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Abstract

We present a precise form of structural realism, calledgroup structural realism, which iden-

tifies ‘structure’ in quantum theory with symmetry groups. However, working out the details

of this view actually illuminates a major problem for structural realism; namely, a structure

can itself have structure. This paper argues that, once a precise characterization of structure is

given, the ‘metaphysical hierarchy’ on which group structural realism rests is overly extrava-

gant and ultimately unmotivated.
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1 Introduction

There is a part of structural realism that is basically correct, and a basic consequence of structural

realism that is deeply implausible. The goal of this paper isto clear the muck around what structural

realism gets right, in order to bring out a new difficulty facing the view.

The thesis of the paper has both a positive and a negative part. The positive part is this:

• Structural realism has a solid basis in quantum physics, which provides valuable insight into

both the nature of measurable quantities, as well as into what’s preserved when theories

change.

In particular, structural realists have been correct to insist on the fundamental importance of sym-

metry groups in the foundations of quantum theory. We will draw out the precise view that lurks

behind this insistence, and give it a name:group structural realism.

Group structural realism will provide us with a concrete viewpoint from which to survey a

general difficulty for structural realism. The statement ofthis problem is the negative part of the

thesis:

• The ‘metaphysical hierarchy’ on which structural realism rests is overly extravagant at best,

and arbitrary worst.

The paper is organized into two parts: first, an exposition ofgroup structural realism, in which

we develop the positive thesis; and second, a critique of structural realism, in which we develop

the negative. The first part begins with a general picture of group structural realism in contrast

with related accounts. We demonstrate the connection this view provides between structure and

measurable quantities, and then offer some positive remarks about theory change. The second part

illustrates how structural realism is troubled by the existence of ‘higher’ structures. We show that

in the case of group structural realism, these higher structures also provide a positive account of

theory change, and finally argue that there appears to be no well-motivated way to incorporate

them into the structural realist picture.
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2 What Is (Group) Structural Realism?

2.1 The Basic Picture

John Worrall (1989) suggested that some notion of ‘structure’ might allow scientific realists to

overcome the problems posed by theory change and the pessimistic meta-induction. This view

was later developed by James Ladyman (1998) into an explicitmetaphysical thesis, which begins

by ‘taking structure to be primitive and ontologically subsistent’ (Ladyman 1998, pp. 420). Now,

many realists are advocating an ontology that gives structural relations a more central role than

individual objects1.

The positive claim of structural realism differs greatly from author to author. Notably,

structural realists break down into ‘eliminativist’ and ‘non-eliminativist’ accounts. While the for-

mer eliminates objects (claiming thatonly structure exists), the latter merely demotes (but does

not eliminate) objects to a lesser metaphysical status. However, there is one core assumption that

most accounts of structural realism (as a metaphysical view) do share:

The Structural Realist Hierarchy. The existing entities described by a scientific theory are orga-

nized into a hierarchy, in which ‘structure’ occupies the top, most fundamental position.

The eliminativist takes this hierarchy to contain only structure (or perhaps even justone

structure, making the hierarchy trivial). The non-eliminativist allows the hierarchy to contain

objects in some low-status position. In the latter case, what it means to be ‘fundamental’ in a hier-

archy of entities can be cashed out in various ways. For example, Ladyman and Ross characterize

it using the notion of supervenience on properties:

Ontic Structural Realism (OSR) is the view that the world hasan objective modal

structure that is ontologically fundamental, in the sense of not supervening on the in-

trinsic properties of a set of individuals. According to OSR, even the identity and indi-

viduality of objects depends on the relational structure ofthe world. (Ladyman and Ross 2007,

pp. 130.)

Unfortunately, the precise notion ofpriority that’s at stake here remains obscure. One can always

resort to analogies: the droplets of paint on a canvas might be considered more fundamental than

1For an overview, see (Ladyman 2009).
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the images in the painting, because the images supervene on the droplets. Similarly; the atoms

in a molecule are more fundamental than the molecule itself,which is more fundamental than

the substance. Structural realists argue that at the very top, at the most fundamental layer of this

hierarchy, there is onlystructure.But these analogies break down: images in a painting certainly

cannot exist in the absence of paint droplets, but the shadowy existence of structure is much less

clear2.

Our strategy here will be to grant the structural realist as much as possible on such matters,

by leaving open exactlyhow one might understand ‘priority’ in a metaphysical hierarchy. Instead,

we will assume that a such a notioncanbe established, and is capable of either

• providing a well-motivated description of the structure that ismost fundamental; or

• describing a multiplicity of fundamental structures, which better informs our understanding

of what exists,

given the history of our best scientific theories. In the nextsubsection, we will describe a precise

example from quantum theory, which appears to provide a promising way to establish the structural

realist hierarchy. Unfortunately, we must later struggle with a dilemma, which suggests that the

existence of higher structures thwarts the success of either option.

Why propose a structural realist hierarchy? Broadly speaking, there are two main goals.

First: structural realism aims to provide a general, programmatic account of science and scien-

tific discovery. Structural realist accounts of the metaphysics of theory change, such as Ladyman

(1998), are canonical examples. Second: structural realism aims to solve specific problems in

the interpretation of a theory. For example, it has been proposed as a solution to the problem of

identical particles (Ladyman and Ross 2007,§3.1), and to the problem of interpreting spacetime

points (Ladyman 1998; Dorato 2000). Which structures are ofinterest may differ depending on

one’s goals. To avoid confusion, we will thus focus our attention in this paper on the first goal: for

structural realism to provide an improved account of how theories change.

