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Abstract

We present a precise form of structural realism, cadlemlip structural realismwvhich iden-
tifies ‘structure’ in quantum theory with symmetry groupsoviiever, working out the details
of this view actually illuminates a major problem for stuicl realism; namely, a structure
can itself have structure. This paper argues that, oncecgspreharacterization of structure is

given, the ‘metaphysical hierarchy’ on which group struatuealism rests is overly extrava-

gant and ultimately unmotivated.
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1 Introduction

There is a part of structural realism that is basically adtrend a basic consequence of structural
realism that is deeply implausible. The goal of this papty dear the muck around what structural
realism gets right, in order to bring out a new difficulty fagithe view.

The thesis of the paper has both a positive and a negativelpetpositive part is this:

e Structural realism has a solid basis in quantum physics;hwhiovides valuable insight into
both the nature of measurable quantities, as well as intd’svheeserved when theories

change.

In particular, structural realists have been correct testran the fundamental importance of sym-
metry groups in the foundations of quantum theory. We widivdiout the precise view that lurks
behind this insistence, and give it a nargeoup structural realism

Group structural realism will provide us with a concretemyp@int from which to survey a
general difficulty for structural realism. The statementlo$ problem is the negative part of the

thesis:

e The ‘metaphysical hierarchy’ on which structural realissts is overly extravagant at best,

and arbitrary worst.

The paper is organized into two parts: first, an expositiogrofip structural realism, in which
we develop the positive thesis; and second, a critique atstral realism, in which we develop
the negative. The first part begins with a general picturerofig structural realism in contrast
with related accounts. We demonstrate the connection tevg provides between structure and
measurable quantities, and then offer some positive resvaotaut theory change. The second part
illustrates how structural realism is troubled by the extise of ‘higher’ structures. We show that
in the case of group structural realism, these higher strastalso provide a positive account of
theory change, and finally argue that there appears to be henwtvated way to incorporate

them into the structural realist picture.
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2 What Is(Group) Structural Realism?

2.1 TheBasc Picture

John Worrall [[1989) suggested that some notion of ‘strectomight allow scientific realists to
overcome the problems posed by theory change and the pstsimeta-induction. This view
was later developed by James Ladynian (1998) into an expigiaphysical thesis, which begins
by ‘taking structure to be primitive and ontologically sidtent’ (Ladyman 19€8, pp. 420). Now,
many realists are advocating an ontology that gives strakctelations a more central role than
individual objects.

The positive claim of structural realism differs greatlprr author to author. Notably,
structural realists break down into ‘eliminativist’ ancmeliminativist’ accounts. While the for-
mer eliminates objects (claiming thanhly structure exists), the latter merely demotes (but does
not eliminate) objects to a lesser metaphysical status.ddevythere is one core assumption that

most accounts of structural realism (as a metaphysical)wdevehare:

The Structural Realist Hierarchy. The existing entities described by a scientific theory agaer

nized into a hierarchy, in which ‘structure’ occupies thg tonost fundamental position.

The eliminativist takes this hierarchy to contain only sture (or perhaps even jushe
structure, making the hierarchy trivial). The non-elintinist allows the hierarchy to contain
objects in some low-status position. In the latter casetwimaeans to be ‘fundamental’ in a hier-
archy of entities can be cashed out in various ways. For ebgrbpdyman and Ross characterize

it using the notion of supervenience on properties:

Ontic Structural Realism (OSR) is the view that the world Ga®bjective modal
structure that is ontologically fundamental, in the serfsgob supervening on the in-
trinsic properties of a set of individuals. According to Q®Ren the identity and indi-
viduality of objects depends on the relational structuthefworld. (Ladyman and Ross 2007,
pp. 130.)

Unfortunately, the precise notion pfiority that’s at stake here remains obscure. One can always

resort to analogies: the droplets of paint on a canvas miglebibsidered more fundamental than

For an overview, se¢ (Ladyman 2009).
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the images in the painting, because the images superverteairdplets. Similarly; the atoms
in a molecule are more fundamental than the molecule itedifich is more fundamental than
the substance. Structural realists argue that at the vpryatdhe most fundamental layer of this
hierarchy, there is onlgtructure.But these analogies break down: images in a painting céytain
cannot exist in the absence of paint droplets, but the shaéaigtence of structure is much less
cleaf.

Our strategy here will be to grant the structural realist astmas possible on such matters,
by leaving open exactljow one might understand ‘priority’ in a metaphysical hierardnstead,

we will assume that a such a notioanbe established, and is capable of either
e providing a well-motivated description of the structurattts most fundamentalor

e describing a multiplicity of fundamental structures, whilmetter informs our understanding

of what exists,

given the history of our best scientific theories. In the rsetisection, we will describe a precise
example from quantum theory, which appears to provide a [@agway to establish the structural
realist hierarchy. Unfortunately, we must later struggléhva dilemma, which suggests that the
existence of higher structures thwarts the success ofraiiteon.

Why propose a structural realist hierarchy? Broadly speghktihere are two main goals.
First: structural realism aims to provide a general, progretic account of science and scien-
tific discovery. Structural realist accounts of the metagitsg/of theory change, such as Ladyman
(1998), are canonical examples. Second: structural readims to solve specific problems in
the interpretation of a theory. For example, it has beengseg as a solution to the problem of
identical particles|(Ladyman and Ross 2063,1), and to the problem of interpreting spacetime
points [Ladyman 1998; Dorato 2000). Which structures armtefest may differ depending on
one’s goals. To avoid confusion, we will thus focus our attemin this paper on the first goal: for
structural realism to provide an improved account of howotles change.

