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1 Introduction

In most philosophical discussions the concept of emergence is intimately re-
lated to the following notions: antireductionism, unpredictability, and nov-
elty. Emergence in these contexts is also typically associated with parts and
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wholes. The idea being that a phenomenon is emergent if its behavior is
not reducible to some sort of sum of the behaviors of its parts, if its behav-
ior is not predictable given full knowledge of the behaviors of its parts, and
if it is somehow new—most typically this is taken to mean that emergent
phenomenon displays causal powers not displayed by any of its parts.1 In
addition to irreducibility, unpredictability, and novelty, it is often asserted
that emergent phenomena are inexplicable—they defy explanation in terms
of the behaviors of their components. And, as “explanation” is typically
understood to be explanation by a particular theory, this means that the
behavior of the emergent whole is not fully explained by the theory that
governs the behavior of the component parts.

A number of philosophers of science have imposed these philosophical con-
ceptions upon physical theory in an attempt to address the issue of emergence
in physics. While I believe there are some benefits to this methodological
approach, on the whole I think it is better to turn the process on its head. We
should look to physics and to “emergent relations” between physical theories
to get a better idea about what the nature of emergence really is. Trying to
impose a conceptual framework designed primarily to deal with the problem
of the mental’s relation to the physical is by and large unhelpful.

There have been discussions of emergence in the “modern” physics liter-
ature (though not necessarily always using that term) at least since the time
of the development of kinetic theory and statistical mechanics. The questions
addressed in these discussions focus on how it is that the macroworld of our
experience can arise out of behavior of the microconstituents of the every-
day objects of our experience. As with the philosophical discussions, most
of these more historical questions presuppose a mereological or part/whole
picture. However, relatively recent developments in physics show that this
presupposition is not key to a proper understanding of emergence in physics.
Rather, as I will try to argue, the most important features for understanding
(at least some key examples of) emergence in physical theory are mathemati-
cal. In particular, one should take seriously the singularities and divergences
that appear as one tries to understand the relationship between macro and
micro theories, or more generally, between phenomenological theories at some
energy scale and “more fundamental” theories at higher energy scales.

1Most philosophical discussions focus on emergent properties. As the discussion below
will show, in the context of physical theory, I think this is a mistake and prefer to speak
rather loosely of emergent “phenomena.”
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The next section discusses the not-so-clear-cut distinction between so-
called “fundamental theory” and phenomenological theory. A theory may be
fundamental, in that it gets a system’s ontology correct, yet at the same time
fail to be fundamental in other, particularly explanatory, ways. Section 3 be-
gins to develop the theory of critical phenomena and the renormalization
group. The main aim here is to begin to motivate the reasons for the ex-
planatory inadequacy of ontologically correct theories for dealing with phase
transitions and critical phenomena. In section 4 I discuss similar claims that
have been made in the quantum field theory literature. In particular, this
brief section presents the point of view of Roman Jackiw in his very sug-
gestive paper “The Unreasonable Effectiveness of Quantum Field Theory.”
[10] Section 5, entitled “Necessary Singularities” makes the case, through a
more detailed, yet still qualitative discussion of the renormalization group,
that the infinite thermodynamic limit and the accompanying divergence of
various quantities in that limit at criticality are absolutely essential for ex-
planatory purposes. The idea is to argue that a potential finite theory, free of
the infinities that plague quantum field theory and condensed matter physics,
cannot explain the existence of emergent protected states of matter. Finally,
the conclusion wraps up with some very brief remarks about the nature of
scientific theory and the desideratum that such theories, to be acceptable,
need to be consistent.

2 Phenomenological vs.

Fundamental Theories

There is a sense in which classical thermodynamics is less fundamental than
statistical mechanics. In classical thermodynamics a system such as a gas
in a box is a continuous blob of stuff. The theory describes (and to some
extent explains) the observable behavior of various systems such as gases
and fluids while remaining completely agnostic about the internal make-up
of those systems. Historically, of course, the developments of thermodynam-
ics and kinetic theory/statistical mechanics were intertwined. [7] However,
conceptually, the quantities and properties of state in orthodox thermody-
namic equations appear largely to be independent of any specific claims about
the ultimate constitution of the systems described. Similar claims hold for
hydrodynamics—a continuum theory governed by the Navier-Stokes equa-
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tions. It, too, remains largely agnostic about the molecular make-up of the
fluids it describes.

On the other hand, as physical and philosophical orthodoxy would have it,
the more fundamental theories—statistical mechanics and molecular dynamics—
respectively, reduce and explain the phenomenological theories of thermody-
namics and hydrodynamics. It is widely believed that statistical mechanics
justifies the classical thermodynamic theory. (Indeed, in philosophical cir-
cles, the reduction of thermodynamics to statistical mechanics is taken to
be the paradigm example of successful intertheoretic reduction.) Reduction
in this context typically is taken to mean that the laws of thermodynamics
(the reduced theory) are derivable from and hence explained by the laws of
statistical mechanics (the reducing theory). [13, 3, 5]2 To a certain extent
this can in fact be done. The reductive project (again, in certain contexts)
has been extraordinarily successful.

