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In science evidence is objective. Whether data count as evidence for or
against a hypothesis should not depend on my unconstrained subjective
degrees of belief. Philosophical models of confirmation should aim to cap-
ture, in at least some respects, the objective character of scientific evidence.
Indeed, this aim drives the resistance to subjective Bayesianism, leading to
the development of objective Bayesian accounts, or to the abandonment
of Bayesianism all together. Modeling an objective evidence relation in a
probabilistic framework faces two challenges: the probabilities must have
the right epistemic foundation, and they must be specifiable given the hy-
potheses and data under consideration. Here I will explore how Sober’s
(2008; 2009) approach to confirmation handles these challenges of founda-
tion and specification. Briefly, Sober addresses the first by eschewing subjec-
tive credences in favor of the law of likelihood, and tackles the second by
illustrating how quantitative predictions of competing hypotheses specify
likelihood values. Yet neither challenge is completely overcome. In partic-
ular, I will argue that the specification problem proves especially difficult,
and undermines the general argument that the law of likelihood provides
a more objective representation of scientific evidence.
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1 The foundation challenge

Confirmation theory provides a set of competing strategies for model-
ing the relation between scientific theory and empirical evidence. Most
of these models are borrowed from statistics and applied to epistemol-
ogy. Such epistemological models are normative; they tell us how we
should reason about evidence. One aim of confirmation theory, an aim
I will take as primary, is to capture the objective nature of scientific evi-
dence, for evidence provides the neutral arbiter, the normative grounds
for theory choice. Given this aim, confirmation-theoretic models, and the
components of such models, should have the right sort of epistemic foun-
dation. For probabilistic models, the component probabilities need to be
objective. Identifying the epistemic source of these probabilities, and as-
sessing whether this source makes the probabilities objective in the right
way, is the foundation challenge.

The best tool for unpacking this objectivity demand is probability coor-
dination. Lewis (1980) proposed the principal principle—that we should
set our (subjective) credences to the (objective) chances we observe—as
the way to coordinate probabilities in an epistemological model using fea-
tures of the world. There are some technical problems associated with
how exactly we should implement the principal principle (Hall, 1994), but
the core idea is right: probabilities in our epistemological models should
reflect features of the world. What sorts of features certain probabilities
track, and how they track those features, determine how objective they
are. If they quantify our uncertainty or opinion, they are more subjective.
If they reflect empirical information about the constitution of the world
or the nature of accepted theory then they are more objective. In light
of probability coordination, meeting the foundation challenge amounts to
identifying the processes, objective chance setups, or consensus theories
capable of coordinating probabilities across a group of practicing scien-
tists.
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Now consider two central strategies for modeling the confirmation re-
lation with probability: Bayesianism and likelihoodism.1 The Bayesian
strategy postulates three kinds of probabilities: priors, posteriors, and
likelihoods. These probabilities are usually interpreted as subjective cre-
dences. Credences are updated according to Bayes’ rule (equation 1), and
O confirms H if and only if Pr(H|O) > Pr(H).

Pr(H|O) = Pr(O|H)Pr(H)

Pr(O)
(1)

That is, O confirms H just when my credence in H increases upon learn-
ing O. Credences count as subjective because they are coordinated by ap-
pealing to the opinions and beliefs of particular individuals. A typical
Bayesian way to rescue the objectivity of evidence is to appeal to conver-
gence theorems that show that, given enough evidence, diverse initial cre-
dences will eventually converge.2

The likelihood strategy takes a more minimalist approach, avoiding
credences and building confirmation-theoretic models with likelihoods.
Likelihoods are conditional probabilities that quantify the chance of ob-
serving some data given a proposed hypothesis is true. Sober tends to
follow the likelihood approach, and defines the central principle as fol-
lows.

Law of likelihood: The observations O favor hypothesis H1

over hypothesis H2 if and only if Pr(O|H1) > Pr(O|H2). And
the degree to which O favors H1 over H2 is given by the likeli-
hood ratio Pr(O|H1)/Pr(O|H2) (Sober, 2008, 32).

Sober favors the likelihood over the Bayesian strategy because there

1See Fitelson (2007) for a formal comparison of these two approaches and discussion
of some problem cases.

2Whether these theorems deliver is controversial. See Earman (1992); Hawthorne
(forthcoming) for discussion.
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often is no clear, objective way to constrain credences in the hurly burly of
scientific practice. When discussing the contrast, he claims:

What likelihoodists mean by probability is not simply that an
agent has some degree of belief [credence]. For one thing, the
concept of probability needs to be interpreted more norma-
tively. Pr(O|H) is the degree of belief you ought to have in
O given H is true. But likelihoodists also like to think of these
conditional probabilities as reflecting objective matters of fact
(Sober, 2008, 40).