Standing between structural realism and what it endeagashieve is the meaning of the

word structure Ladyman and French themselves note that ‘Because of thk afids embrace and

JKantorovich (2006) has recently argued that some strugital exist even in the absence of particles.
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its complex history, defining what is meant by “structuretiamaracterizing the tendency in gen-
eral, is problematic’ (French and Ladyman 209B). Ladyman and Ross similarly accept the crit-
icism that structural realism may not be well ‘worked outdwtver, they retort that ‘it is far from
clear that OSR’s rivals are ‘worked out’ in any sense that @8R (Ladyman and Ross 2007, pp.
155).
Clearly, someone ought to work something out. As a start|liteyi to show that, using

the resources of group theory and quantum mechanics, aprataracterization of ‘structure’ can
be worked out in as much detail as you like. The specific vieat ktipropose we work out is the

following:

Group Structural Realism (GSR). The existing entities described by quantum theory are orga-
nized into a hierarchy, in which a particular symmetry graagrupies the top, most fundamental

position.

Like the structural realist hierarchy set out above, thaseshent of GSR should be taken as
a minimal assumption of the view. Focusing on this assumgtitows us to leave the exact nature
of a group structure’s ‘existence’ to the individual metggibian.

GSR has a good deal of precedent among structural realistseample, Aharon Kan-
torovich argues for a conception of particle physics in whiaternal symmetry is the deepest
layer in the ontological hierarchy,’ and in particular, thavor SU(3) symmetry was ontologically
prior to hadrons [...] whereaSU (5) is ontologically prior only to baryons[ (Kantorovich 2003,
pp. 673). Holger Lyre has suggested an account of objedt$dkas the group structure as primar-
ily given, group representations are then construed framstinucture and have a mere derivative
status’(Lyre 2004, pp. 663). Similarly, Ladyman and Rogsliaithat, ‘elementary particles are hy-
postatizations of sets of quantities that are invarianeutite symmetry groups of particle physics’
(Ladyman and Ross 2007, pp. 147).

Unlike many more abstract accounts of structural realismantum theory provides GSR
with a precise connection to the physical quantities thatweteally observe and measure in the

lab. In the next section, we will review the physical resthigt provide this connection.
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2.2 Wigner’sL egacy
Yuval Ne’eman and Shlomo Sternberg have recorded an olitlegohysicist’s adage:

Ever since the fundamental paper of Wigner on the irredaaibresentations of the
Poincaré group, it has been a (perhaps implicit) definitigrhysics that an elementary
particle ‘is’ an irreducible representation of the grodf,of ‘symmetries of nature’.

(Ne’eman and Sternberg 1991, pp. 327.)

Despite their abstractness, irreducible unitary repitasems do seem to satisfy our intuitions
about elementary particles. Jonathan Bain suggests twoistustions: (1) an elementary particle
should be uniquely labeled by a mass and a spin parameteiqthey the eigenvalues of a total
4-momentum and a totdlangular momentum operator); and (2) a particle should \erignt up

to the group of spacetime symmetries, in order to satisfy fiowitions concerning the continuity
of particle identity through timel(Bain 2000, pp. 402fn)n®also wants that, (3) an elementary
particle cannot be ‘decomposed’ into further particles} @) a particle should be associated with
a set of observables that describe its possible states.

One can now observe: Wigner showed that the irreduciblenniepresentations of the
Poincaré group do indeed satisfy (1) and (3) because aluaibility; they satisfy (2) because they
represent the Poincaré group; and, they satisfy (4) bedhey are unitary

Although this metaphysical picture of ‘particles as repraations’ is often attributed to
Wigner, he does not seem to have advocated it in print. Thedarfil930) paper that Ne’emann
and Sternberg refer to sets out only to correlate the valtipbysical magnitudes (the so-called
‘quantum numbers’) with parameters labeling group repried®ns — in particular, the represen-
tations of the spacetime symmetry group. By classifyingradlirreducible unitary representations
of this group, Wigner is able to identify all the possibled&bof mass, spin and parity. This pro-
vides a tight connection between a symmetry group of natureé the measurable properties of a
guantum system.

A simple textbook example will help to illustrate this cortien. Take a familiar physical

property like angular momentum. In a given situation, quantheory assigns a fixed value to

3Here’s a sketch of how one can obtain (4). The Poincaré gsoilne product of 1-parameter subgroups. Consider
a strongly continuous unitary representation of any sublgaup. Stone’s theorem guarantees that this represamtati
is generated by a unique self-adjoint operaiorThis operator is an observable, in any state space on vihitts.
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some aspects of angular momentum, like (say) the total angudbmentum of an isolated system.
Other aspects, such as ‘angular momentum inztd@ection,” might (prior to measurement) be
assigned a spectrum of values. Wigner’'s approach allows tertk of physical magnitudes such
as these aproperties of a symmetry group

To simplify our example, we can ignore the existence of spine begins with the group
SO(3) of continuous rotations about a point. The faithful irreithie representations dfO(3)
turn out to be representable by groups of complex-valuediceatof odd dimensioni2; + 1),
wherej is a positive integer. If desired, a given representatian lma thought of as acting on,
say, the state space of an electron shell around a Hydrogem ddowever, the imagery of this
individual object isn’t required for our construction. tead, we can skip directly to defining the
total angular momentum = (n — 1)/2, in terms of the dimension of the representation. The
angular momentum operators can then be picked out as elgewfaht representation, and angular
momentum in the:-direction can then be defined and shown to have the usugenstepped
spectrum{—j,...,0,...,j}.

In summary: angular momentum is recovered, with all its etgukproperties, from facts
about a symmetry group; no assumptions about the gtafen individual object are neededrhe
construction achieves roughly what Eddington suggested, [{jn fundamental investigations the
conception of group-structure appears quite explicitlyhes starting point; and nowhere in the
subsequent development do we admit material not derived group structure| (Eddington 1958,
pp. 147). That such a development is possible is a fact abeuplysics. But it is also what
paves the way for a reasonable structuralist metaphysiggeNs approach is just what is needed
to allow the group structural realist to speak safely of prtips like angular momentum, without
recourse to an ontology of individual objects.