Standing between structural realism and what it endeavors to achieve is the meaning of the

wordstructure. Ladyman and French themselves note that ‘Because of the width of its embrace and

2Kantorovich (2006) has recently argued that some structures can exist even in the absence of particles.
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its complex history, defining what is meant by “structure” and characterizing the tendency in gen-

eral, is problematic’ (French and Ladyman 2008,§1). Ladyman and Ross similarly accept the crit-

icism that structural realism may not be well ‘worked out.’ However, they retort that ‘it is far from

clear that OSR’s rivals are ‘worked out’ in any sense that OSRisn’t’ (Ladyman and Ross 2007, pp.

155).

Clearly, someone ought to work something out. As a start, I will try to show that, using

the resources of group theory and quantum mechanics, a precise characterization of ‘structure’ can

be worked out in as much detail as you like. The specific view that I propose we work out is the

following:

Group Structural Realism (GSR). The existing entities described by quantum theory are orga-

nized into a hierarchy, in which a particular symmetry groupoccupies the top, most fundamental

position.

Like the structural realist hierarchy set out above, this statement of GSR should be taken as

a minimal assumption of the view. Focusing on this assumption allows us to leave the exact nature

of a group structure’s ‘existence’ to the individual metaphysician.

GSR has a good deal of precedent among structural realists. For example, Aharon Kan-

torovich argues for a conception of particle physics in which ‘internal symmetry is the deepest

layer in the ontological hierarchy,’ and in particular, that ‘flavor SU(3) symmetry was ontologically

prior to hadrons [. . . ] whereasSU(5) is ontologically prior only to baryons’ (Kantorovich 2003,

pp. 673). Holger Lyre has suggested an account of objects that ‘takes the group structure as primar-

ily given, group representations are then construed from this structure and have a mere derivative

status’ (Lyre 2004, pp. 663). Similarly, Ladyman and Ross argue that, ‘elementary particles are hy-

postatizations of sets of quantities that are invariant under the symmetry groups of particle physics’

(Ladyman and Ross 2007, pp. 147).

Unlike many more abstract accounts of structural realism, quantum theory provides GSR

with a precise connection to the physical quantities that weactually observe and measure in the

lab. In the next section, we will review the physical resultsthat provide this connection.
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2.2 Wigner’s Legacy

Yuval Ne’eman and Shlomo Sternberg have recorded an old particle physicist’s adage:

Ever since the fundamental paper of Wigner on the irreducible representations of the

Poincaré group, it has been a (perhaps implicit) definitionin physics that an elementary

particle ‘is’ an irreducible representation of the group,G, of ‘symmetries of nature’.

(Ne’eman and Sternberg 1991, pp. 327.)

Despite their abstractness, irreducible unitary representations do seem to satisfy our intuitions

about elementary particles. Jonathan Bain suggests two such intuitions: (1) an elementary particle

should be uniquely labeled by a mass and a spin parameter (that is, by the eigenvalues of a total

4-momentum and a total4-angular momentum operator); and (2) a particle should be invariant up

to the group of spacetime symmetries, in order to satisfy ‘our intuitions concerning the continuity

of particle identity through time’ (Bain 2000, pp. 402fn). One also wants that, (3) an elementary

particle cannot be ‘decomposed’ into further particles; and (4) a particle should be associated with

a set of observables that describe its possible states.

One can now observe: Wigner showed that the irreducible unitary representations of the

Poincaré group do indeed satisfy (1) and (3) because of irreducibility; they satisfy (2) because they

represent the Poincaré group; and, they satisfy (4) because they are unitary3.

Although this metaphysical picture of ‘particles as representations’ is often attributed to

Wigner, he does not seem to have advocated it in print. The famous (1939) paper that Ne’emann

and Sternberg refer to sets out only to correlate the values of physical magnitudes (the so-called

‘quantum numbers’) with parameters labeling group representations – in particular, the represen-

tations of the spacetime symmetry group. By classifying allthe irreducible unitary representations

of this group, Wigner is able to identify all the possible labels of mass, spin and parity. This pro-

vides a tight connection between a symmetry group of nature,and the measurable properties of a

quantum system.

A simple textbook example will help to illustrate this connection. Take a familiar physical

property like angular momentum. In a given situation, quantum theory assigns a fixed value to

3Here’s a sketch of how one can obtain (4). The Poincaré groupis the product of 1-parameter subgroups. Consider
a strongly continuous unitary representation of any such subgroup. Stone’s theorem guarantees that this representation
is generated by a unique self-adjoint operatorH . This operator is an observable, in any state space on whichU acts.
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some aspects of angular momentum, like (say) the total angular momentum of an isolated system.

Other aspects, such as ‘angular momentum in thez-direction,’ might (prior to measurement) be

assigned a spectrum of values. Wigner’s approach allows us to think of physical magnitudes such

as these asproperties of a symmetry group.

To simplify our example, we can ignore the existence of spin4. One begins with the group

SO(3) of continuous rotations about a point. The faithful irreducible representations ofSO(3)

turn out to be representable by groups of complex-valued matrices of odd dimension(2j + 1),

wherej is a positive integer. If desired, a given representation can be thought of as acting on,

say, the state space of an electron shell around a Hydrogen atom. However, the imagery of this

individual object isn’t required for our construction. Instead, we can skip directly to defining the

total angular momentumj = (n − 1)/2, in terms of the dimensionn of the representation. The

angular momentum operators can then be picked out as elements of the representation, and angular

momentum in thez-direction can then be defined and shown to have the usual integer-stepped

spectrum,{−j, . . . , 0, . . . , j}.

In summary: angular momentum is recovered, with all its expected properties, from facts

about a symmetry group; no assumptions about the stateψ of an individual object are needed5. The

construction achieves roughly what Eddington suggested, that ‘[i]n fundamental investigations the

conception of group-structure appears quite explicitly asthe starting point; and nowhere in the

subsequent development do we admit material not derived from group structure’ (Eddington 1958,

pp. 147). That such a development is possible is a fact about the physics. But it is also what

paves the way for a reasonable structuralist metaphysics. Wigner’s approach is just what is needed

to allow the group structural realist to speak safely of properties like angular momentum, without

recourse to an ontology of individual objects.