However, there are very good reasons to deny that all thermodynamic
(and hydrodynamic) phenomena are reducible to “fundamental” theory. Con-
sider phase transitions and critical phenomena. Everyday (and not so every-
day systems) can undergo qualitative changes in state. Water in our freezers
goes from its liquid phase to its solid phase (which then sublimates in frost-
free freezers). Magnetic materials undergo transitions from ferromagnetic
states to paramagnetic states. Such qualitative changes of state, as I will ar-
gue below, cannot be reductively explained by the more fundamental theories
of statistical mechanics. They are indeed emergent phenomena. The reason
for this (rather dramatic) negative claim has to do with the fact that such
changes require certain infinite idealizations. From the point of view of the
underlying fundamental theory whose proper focus is on the interactions of a
finite number of molecular components of the macrosystems, these qualita-
tive changes are genuinely novel.3 The upshot is that the statistical mechan-
ics of finite systems is explanatorily insufficient. While it gets the ontology of
blobs of gases and fluids right, they are composed of a finite number of inter-
acting molecules, there remain macroscopic phenomena—universal patterns
of behavior—that cannot be explained by this fundamental theory.

2Things are actually much more involved and complex than this brief description allows.
See [4, 16] for a detailed discussion of issues of intertheoretic reduction.

3One starts all investigations, at least from the point of view of logical priority, by
writing down the partition function for the N components of the systems. Such a partition
function for finite N will never exhibit the nonanalytic behavior necessary to represent
qualitatively different states of matter. See [11, pp. 238–239] for a discussion.
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The term “fundamental” here is, therefore, ambiguous. A theory may be
fundamental in that it properly characterizes the detailed constitution of the
systems it studies, but can fail to be fundamental in its ability to explain
and provide understanding of the systems it correctly describes. This point
of view is expressed nicely in David R. Nelson’s book Defects and Geometry
in Condensed Matter Physics.4

The modern theory of critical phenomena has interesting impli-
cations for our understanding of what constitutes “fundamental”
physics. For many important problems, a fundamental under-
standing of the physics involved does not necessarily lie in the
science of the smallest available time or length scale. The extreme
insensitivity of the hydrodynamics of fluids to the precise physics
at high frequencies and short distances is highlighted when we
remember that the Navier-Stokes equations were derived in the
early nineteenth century, at a time when even the discrete atom-
istic nature of matter was in doubt. [14, p.3]

3 Condensed Matter Theory

Contemporary references to “emergence” in the physics and popular science
literature accord with Nelson’s assessment of what counts a fundamental the-
ory. Laughlin and Pines [12] use the term “protectorate” to describe domains
of physics (states of matter) that are effectively independent of microdetails
or of high frequency/short distance scales. A (quantum) protectorate, ac-
cording to Laughlin and Pines is “a stable state of matter whose generic
low-energy properties are determined by a higher organizing principle and
nothing else.” [12, p. 261] Laughlin and Pines do not say much about what
a “higher organizing principle” actually is, though they do refer to sponta-
neous symmetry breaking in this context.5

In this section and the next I would like to suggest a way of understanding
emergence in this sense (or at least a way of understanding the concept of

4See also Philip Anderson’s famous paper “More is Different.” [1]
5For instance, they consider the existence of sound in a solid as an emergent phe-

nomenon independent of microscopic details: “It is rather obvious that one does not need
to prove the existence of sound in a solid, for it follows from the existence of elastic moduli
at long length scales, which in turn follows from the spontaneous breaking of translational
and rotation symmetry characteristic of the crystalline state.” [12, p. 261]
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a protectorate) that goes beyond mere claims to the effect that symmetry
breaking occurs. I want to argue that one can tell a fairly persuasive story
about why and how protectorates exist—one that goes beyond unexplicated
appeals to higher organizing principles.

While not using the term “protectorate”, Nelson also speaks of stable
states of matter in a general way that directs us to where to find the details
of the story. Instead of “protectorate” he uses the term “general fixed point.”
Here is a passage in which he describes this situation:

It turns out that not just critical points but entire phases of mat-
ter are described by a “universal,” coarse-grained, long-wavelength
theory.. . . One can make similar statements about the hydrody-
namic laws derived for fluids in the nineteenth century. Upon sys-
tematically integrating out the high-frequency, short-wavelength
modes associated with atoms and molecules, one should be able
to arrive at, say, the Navier-Stokes equations. . . . Ignorance about
microscopic details is typically packaged into a few phenomeno-
logical parameters characterizing the “fixed point,” such as the
density and viscosity of an incompressible fluid like water in the
case of the Navier-Stokes equations. [14, p. 3.]

I suggest that in order to better understand what these protectorates
are and how they are possible, we should look to the spectacular success of
condensed matter theory in explaining the universality of critical phenomena.
Protectorates or Nelson’s generalized “fixed points” are intimately related to
the concept of universality and the renormalization group theory developed
by Kadanoff, Fisher, and Wilson. [11, 8, 17] It is to a brief discussion of this
theory that we now turn. More details will follow in section 5.

Renormalization group theory provides an explanation for the remarkable
similarity in behavior of “fluids” of different molecular constitution when at
their respective critical points.6 Experimentally it is found that a certain
dimensionless number—a critical exponent—characterizes the virtually iden-
tical behavior of diverse systems at their respective (and different) critical
points. One would like to explain this remarkable universality of behavior or,

6I put “fluids” in scare quotes because really there are many different kinds of systems
that exhibit the same critical behavior including magnets and because, as we will see
below, “fluids” can exhibit behavior that pre-theoretically we would not associate with
fluids, i.e., liquids.
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Figure 1: Temperature-Pressure Phase Diagram for a “Fluid”

in philosophical terms, how this multiply realized behavior is possible.7 Let
me briefly introduce some of this terminology.