So long as credences are coherent, an agent may assign them however she
likes. There is no complete probability model, such as the one governing
standard decks of well-shuffled cards, to use to coordinate credences in
science. This subjectivity of the credences infects the Bayesian confirma-
tion relation. In contrast, likelihoods depend on what the world is like and
what hypotheses predict about the world, not on the whims or opinions of
individuals. Thus, Sober relies on them to underwrite an objective account
of the confirmation relation.

Sober’s move away from Bayesianism to the law of likelihood shows
his sensitivity to the foundation problem. In essence, he proposes a crite-
rion of adequacy for selecting the appropriate confirmation-theoretic model:

When prior probabilities can be defended empirically, and the
values assigned to a hypothesis’ likelihood and to the likeli-
hood of its negation are also empirically defensible, you should
be a Bayesian (Sober, 2008, 32).

Thus, a confirmation-theoretic model must meet the foundation challenge
in order to provide an adequate representation of scientific evidence.

Likelihoods depend on what a hypothesis predicts and what sorts of
chance processes are postulated for producing the target observation. Prima
facie, these probabilities are empirical defensible in a way that credences
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are not. Scientists working within the same theoretical framework should
agree upon what a particular hypothesis predicts and on the sorts of pro-
cesses that are operating in the study system. There are, however, some
complications for this solution to the foundation problem. First, in the
standard Kolmogorov axiomatization the definition of conditional prob-
ability entails that likelihoods can be defined in terms of unconditional
probabilities, probabilities that look like credences (equation 2)

Pr(O|H) =
Pr(O&H)

Pr(H)
(2)

It is unclear how apparently objective likelihoods can be defined or de-
termined by subjective credences. Either the objective likelihoods, coordi-
nated given the predictions of the hypotheses, constrain credences in some
way and so make them less subjective, or likelihoods and credences must
all deal in the same subjective currency and so the “objective” coordina-
tion of likelihoods (rather than credences) is illusory.

Sober (2008, 38–41) has a reply to this puzzle: the Kolmogorov defini-
tion only makes sense when the unconditional probabilities are “well de-
fined.” This amounts the claim that the definition applies only when the
unconditional probabilities also meet the foundational criterion for ade-
quacy. Sober’s take is both attractive and intuitive. Likelihoods certainly
look more objective than credences. Insofar as this is true, we should opt
for likelihoodism over Bayesianism (given we accept the foundational cri-
terion of adequacy). Yet whether they actually are more objective depends
on what, exactly, the probabilities track. And determining this depends on
how they are specified. Unpacking this challenge shows that the decision
between likelihood and Bayesian modeling strategies is not as simple as
proposed
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2 The specification challenge

The second challenge, specification, concerns how to determine the com-
ponent probabilities in a confirmation-theoretic model. The challenge is
this: if we use probabilistic confirmation-theoretic models to represent
scientific evidence then we must be able to specify precisely the compo-
nent quantities in the model. This challenge is the local instantiation of
a general criterion for constraining interpretations of probability, namely
Salmon’s (1966) criterion of ascertainability. What confirmation theory needs
is a method that can, in principle, ascertain the values of the probabilities
that appear in a confirmation-theoretic model.

I will focus on the specification of one component in particular: likeli-
hoods. Within the likelihood strategy these probabilities are supposed to
have the objective foundation that credences usually lack. In addition, the
Bayesian strategy requires likelihoods to update with Bayes’ rule. So like-
lihoods have a special importance in confirmation theory. For likelihoods
to be ascertainable, we need a method that specifies a likelihood function.
Examining some formal details about likelihoods helps make this clear.

A likelihood function determines the probability of making a partic-
ular observation as a function of the parameter value(s) for an assumed
background statistical model and that observation. To put it another way,
the background statistical model includes a family of precise probability
distributions indexed by one or more parameters. The likelihood function
specifies the probability of making the observation we in fact made sup-
posing one distribution in the family is true.3 For likelihood functions to
work in this way, the data set (the observation) is modeled as an instance
of random variable (X) with an unknown distribution (θ). Suppose we
have two hypotheses: H1 states that X has distribution θ1 and H2 states
that X has distribution θ2. Formally, the likelihood value (the probability

3See, for example, Royall (1997) for a standard formulation of likelihoods in statistics.
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of O given H) for the observation that X = x is specified by the likelihood
function L(θ;x) (as in 3).