In particular, GSR places group structure at the top of the metaphysical hierarchy. In the

example of angular momentum, the fundamental structure is the rotational symmetry groupSO(3).

A measurable physical magnitude (j) provides information about the group (in this case, it picks

out the dimension of the representation). And, if desired, one can proceed further to construct

a model of an individual object, like a hydrogen atom – but this kind of construction would be

4Spin is incorporated just as easily by replacingSO(3) with its double-covering groupSU(2) and following the
same procedure.

5This standard textbook computation was first published in a book by Wigner (1931).
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metaphysically ‘secondary.’

Recent structural realists have tried to express this kind of situation in terms ofinvariants.

To continue the example: one can think of the rotation group as shifting around the states of an

electron shell, through theactionof the group on state space6. When the states undergo this action,

the quantityj (which we associate with a real physical magnitude) remainsan invariant quantity.

However, structural realists have encountered some difficulty in describing this action,

which is inevitably on something like anelectron shell. An object like an electron shell might

appear to be ‘non-structural.’ So, many structural realists have tried to rephrase the situation, with

the language of action awkwardly excised. Here’s Ladyman: ‘Objects are picked out by individ-

uating invariants with respect to the transformations relevant to the context. Thus, on this view,

elementary particles are just stets of quantities that are invariant under the symmetry groups of par-

ticle physics’ (Ladyman 1998, pp. 421). Steven French follows: ‘With these invariants understood

and represented group theoretically, we arrive at a kind of structural realism which takes structure

seriously [. . . ]. Thus the elements themselves, regarded asindividuals, have only a heuristic role in

allowing for the introduction of structures which then carry the ontological weight’ (French 1999,

pp. 204).

French and Ladyman’s use of the word ‘invariant’ might be misleading, if one thinks that

‘invariance under a group action’ is supposed to make sense without anything there to be acted

upon! Fortunately, Wigner’s legacy provides a more naturalapproach. One can begin the construc-

tion of quantum theory from a symmetry group, and still speakperfectly well about measurable

quantities. A measurable quantity like angular momentum(j) is of course derived from a repre-

sentation space, and one can speak freely about its invariance under the action on that space. The

advocate of GSR simply holds that, metaphysically, the mostsignificant feature of this space is

that it provides a copy of the rotation group7 – andnot that it refers to the possible states of an

individual object.

Construed this way, GSR leads to some surprisingly informative consequences. Let’s think

about what it would mean if spacetime had a symmetry group other than the Poincaré group.

This new group would have different representations, and would thus allow for different properties

6In this case, the canonical action ofSO(3) on the Hilbert space representation would beα : SO(3) × H → H
such thatα (R,ψ(x)) = ψ(Rx), whereψ(Rx) denotes the stateψ(x) in the rotated frame.

7That is, the group of(2j + 1) × (2j + 1) matrices constructed for the representation is isomorphicto SO(3).
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of quantum systems. On Ne’eman and Sternberg’s definition, this means that there are different

‘particles.’ In fact, that is exactly what Bargmann (1954) and Lévy-leblond (1967) have shown:

the Galilei group gives rise to a theory of ‘Galilei particles,’ which are different (in particular, with

respect to the ‘mass’ parameter) than the usual ‘Poincaré particles.’

Let’s take another case: what would it mean for nature to admit more symmetries than just

those of spacetime? According to GSR, this larger group would provide richer representations, and

so in a sense ‘more’ properties for quantum particles. This is just what is suggested by the study of

internal symmetries. For example, Gell-Mann (1961) and Ne’eman (1961) advocatedSU(3) as a

symmetry group. This led them to a new taxonomy of hadrons (asthey are now called), classified

according to the irreducible representations of the new symmetry group8.

Of course, in building up a useful quantum theory, many mathematical objects besides

groups come into play: vector spaces, commutation relations, Hermitian forms, and on and on.

GSR need not deny this. Rather, GSR implies that out of all these tools, group structure is the one

of central metaphysical importance. Other realists might propose a different foundation for the

theory, perhaps by arguing (with Geoffrey Sewell) that, ‘theories of such systems should be based

on the algebraic structure of their observables, rather than on particular representations thereof’

(Sewell 2002, pp. 18)9. So, why choose GSR over all these other options? Here, the two overar-

ching aims of structural realism come into play: groups are thought to do a better job of providing

a general programmatic account of science, or of solving specific problems in the interpretation of

scientific theory.

While a general overview of all of these aims is outside the scope of this exposition10, we

can make some progress with a discussion of how GSR satisfies one popular goal for structural

realism as a metaphysical view11: to describe a realist metaphysics that gets preserved as theories

change. Let us now turn to this goal.

8For a structural realist account of internal symmetries, see (Kantorovich 2003).
9Of course, an algebra is also a group, so Sewell’s suggestionis perhaps best viewed as a closely related cousin to

GSR.
10See (Ladyman and Ross 2007) for a broad start.
11In this paper, we willnot be concerned with advocates ofepistemicforms of structural realism, who may not

endorse to any particular metaphysical view about structure.
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2.3 Accounting for Theory Change

Can groups do a better job at surviving theory change than individual objects? Weyl certainly

seemed to think so, remarking that, ‘We may well expect that it is just this part of quantum physics

that is most deserving of a lasting place’ (Weyl 1950, pp. xxi). More recently, Holger Lyre has

argued that ‘there is a considerable element of retention ofgroup structure and its embedding into

a larger framework which makes the scientific progress much less discontinuous as it looks on the

level of objects’ (Lyre 2004, pp. 664). One observation to motivate these claims is this: groups are

often insensitive to a change in underlying set. So, it’s possible for the group structure of an early

scientific theory to be preserved in a later theory, even if the descriptions of objects are not.