In particular, GSR places group structure at the top of theapig/sical hierarchy. In the
example of angular momentum, the fundamental structuheisatational symmetry groufO(3).

A measurable physical magnitudg provides information about the group (in this case, it pick
out the dimension of the representation). And, if desirete can proceed further to construct

a model of an individual object, like a hydrogen atom — bus tkind of construction would be

4Spin is incorporated just as easily by replac1@(3) with its double-covering grousU (2) and following the
same procedure.
5This standard textbook computation was first published inaklby Wigner [19311).
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metaphysically ‘secondary.

Recent structural realists have tried to express this kirsitwation in terms ofnvariants
To continue the example: one can think of the rotation grauphafting around the states of an
electron shell, through thactionof the group on state spgcaVhen the states undergo this action,
the quantity; (which we associate with a real physical magnitude) remamisivariant quantity.

However, structural realists have encountered some dtffien describing this action,
which is inevitably on something like aglectron shell An object like an electron shell might
appear to be ‘non-structural.” So, many structural reahsive tried to rephrase the situation, with
the language of action awkwardly excised. Here’s Ladym@injécts are picked out by individ-
uating invariants with respect to the transformationsvaai¢ to the context. Thus, on this view,
elementary particles are just stets of quantities thatresariant under the symmetry groups of par-
ticle physics’(Ladyman 1998, pp. 421). Steven French fedlo’'With these invariants understood
and represented group theoretically, we arrive at a kindratgural realism which takes structure
seriously [...]. Thus the elements themselves, regardediasduals, have only a heuristic role in
allowing for the introduction of structures which then gattne ontological weight’[(Erench 1999,
pp. 204).

French and Ladyman’s use of the word ‘invariant’ might beleading, if one thinks that
‘invariance under a group action’ is supposed to make seiftb@wt anything there to be acted
upon! Fortunately, Wigner’s legacy provides a more natapgairoach. One can begin the construc-
tion of quantum theory from a symmetry group, and still sppaiectly well about measurable
quantities. A measurable quantity like angular momentyjis of course derived from a repre-
sentation space, and one can speak freely about its ineariarder the action on that space. The
advocate of GSR simply holds that, metaphysically, the mmgtificant feature of this space is
that it provides a copy of the rotation group andnot that it refers to the possible states of an
individual object.

Construed this way, GSR leads to some surprisingly inforaa&bnsequences. Let’s think
about what it would mean if spacetime had a symmetry grouprdtan the Poincaré group.

This new group would have different representations, andavithus allow for different properties

8In this case, the canonical action $0(3) on the Hilbert space representation woulddbe SO(3) x H — H
such thatx (R, (x)) = ¢ (Rx), wherey(Rx) denotes the staté(x) in the rotated frame.
"That is, the group of2j + 1) x (2 + 1) matrices constructed for the representation is isomotph$(3).
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of quantum systems. On Ne’eman and Sternberg’s definitios nieans that there are different
‘particles.” In fact, that is exactly what Bargmann (105#pd évy-leblond[(1967) have shown:
the Galilei group gives rise to a theory of ‘Galilei partisfavhich are different (in particular, with
respect to the ‘mass’ parameter) than the usual ‘Poincaté|es.’

Let’s take another case: what would it mean for nature to amare symmetries than just
those of spacetime? According to GSR, this larger group evprdvide richer representations, and
S0 in a sense ‘more’ properties for quantum particles. Thisst what is suggested by the study of
internal symmetries. For example, Gell-Mann (1961) andeNein [(1961) advocateti/(3) as a
symmetry group. This led them to a new taxonomy of hadrongh@sare now called), classified
according to the irreducible representations of the newnsgtry group.

Of course, in building up a useful quantum theory, many nrattecal objects besides
groups come into play: vector spaces, commutation relatiblermitian forms, and on and on.
GSR need not deny this. Rather, GSR implies that out of adigheols, group structure is the one
of central metaphysical importance. Other realists migbppse a different foundation for the
theory, perhaps by arguing (with Geoffrey Sewell) thatetihies of such systems should be based
on the algebraic structure of their observables, rathar tdraparticular representations thereof’
(Sewell 2002, pp. 18) So, why choose GSR over all these other options? Here, theverar-
ching aims of structural realism come into play: groups hoaight to do a better job of providing
a general programmatic account of science, or of solvingiBp@roblems in the interpretation of
scientific theory.

While a general overview of all of these aims is outside tlmpemf this expositiol, we
can make some progress with a discussion of how GSR satisfeepapular goal for structural
realism as a metaphysical vigWwto describe a realist metaphysics that gets preservedasdh

change. Let us now turn to this goal.

8For a structural realist account of internal symmetries,{B@antorovich 2003).

90f course, an algebra is also a group, so Sewell's suggéstjmrhaps best viewed as a closely related cousin to
GSR.

