
Only up to isomorphism?

Category Theory and the Foundations of Mathematics

Abstract

Does category theory provide a foundation for mathematics that is autonomous with re-

spect to the orthodox foundation in a set theory such as ZFC? We distinguish three types

of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of

sets, we argue that a strong case can be made for its logical and conceptual autonomy.

Its justificatory autonomy turns on whether the objects of a foundation for mathematics

should be specified only up to isomorphism, as is customary in other branches of contem-

porary mathematics. If such a specification suffices, then a category-theoretical approach

will be highly appropriate. But if sets have a richer ‘nature’ than is preserved under

isomorphism, then such an approach will be inadequate.

A number of philosophers of mathematics have recently debated the claim that category

theory provides a foundation for mathematics that is autonomous with respect to the orthodox

foundation in set theory (Mac Lane (1986), Feferman (1977), Mayberry (1977), Bell (1981),

Hellman (2003), McLarty (2004), Awodey (2004)). The debate has yielded progress: after

some initial confusion, the particular theories from within category theory that are proposed

as foundations have been identified precisely, and in some cases the autonomy of these theories

with respect to the orthodox foundation has been defended—at least for one sort of autonomy.

However, there are other sorts of autonomy that have not been considered in much detail.

We wish to introduce a distinction between three types of autonomy, which we call logical

autonomy, conceptual autonomy, and justificatory autonomy. The debate so far has been

concerned almost exclusively with the first sort of autonomy. Yet all three are required before

a foundation can claim genuine independence from the set-theoretic orthodoxy.

We focus on one of the putative category-theoretic foundations, and argue that it can

claim logical autonomy with respect to orthodox set theory. We then explore the possible
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arguments that could be made for or against the conceptual and justificatory autonomy of

this theory. We argue that the debate turns crucially on whether the objects of a foundation

for mathematics can or indeed should be specified only up to isomorphism, as is customary in

other branches of contemporary mathematics. In particular, if sets should be characterized

only up to isomorphism, then a category-theoretical approach will be highly appropriate;

whereas if sets have a richer ‘nature’ than is preserved under isomorphism, then such an

approach will be inadequate.

It is often said that category theory provides a unificatory language in which all of math-

ematics may be stated and in which the important connections between key concepts in

different disciplines is most perspicuously revealed. We will have nothing to say about this

claim, except to emphasise that it is independent of the questions we address here.

1 An overview of the debate

Many category theorists, including Saunders Mac Lane and William Lawvere, have claimed

that category theory (or, more precisely, topos theory) has the resources to provide a foun-

dation for all of mathematics that is independent of the orthodox foundation in a set theory

such as ZFC (Lawvere (1966), Mac Lane (1986)). Call the proponent of such a view a cat-

egorist. Against the categorist, Solomon Feferman and Geoffrey Hellman have raised two

main objections: the Mismatch Objection and the Logical Dependence Objection (Feferman

(1977), Hellman (2003)).

The Mismatch Objection maintains that neither category theory nor topos theory are

the right sort of thing to act as a foundation. After all, a foundational theory must make

assertions, and in particular existential assertions. It should provide us with a theory of the

objects of mathematics; and such a theory must consist of assertions of the existence of those

objects, as well as an account of the relations in which they stand. However, neither the

Eilenberg-Mac Lane axioms for category theory nor the Lawvere-Tierney axioms for topos

theory have this form. Rather, when taken together, each set of axioms provides a definition

of a mathematical structure: in the one case, a mathematical structure called a category ;

in the other case, a topos. No such collection of definitions can form the foundation for a

discipline. There is thus a mismatch between the foundational role that the categorist would
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like her theory to play, and the sort of theory that she claims plays it.1

So the Mismatch Objection identifies a problem with the form of the proposed foundation

for mathematics in category theory. By contrast, the Logical Dependence Objection attacks

the relationship between that proposal and the orthodox foundation for mathematics in set

theory. It claims that category theory and topos theory are not logically autonomous with

respect to set theory. Rather, they depend logically in two different ways upon a prior theory

of sets and functions, which thus provides the true foundation for mathematics.

Firstly, as we saw above, the axioms for category theory or topos theory provide definitions.

These definitions are given in the form of necessary and sufficient conditions for two sets (the

set of objects and the set of arrows) together with three functions (the domain, codomain, and

composition functions) to count as a category or topos. According to the Logical Dependence

Objection, it follows that the theory of categories is simply a theory of a particular sort of

set, namely a quintuple consisting of two sets and three functions. The theory of sets and

functions is thus logically prior to the theory of categories. In Feferman’s helpful analogy,

category theory stands to set theory as the definition of linear transformation stands to the

definition of vector spaces: in both cases, it is not possible to state the former without having

previously stated the latter (152-3, Feferman (1977)).