Here’s a toy example: Imagine that some theory leads us to propose the existence of a cube.

Suppose that later, we discover that there is no cube, but rather an octahedron. This theory was

wrong about what kinds of objects exist. However, it was right about the group-structure, since

cubes and octahedrons have the same symmetry group (rotations of π/2 about appropriate axes

preserve the orientations of both objects; so do flips about an appropriate plane). So, if we were

betting on which item would be preserved under theory change, a bet on groups would have won

out over a bet on objects.

Figure 1: An cube and an octahedron are two different objectswith the same symmetry group.

Recently, French and Ladyman have suggested a more realistic examples of this: ‘it is part

of the structure of Newtonian mechanics that the laws of physics are invariant under the Galilean

transformations, and the latter are recovered in approximate form as part of the structure of rela-

tivistic physics’ (French and Ladyman 2008,§4).

It’s worth expanding on this example. As we noted above, Wigner’s legacy allows for a the-
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ory of ‘Galilei particles.’ However, the group of Galilei transformations predicts the wrong kinds

of particles (in particular, the wrong momentum eigenvalues), as well as the wrong commutation

relations12. Consequently, in the transition to the Poincaré group, the taxonomy of fundamental

particles changed. However, ‘Galilean particles’ do happen to have the right angular momentum

quantum numbers – they allow for the possibility of spin, forexample. A realist about particles

has little to say about this fact. But GSR can actually provide an explanation: it is because rotation

group is what’s metaphysically fundamental about angular momentum, and the rotation groupwas

preserved in the transition from the Galilei to the Poincar´e group, as a subgroup of each. As for

the Galilei group as a whole, one might say that it was also preserved in approximate form, in

low-velocity regimes.

In fact,SO(3) provides yet another precise example of preservation undertheory change.

With the discovery of spin, the traditional realist should seemingly admit that a new kind of particle

was discovered, signifying a discontinuity over theory change. But, according to GSR, the impor-

tant change was really the extension of the symmetry groupSO(3) to a larger group,SU(2). The

latter is the correct rotation group for a quantum theory of spin, because it admitsj = 1/2-integer

representations. However,SO(3) is not rejected in this correction – it is preserved as asubgroup

of SU(2)13.

The point of these examples, for the budding structural realist, is to suggest that group

structures – not individual objects, and not even algebras of observables – are the superior candi-

dates for the survival of theory change. If this turns out to be right, then GSR not only provides a

natural, precise example of structural realism; it also stands a promising chance of satisfying the

original, ‘pessimistic meta-induction’ motivation for structural realism.

12See especially (Bargmann 1954,§6).
13SU(2) is the double-coveringgroup ofSO(3), and is thus isomorphic to the semi-direct productSO(3)⋉{1,−1}.

It follows thatSO(3) is a subgroup ofSU(2).
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3 The ‘Higher Structures’ Problem

3.1 The Structure of a Structure

French and Ladyman have noted the possibility that a structure might itself be describable in

structural terms; they note that this ‘hyperstructuralistroute’ faces the worrisome possibility of an

infinite regress. The discussion is embedded in a response toPsillos (2006, 569-570), who argues

that structuralists will have some difficulties in accounting for causal properties. Here is part of

their response:

perhaps the most intuitively plausible form of structuralism is precisely one ac-

cording to which objects and their properties are metaphysically dissolved into a multi-

layered network of relations, where certain of these relations are causally empowered

and where this empowerment, for want of a better word, is inherent to the relation.

is that inherent empowerment non-structural? Yes, in the sense that it is not itself a

structure or describable in structural terms (if it were so describable an obvious regress

would threaten); no, in the sense that it is another aspect ofthe world structure. And

again, even if one were to go the hypestructuralist route, itis not clear why moving

up a level, as it were, would render causal powers as nothing but formal structure.

(French and Ladyman 2008,§6.)

The problem that French and Ladyman are addressing applies to much more than causal

structure alone (setting aside what that might be). The worry rather derives from the fact that a

relation is an amazingly general notion. Relations can describe not only objects, but also other

relations. Consequently, it is a very general fact about a structure (which is made up of relations)

that it itself often admits a structure (made up of relations between the relations). This level of

generality is crucial to almost everything that structuralrealism sets out to achieve. A ‘structure’ is

so general that it can describe two very different objects. (Hence, structure is more apt to survive

theory change, and so on.) A structure is so general that it can even describe other structures – it

can even describe itsown structure!

If S is a structure, what is the status ofthe structure ofS itself? Presumably, if the original

structureS were at the top of the metaphysical hierarchy, then the structure of S must have a
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secondary, derivative status – much like the status of individual objects. But then, it’s not obvious

why we should choose to place one structure at the top of the hierarchy over the other. This raises

a problem for structural realism, in the form of a dilemma. Onthe one horn, we would like to

choose just one structure to be at the top of our metaphysicalhierarchy. But it is unlikely that we

will be able to give a well-motivated reason to choose between a structureS, and the structure

of S itself. This pushes us to the other horn: we must promote the whole shebang, bothS and

the structure ofS, to a metaphysically ‘fundamental’ status. But this account of metaphysics, if

one can even make sense of what counts as the ‘whole shebang,’leads to an much more complex

hierarchy, which need not satisfy the aims of structural realism.

Of course, one can declare outright (as French and Ladyman do) that a given structure

of interest ‘is not itself a structure describable in structural terms.’ However, the status of this

claim depends on which structure one is talking about. In thecase of GSR, the claim is simply

false: there is an important sense in which symmetry groupsare describable terms of their own

symmetry group structure.

