, 10. These are 10 equations for the 100 parameters ai. By means of these equations, we can 

eliminate 10 parameters, say a91, … a100, by means of expressing them in terms of a1, …, a90. 
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Having done so, we have a set of functions ga1, …, a90(x) that by their construction fit the data 

set D1.
5 Thus, T1 = {ga1, …, a90(x), ga1, …, a90(xj) = yj, j = 1, 2, …, 10, L ≤ ai ≤ U, i = 1, …, 90} 

contains all theories relevant for and consistent with D1. Clearly T1 ⊂ T0. 

Do we have a case of transient underdetermination in the relevant sense? Remember 

that TU holds iff µ(T1
AT) << µ(T1

RF). Now we have to be careful about our choice of a 

measure. If we take our original measure µ100 := ∫ da1⋅⋅⋅ da100, both T1
AT  and T1

RF have 

measure 0. The reason is that µ100 (T1) = 0 because the parameter space of T1 is a 90-

dimensional hypersurface in a 100-dimensional space, and T1
AT and T1

RF are subsets of T1. 

Instead, we have to use the measure µ90 := ∫ da1⋅⋅⋅da90 that yields a non-zero measure for T1: 

µ90 (T1) = (U – L)90. The subset T1
AT of T1 is very small in comparison with T1, because in the 

case of approximately true and true theories, the parameter values are allowed to vary only 

very slightly around the true value, say by a small amount ∆a. Therefore, ∆a << U – L. We 

get 

µ90 (T1
AT) = ∆a 90 << (U – L)90 = µ90(T1) 

As µ90 (T1
RF) = µ90 (T1) - µ90 (T1

AT), we have indeed transient underdetermination in the 

relevant sense: µ90(T1
AT) << µ90(T1

RF). 

 Let us now consider use-novel predictions. So far, we have used the data D1 = {(x j,yj), 

0 ≤ xj < 1, j = 1,…, 10} in order to restrict the range of all available functions from T0. Now 

we bring in additional data, namely 10 correctly measured values yj of f (x) in the interval 1 ≤ 

x < 2. The set of data points {(xj,yj), 1 ≤ xj < 2, j = 11, 12, …, 20} has obviously not been 

used in the construction of T1 and thus represents use-novel data (relative to D1 and T1). In 

other words, the novel data set N is defined as N := {(x j,yj), 1 ≤ xj < 2, j = 11,…, 20}. We are 

now interested in functions T* from T1 that despite their having been constructed only out of 

data measured in the interval 0 ≤ x < 1, are still capable of correctly predicting the data from 

the interval 1 ≤ x < 2. Do such functions (‘theories’) exist, and if so, are they approximately 
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true? 

 Let us first identify the subspace of T1 in which possible T*’s are located. First, we 

consider the set T2 of all theories that are relevant for and consistent with the new data set D2 

:= D1∪N. T2 is constructed out of all functions fa1, …, a100(x) in exactly the same way as T1 was 

constructed. The only difference is that now we have to fit the functions fa1, …, a100(x) to D2 

instead of to D1 (see above). As we now have 20 data points, the result is that T2 consists of 

functions with only 80 free parameters: T2 = {ha1, …, a80(x), ha1, …, a80(xj) = yj, j = 1, 2, …, 20, L 

≤ ai ≤ U, i = 1, …, 80}. Clearly, T2 ⊂ T1. If T*’s exist, they are certainly located in T2 (they fit 

all 20 data points), yet we cannot say more. Let us therefore consider the set T1→2 := {T, 

T∈T1, T is predictively successful with respect to N} that picks out those elements of T1 that 

produce the use-novel prediction N. We can construct T1→2 out of T1 by imposing on its 

members the 10 additional conditions ga1, …, a90(xj) = yj, j = 11,…, 20. Again, by these 

equations we can eliminate 10 parameters and obtain T1→2 = {ka1, …, a80(x), ka1, …, a80(xj) = yj, j 

= 1, 2, …, 20, L ≤ ai ≤ U, i = 1, …, 80}. Note that in the definition of this set the ability of its 

members of having produced the use-novel prediction N is not explicit. But this ability is 

inbuilt in its construction because T1→2 just filters out those members of T1 that are indeed 

able to produce the use-novel prediction N. 

 What is the relation between T2 and T1→2? The members of T2 were fitted to 

accommodate the 20 data points (xj,, yj), 0 ≤ xj < 2, j = 1,…, 20. By contrast, the members of 

T1→2 were only fitted to accommodate the 10 data points in the interval 0 ≤ xj < 1, j = 1,…, 

10, but were nevertheless capable of correctly predicting the other 10 data points in the 

interval 1 ≤ xj < 2, j = 11,…, 20. Clearly, T1→2 ⊂ T2 because the members of the former set fit 

all 20 data points. But perhaps surprisingly, also T2 ⊂ T1→2 holds. Take some theory T’ ∈ T2. 