Consider the temperature-pressure diagram for a typical “fluid” in fig-
ure 1. The bold lines represent thermodynamic states in which two distinct
phases of the fluid (pairs of solid, liquid, and vapor) can coexist.8 Thus, the
lines represent states in which the system is undergoing a (first order) phase
transition. For instance, along the line between points A and C one will
find both liquid and vapor in the container—just what we see when the tea
kettle boils on the stovetop. At point C, the critical point, something strange
happens. Below the critical temperature Tc and below the critical pressure
Pc, the fluid exists in its vapor phase. Further, it is impossible, below Tc
and above Ta, to change the system from its vapor phase to the liquid phase
by increasing pressure without crossing the line A–C. In other words, below
Tc the system cannot pass from the vapor to the liquid phase without going
through a state in which both vapor and liquid are simultaneously present in
the container. Above the critical temperature, T > Tc, it suddenly becomes
possible to do this. Simply increase the temperature beyond Tc, increase the
pressure beyond Pc and then decrease the temperature below Tc. This will be

7See [2] for a discussion of the relationship between universality and multiple realiz-
ability.

8Point A is actually a triple point—a state in which all three phases can coexist.

7



a path, γ, through states in which the “fluid” changes from vapor to liquid
without ever being in a state where both phases coexist. The critical point
indicates the existence of a qualitative change in the behavior of the system.
Below Tc the distinction between liquid and vapor makes sense; above Tc,
it apparently does not. Thermodynamically, the qualitative distinction be-
tween different states of matter is represented by a singularity in a function
(the free energy) characterizing the system’s state.

Thus, mathematical singularities in the thermodynamic equations repre-
sent qualitative differences in the physical states of the fluid in the container.
As mentioned above, at the critical point systems with radically different
microstructures exhibit behavior that, mathematically, is described by a par-
ticular number: the critical exponent β.The number, β, is the same for the
diverse systems. At the simplest level, the critical behavior can be charac-
terized in terms of the behavior of a certain quantity, the so-called “order
parameter,” which for fluids is the difference in densities between the differ-
ent coexisting phases. So along the line A–C in figure 1 the order parameter,
Ψ, is the difference between the liquid and vapor densities:

Ψ = |ρliq − ρvap|.

Below the critical temperature, Tc, Ψ is nonzero indicating the simultaneous
existence of both liquid and vapor in the container. Above Tc, the order
parameter takes the value zero. Figure 2 exhibits the vanishing of the order
parameter Ψ at Tc. The heavy line is the coexistence curve with the vertical
“tie lines” indicating that at some specific temperature T ′, the liquid density
is ρliq(T

′) and the vapor density is ρvap(T
′). Note that at Tc the difference

between these two values vanishes.
One universal feature–a feature displayed by all of the distinct fluids

at their respective critical temperatures—is the fact that the coexistence
curves near each of these Tcs have the same shape. We can introduce a
“distance” measure called the “reduced temperature”, t, that allows us to
describe how far any system is from criticality. This allows us to compare
the critical behavior of different systems with different Tcs—different critical
temperatures. The reduced temperature is

t =

∣∣∣∣T − TcTc

∣∣∣∣ ,
and the universality claim amounts to the fact that the order parameter, Ψ,
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Figure 2: Coexistence Curve: Density vs. Temperature for a “Fluid”

for every fluid vanishes as some power β of t:

Ψ = |ρliq − ρvap| ∝ tβ. (1)

The number β characterizes the shape of the coexistence curve in the neigh-
borhood of Tc. For instance, if the curve were a parabola, then β would be
1/2—a result erroneously predicted by mean field theory. Experimentally, it
has been found that the β is not 1/2 but rather some number close to 0.33.

The explanatory question then is why the order parameters for various
physically distinct fluids (and even magnets where the order parameter is
the net magnetization) scale as a specific power law tβ. Condensed matter
theorists have provided an explanation for this fact that involves the so-called
renormalization group.9 Without going into detail here, one essential feature
of the explanation provided is the invocation of the so-called thermodynamic
limit. This is the limit in which (roughly speaking) the number of particles of
the system, e.g., the number of H2O molecules in the tea kettle, approaches
infinity. And, of course, as noted above, this is an idealization: water in real
tea kettles consists of a finite number of molecules. This limiting idealization
is essential for the explanation because for a finite number of particles the
statistical mechanical analogs of the thermodynamic functions cannot exhibit

9See [11] for an account by one of the founders of the technique and [4, chapter 4] for
more a more philosophical discussion.

9



the nonanalytic behavior necessary to represent the qualitatively distinct
behaviors we observe. [11, pp. 238–239]

In addition, the thermodynamic limit is required because unless we are
dealing with infinite systems, there will always be some characteristic length
scale (atomic spacings for instance) that will differ from system to system.
The renormalization group explains the universal behavior at criticality es-
sentially by exploiting the divergence (blow up to infinity) of the correlation
length (a parameter reflecting how far-apart molecules are correlated with
one another). The divergence of this parameter allows for the comparison of
the different fluids at criticality by allowing for scaling or self-similar solu-
tions. See the discussion below in section 5.