105ee [[Cadyman and Ross 2007) for a broad start.

n this paper, we willnot be concerned with advocates gbistemicforms of structural realism, who may not
endorse to any particular metaphysical view about strectur
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2.3 Accounting for Theory Change

Can groups do a better job at surviving theory change thaiwithaal objects? Weyl certainly
seemed to think so, remarking that, ‘We may well expect thagust this part of quantum physics
that is most deserving of a lasting place™ (Weyl 1950, pp.).xkilore recently, Holger Lyre has
argued that ‘there is a considerable element of retentigmafp structure and its embedding into
a larger framework which makes the scientific progress mess discontinuous as it looks on the
level of objects’|(Lyre 2004, pp. 664). One observation tdiuade these claims is this: groups are
often insensitive to a change in underlying set. So, it'sspas for the group structure of an early
scientific theory to be preserved in a later theory, evengfdéscriptions of objects are not.
Here’s atoy example: Imagine that some theory leads us fogrthe existence of a cube.
Suppose that later, we discover that there is no cube, therran octahedron. This theory was
wrong about what kinds of objects exist. However, it was trigihout the group-structure, since
cubes and octahedrons have the same symmetry group (nstatia /2 about appropriate axes
preserve the orientations of both objects; so do flips abowppropriate plane). So, if we were
betting on which item would be preserved under theory chaadet on groups would have won

out over a bet on objects.

Figure 1. An cube and an octahedron are two different objeittsthe same symmetry group.

Recently, French and Ladyman have suggested a more reakstinples of this: ‘it is part
of the structure of Newtonian mechanics that the laws of jglsyare invariant under the Galilean
transformations, and the latter are recovered in appraericem as part of the structure of rela-
tivistic physics’ (French and Ladyman 20G8,).

It's worth expanding on this example. As we noted above, \&figriegacy allows for a the-
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ory of ‘Galilei particles.” However, the group of Galileignsformations predicts the wrong kinds
of particles (in particular, the wrong momentum eigenvajuas well as the wrong commutation
relations?. Consequently, in the transition to the Poincaré groug,téxonomy of fundamental
particles changed. However, ‘Galilean particles’ do hapjeehave the right angular momentum
guantum numbers — they allow for the possibility of spin, dgample. A realist about particles
has little to say about this fact. But GSR can actually prexad explanation: it is because rotation
group is what's metaphysically fundamental about angulamentum, and the rotation grougas
preserved in the transition from the Galilei to the Poiecgréup, as a subgroup of each. As for
the Galilei group as a whole, one might say that it was alsegmed in approximate form, in
low-velocity regimes.

In fact, SO(3) provides yet another precise example of preservation uhéery change.
With the discovery of spin, the traditional realist showd@singly admit that a new kind of particle
was discovered, signifying a discontinuity over theoryrdia But, according to GSR, the impor-
tant change was really the extension of the symmetry gi¥u3) to a larger groupSU(2). The
latter is the correct rotation group for a quantum theorypif sbecause it admits= 1/2-integer
representations. Howevef()(3) is not rejected in this correction — it is preserved ag/Bgroup
of SU(2)13.

The point of these examples, for the budding structuralisigds to suggest that group
structures — not individual objects, and not even algebfabservables — are the superior candi-
dates for the survival of theory change. If this turns outeaight, then GSR not only provides a
natural, precise example of structural realism; it alsad$aa promising chance of satisfying the

original, ‘pessimistic meta-induction’ motivation forsgttural realism.

12See especially (Bargmann 19%8).
135U (2) is the double-covering group 6f0(3), and is thus isomorphic to the semi-direct prodsiet(3) x {1, —1}.
It follows thatSO(3) is a subgroup obU (2).
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3 The‘Higher Structures Problem

3.1 The Structure of a Structure

French and Ladyman have noted the possibility that a streignight itself be describable in

structural terms; they note that this ‘hyperstructuralisite’ faces the worrisome possibility of an
infinite regress. The discussion is embedded in a resporgsltos (2005, 569-570), who argues
that structuralists will have some difficulties in accougtifor causal properties. Here is part of

their response:

perhaps the most intuitively plausible form of structwaliis precisely one ac-
cording to which objects and their properties are metaghylgidissolved into a multi-
layered network of relations, where certain of these retatiare causally empowered
and where this empowerment, for want of a better word, isremteto the relation.
is that inherent empowerment non-structural? Yes, in tnses¢hat it is not itself a
structure or describable in structural terms (if it were esatibable an obvious regress
would threaten); no, in the sense that it is another aspdtteoivorld structure. And
again, even if one were to go the hypestructuralist routis, bt clear why moving
up a level, as it were, would render causal powers as nothihdgobmal structure.

(French and Ladyman 20085.)

The problem that French and Ladyman are addressing appliesith more than causal
structure alone (setting aside what that might be). Theywather derives from the fact that a
relationis an amazingly general notion. Relations can describe nigt@bjects, but also other
relations. Consequently, it is a very general fact aboutwcsire (which is made up of relations)
that it itself often admits a structure (made up of relations between tadiars). This level of
generality is crucial to almost everything that structueallism sets out to achieve. A ‘structure’ is
so general that it can describe two very different objedtence, structure is more apt to survive
theory change, and so on.) A structure is so general thahieean describe other structures — it
can even describe itsvn structure!

If Sis a structure, what is the statusthe structure of itself? Presumably, if the original

structureS were at the top of the metaphysical hierarchy, then the tsireiof S must have a
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secondary, derivative status — much like the status of iddal objects. But then, it's not obvious
why we should choose to place one structure at the top of #rattchy over the other. This raises
a problem for structural realism, in the form of a dilemma. tBa one horn, we would like to
choose just one structure to be at the top of our metaphysieadrchy. But it is unlikely that we
will be able to give a well-motivated reason to choose betweeetructureS, and the structure
of S itself. This pushes us to the other horn: we must promote th@levshebang, botk and
the structure of5, to a metaphysically ‘fundamental’ status. But this aceafrmetaphysics, if
one can even make sense of what counts as the ‘whole sheleaus, to an much more complex
hierarchy, which need not satisfy the aims of structurdisea

Of course, one can declare outright (as French and Ladympathdba given structure
of interest ‘is not itself a structure describable in stanat terms.” However, the status of this
claim depends on which structure one is talking about. Inctme of GSR, the claim is simply
false: there is an important sense in which symmetry gr@aspsiescribable terms of their own
symmetry group structure.