The ‘symmetry group structure’ describing a groupG itself is called theautomorphism

group, AutG. An automorphismα of a groupG is a mapping fromG to itself that preserves group

structure14. The groupAutG is formed by collecting together the set of all such automorphisms,

and taking the binary operation to be functional composition. Now, to see in what senseAutG

describes the ‘symmetries’ ofG, consider the following analogy with the Wigner-approach to

GSR.

Begin by presentingSO(3) as the group of rotationsRx(θ), Ry(θ), Rz(θ) of a sphere,

wherex, y andz are orthogonal axes of rotation. Then there is an automorphism ofSO(3) formed

by a smooth rotation of these axes, by mapping each rotationRx(θ) to a rotationα(Rx(θ)) about a

new axis15. The class of all such automorphisms forms a subgroup ofAutSO(3), which is visibly

isomorphic toSO(3) itself. The rest of the automorphisms involve an orthogonaltransformation of

the axes that is not accessible by a smooth rotation, and so the full automorphism group turns out

to be given by the semi-direct productSO(3) ⋊ {−1, 1} ∼= AutSO(3). The situation is illustrated

14More precisely, an automorphism on a group(X, ◦) is a bijectionα : X → X such thatα(x1 ◦ x2) = α(x1) ◦
α(x2).

15In particular, this is aninner automorphism. For any fixed̄R ∈ SO(3), an inner automorphism can be defined
by the mappingαR̄ : SO(3) → SO(3) such thatαR̄(R) = R̄−1RR̄. One can check that this mapping amounts to a
rotation of the orthogonal axesx,y, andz.



Group Structural Realism 14

in Figure 2.

R1

R2

α(R1)

α(R2)

Figure 2: For a given presentation ofSO(3), an inner automorphismα sends each rotation (left)
to its corresponding rotation about a different axis (right).

This example illustrates vividly howAutSO(3) really is thesymmetrygroup ofSO(3).

It is the group whose canonical action leaves any instantiation of SO(3) invariant. Now, on the

approach to structural realism provided by Wigner’s legacy, we elevated the rotation groupSO(3)

to a privileged metaphysical status. In that discussion, the thing being rotated was something like

an electron shell. Now, in this new case, it seems we should elevateAutSO(3) instead. The only

apparent difference is that, when we elevate the status ofAutSO(3), the thing getting rotated is a

presentation ofSO(3) itself.

Moreover, all of the virtues of elevatingSO(3) seem to carry over when we elevate the

metaphysical status ofAutSO(3) instead. Note that in both cases, some important propertiesare

left invariant under the action of the group (that is, both can be called ‘symmetry’ groups). In the

case of the electron shell, they are the properties derivingfrom the total angular momentumj. In

the case ofSO(3) itself, they are the properties deriving from the group structure16. Note also that

both can be taken as the basis for a construction in which the rest of quantum theory is recovered.

The only difference is, the groupAutSO(3) is ‘one level more abstract,’ so that this construction

begins by constructing an invariant groupSO(3), and then proceeding as usual.

As French and Ladyman suggest, an infinite regress now threatens. In general, the group

AutG will also admit an automorphism group. This gives rise to what is known as anautomor-

phism tower17, given by

G, AutG, Aut AutG, . . . .

16This is because each automorphismα ∈ AutSO(3) is a group isomorphism
17See Robinson (1996, 408-415) for an introduction to the study of automorphism towers.
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As long as each successive automorphism group results in a distinct new group (more on this

later), we can continue producing new, ‘metaphysically fundamental’ structures all the way up.

Since this tower can be very high, the result is a bloated, very abstract ontology. Indeed, there are

even groups for which the tower can be continued transfinitely18. And worse: it can also happen

the groups of an automorphism towercycle. For example, take the infinite dihedral groupD∞

(which is a subgroup of any orthogonal groupO(m,n)). WhileD∞ 6∼= AutD∞, it can be shown

thatD∞

∼= Aut AutD∞ (Hulse 1970). So the nodes of this tower bounce back and forthbetween

D∞ andAutD∞. Now, which of acycling pair of group structures should the structural realist

choose?

Here is how the worry looks in the form of the above a dilemma.Horn 1. The advocate

of GSR would like to place the original groupG at top of the metaphysical hierarchy. But there

does not seem to be a well-motivated reason to chooseG over AutG (this is the subject of the

next subsection). This pushes GSR to:Horn 2. We instead promote the highest automorphism

groupAutG in the tower, or else promote the ‘whole shebang.’ This introduces a tower’s worth of

‘lower down’ groups into our ontology, and (as we will see) does not appear to satisfy the aims of

structural realism.

In summary: group structural realism is forced to either risk arbitrariness (Horn 1), or else

adopt an overly extravagant and uninformative account of reality (Horn 2).

Trying to overcome the first horn seems to be the first natural first choice here. For ex-

ample, one might give theoretical reasons for preferring toelevate only the original groupG (this

possibility will be addressed in Section 3.3). Or, one mightsuggest that elevatingAutG doesn’t

do as good a job of satisfying theaimsof structural realism, such as accounting for theory change.

Given the close similarity betweenG andAutG on the Wigner-approach to structural realism, this

last suggestion seems unlikely. In the case of theory change, we know thatAutGwill be preserved

wheneverG is, since the former is uniquely defined by the latter. But theexample of theory change

provides an even more interesting argument against the firsthorn: there is a precise sense in which

an AutG actually does abetter job than the original groupG at accounting for theory change.

Let’s have a brief discussion of why this is.

18We discuss one example below; examples may also be found in Collins (1978) and Hamkins (1998).
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3.2 Higher Structures and Theory Change

We saw in Section 2.3 that theory change can tend to favor a groupG over an individual object.

The reason for this was that groups are often insensitive to achange in underlying set. As it turns

out, this is just as much a reason for thinking that theory change favorsAutG overG.