So we have an explanation for the universality of critical phenomena
that depends essentially upon infinities and divergences. The explanation
in essence delimits a class of macrostates of various systems at the scale of
everyday objects (fluids) that are essentially decoupled or independent of
their microdetails. These are the protectorates of Laughlin and Pines. [12]

The renormalization group explanation provides principled physical rea-
sons (reasons grounded in the physics and mathematics of systems in the
thermodynamic limit) for ignoring details about the microstructure of the
constituents of the fluids. It is, in effect, an argument for why those details
are irrelevant for the behavior of interest. What then of Laughlin’s and Pines’
higher organizing principles? Recall that the protectorates are supposed to
depend upon such principles “and nothing else.” It is true, as we can see in
figure 2, that as the critical temperature is approached from above Tc there
is a breaking of symmetry in that the order parameter undergoes a discon-
tinuous jump from zero to nonzero values at that temperature. But is this
a higher organizing principle? And if it is, does appeal to it by itself —that
is without the entire renormalization group story—suffice for understanding
the emergent protectorate with its “insensitivity to microscopics”? It seems
hardly satisfactory to appeal to symmetry breaking as an organizing principle
independent of microdetails when we have such a profoundly successful story
about why the microdetails in fact are largely independent or irrelevant.

Most crucial to the renormalization group explanation is, as noted, the
ineliminable appeal to the thermodynamic limit and to the singularities that
emerge in that limit. This raises issues about the use of idealized models in
explanatory contexts. Many physicists and philosophers apparently believe
that singularities appearing in our theories are indications of modeling fail-
ures. In particular, they hold that such blowups are signatures of some kind
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of unphysical assumption in the underlying model. Singularities are, on this
view, information sinks. We cannot learn anything about the physical sys-
tem until we rid the theory of such monstrosities. (This attitude is still quite
prevalent in the literature on quantum field theory, a little bit of which will
be discussed in the next section.) On the contrary, I’m suggesting that an
important lesson from the renormalization group successes is that we rethink
the use of models in physics. If we include mathematical features as essential
parts of physical modeling then we will see that blowups or singularities are
often sources of information.

Mark Wilson has noted something akin to this in his discussion of deter-
minism in classical physics. He notes that while from a

modeling point of view we are inclined to object to the appearance
of singularities . . . , from a mathematical point of view we often
greatly value these same breakdowns; for as Riemann and Cauchy
demonstrated long ago, the singularities of a problem commonly
represent the precise features of the mathematical landscape we
should seek in our efforts to understand how the qualitative math-
ematics of a set of equations unfolds. Insofar as the project
of achieving mathematical understanding goes, singularities fre-
quently prove our best friends, not our enemies. [18, pp.184–185]

As mathematical features (particularly singular limits) are often part of ap-
plied mathematical modeling, it seems to me that we ought to expand our
understanding of Wilson’s “modeling point of view” to include the mathe-
matical singularities.

The next section looks briefly at infinities arising in quantum field theory
with the goal of supporting the view that singularities can be sources of
information.

4 Quantum Fields

Quantum field theory is without a doubt one of the most successful frame-
works ever developed in physics. Field-theoretic ideas pervade physics at
various energy and length scales and have resulted in some of the most spec-
tacular agreements with experiment imaginable. The standard model of par-
ticle physics is one such example, as is the use of field-theoretic techniques
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in condensed matter theory. Quantum field theory has predicted and ex-
plained various unexpected phenomena such as fractional quantum numbers
in the Hall effect, and various aspects of superconductivity. Nevertheless,
(and this is still widely discussed) the theory has been deemed by many to
be foundationally suspect. Those who hold that a successful theory should
yield predictions from-first-principles, as it were, independent of experimen-
tal/phenomenological input believe that it cannot be the final theory. And
so the search for a deeper theory—perhaps, string theory—continues. But
more upsetting to many is the fact that quantum field theory when actually
used for calculations and predictions typically engenders all kinds of diver-
gences. With these monsters ever present, it is claimed that there must be
something wrong with the foundations of the theory.

Most worrisome are the divergences that appear in high energy regimes—
the so-called ultraviolet divergences. As Roman Jackiw notes, such ultravi-
olet infinities

do appear to be intrinsic to quantum field theory, and no physical
consideration can circumvent them; unlike the infrared [low en-
ergy] divergences, ultraviolet ones cannot be excused away. But
they can be ‘renormalized’. This procedure allows the infinities
to be sidestepped or hidden, and succeeds in unambiguously ex-
tracting numerical predictions from the standard model and from
other ‘physical’ quantum field theories . . . . [10, pp. 149–150]

Jackiw’s goal in this paper is to persuade us that “the divergences of quantum
field theory must not be viewed as unmitigated defects; on the contrary they
convey crucially important information about the physical situation, without
which most of our theories would not be physically acceptable.” [10, p. 150]
This fits well with the remarks at the end of the last section; in particu-
lar, with Wilson’s claim that singularities are often our best mathematical
friends.

One crucial and obvious feature of the world is that different things—
particles, organisms, etc.—exist or appear at different scales. The world is
not scale invariant with respect to space and time. Jackiw puts the point as
follows: Dilating (or contracting) spacetime coordinates will generally change
the units of measurement for space and time. But, if a theory possesses no
intrinsic dimensional space and time parameters, then that theory will be
scale invariant.
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Our quantum chromodynamical model (QCD) for quarks is free
of such dimensional parameters, and it would appear that this
theory is scale invariant—but Nature certainly is not! The ob-
served variety of different objects with different sizes and masses
exhibits many different and inequivalent scales. . . . Fortunately,
scale symmetry is quantum mechanically broken, owing to the
scales that are introduced in the regularization and renormaliza-
tion of ultraviolet singularities. [10, p. 155]

If it were not for the singularities that appear in our theories and models we
would have no understanding of the emergence at different scales of distinct
and apparently “protected” states of matter.