Secondly, while it is correct in the Mismatch Objection to claim that the axioms of cat-

egory theory and topos theory contain no existential assertions, textbook presentations of

these subjects do. These existential assertions concern particular categories or toposes, such

as Grp, the category whose objects are set-sized groups and whose arrows are the group

homomorphisms between them. But the objects of these particular categories are standard

mathematical structures, each given as a set together with various functions and relations on

that set. So again category theory and topos theory depend logically on a prior theory of

sets and functions in order to ground their existential assertions. They depend on a theory of

sets officially, since their axioms serve to define a certain sort of set; and they depend on such

a theory unofficially to provide witnesses for the existential claims made in their textbook

presentations.

1The deductivist approach to mathematics would deny that there is any mismatch. This approach maintains
that mathematics consists of a collection of conditionals whose antecedents are conjunctions of definitional
axioms, and whose consequents are theorems concerning the sort of mathematical structures thereby defined.
However, the deductivists who propose category theory as the correct framework in which to state these
conditionals are vulnerable to the same objections as those who prefer the set-theoretic framework. We do not
consider their position here, but see Awodey (1996) and Hellman (2006) for both sides of the debate.
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McLarty has responded to both objections on behalf of the categorist. He agrees that

these objections would refute anyone who tried to provide a foundation for mathematics

in the general theory of categories or the general theory of toposes McLarty (2004). But he

denies that anyone has ever proposed such a foundation. Responding specifically to Hellman’s

claim that category theory and topos theory make no assertions, he replies:

This is quite true of the category axioms per se, and of the general topos axioms.

That is why no one offers them as foundations for mathematics. (45, McLarty

(2004))

Rather, he claims, the foundational theories proposed by the categorists are all theories of

some particular category or topos. More precisely, three such theories have been proposed

as foundations for mathematics. They are these: SDG, Lawvere and Kock’s theory of the

category of smooth spaces and the smooth maps between them (Lawvere (1979), Kock (1981));

CCAF, Lawvere’s theory of the category of categories and the functors between them (Lawvere

(1966), McLarty (1991)); and ETCS, Lawvere’s theory of the category of abstract sets and

arbitrary mappings between them (Lawvere (1964), Lawvere & Rosebrugh (2003)). Let us

examine whether these putative foundational theories really are immune to the Mismatch

Objection and the Logical Dependence Objection from above.

First, the Mismatch Objection. Each of these three theories makes assertions, some of

which are existential. In each case, an intuitive account of the objects in question is provided,

so as to ensure that the relevant languages are meaningful. Using these languages, assertions

are then made about the existence of certain objects and the relations in which they stand.

SDG is a theory of spaces, and it asserts the existence of a one-dimensional continuum con-

taining infinitesimals, as well as product and function spaces for any pair of spaces. CCAF is

a theory of categories themselves: it asserts the existence of certain categories and describes

some of the functors between them. ETCS is a theory of sets and, as we will see below, it

asserts outright the existence of an empty set, singleton sets, and an infinite set, as well as

making hypothetical assertions concerning, for instance, the existence of a power set for any

given set. In short, a case can be made that each of these theories makes strong and mean-

ingful existential assertions. If so, there is no mismatch between them and the foundational

role they are said to play. So in these cases the Mismatch Objection would be answered.

Second, the Logical Dependence Objection, which criticizes category-theoretic foundations
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for the two ways in which these foundations apparently depend logically on set theory: firstly,

since the axioms are definitional of a mathematical structure composed of sets and functions;

secondly, since any existential assertions they contain assert the existence of mathematical

structures, such as groups, which are composed of sets, functions, and relations. We have just

seen that none of SDG, CCAF, or ETCS consists of axioms that merely define a particular

mathematical structure composed of sets and functions. This not only renders them immune

to the Mismatch Objection, but also rebuts the first part of the Logical Dependence Objection,

which only concerns definitional theories. We now discuss the second part of this objection,

considering each theory in turn.

First: SDG, the categorical theory of spaces. Traditionally, mathematical spaces are

defined to be sets of points equipped with a certain structure—a topological structure, for

instance, or a geometric structure. So it might be thought that SDG must depend logically

upon a prior theory of sets. However, this is not the case. Unlike the categories introduced

by the Eilenberg-Maclane axioms for category theory, the spaces considered by SDG are

not assumed to be mathematical structures composed of sets equipped with functions and

relations. Indeed, nothing at all is assumed about their internal composition. All that is

assumed is what is contained in the axioms, and this is stated only in terms of mappings

between the spaces. In fact, it is a consequence of the axioms that many of the spaces of SDG

simply cannot be considered as sets of points: on the most natural understanding of a set of

points in SDG, two quite different spaces can have the same set of points (McLarty (1988)).