Pr(X = x|H1) = L(θ1;x), P r(X = x|H2) = L(θ2;x) (3)

Likelihoods come from likelihood functions, so for likelihoods to be ob-
jective then our scientific theories must specify adequate likelihood func-
tions.

The specification challenge has both a broad and narrow version. The
broad version concerns what sort of information should be included in the
statement of the observation (O) and the set of rival hypotheses (H1, H2, . . . , Hn).
This raises familiar philosophical issues that Sober handles well. The nar-
row version concerns how particular hypotheses, about (say) natural se-
lection in Galapagos finches, specify actual likelihood values for certain
observations, such as a change in mean beak size being correlated with a
change in the availability of seed resources. The serious and underappre-
ciated difficulties for the likelihood strategy lurk here. I will discuss both
versions of the problem, focusing mainly on the narrow version, and make
a connection to formal problems in statistics.

2.1 Broad specification

Meeting the broad specification challenge requires determining what sort
of information is necessary to specify likelihoods for any hypothesis-observation
pair. How should we fill in the variables H and O to get an accurate and
objective value for Pr(O|H)?

Sober focuses primarily on the broad version. With respect to O, he
defends the principle of total evidence, a claim that all available informa-
tion about the data set or observation must be included in O. Failure to
do so can generate artifactual likelihood values that yield unintuitive re-
sults in our confirmation-theoretic model. Data we take as clear evidence
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for a hypothesis ends up disconfirming it given an underspecified set of
observations (Sober, 2008, 41–46).

With respect to H , Sober makes two relevant points. First, familiar
from Duhem-Quine holism, any hypothesis requires auxiliary hypotheses
to make predictions, and therefore the auxiliaries are assumed in the like-
lihood specification. Not just any auxiliary hypothesis will do. Suitable
auxiliaries must be true, independently attested, and independent of the
truth of hypotheses under test (Sober, 2008, 152). Second, the broad spec-
ification of likelihoods requires a description of the observation process.
Sober (2009, 82) calls this the “anthropic principle”, a requirement that we
include “as complete a description as the agent possesses of the process by
which he or she came to observe E [the evidence or observation] is true.”
This principle helps the law of likelihood cope with observation selection
effects, providing a further correction to our confirmation-theoretic model.

These principles are sufficient for meeting the broad specification chal-
lenge. Perhaps their only defect may be that the informational demands
often go unsatisfied in practice. Strevens (2009, 96) argues that if we have
not established the truth of the relevant auxiliary hypotheses, then we
must take into account rival auxiliaries. In these cases, according to the
theorem of total probability, specifying the likelihood for a hypothesis-
observation pair requires weighting the component likelihoods for the
pair plus each rival auxiliary by the credences for the competing auxil-
iaries. Subjective credences thus reappear in the calculation of the over-
all likelihood for the hypothesis-observation pair. The frequency of these
cases in science is an open question, but scientists certainly must cope with
uncertainty about auxiliaries sometimes.

The broad specification challenge concerns general epistemological prin-
ciples and how these principles can and should guide reasoning about ev-
idence. Good philosophical resources have been brought to bear on this
problem. However, these general principles are not sufficient to specify
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precise likelihood values for many scientific hypotheses, for the narrow
specification challenge presents new difficulties.

2.2 Narrow specification

How do we specify the precise likelihoods for scientific hypotheses? One
attractive response to this challenge is that this is not the job for philoso-
phy. Science, when done well, provides the solution. We simply must de-
termine the hypothesis, the proper auxiliaries, and the process of observa-
tion for a particular concrete case and compute the value for the likelihood
of O given H . Another attractive response is that it does not much mat-
ter, so long as scientists agree on qualitative assessments of confirmation
(e.g., Pr(O|H1) > Pr(O|H2). If there is qualitative agreement then conver-
gence theorems show that science will get there in the end (Hawthorne,
forthcoming). Both of these responses hide complications. Getting even
qualitative agreement requires identifying a likelihood function, or family
of functions, that meet the foundational criterion of adequacy—the (qual-
itative or quantitative) specification of likelihoods needs to be empirically
defensible.

There are two sources for complications. First, many cases in science
lack sufficient empirical information to specify a precise likelihood for a
hypothesis. Second, the relevant physical processes are often too complex
to be modeled accurately with a likelihood function. I will discuss both
sources, using Sober’s clear examples to structure the argument.