Most interesting, from a philosophical perspective, is that the infinities
appear to arise from the mathematical description employed in the theo-
ries themselves. Of course, this raises the question of whether the infinities
are merely artifacts of our field theoretic formulation. Perhaps, some other
framework—maybe algebraic quantum field theory or, more radically, a cor-
rect theory of everything (string theory?)—will provide an infinity-free theo-
retical account of our non-scale invariant world? Jackiw expresses this worry
as follows:

. . . [F]or me chiral and scale symmetry breaking are completely
natural effects, but their description in our present language—
quantum field theory—is awkward and leads to extreme formu-
lations, which make use of infinities. One hopes that there is a
more felicitous description, in an as yet undiscovered language.
. . .

The relation between mathematical entities and field theoretical
anomalies was realized 20 years ago and has led to a flourishing
interaction between physics and mathematics, which today cul-
minates in the string program. However, it seems to me that now
mathematical ideas have taken the lead, while physical under-
standing lags behind. In particular, I wonder where within the
completely finite and non-local dynamics of string theory we are
to find the mechanisms for symmetry breaking that are needed
to describe the world around us. [10, pp. 157–158]

Jackiw here nicely expresses the tension felt by many about the appear-
ance and role of infinities in quantum field theories. On the one hand, infini-
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ties seem necessary for establishing and understanding the different stable
states of matter—the different protectorates. On the other hand, they seem
“infelicitous,” awkward, and extreme. This latter attitude, I believe, comes
from a deep feeling that infinities or divergences are indicators of the ulti-
mate inadequacy of our theoretical constructs.10 I think this feeling is inapt
and in the next section I provide positive reasons to believe that singularities
are necessary for our understanding of emergent protectorates.

5 Necessary Singularities

In this section I would like to assume that emergent protectorates exist—
that is, that there are stable states of matter that are in effect decoupled
and largely independent of physics at shorter length/higher energy scales.
The question then is: How are such protectorates possible? Can a more
fundamental theory (such as string theory) answer this question without
appeal to singularities and infinities? While I’m not remotely an expert on
string theory, I think there are some general reasons to think that more
fundamental theories without divergences are incapable of answering certain
why-questions about such protectorates.

To begin, let’s consider what Laughlin and Pines say about this in their
paper “The Theory of Everything.” [12] They point out that even if we had a
theory of everything the victory of reductionism would only be pyrrhic: “We
have succeeded in reducing all of ordinary physical behavior to a simple,
correct Theory of Everything only to discover that it has revealed exactly
nothing about many things of great importance”. [12, p.260] Their reasons
here depend upon the fact that ab initio, from-first-principles, deductions of
these “things of great importance” such as macro-behavior of ferromagnets
and superconductivity almost always fail. One needs experimental data, and
approximate calculations are achieved, in their words,

not [from] first-principle deductions, but are rather art keyed to
experiment, and thus tend to be the least reliable precisely when
reliability is most needed, i.e., when experimental information

10In many instances, I think investigators hold that the existence of these infinities
indicate that the theory is inconsistent. I believe this is a mistake. Singularities may be
an indication that something is not right, but they need not entail the logical inconsistency
of the theory.
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is scarce, the physical behavior has no precedent, and the key
questions have not yet been identified. [12, p.260, My emhapsis.]

However, as we’ve seen above Jackiw allows the possibility that a com-
pletely finite, nonlocal string theory may actually be the correct theory—one
that might provide a more “felicitous” description and, possibly because of
that, a means for from-first-principles deductions.

Recall that the emergent protectorates are, according to Laughlin and
Pines “regulated by higher organizing principles [and] have a property, namely
their insensitivity to microscopics, that is directly relevant to the broad ques-
tion of what is knowable in the deepest sense of the term.” [12, p. 261] Our
brief discussion in section 3 suggests how to understand this “insensitivity to
microscopics” or better, the universal behavior of lower energy protectorates.

The key explanatory feature of the renormalization group argument for
the universality of critical phenomena is the demonstration that broad classes
of physical Hamiltonians (corresponding to distinct microstructures, e.g., dif-
ferent real fluids) all belong to the same universality class. That is, in an
abstract space of Hamiltonians, there are fixed points toward which different
systems at criticality flow under an imposed renormalization group transfor-
mation. The class of such systems that flow to the same fixed point—the
basin of attraction of that fixed point—is the universality class. Crucial to
establishing this fact (simplifying somewhat) is that in the thermodynamic
limit the correlation length diverges. This means that there is a loss of char-
acteristic length scale (say the atomic spacing) that can distinguish different
systems from one another. This loss of scale enables one to demonstrate the
equivalence in the behavior of different systems (specifically the fact that
their order parameters exhibit power law behavior with the same exponent,
β as in equation (1)) at criticality.

In fact, without the loss of a characteristic length scale, there would be
no way to compare different systems to one another; no way to demonstrate
the similarity in their behaviors. It is worthwhile going into a bit of detail
about how this takes place. (For more details and for a thorough discussion
see Kadanoff [11, Chapter 12].)