Here’s another toy example: the rotational symmetry group of a triangle is the cyclic group

C3 of order three; the rotational symmetry group of a square is the cyclic groupC4 of order four.

These groups are not isomorphic, but the automorphism groups AutC3 andAutC4 are19. To tell

another just-so story: suppose some theory led us to posit the existence of a triangle, and we later

discovered there is rather a square. We would have the symmetry group, as well as the object. But

theautomorphism groupwould be preserved under this theory change.

Figure 3: The rotational symmetry group of the triangle is not isomorphic to the rotational sym-
metry group of the square. However, their automorphism groups do turn out to be isomorphic.

Here is a theoretical argument suggesting this tendency to preserve an automorphism group,

and not the original group, is very common indeed. Consider any theory in which the one-

dimensional group of rotations is a symmetry group. This includes theories involving Lorentz

groupO(3, 1), the homogeneous Galilei groupO(3), and both of the rotation groups that we have

been discussing (SO(3) andSU(2)). The following proposition suggests that, within such theo-

ries, favoritism towards an automorphism group is exceedingly common20:

Proposition 1. Let F contain a subgroup isomorphic toU(1), the one-parameter ‘circle group’

of rotations. ThenF contains infinitely many pairs of subgroupsG andH such thatG 6∼= H, and

19C3 andC4 each admit just two automorphisms: the identity mapping, and the mapping that exchanges the gener-
ators.C2 is the only group of order two (up to isomorphism), so it follows thatAutC3

∼= C2
∼= AutC4.

20We provide a proof in the Appendix to this paper.
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AutG ∼= AutH.

Here’s a just-so story to illustrate the proposition. Suppose some theory change demands

that we change our commitment from one subgroup of the Lorentz group (call itG) to another

subgroup (call itH). Our proposition says that there are infinitely many examples in whichG is

not isomorphic toH, but their automorphism groups do turn out to be isomorphic.So, in many,

many cases,AutG seems to stand a better change of surviving theory change thanG does.

If the advocate of GSR is motivated by theory change, it now seems that we have some

reason to consider identifying the metaphysically fundamental group withAutG, rather than with

G: the automorphism group is more apt to be preserved. This pushes us towards the second horn

of the dilemma. But before we give up on this horn, let’s discuss some other ways that a structural

realist might try to promoteG overAutG.

3.3 Any Way Out for the Groupies?

So far, we’ve observed that a ‘higher structure’ – such as an automorphism group – does not fit

clearly into the cross-hairs of structural realism. Even a precise, seemingly sensible special case

like GSR does not provide a sensible way to choose which structure to promote.

However, to be fair, structural realism was not developed with higher structures in mind.

For example, higher automorphism structures are completely missed by the ‘partial isomorphisms’

approach to structural realism, which focuses on the way that structures get embedded assub-

structuresinto other structures21. In this section, we discuss the possibility of refining structural

realism so as to consistently incorporate these higher structures. The bad news is thatnoneof these

possible refinements provide a satisfactory solution.

The problem of higher structures gets its force from this fact: if S can plausibly occupy the

top position in the structural realist hierarchy, then it seems at least as plausible that thestructure of

S can occupy this position. So we are faced with a dilemma: should the structural realist choose

the first horn, and seek some way to specify which is the structure of interest? Or, should she

choose the second horn, and specify many or all of the higher structures?

21For a discussion of the partial isomorphism account of theory change, see (Bueno, French, and Ladyman 2002).
See (French and Ladyman 2003) for an application of this viewto structural realism.
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Choosing the first horn of the dilemma seems to require we choose between one of two

strategies:

• find a way to promote only structures that have no non-trivialhigher structures; or

• add some apparatus that chooses a structureS over its higher structures.

Choosing the second horn of the dilemma apparently requiresthat we:

• allow that bothS and its structure (or perhaps just the latter) somehow be promoted to the

top of the metaphysical hierarchy.

In Sections 3.3.1, 3.3.2 and 3.3.3, we treat each of these three options in turn.

3.3.1 Chopping Down the Tower

Not every structure has a non-trivial tower of higher structures. For example,S3, the permutation

group of three objects, has the propertyS3
∼= AutS3. There is no need to choose between this

group and its automorphism group, because the two are isomorphic. Unfortunately, most important

groups in physics do not have this property. In particular, we have the following22:

Proposition 2. Every special unitary groupSU(n), special orthogonal groupSO(m,n), orthog-

onal groupO(m,n), and kinematical groupO(m,n) ⋊ R has a non-trivial automorphism tower.

Since almost all of the groups discussed so far lie within thescope of Proposition 2, this

strategy is not very promising. However, one might still tryto replacea given group with one that

has a non-trivial automorphism tower, through the use of thefollowing two propositions.

Theorem 1. [Cayley’s Theorem] An arbitrary groupG can be embedded intoSymG, the sym-

metric group23 onG (Robinson 1996, pp. 36).

Theorem 2. For every symmetric groupSymG on a finite groupG (where|G| 6= 2 or 6), SymG ∼=

Aut SymG (Robinson 1996, pp. 415).

22We sketch a proof in the appendix to this paper.
23Thesymmetric grouponG is the group of bijections fromG to itself. For finite groups of ordern, SymG is often

denotedSn, and is often called thepermutation group.
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The idea is this: a structural realist might suggest that themetaphysically fundamental

group isn’tG, but rather the larger groupSymG, which Cayley’s Theorem tells usG is embedded

in. Theorem 2 then (mostly) guarantees thatSymG has a non-trivial automorphism tower, as long

as|G| is finite. ShirkingG in favor of its permutation group might thus provide one way out of the

problem.