The ‘symmetry group structure’ describing a grotiptself is called theautomorphism
groupg Aut GG. An automorphisnar of a groupG is a mapping frondz to itself that preserves group
structuré®. The groupAut G is formed by collecting together the set of all such autornizms,
and taking the binary operation to be functional compositiblow, to see in what senseut G
describes the ‘symmetries’ af, consider the following analogy with the Wigner-approach t
GSR.

Begin by presentingO(3) as the group of rotation&(6), Ry (), R,(#) of a sphere,
wherex, y andz are orthogonal axes of rotation. Then there is an automsmpbi SO(3) formed
by a smooth rotation of these axes, by mapping each rotatjof) to a rotationn(R,(0)) about a
new axis®. The class of all such automorphisms forms a subgroupufSO(3), which is visibly
isomorphic taSO(3) itself. The rest of the automorphisms involve an orthogtraaisformation of
the axes that is not accessible by a smooth rotation, ancedolftrautomorphism group turns out
to be given by the semi-direct produg)(3) x {—1, 1} = Aut SO(3). The situation is illustrated

14More precisely, an automorphism on a grqup o) is a bijectiona : X — X such thatw(z; o z2) = a(z;) o
azs).

n particular, this is arinner automorphism. For any fjer € SO(3), an inner automorphism can be defined
by the mappingy; : SO(3) — SO(3) such thatvz(R) = R~ RR. One can check that this mapping amounts to a
rotation of the orthogonal axes y, andz.
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in Figure 2.

Figure 2: For a given presentation 86 (3), an inner automorphism sends each rotation (left)
to its corresponding rotation about a different axis (fjght

This example illustrates vividly howut SO(3) really is thesymmetrygroup of SO(3).

It is the group whose canonical action leaves any instaotiaif SO(3) invariant. Now, on the
approach to structural realism provided by Wigner’s lega®yelevated the rotation groufi)(3)

to a privileged metaphysical status. In that discussiomtting being rotated was something like
an electron shell. Now, in this new case, it seems we shoeldgAut SO(3) instead. The only
apparent difference is that, when we elevate the statdsio650(3), the thing getting rotated is a
presentation 06O (3) itself.

Moreover, all of the virtues of elevatin§O(3) seem to carry over when we elevate the
metaphysical status dfut SO(3) instead. Note that in both cases, some important propentés
left invariant under the action of the group (that is, both ba called ‘symmetry’ groups). In the
case of the electron shell, they are the properties derivorg the total angular momentug In
the case obO(3) itself, they are the properties deriving from the groupatite’®. Note also that
both can be taken as the basis for a construction in whichetsteof quantum theory is recovered.
The only difference is, the grouput SO(3) is ‘one level more abstract,’ so that this construction
begins by constructing an invariant grofip)(3), and then proceeding as usual.

As French and Ladyman suggest, an infinite regress now gmeatn general, the group
Aut G will also admit an automorphism group. This gives rise to wh&nown as arautomor-
phism towet’, given by

G, Aut G, Aut Aut G, .. ..

18This is because each automorphisng Aut SO(3) is a group isomorphism
17Se€ Robinson (1996, 408-415) for an introduction to theystd@utomorphism towers.
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As long as each successive automorphism group results istiadinew group (more on this
later), we can continue producing new, ‘metaphysicallydfumental’ structures all the way up.
Since this tower can be very high, the result is a bloated; abstract ontology. Indeed, there are
even groups for which the tower can be continued transfiffteAnd worse: it can also happen
the groups of an automorphism toweycle For example, take the infinite dihedral grolj,
(which is a subgroup of any orthogonal gro(gm, n)). While D, % Aut D, it can be shown
that D, = Aut Aut D, (Hulse 1970). So the nodes of this tower bounce back and lietitneen
D, andAut D.,. Now, which of acycling pair of group structures should the structural realist
choose?

Here is how the worry looks in the form of the above a dilemrii@rn 1. The advocate
of GSR would like to place the original group at top of the metaphysical hierarchy. But there
does not seem to be a well-motivated reason to chebsger Aut G (this is the subject of the
next subsection). This pushes GSR tdorn 2 We instead promote the highest automorphism
groupAut G in the tower, or else promote the ‘whole shebang.’ This ohitices a tower’s worth of
‘lower down’ groups into our ontology, and (as we will seedmot appear to satisfy the aims of
structural realism.

In summary: group structural realism is forced to eithédt asbitrariness (Horn 1), or else
adopt an overly extravagant and uninformative accountalityg(Horn 2).

Trying to overcome the first horn seems to be the first naturstl ¢hoice here. For ex-
ample, one might give theoretical reasons for preferringléwate only the original grou@ (this
possibility will be addressed in Sectibn13.3). Or, one migiygest that elevatingut G doesn’t
do as good a job of satisfying tl@@msof structural realism, such as accounting for theory change
Given the close similarity betwee&nandAut G on the Wigner-approach to structural realism, this
last suggestion seems unlikely. In the case of theory chamgknow thatAut G will be preserved
whenever: is, since the former is uniquely defined by the latter. Butetke@mple of theory change
provides an even more interesting argument against thénéirat there is a precise sense in which
an Aut G actually does aetterjob than the original groug: at accounting for theory change.

Let's have a brief discussion of why this is.

Bwe discuss one example below; examples may also be folndinggd978) and Hamkins (1998).
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3.2 Higher Structuresand Theory Change

We saw in Sectiofi’2l3 that theory change can tend to favor @pgroover an individual object.
The reason for this was that groups are often insensitivecttaage in underlying set. As it turns
out, this is just as much a reason for thinking that theoryngedavorsAut GG overG.