We have seen in section 3 that the order parameter Ψ for a fluid is the
difference in densities of the vapor and liquid in the container. Suppose we
consider some region in the container and ask about the spatial extent of a
‘droplet’ of near liquid density in the surrounding sea of vapor. Because of
fluctuations in density, this region may contain a liquid droplet of larger than
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average size. Nevertheless, for a fluid in equilibrium at a given temperature
away from criticality, there is a well-defined average size for the droplets.
One can now introduce the correlation length, ξ, which, roughly speaking,
characterizes the spatial extent of the average droplets of liquid. (Put slightly
differently: The correlation length is the typical distance over which the
behavior of one microscopic variable or degree of freedom can be correlated
with the behavior of another.) If all parameters other than temperature are
fixed, ξ is a function of temperature, ξ(T ). A crucial fact is that at the
critical temperature, the correlation length diverges to infinity:

ξ(T )→∞ as T → Tc.

As another example consider a lattice of spins above the critical tem-
perature Tc and in zero external magnetic field. Neighboring spins on the
lattice interact in a way that tends to align them parallel to each other.
This accounts for the ferromagnetic nature of the lattice. At high temper-
atures, however, thermal energy tends to randomize the directions of the
spins. Thus, while the spin-spins interaction tend to correlate the spins, at
higher temperatures this tendency can be overridden, resulting in a loss of
ferromagnetism. So, at high temperatures regions (or blocks) of spins will
have a very small correlation length, and the net magnetization will be zero.
As the temperature decreases towards the critical or Curie temperature, the
spatial extent of the blocks with correlated spins will increase. The correla-
tion length, ξ, is a measure of the size of the correlated regions or blocks. As
for the fluid, the correlation length is a function of T which diverges at the
critical point—the point of transition from the paramagnetic phase (above
Tc) to the ferromagnetic phase.

So near the critical temperature, the correlation length becomes extremely
large. This means that an enormous number of degrees of freedom are cou-
pled together. In other words, the range of the interaction among the degrees
of freedom (e.g., the different spins in a correlated block of spins) is large.
These correlations make solving the governing equations extremely difficult.

The idea behind the renormalization group method is to relate an in-
tractable problem involving a large correlation length to a more tractable
problem characterized by a correlation length reduced by some factor. One
thereby reduces the number of coupled degrees of freedom. For example,
suppose one has a system of spins on a lattice of spacing 1.0, as shown in
figure 3a) (round dots). Let us now group the spins into blocks of four spins.
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Next suppose that we have a way (via some kind of summation or partial
integration) of replacing the grouped spins with a single new kind of spin—a
‘block’ spin—in the center of the block (square dots). The block spins, in
this example, are now located on a lattice of spacing 2.0. Next, figure 3b),
one transforms the lengths so that the new spins are arranged on the same
lattice sites as the original spins. In other words, all lengths are contracted
by a factor of two. Finally, figure 3c), one transforms the new spin variables
so that the ‘new’ system of spins will be as much like the original system as
possible.

As mentioned, each system is represented by a function—its so-called
Hamiltonian. This function characterizes the kinds of interactions between
the degrees of freedom (e.g., between the spins) as well as any effects of
external fields. Thus, the Hamiltonian can be considered to be a function
of various system parameters—in particular, the temperature, the coupling
constants characterizing the spin-spin interactions, and the external fields.11

So, figure 3 in effect schematizes a transformation from one Hamiltonian to
another in which, among other things, the correlation length of the new,
transformed, Hamiltonian is smaller by the spatial rescaling factor which in
this case is 2.

If one performs this ‘renormalization’ transformation (call it ‘τ ’) repeat-
edly, one gets a sequence of Hamiltonians all of which describe systems with
the same lattice spacing, but where the correlation length gets smaller and
smaller with each iteration. As a result, the new Hamiltonians describe sys-
tems with fewer and fewer coupled degrees of freedom within their correlation
lengths. Thus, the systems are farther and farther from criticality.12

Now, let us consider an abstract space whose coordinates are the pa-
rameters appearing in the various Hamiltonians of the systems. In effect,
every point of this space corresponds to a possible Hamiltonian, so the space
should be thought of as the space of all possible Hamiltonians. Consider,
in particular, a lattice system undergoing a ferromagnetic phase transition.
Suppose that the external fields and all of the coupling constants are fixed,

11Strictly speaking, since this function is explicitly a function of the temperature, it is
not truly a Hamiltonian. The idea is that temperature is just another parameter describing
the system. It does not play any special role. So, whenever we speak of a system in this
context, we mean a state of a system at a given temperature.

12This process introduces all sorts of new couplings between the various degrees of
freedom. Dealing with this increase of complexity is part of the ‘art’ of the method. It is
not necessary to discuss, here, the various technicalities involved.
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spatial rescaling

rescaling/renormalization  of spin magnitudes

a)

b)

c)

 1.0 

 2.0 

 1.0 

Figure 3: The operations of the renormalization group: a). Block formation
(partial integration); b). Spatial rescaling/contraction; c). Renormalization
of parameters.
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and that the temperature is the only parameter being varied. As the tem-
perature approaches the critical temperature Tc, the point representing the
system undergoing the phase transition moves about in the abstract space of
Hamiltonians.13 Following the discussion in [15, pp. 12–15] let us call this
path the ‘physical line’ of the system.

Each point on the physical line represents the system at a given tem-
perature with a correlation length considered here to be solely a function of
temperature: ξ(Ti) = ξi.