Medical diagnosis provides an example of how likelihood specification
should work. Suppose we have a simple diagnostic test that returns a pos-
itive or negative result for some disease, and we want to test a particular
patient for this disease. We have two hypotheses, our patient either has
the disease (D) or she does not (¬D). Observing a positive result (say)
confirms D over ¬D since Pr(+|D) >> Pr(+|¬D). The likelihood model
succeeds in capturing what is objective about the evidence because the
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component probabilities (the four likelihoods) are coordinated using fre-
quency data (Figure 1). We have independent access to whether patients
have the disease and this is the basis for medical research on the reliabil-
ity of the test, estimating the rates of false positives and negatives. The
research yields sufficient information to specify the likelihoods in an em-
pirically defensible way. This is a best case scenario for the likelihood
strategy.

Physiological 
Processes Molecular effects

Testing Process +/- result

Figure 1: A schematic representation of the medical diagnostic case. Given ample fre-
quency data on patients with or without the disease and their test results we can coordi-
nate the four relevant likelihoods Pr(+/− |D) and Pr(+/− |¬D).

Sober (2008, 192–201) illustrates how the specification should be done
in evolutionary biology with a schematic test of selection plus drift (SPD)
versus pure drift (PD). To generate likelihoods for SPD and PD Sober
assumes a highly idealized model of the evolutionary process, a simple
quantitative trait with a known fitness function, and that scientists have
an uncontroversial and complete optimality model for the trait in ques-
tion. In principle, this is not a problem, for it makes possible a simple
and abstract analysis of how tests of this kind should work. In practice,
we lack the empirical information to coordinate likelihoods for such a test.
Consider, say, Galapagos finches and whether a change in beak size is the
result of SPD or PD. The SPD hypothesis postulates that beak size evolves
by natural selection in response to changing availability of seed types in
the environment, the main source of food for our species of finch. The
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PD hypothesis postulates that beak size simply drifts. The empirical test
compares changes in beak size to changes in seed availability over time
and generates a measure of correlation between trait and environmental
variables. To model this instance of scientific evidence using likelihoods
we need to specify objective likelihoods for the observed correlation given
SPD and PD (Figure 2). Yet evolutionary biologists simply lack the sort of
frequency data necessary to objectively coordinate the likelihoods. In con-
trast to the medical diagnosis case, there are no test populations where we
have independent access to the evolutionary process. We cannot estimate
the reliability of the test in order to empirically defend the likelihoods for
Galapagos finch case.

Evolutionary 
Processes

Change in trait 
distribution

Testing Process Correlation

Figure 2: A schematic representation of the evolutionary case. We need empirical infor-
mation to coordinate the likelihoods Pr(correlation|SPD) and Pr(correlation|PD).

There is an alternative way to objectively coordinate the likelihoods:
appeal to empirical generalizations about evolution or background in-
formation about finch ecology. The complexity of the evolutionary pro-
cess makes this problematic. Note the substantive assumptions built into
the SPD versus PD test. They include many idealizations—patently false
assumptions—as auxiliaries or components of the SPD and PD hypothe-
ses. This is necessary because both evolution and organisms are complex.
Yet it undermines the objectivity of the likelihoods for SPD and PD. Build-
ing idealizations into the test compromises the requirement for true aux-
iliaries and makes possible methodological disagreements about the ide-
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alizations. For example, Sober’s test assumes an optimality model. The
viability of optimality modeling in evolution is controversial. And there is
the further assumption that there is a consensus optimality model for the
system to apply the test. Were there agreement about optimality modeling
in general or the optimality model for finches in particular, then the likeli-
hoods would be more objective. Such a consensus is often the exception,
rather than the rule, in evolutionary biology.

These two problems, lack of empirical information for coordination
and overly complex physical processes, are substantive version of formal
problems in statistical inference. Drawing the connections between these
problems and more formal problems will help support my case that nar-
row specification is a genuine challenge.

2.3 Formal problems with substantive implications

There are recognized formal problems that face any determination of the
appropriate likelihood function for statistical inference. How to frame and
parameterize an inference problem is one. How to cope with so-called
nuisance parameters is another. Due to these problems, determination of
a likelihood function depends, to a large degree, on art and application.

Recall that a likelihood function treats the data as the value of a ran-
dom variable and so must assume a statistical model. The statistical model
identifies a family of probability distributions as a function of the observed
data and instantiated values of one or more parameters. Given this back-
ground model, the likelihood function (L(θ;x)) specifies the probability of
observing the data (x) given the distribution determined by the parameter
value(s) (θ).