Here’s another toy example: the rotational symmetry grdugptdangle is the cyclic group
C5 of order three; the rotational symmetry group of a squarbascyclic groupC, of order four.
These groups are not isomorphic, but the automorphism graupCs; and Aut C, are®. To tell
another just-so story: suppose some theory led us to peséxistence of a triangle, and we later
discovered there is rather a square. We would have the symgreup, as well as the object. But

the automorphism groumould be preserved under this theory change.

Figure 3: The rotational symmetry group of the triangle is isomorphic to the rotational sym-
metry group of the square. However, their automorphismpggalo turn out to be isomorphic.

Here is a theoretical argument suggesting this tendenagsepse an automorphism group,
and not the original group, is very common indeed. Consichgr taeory in which the one-
dimensional group of rotations is a symmetry group. Thidudes theories involving Lorentz
groupO(3, 1), the homogeneous Galilei grodp(3), and both of the rotation groups that we have
been discussingS(O(3) and SU(2)). The following proposition suggests that, within suchathe

ries, favoritism towards an automorphism group is excegigioommonrt®:

Proposition 1. Let F' contain a subgroup isomorphic (1), the one-parameter ‘circle group’

of rotations. TherF' contains infinitely many pairs of subgrou@gsand H such thatG 2 H, and

19Cy andC, each admit just two automorphisms: the identity mapping,the mapping that exchanges the gener-
ators.Cs is the only group of order two (up to isomorphism), so it felthatAut Cs =2 Cy =2 Aut Cy.
20we provide a proof in the Appendix to this paper.
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AutG = Aut H.

Here’s a just-so story to illustrate the proposition. Suggsome theory change demands
that we change our commitment from one subgroup of the Lorgrdaup (call itG) to another
subgroup (call itH). Our proposition says that there are infinitely many exasm whichG is
not isomorphic tof, but their automorphism groups do turn out to be isomorp8iz, in many,
many casesAut G seems to stand a better change of surviving theory changé&:tidaes.

If the advocate of GSR is motivated by theory change, it nognsethat we have some
reason to consider identifying the metaphysically fundataegroup withAut G, rather than with
G the automorphism group is more apt to be preserved. Thisgsuss towards the second horn
of the dilemma. But before we give up on this horn, let’s desscsome other ways that a structural

realist might try to promoté&’ overAut G.

3.3 Any Way Out for the Groupies?

So far, we've observed that a ‘higher structure’ — such asugonaorphism group — does not fit
clearly into the cross-hairs of structural realism. Evenexigze, seemingly sensible special case
like GSR does not provide a sensible way to choose whichtsireito promote.

However, to be fair, structural realism was not developetth Wwigher structures in mind.
For example, higher automorphism structures are completislsed by the ‘partial isomorphisms’
approach to structural realism, which focuses on the waly dtractures get embedded ssb-
structuresinto other structureé. In this section, we discuss the possibility of refining stasal
realism so as to consistently incorporate these highestsiies. The bad news is thadneof these
possible refinements provide a satisfactory solution.

The problem of higher structures gets its force from this. flicS' can plausibly occupy the
top position in the structural realist hierarchy, then éres at least as plausible that 8teucture of
S can occupy this position. So we are faced with a dilemma: Ishibwe structural realist choose
the first horn, and seek some way to specify which is the straaf interest? Or, should she

choose the second horn, and specify many or all of the highestares?

21For a discussion of the partial isomorphism account of thebange, sed¢ (Bueno, French, and Ladyman2002).
See|(French and Ladyman 2003) for an application of this westructural realism.
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Choosing the first horn of the dilemma seems to require we sshbetween one of two

strategies:
¢ find a way to promote only structures that have no non-trivigher structures; or
e add some apparatus that chooses a struétureer its higher structures.
Choosing the second horn of the dilemma apparently reqgthiegsve:

¢ allow that bothS andits structure (or perhaps just the latter) somehow be promotéuket

top of the metaphysical hierarchy.

In Section§-3.311,3.3.2 ahd 3.B.3, we treat each of these thptions in turn.

3.3.1 Chopping Down the Tower

Not every structure has a non-trivial tower of higher stuoes. For exampless, the permutation
group of three objects, has the propefty >~ Aut S5. There is no need to choose between this
group and its automorphism group, because the two are iggmootUnfortunately, most important

groups in physics do not have this property. In particula have the followinéf:

Proposition 2. Every special unitary groupU(n), special orthogonal grougO(m, n), orthog-

onal groupO(m, n), and kinematical grou®(m, n) x R has a non-trivial automorphism tower.

Since almost all of the groups discussed so far lie withinstt@pe of Propositiodl 2, this
strategy is not very promising. However, one might stilltmyeplacea given group with one that

has a non-trivial automorphism tower, through the use ofdhewing two propositions.

Theorem 1. [Cayley’s Theorem] An arbitrary groupG can be embedded inttym G, the sym-
metric group® on G (Rabinson 1996, pp. 36).

Theorem 2. For every symmetric groupym G on a finite groug (where|G| # 2 or 6), Sym G =
Aut Sym G (Robinson 19€6, pp. 415).

22\We sketch a proof in the appendix to this paper.
23The symmetric groumn G is the group of bijections fror@ to itself. For finite groups of order, Sym G is often
denoteds,,, and is often called theermutation group
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The idea is this: a structural realist might suggest thatnie¢aphysically fundamental
group isn’'tGG, but rather the larger grolfym GG, which Cayley’s Theorem tells us is embedded
in. Theorem 2 then (mostly) guarantees thai G has a non-trivial automorphism tower, as long
as|G]| is finite. ShirkingG in favor of its permutation group might thus provide one way af the
problem.