S∞

S
1 (T1)

(T2)

(Tc)

Critical Surface: Tc)  = c  = ∞

p

S
2

physical line

Figure 4: Surfaces of constant correlation length. ξ(T1) = ξ1, ξ(T2) = ξ2
where ξ1 > ξ2.

One can now imagine this space of Hamiltonians divided up into surfaces
of constant ξ. Figure 4 illustrates the general idea.14 The surface, S∞, is the
‘critical surface’ corresponding to parameter values (points in the space, i.e.,
Hamiltonians) having infinite correlation length. Under the renormalization
group transformation τ every point on the physical line gets mapped to
another point in the space of Hamiltonians. This yields a trajectory issuing
from that point on the physical line. An important feature here is that the
trajectory generated by τ from the point p on the critical surface S∞ remains
confined to the critical surface.

13See footnote 11.
14A very nice discussion of these issues, at a fairly intuitive level can be found in [15,

chapter 1].
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The reason for this is simply that under the renormalization transforma-
tion, lengths are contracted by a spatial rescaling factor ‘b’15; and

τ(ξc) =
ξc
b

=
∞
b

=∞.

In other words, the correlation length remains infinite. The transformations
of points other than p on the physical line yield trajectories that diverge from
the critical surface S∞ intersecting surfaces Sξ corresponding to successively
lower values of correlation length, thereby effecting the reduction of the num-
ber of degrees of freedom within a correlation length. This is illustrated in
figure 5.

S∞
p

p*

physical line

Figure 5: Renormalization group trajectories issuing from points on the phys-
ical line. p∗ is a fixed point of the transformation τ .

The point, p∗, shown in figure 5 is a “fixed point.” This is a point in the
parameter space which, under τ , is its own trajectory. That is, it represents
a state of a system which is invariant under the renormalization group trans-
formation. Of necessity, such a fixed point has an infinite correlation length
and so lies on the critical surface S∞.16 The singularity/divergence of the
correlation length ξ is necessary.

We can now explain the universality of critical phenomena. Note that
a fixed point of a transformation is a property of the transformation itself.
This means that to find them one must solve the fixed point equation:

τ(H∗) = H∗.
15In figure 3, b = 2.
16Actually, a fixed point could have zero correlation length, since zero is also a length

which is unchanged under division by b. Such fixed points are called ‘trivial,’ and are
usually ignored. See [11, pp. 257–258].
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That is, one must determine the fixed point Hamiltonian H∗ = p∗ and this is
independent of any choice of initial Hamiltonian—the details of the individ-
ual systems do not matter. Universal behavior is explained by reference to
properties of certain fixed points. More precisely, it is related to the stability
of the fixed points and to how the renormalization group transformation τ
maps points in the neighborhood of the fixed points. To illustrate, consider
the simplest visualizable case.

Let us imagine that the critical surface S∞ is two dimensional. We want to
consider the contour structure of the surface. Consider figure 6.17 One should
think of the point b as if it were the top of a mountain. The trajectories of
the renormalization group then are lines of steepest descent from the summit.
Point c, on the other hand, is like the bottom of a valley. Finally, a represents
a pass (or saddle point).

a

b

c

Figure 6: Possible fixed points on a two-dimensional critical surface.

Figure 7 provides another perspective of the same fixed points and the lines
of steepest descent. It is clear that these fixed points are characterized by
differing degrees of stability. For instance, the peak, b, is the least stable—
any point in the parameter space near to, but not identical with b will flow,
under τ , away from b. The valley, c, is the most stable—nearby points will
be taken towards c by τ . The saddle, a, exhibits some sort of intermediate
degree of stability, being stable in one direction and unstable in the other.
These are the most important of the possible fixed points.

One can perform an analysis (linearization) in the neighborhood of such
a fixed point which shows how the renormalization transformation acts on

17See [15, pp. 13–14].
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a b c

Figure 7: Contours near various fixed points on a two-dimensional critical
surface.

points which differ only slightly from the fixed point itself. This yields local
axes which determine how lengths are scaled in different directions around
the fixed point. In turn, this analysis allows for the calculation of the crit-
ical exponents—the number β appearing in equation (1). The fixed point
describes, therefore, a specific critical behavior whose salient properties are
determined by the local behavior of the renormalization group transforma-
tion around the fixed point. Furthermore, and this is where we finally get
an understanding of the universality of this critical behavior, corresponding
to each fixed point is a domain of attraction. These are all those points in
the abstract parameter space (the space of all Hamiltonians) which, under the
transformation, τ , eventually flow into the fixed point.

How does this provide an explanation for the universality of critical phe-
nomena? Figure 8 helps indicate how.18 Suppose that the manifold/surface,
N , of physical Hamiltonians represents different states of nickel near its fer-
romagnetic critical point.19 Under the renormalization transformation the
points (Hamiltonians) on the manifold are mapped to other points in the
parameter space. The physical critical point (corresponding to the nickel
at the phase transition) has infinite correlation length and so, as we have
seen, it gets mapped to another point with infinite correlation length. This
defines the critical trajectory which is the same as the line from p to p∗ in
figure 5. Thus it lies on the critical surface. Suppose that physical mani-
fold, I, corresponds to some other metal, say, iron; and likewise that physical
manifold, G, corresponds to some third material, gadolinium. Notice that

18See the discussion in [8, pp. 84–87].
19The ‘physical line’ of figures 4 and 5 is a line on this physical manifold with an end-

point at the physical critical point.
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p*

physical critical point

first renormalized
critical point

critical trajectories

manifold of physical
Hamiltonians

first renormalized manifold
of Hamiltonians

N

I

G

Figure 8: Universality of critical phenomena. Critical trajectories are bold
lines. p∗ is a common fixed point for the three distinct physical critical points
on the manifolds N , I, and G. (See [8].)

the critical trajectories from the physical manifolds N , I, and G all flow to
the same fixed point p∗. They must, therefore, all lie on the critical surface
S∞. Now, recall that the critical behavior—in particular, the set of critical
exponents—is a function of the nature of the renormalization group flow near
the relevant fixed point. Thus, nickel, iron, and gadolinium must all have
their phase transitions characterized by the same critical exponents: They
all lie in the basin of attraction of the same fixed point. This is the key to
understanding the universality of critical phenomena.