This idea doesn’t get us very far. The restriction that|G| be finite is very prohibitive. But

even if there is an equivalent result for infinite groups,SymG is still in a sense the worst possi-

ble choice for describing physical reality. Precisely because of Cayley’s theorem, the symmetric

groups containall other groupsas subgroups, and thus a zoo of structures that have nothing at all

to do with the physical world. So I see now ay that the general adoption ofSymG can be tenable.

3.3.2 Playing Favorites

It is thus unavoidable that a symmetry group may admit a towerof higher structures. Moreover,

it is unlikely that one could in general pick out the ‘top’ of this tower, since there are groups with

towers that extend transfinitely, as well as groups with towers that cycle. So, it seems the structural

realist shouldn’t hold out much hope to pick out the top of thetower. Can the structural realist

provide some motivation for choosing the ‘bottom’ of the tower? That is, can one argue thatG is

more fundamental thanAutG and the other higher structures? I can imagine three non-arbitrary

ways that the one might do this: by appealing to the real world, by appealing to the mathematics,

and by appealing to the physics. None of them are very appealing.

First, one might argue that the metaphysically fundamentalgroup is the one that isleast

abstractly removedfrom the real world. For example, in our discussion of angular momentum,

SO(3) seems to be the most significant group, because it acts directly an electron shell. On the

other hand,AutSO(3) acts onSO(3), which in turn acts on an electron shell. This seems to give

us good reason to think thatSO(3) is more metaphysically significant thanAutSO(3): the former

is less abstractly removed.

However, if our goal is to pick out what’s metaphysically significant, this begs the question:

removed with respect to what? The response cannot be: ‘Removed with respect to the electron

shell.’ As discussed before, the advocate of GSR must provide an account in which groups are

what underpin the properties of objects, and not the other way around. In particular, ifSO(3)
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is what provides individual objects with their properties,then it would be circular to turn around

and use an individual object to pick outSO(3). So we cannot use the notion of ‘least abstractly

removed’ to pick out the metaphysically fundamental symmetry group. (For the same reason, the

property of being ‘most abstractly removed’ won’t work either.)

Second, one might try to pick out a groupG overAutG by arguing that the former is the

most mathematically informativegroup. After all,G fixesAutG, but the converse is generally not

true. So given an automorphism tower,

G, AutG, Aut AutG . . . ,

the groupG at the bottom of the tower might be identified as the most mathematically informative,

because it uniquely determines the rest of the tower. As Armstrong might argue, ifG is what’s

fundamental, then the rest of the tower is a ‘metaphysical free-lunch.’

But this suggestion won’t work either, because if the ‘bottom of the tower’ exists, it is

usually underdetermined. Note that there might well be somegroupH such thatAutH ∼= G. In

this case, the above automorphism tower really looks like this:

H, G, AutG, Aut AutG, . . . .

There is no guarantee against an infinite regress here, by which the tower would have no bottom.

But even worse, there is often more than one suchH that can extend the tower down in this way.

In this case, we have no way to choose which ‘bottom’ of the tower is intended.

To see an example of this, let’s return to the rotational symmetry group of the squareC4.

This group is isomorphic to the automorphism group ofC5, the cyclic group of order five24. But

C4 is also isomorphic25 to the automorphism group ofC10. Therefore, we have two towers:

C5, C4, AutC4, Aut AutC4 . . . C10, C4, AutC4, Aut AutC4 . . . .

These towers have different groups ‘at the bottom,’ and we have no principled way to choose

24Here is a quick proof. SinceC5 is cyclic, AutC5
∼= Z

×

5
, the multiplicative group of units of the ringZ5

(Robinson 1996, Prop. 1.5.5). But5 is prime, soZ×

5
∼= C5−1 = C4. Therefore,AutC5

∼= C4.
25This follows from the proof of Proposition 1 in the appendix to this paper.
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between them. So it appears that choosing the group at the bottom of the tower brings us right

back to where we started: we have multiple candidates for therole of ‘metaphysically fundamental’

structure, and no way to choose between them.

Finally, the structural realist might encourage us to accept a groupG simply because it is

the group that is most naturallysuggested by the physics. This idea is perhaps closest to the right

attitude. Physics certainly prescribes a clear role for some groups, and not for others. For example,

the rotation groupSO(3) is simply a fundamental consideration in the treatment of angular mo-

mentum in quantum systems. On the other hand, it is less clearwhat roleAutSO(3) plays. Why

not take this distinction betweenSO(3) andAutSO(3) seriously?

If a natural physical attitude were the target, then the structural realist should have stopped

at Wigner’s legacy. This was clearly a fruitful episode in the history of physics. However, that

simply doesn’t translate into a fruitful metaphysics. As many structural realists have argued, the

correctinterpretationof these physical results is a separate question. Ladyman has hammered ‘the

impossibility of simply ‘reading one’s metaphysics off one’s physics’ (Ladyman 1998, pp. 419).

French similarly argues ‘theory itself provides no guide toontology’ (French 1999, pp. 204).

The worry is presumably that, if we read too much into the physics, we might not end up with

the correct structural realist hierarchy. Thus, structural realists are effectively barred from this

seemingly natural scientific attitude.

If there are any other ways to coherently get around the first horn of the dilemma, then they

are not forthcoming. So let’s finally turn to the second horn,in which the entire tower – the whole

shebang of structures – is elevated to ‘metaphysically fundamental’ status.

3.3.3 Adopting the Whole Shebang

Promoting the whole shebang of higher structures may be the most well-motivated option for the

structural realist. The entire tower is certainly part of the available mathematical apparatus for

describing the world. Quite simply, it all looks like structure. So why not take it all to be equally

‘fundamental’?