This idea doesn’t get us very far. The restriction tlg@tbe finite is very prohibitive. But
even if there is an equivalent result for infinite groupgm G is still in a sense the worst possi-
ble choice for describing physical reality. Precisely hessaof Cayley’s theorem, the symmetric
groups contairall other groupsas subgroups, and thus a zoo of structures that have nothatig a

to do with the physical world. So | see now ay that the genataption of Sym G can be tenable.

3.3.2 Playing Favorites

It is thus unavoidable that a symmetry group may admit a tafdrigher structures. Moreover,
it is unlikely that one could in general pick out the ‘top’ dii$ tower, since there are groups with
towers that extend transfinitely, as well as groups with teweat cycle. So, it seems the structural
realist shouldn’t hold out much hope to pick out the top of ther. Can the structural realist
provide some motivation for choosing the ‘bottom’ of the &® That is, can one argue tl@ts
more fundamental thaAut G and the other higher structures? | can imagine three natramsb
ways that the one might do this: by appealing to the real wdnychppealing to the mathematics,
and by appealing to the physics. None of them are very appeali

First, one might argue that the metaphysically fundamegrialp is the one that ikast
abstractly removedrom the real world. For example, in our discussion of angolamentum,
SO(3) seems to be the most significant group, because it actsglieacelectron shell. On the
other handAut SO(3) acts onSO(3), whichin turn acts on an electron shell. This seems to give
us good reason to think th&t)(3) is more metaphysically significant thamt SO(3): the former
is less abstractly removed.

However, if our goal is to pick out what's metaphysicallyrsigcant, this begs the question:
removed with respect to what? The response cannot be: ‘Reneith respect to the electron
shell.” As discussed before, the advocate of GSR must pecardaccount in which groups are

what underpin the properties of objects, and not the othgravaund. In particular, if5O(3)
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is what provides individual objects with their propertigsen it would be circular to turn around
and use an individual object to pick ofit)(3). So we cannot use the notion of ‘least abstractly
removed’ to pick out the metaphysically fundamental symmngtoup. (For the same reason, the
property of being ‘most abstractly removed’ won't work &ith

Second, one might try to pick out a grogpover Aut GG by arguing that the former is the
most mathematically informativgroup. After all,G fixes Aut GG, but the converse is generally not

true. So given an automorphism tower,

G, Aut G, Aut AutG ...,

the group at the bottom of the tower might be identified as the most nmatttieally informative,
because it uniquely determines the rest of the tower. As &ong might argue, if7 is what’s
fundamental, then the rest of the tower is a ‘metaphysiea-funch.’

But this suggestion won’t work either, because if the ‘bottof the tower’ exists, it is
usually underdetermined. Note that there might well be sgroap H# such thatAut H = G. In

this case, the above automorphism tower really looks lilse th

H, G, AutG, Aut AutG, ....

There is no guarantee against an infinite regress here, lphwiné tower would have no bottom.
But even worse, there is often more than one sticthat can extend the tower down in this way.
In this case, we have no way to choose which ‘bottom’ of thestaw intended.

To see an example of this, let’s return to the rotational sytnyngroup of the squaré€,.
This group is isomorphic to the automorphism grougref the cyclic group of order fivé. But

C, is also isomorphi® to the automorphism group ¢f,,. Therefore, we have two towers:

C5, C4, Aut C4, Aut Aut C4 0107 C4, Aut C4, Aut Aut C4

These towers have different groups ‘at the bottom,” and we lm principled way to choose

Z4Here is a quick proof. Sinc€’; is cyclic, Aut C5 = 7, the multiplicative group of units of the rings
(Robinson 1996, Prop. 1.5.5). Bliis prime, sdZ. = C5_1 = Cy. Therefore Aut Cs = Cj.
25This follows from the proof of Propositidd 1 in the appendixtiis paper.
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between them. So it appears that choosing the group at thenboff the tower brings us right
back to where we started: we have multiple candidates fadllkeef ‘metaphysically fundamental’
structure, and no way to choose between them.

Finally, the structural realist might encourage us to atesgroupG simply because it is
the group that is most naturalsuggested by the physichis idea is perhaps closest to the right
attitude. Physics certainly prescribes a clear role foresgroups, and not for others. For example,
the rotation grougpO(3) is simply a fundamental consideration in the treatment giuéar mo-
mentum in quantum systems. On the other hand, it is lesseleat roleAut SO(3) plays. Why
not take this distinction betwee¥0(3) andAut SO(3) seriously?

If a natural physical attitude were the target, then thecttinal realist should have stopped
at Wigner's legacy. This was clearly a fruitful episode ie thistory of physics. However, that
simply doesn't translate into a fruitful metaphysics. Asnpatructural realists have argued, the
correctinterpretatiorof these physical results is a separate question. Ladynshdmmered ‘the
impossibility of simply ‘reading one’s metaphysics off énphysics’ [Ladyman 1998, pp. 419).
French similarly argues ‘theory itself provides no guideotdology’ (French 1999, pp. 204).
The worry is presumably that, if we read too much into the p®ysve might not end up with
the correct structural realist hierarchy. Thus, strudttealists are effectively barred from this
seemingly natural scientific attitude.

If there are any other ways to coherently get around the finst bf the dilemma, then they
are not forthcoming. So let’s finally turn to the second hamrwhich the entire tower — the whole

shebang of structures — is elevated to ‘metaphysicallydomehtal’ status.

3.3.3 Adopting the Whole Shebang

Promoting the whole shebang of higher structures may be tist well-motivated option for the
structural realist. The entire tower is certainly part of tvailable mathematical apparatus for
describing the world. Quite simply, it all looks like struce. So why not take it all to be equally
‘fundamental’?