Notice the absolutely essential role played by the divergence of the cor-
relation length, ξ, in this explanatory story. It is this that opens up the
possibility of a fixed point solution to the renormalization group equations.
Without that divergence and the corresponding loss of characteristic scale,
no calculation of the exponent β would be possible. The divergence of ξ
is possible only in the thermodynamic limit and it is this that allows both
for the simplified treatment of the different systems at criticality and more
detailed predictions of the behavior of near critical systems.

On the assumption with which we began this section—the assumption
that emergent protected states of matter exist—we see that such emergent
phenomena can be understood provided there are means for eliminating un-
wanted or irrelevant degrees of freedom. On a finite theory without diver-
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gences, it is difficult, if not impossible, to see how this can be accomplished.
While one may be able to tell detailed (microstructurally dependent) stories
about why individual fluids/magnets behave the way they do at criticality,
such stories simply cannot account for the key property of the emergent pro-
tectorates—namely, “their insensitivity to microscopics.” [12, p. 261]

Furthermore, the explanatory picture outlined briefly in this section goes
well-beyond any unexplicated appeal to higher organizing principles. Laugh-
lin and Pines are correct to hold that from-first-principle derivations the
existence of protectorates are not to be had. They are wrong to claim that
the existence of such protectorates depend only upon higher organizing prin-
ciples like spontaneous symmetry breaking. One can locate the necessary
explanatory features in the mathematical singularities that appear in the
thermodynamic limit. Such infinities/singularities play absolutely crucial
roles in our theories of diverse states of matter and are not unreasonable at
all.

6 Conclusion

The logical positivists and empiricists typically held scientific theories to
be axiomatized sets of sentences in some language. Explanation, following
Hempel [9] and theory reduction, following Nagel [13] were taken to involve
deductive relations between various sentences. Given an inconsistent set of
sentences, it is possible in first order logic to derive any sentence or set of
sentences whatsoever. As a result, the logical consistency of our scientific
theories was taken to be a minimum requirement on their acceptance. After
all, a theory that is inconsistent provides no information about the world at
all.

Theories of physics such as quantum field theory, as we’ve seen involve
considerably more mathematics than that provided by deductive logical re-
lations among sets of sentences. And, often, as we also noted, predictions
and explanations involve detailed mathematical calculations involving vari-
ous limits and “naturally” arising series expansions, with many of the latter
in various contexts, ultimately divergent. These divergences are the targets
of renormalization in quantum field theory. Part of the debate about the
merits of such divergences depends, I believe, upon the mistaken inference
that divergences and infinities entail inconsistency. Ultimately, I believe, this
is what lies behind the idea that singularities are information sinks—they are
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indications that the theory cannot be counted on to legitimately provide in-
formation about the world. To the contrary, I’m suggesting here that such
mathematical singularities are often sources of information about the world.
They neither entail inconsistency nor inadequacy.20

Theories that effectively decouple from one another at different scales are
natural places to find divergences and divergent series expansions. And so, if
this sort of decoupling is related to the existence of emergent protected states
of matter, it is natural to expect that infinities and divergences to be deeply
involved in the understanding of how those protectorates are possible. The
question with which we began section 5 concerned how such protectorates,
with their characteristic independence from higher energy scales—their in-
sensitivity to microscopics—are possible. A priori the answer to this “how is
it possible” question, has to be a story about why the detailed microscopics
of the various macrostable phenomena (e.g., universal behavior at criticality)
are irrelevant. That is, any understanding of the existence of such protec-
torates must provide an account of why the microdetails that genuinely dis-
tinguish one system in the protectorate from another (each fluid, for example,
has a distinct critical temperature that does depend upon the nature of its
constitutive molecules) are irrelevant for the universal behavior of interest.
This is exactly what the renormalization group strategy of Kadanoff, Fisher,
and Wilson provides. And it does so by explicitly exploiting the infinities
that arise in the thermodynamic limit.

If the goal is to answer the “how is it possible” question about univer-
sal behavior, it seems highly unlikely that a scheme that depends upon a
mathematical derivation from the finite, “true,” theory of everything can
fulfill that role. After all, such a derivational story must, of necessity start
from the detailed microstructural constitution of the individual molecules in
a particular fluid. But why should that individual derivation have any bear-
ing on a completely different individual derivation for a different fluid with
a potentially radically different microstructural constitution? The singular-
ities that appear when considering the relationships between micro-theories
at some high energy/short distance scale and those theories at smaller ener-
gies/larger lengths are absolutely necessary for an understanding of emergent
phenomena in physics.

20This raises a number of interesting philosophical questions about the relationship
between mathematics and physics. For a discussion see [6].
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