For the structural realist motivated by theory change, choosing this way out is giving up

the game. The idea was supposed to be that higher, more abstract structures are more disposed

to be preserved when scientific theory changes. But adoptingthe whole shebang means adopting
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both the higher and the lower down structures. So, at least when it comes to theory change, the

‘whole shebang’ is only as safe as its least-abstract element. Moreover, once the entire tower has

been thrown into our ontology, it’s much less obvious why we don’t just throw inall the available

structures appearing in our theory – algebras, vector spaces, Hermitian forms, and so on. More

structures means more sensitivity to change over time. So any advantage the structural realist had

over its rival realist counterparts with respect to theory change would evaporate.

Another more homely worry about adopting the shebang is thatit’s just too wild. Whether

or not an automorphism tower is finite, it still introduces a potentially enormous array of new group

structures into the metaphysical hierarchy. And it still remains to be seen how acycling tower of

automorphisms fits into the hierarchy, as it seems impossible to call any point on such a tower

more or less fundamental. However these worries are dealt with, they invariably seem to involve

an overly extravagant ontology, which is both unmotivated and exceedingly complex. If this is

what is needed to make sense of the reality behind the physics, then it seems we might be on the

wrong track.

Perhaps this does not settle the issue. For example, one might hope that all compact Lie

groups have well-behaved automorphism towers26. However, this seems an unlikely hazard, given

the bad behavior of the infinite dihedral groupD∞. As things currently stand, adopting the whole

shebang does not appear to be a promising response.

4 Conclusion

The conclusions of this paper, if they are correct, can be taken in either a positive or a negative light.

Critics of structural realism can see it as an extremely charitable criticism. Supporters of structural

realism can see it as a back-handed contribution. What I hopeto have shown in both cases is that

there are two competing poles in working out a precise account of structural realism. On the one

hand, we have a compelling account of the foundations of quantum theory in which group structure

plays a central role. This account provides a great deal of insight into both the nature of measurable

quantities, as well as into what is preserved as physical theory changes. On the other hand, we have

26Indeed, we already know that the Lorentz groupO(3, 1) has a very short tower:AutO(3, 1) ∼= AutAutO(3, 1)
(Michel 1967).
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the non-trivial difficulty of working out just what is meant by a ‘metaphysical hierarchy,’ and how

a vast array of relevant theoretical structures fit into it.

This problem may yet turn out to be tractable, and structuralrealists are invited to try to

overcome the difficulties we have posed here. However, by thelights of the current author, there is

a more natural attitude to adopt. Namely: Wigner’s legacy asshown itself be of deep importance

and relevance; the structural realist hierarchy has not. Itis possible to consistently support Wigner

while avoiding this extra appendage, and so the latter may bemore trouble than it’s worth.

5 Appendix

Proposition 1. LetF be a group with a subgroup isomorphic toU(1), the one-dimensional group

of smooth rotations. ThenF contains infinitely many pairs of subgroupsG and H such that

G 6∼= H, andAutG ∼= AutH.

Proof. Every cyclic groupCr is a subgroup ofU(1), generated by a rotation of2π/r. We prove

that for everyCp such thatp is an odd prime,AutC2p
∼= AutCp. Then sinceC2p 6∼= Cp, the

proposition follows from the infinitude of the primes.

For any integern, one can show thatAutCn
∼= Z

×

n , whereZ
×

n is the group of multiplicative

units of the ringZn (Robinson 1996, Prop. 1.5.5). In particular,AutCp
∼= Z

×

p andAutC2p
∼= Z

×

2p.

But by the Chinese remainder theorem, ifn = p1 · p2 · p3 ... and eachpi is a distinct prime, then

Z
×

n
∼= Z

×

p1
× Z

×

p2
× Z

×

p3
× · · · .

SoZ
×

2p
∼= Z

×

2
× Z

×

p wheneverp is odd. ButZ×

2
∼= {1}, the trivial group. SoZ×

2p
∼= Z

×

p , and hence

AutC2p
∼= AutCp.

Proposition 2. Every non-trivial special unitary groupSU(n), special orthogonal groupSO(m,n),

orthogonal groupO(m,n), and kinematical groupO(m,n) ⋊ R has a non-trivial automorphism

tower.

Proof (sketch).Note that groupG is said to have anon-trivial automorphism toweriff G 6≃ AutG.



Group Structural Realism 24

Each of the groups of Proposition 2 can be easily shown to havethis property, with the help of the

following lemma:

Helpful Lemma. Let ζG be the center of a groupG, and letOutG be its outer automorphism

group. If |ζG| 6= |OutG|, thenG 6∼= AutG.

In this sketch, we state the Helpful Lemma without proof. (For finite groups, it can be easily

demonstrated using Lagrange’s theorem; this result can easily be extended to the infinite case.) It

can now be easily shown that for each of the symmetry groups ofProposition 2,|ζG| 6= |OutG|,

and so the Helpful Lemma may be applied.

Corollary 1. Every non-trivial(n > 1) special unitary groupSU(n) has a non-trivial automor-

phism tower.

Proof. Let n > 1. It is well known that the centerζSU(n) is a cyclic group generated byγI,

whereγ is thenth root of unity (Fendley 2001, pp. 124). Thus,|ζSU(n)| = n.

Now, turn toOutSU(n). There are two cases to consider. First, letn = 2. Then the only

automorphism ofOutSU(n) is trivial, so |OutSU(n)| = 1. Second, letn > 2. Then one can

show that|OutSU(n)| = 2 (Froggatt and Nielsen 1991, pp. 154). In both cases,|ζSU(n)| 6=

|OutSU(n)|. Therefore, by the Helpful Lemma,SU(n) 6∼= AutSU(n).

Corollary 2. Every special unitary groupSU(n), special orthogonal groupSO(m,n), orthogonal

groupO(m,n), and kinematical groupO(m,n) ⋊ R has a non-trivial automorphism group.

Proof. The proof of these facts is straightforward, following a similar strategy of showing that

|ζG| 6= |OutG|, and then applying the Helpful Lemma. Proposition 2 then follows as a conse-

quence.
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