Framing an inference problem, such as the SPD vs. PD test, thus re-
quires treating the data as the outcome of a random variable with an un-
known distribution, determining the statistical model to identify the sets
of possible distributions, and parameterizing the problem in an informa-

12



tive way to index these possible distributions. Different choices about
how to frame an inference problem lead to different likelihood functions.
Bayarri et al. (1988); Bayarri & DeGroot (1992) argue that subjective con-
siderations must enter into these framing decisions, and that such deci-
sions about what likelihood function to use affect the subsequent statis-
tical inferences made from the target data. They examine different likeli-
hood functions for a particular inference problem and show that the choice
of function produces different results. Moreover, there are no general
methodological or epistemic arguments for preferring one sort of function
over the others; each way of determining a likelihood function is useful in
different inference problems.

The problem of nuisance parameters has a similar character. This prob-
lem arises when the likelihood function depends on more than one pa-
rameter. Additional parameters complicate the inference problem, and
often are not of direct interest. Hence they are “nuisance” parameters.
There is no generally viable strategy for dealing with nuisance parame-
ters. Instead, there are a set of ad hoc methods available for managing
the problem, such reparameterizing the problem to eliminate them or use
more complex devices, such conditional likelihoods or likelihood profiles,
to control the effects of the extra parameters (Royall, 1997). The decision to
use a particular method depends on the details of the inference problem
and on what works. How to handle nuisance parameters is another de-
cision with a subjective element that has non-trivial consequences for the
resulting likelihood function (Bayarri & DeGroot, 1992).

In the context of scientific practice, these formal problems have sub-
stantive implications for the objective status of likelihoods. One goal of
confirmation-theoretic models is to capture the objectivity of evidence in
real scientific cases. The flexibility in framing and parameterizing an infer-
ence problem to determine a likelihood function, and the variety of ways
for handling any nuisance parameters, undermine the supposed objectiv-
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ity of likelihoods. Representing a complex natural process with a tractable
statistical model inherently involves simplification and abstraction. Coor-
dination would still be possible, if sufficient information were available to
the likelihoods empirically defensible, as in the medical diagnostic case.
For the finch case, if the evolutionary process were simple enough then
there would be a consensus statistical model to determine an objective
likelihood function. Or, if the right sort of empirical data were available,
on (say) how often directional selection processes produce an observed
degree of correlation between trait and environmental variables, then it
would be possible to coordinate likelihoods in the right way. The complex-
ity and lack of information make these formal issues into real problems for
the claim that likelihoods are more objective than credences.

3 Specification and epistemic foundations

The complications with specification make the objectivity of likelihoods
uncertain at best. Idealizations, necessary to represent an inference prob-
lem with a likelihood function, lack the strong epistemic foundation that
true auxiliary hypotheses have, as evidenced by the rich philosophical
investigation over evaluating idealizations and tradeoffs (Levins, 1966;
Matthewson & Weisberg, 2009). The lack of complete information in real
scientific cases, and the lack of consensus over methodological strategies
for formulating hypotheses, also present difficulties. Without complete
information or consensus scientists must make untested assumptions, or
agree to disagree on methodological practices. It is possible to specify
some likelihood values in this way, but these likelihoods depend more
and more on inclinations and beliefs of the scientific practitioners, and fall
further from satisfying the foundational criterion of adequacy. Idealiza-
tions and lack of information undermine the apparently objective epis-
temic foundation of likelihoods.
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In particular cases, or kinds of cases, the Bayesian strategy or the likeli-
hood strategy may provide the more objective confirmation-theoretic model.
Whether the Bayesian or likelihood strategy is the most general or objec-
tive framework for understanding evidence across the sciences is an em-
pirical question, decided on how the strategies handle representative sets
of cases, not on general epistemological arguments regarding the apparent
objectivity of their components.

Thus, we have no general reason to expect the likelihood strategy to
provide more objective confirmation-theoretic models than the Bayesian
strategy. Simply relying on likelihoods and eschewing credences does not
give the likelihood strategy an objective edge when representing scientific
evidence. Whether a particular Bayesian or likelihood model counts as
more or less objective than the other depends entirely on the details of the
application. Do the component probabilities in the model meet the foun-
dational criterion for adequacy? Assessing this question about objectivity
requires meeting the specification challenge. Do we have sufficient em-
pirical information to coordinate likelihoods and/or credences? Do we
have a consensus model for the target system to ground the likelihood
function? How we specify likelihoods is not a merely formal problem for
statistics, nor an empirical problem for science, but a genuine problem for
epistemology.
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