Clearly T’ is also a member of T1 because T2 ⊂ T1. If you scan theories in T1 and you hit upon 

T’, you can certainly use it to correctly predict the data points (xj,, yj), j = 11,…, 20 in the 



 P. Hoyningen-Huene: Miracle Argument and Transient Underdetermination. Version April 20, 2009 
 

19

interval 1 ≤ xj < 2 because T’ ∈ T2. Therefore, T’ ∈ T1→2. Thus, also T2 ⊂ T1→2 holds.6 We 

finally obtain T1→2 ≡ T2. 

Now we have to discuss the proportion of (approximately) true theories and radically 

false theories in T1→2 (≡ T2). Note first that T1→2
AT ≡ T2

AT and that T1→2
RF ≡ T2

RF. Thus, 

instead of discussing T1→2
AT and T1→2

RF, we may discuss the identical sets T2
AT and T2

RF. As 

we have only 80 free parameters, we have to use the measure µ80. By the same reasoning that 

we applied earlier in the discussion of the measures of T1 and its subsets T1
AT and T1

RF, we 

obtain 

µ80 (T2
AT) = ∆a 80 << (U – L)80 = µ80(T2) 

and  

µ80(T2
AT) << µ80(T2

RF),  

i.e., transient underdetermination holds in the relevant sense. Because of T1→2
AT ≡ T2

AT and 

T1→2
RF ≡ T2

RF, we also get 

 µ80(T1→2
AT) << µ80(T1→2

RF). 

Thus, any theory T* from T1 that happens to produce the use-novel prediction N (i.e., T* is 

also a member of T1→2) is with high probability radically false, contrary to what the Miracle 

Argument claims. 

 Note that in our exemplary case even several repeated, independent novel predictions 

do not change the picture. A theory T* from T1 (it was fitted to the data in [0, 1)) that happens 

to produce 10 use-novel predictions not only in the interval [1,2), but also in [2, 3), then in [3, 

4), then in [4,5) and finally even in [5, 6), is nevertheless very probably radically false. The 

reason is also intuitively clear. We have a very large number of different functions defined in 

the interval [0. 10]. When we pick out those functions that agree with the true function f (x) at 

10 data points in the interval [0, 1), these functions may still be very different from f (x) in the 

remaining interval [1, 10] of the total interval. Even restricting the set of those functions to 

those that happen to reproduce 10 data points each in [1,2), in [2, 3), in [3, 4), in [4,5), and 
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even in [5, 6), nothing can be predicted about their behavior in the remaining interval [6, 10]. 

Because we have still 40 free parameters left, most of those functions will do whatever they 

want and are certainly not even near any true data points (x, f(x)) in [6, 10]. Thus, we may not 

expect that even theories that have been fitted to some data and are capable of multiple use-

novel predictions, are (approximately) true. Use-novel predictions are by no means good 

indicators for (approximate) truth if transient underdetermination obtains. 
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1 The condition of the finiteness of D1 could be relaxed to include infinite sets but this is of no 

concern here. 

2 N may even be a set of data resulting from a series of experiments repeatedly generating 

novel data; I will revisit this point later.  

3 We can analyze the tension between Argument 1 and Argument 2 also as a case of what 

Hempel has called “the ambiguity of statistical explanation” (Hempel (1965, 394)), where two 

statistical arguments with true premises have contradicting conclusions. This tension is 

resolved because, firstly, the conclusion of Argument 1 does not strictly exclude any T from 

being an element of T1
AT. Secondly, Argument 2 provides us with more specific information 

about T* than argument 1. According to Hempel’s “requirement of maximal specificity” 

(Hempel (1965, 397-401)), we have to accept Argument 2 instead of Argument 1 because 

Argument 2 refers to a smaller reference class (to only those T* ∈ T1 that make the novel 

prediction N) than does Argument 1. Thus, due to its higher specificity, Argument 2 overrules 

Argument 1. 

4 The following argument is inspired by personal communication with P. Kyle Stanford in 

April 2006 and by the footnote 8 on p. 274 of (Stanford 2000). 

5 The relation between the functions ga1, …, a90(x) and the functions fa1, …, a100(x) is the 

following. Express the parameters a91, … a100 in terms of the parameters a1, …, a90, i.e., ai = ai 

(a1, …, a90), i = 91,…, 100 and in this way eliminate the parameters a91,…, a100 in fa1, …, 

a100(x). Thus: ga1, …, a90(x) = fa1, …, a90, a91(a1, …, a90),…, a100(a1, …, a90)(x). 

6 Pragmatically, there is of course a difference between the members of T1→2 and the members 

of T2, as the anonymous referee rightly remarks: the members of T1→2 are fitted to D1 and are 

then discovered to correctly predict N, whereas the members of T2 are fitted to D2 = D1 ∪ N 

from the start. Nevertheless, the two sets T1→2 and T2, are identical. As I am using their 

identity only to evaluate the sizes of some of their subsets, their pragmatic difference may be 
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legitimately ignored. 