For the structural realist motivated by theory change, shmpthis way out is giving up
the game. The idea was supposed to be that higher, more @lstttactures are more disposed

to be preserved when scientific theory changes. But adogitmgvhole shebang means adopting
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both the higher and the lower down structures. So, at leashvithcomes to theory change, the
‘whole shebang'’ is only as safe as its least-abstract elenvoreover, once the entire tower has
been thrown into our ontology, it's much less obvious why wa’tljust throw inall the available
structures appearing in our theory — algebras, vector spatermitian forms, and so on. More
structures means more sensitivity to change over time. $adwvantage the structural realist had
over its rival realist counterparts with respect to thedrsitge would evaporate.

Another more homely worry about adopting the shebang isttbatist too wild. Whether
or not an automorphism tower is finite, it still introducesodgmtially enormous array of new group
structures into the metaphysical hierarchy. And it stitheens to be seen how@/cling tower of
automorphisms fits into the hierarchy, as it seems impassdkall any point on such a tower
more or less fundamental. However these worries are dett thiey invariably seem to involve
an overly extravagant ontology, which is both unmotivatad axceedingly complex. If this is
what is needed to make sense of the reality behind the phyk&s it seems we might be on the
wrong track.

Perhaps this does not settle the issue. For example, ond hugk that all compact Lie
groups have well-behaved automorphism to#feidowever, this seems an unlikely hazard, given
the bad behavior of the infinite dihedral groDy,. As things currently stand, adopting the whole

shebang does not appear to be a promising response.

4 Conclusion

The conclusions of this paper, if they are correct, can bertakeither a positive or a negative light.
Critics of structural realism can see it as an extremelyitddae criticism. Supporters of structural
realism can see it as a back-handed contribution. What | tampave shown in both cases is that
there are two competing poles in working out a precise adooiustructural realism. On the one
hand, we have a compelling account of the foundations oftguatheory in which group structure
plays a central role. This account provides a great deabajlitiinto both the nature of measurable

guantities, as well as into what is preserved as physicaflytehanges. On the other hand, we have

%|ndeed, we already know that the Lorentz gra@(3, 1) has a very short toweAut O(3,1) = Aut Aut O(3,1)
(Michel 1967).
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the non-trivial difficulty of working out just what is meany la ‘metaphysical hierarchy,” and how
a vast array of relevant theoretical structures fit into it.

This problem may yet turn out to be tractable, and structigalists are invited to try to
overcome the difficulties we have posed here. However, biights of the current author, there is
a more natural attitude to adopt. Namely: Wigner’s legacgtasvn itself be of deep importance
and relevance; the structural realist hierarchy has nat.possible to consistently support Wigner

while avoiding this extra appendage, and so the latter magdre trouble than it's worth.

5 Appendix

Proposition 1. Let F' be a group with a subgroup isomorphictg1), the one-dimensional group
of smooth rotations. Theld' contains infinitely many pairs of subgroupsand H such that
G % H,andAut G = Aut H.

Proof. Every cyclic groupC:. is a subgroup of/(1), generated by a rotation afr/r. We prove
that for everyC), such thatp is an odd primeAut Cy, = Aut C,. Then sinceC;, # C,, the
proposition follows from the infinitude of the primes.

For any integern, one can show thatut C,, = ZX, whereZ is the group of multiplicative
units of the ringZ,, (Robinson 1996, Prop. 1.5.5). In particulagt C, = Zx andAut Cy, = Z; .

But by the Chinese remainder theorem = p; - ps - p3 ... and eachp; is a distinct prime, then
Ly 2Ly XLy, X Lp X -+

S0%Zs;, = Zy x Z,; whenevep is odd. ButZ; = {1}, the trivial group. S&,, = Z, and hence

Aut Oy, = Aut C),. O

Proposition 2. Every non-trivial special unitary grougU (n), special orthogonal groupO(m, n),
orthogonal groupO(m, n), and kinematical grou(m, n) x R has a non-trivial automorphism

tower.

Proof (sketch)Note that groug- is said to have aon-trivial automorphism toweff G #£ Aut G.
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Each of the groups of Propositibh 2 can be easily shown to thés@roperty, with the help of the

following lemma:

Helpful Lemma. Let (G be the center of a grou@, and letOut G be its outer automorphism
group. If|(G| # |Out G|, thenG 2 Aut G.

In this sketch, we state the Helpful Lemma without proof.r(ffate groups, it can be easily
demonstrated using Lagrange’s theorem; this result cély éasextended to the infinite case.) It
can now be easily shown that for each of the symmetry groupsagositio 2| G| # |Out G|,

and so the Helpful Lemma may be applied.

Corollary 1. Every non-trivial(n > 1) special unitary groug'U(n) has a non-trivial automor-

phism tower.

Proof. Letn > 1. Itis well known that the centefSU(n) is a cyclic group generated by,
wherey is thenth root of unity [Fendley 2001, pp. 124). Thig¢SU (n)| = n.

Now, turn toOut SU(n). There are two cases to consider. Firstylet 2. Then the only
automorphism ofut SU(n) is trivial, so|Out SU(n)| = 1. Second, lekx > 2. Then one can
show that|/Out SU(n)| = 2 (Froggatt and Nielsen 1991, pp. 154). In both ca$eS{/(n)| #
|Out SU(n)|. Therefore, by the Helpful Lemm&{U (n) 2 Aut SU(n). O

Corollary 2. Every special unitary grougU (n), special orthogonal groupO(m, n), orthogonal

groupO(m, n), and kinematical group)(m, n) x R has a non-trivial automorphism group.

Proof. The proof of these facts is straightforward, following a gamstrategy of showing that
ICG| # |Out G|, and then applying the Helpful Lemma. Propositidn 2 theiofes as a conse-

quence. 0]
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