Second: CCAF, the categorical theory of categories. In this case, the Logical Dependence

Objection is devastating. As noted above, even the categorist must concede that a category

consists of a collection of objects, a collection of arrows, and three functions that relate the

objects and the arrows. After all, that is how she defined the notion! So a theory of the

category of categories is a theory of mathematical structures that are composed of collections

and functions. Since the only developed mathematical theory of collections is set theory,

it is natural to assume that CCAF depends logically upon a prior theory of these sets and

functions.2

Third: ETCS, the categorical theory of sets. It might seem that this is most obviously

vulnerable to the Logical Dependence Objection. However, while it is itself a theory of sets

2For a similar criticism, see Hellman & Bell (2006).
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and functions, it does not depend on a prior theory of these entities. Rather, it provides

such a theory. Just as ZFC cannot be criticized for relying upon a prior theory of sets and

functions, nor can ETCS.

In summary, none of the particular theories ETCS, SDG, and CCAF is vulnerable to the

Mismatch Objection. And ETCS and SDG are immune to the Logical Dependence Objection.

However, SDG provides a foundation only for a small part of mathematics, namely differential

geometry and its subdisciplines such as real analysis. Thus, in the remainder of this paper,

we will consider only the foundational claims of ETCS.

2 The theory ETCS

In this section, we describe the theory ETCS whose foundational status we will be investi-

gating.

Before stating its axioms, it is worth observing a fundamental difference between ETCS

and the orthodox foundations for mathematics in set theory. The single primitive relation

involved in an orthodox set-theoretical foundation is the membership relation, which holds

between two sets or between an individual and a set. As a result, existential claims in those

foundations tend to be accompanied by a full specification of the members of the set whose

existence is asserted. For instance, when we assert the existence of Cartesian products, we

say that, for all sets A and B, there is a set A × B whose members are all and only those

ordered pairs whose first member belongs to A and whose second member belongs to B, where

ordered pairs are a certain sort of set.

By contrast, in categorical set theory, there is no apparatus by which to assert that

the membership relation holds between two sets. Our apparatus allows us to talk only of

mappings between sets. This is witnessed by the fact that (working with traditional ZFC as

our background theory) ETCS has models with completely different membership structures,

and none of these models has greater claim than any other to be the intended interpretation

of the theory. For instance, ETCS has a model in the ordinary cumulative hierarchy of sets,

where there is a great deal of overlap between sets, and in which there are many sets that

are members of others. But it also has models in which no two sets have the same members,

and no set is a member of another. Indeed, ETCS even has models where there is only one

set of each cardinality, and where all the different subsets of a set are instead represented by
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means of the mappings. None of these models has a greater claim to be the intended model:

all interpret the primitive vocabulary of sets and mappings in the intended way. In other

words, the axioms of ETCS remain agnostic on all such membership relations: they neither

rule them out nor rule them in.

Thus, when we make existence claims in ETCS, we do not assert the existence of a

particular set by specifying its members. This approach is not open to us. Rather, we say

that there is at least one set that, together with certain mappings, fills a particular functional

role, where this functional role is specified purely in terms of sets and mappings, and makes

no reference to the particular members of the sets. For instance, when we assert the existence

of Cartesian products in ETCS, we say that, for all sets A and B, there is at least one set

A×B equipped with mappings πA : A×B → A and πB : A×B → B that plays the role of

a Cartesian product (henceforth, we write such pairs of functions as πA, πB : A×B ⇒ A,B).

This particular role, and other relevant ones, will be explained below.

We can sum up this difference in the following motto, which embodies the guiding spirit

of category theory: ask not what a mathematical object is; ask what it does.3 In orthodox

set-theoretic foundations, we make existence claims by asserting the existence of a set and

saying exactly what it is, i.e., what its members are. In category-theoretic foundations, we

make these claims by saying what a set equipped with some mappings needs to do to count

as a certain sort of object; and we assert that there is at least one object of that sort.

With this difference in mind, we now provide the promised the explanation of ETCS.

(Cognoscenti may consider skipping ahead.) In the terminology of category theory, ETCS

says that together the sets and the mappings between them form a non-degenerate, well-

pointed topos that contains a natural number object and which satisfies the axiom of choice.

Let’s take each of these claims in turn.

A topos is a particular sort of category. So to say that the sets and mappings together

form a topos is to say first that they form a category: that is, each mapping is assigned a

domain and range; the composition-of-mappings operator ◦ is associative; and an identity

mapping exists for each set.

To say that the sets and mappings form a topos is also to make two outright existence

3In standard category theory, objects are characterized uniquely only up to functional role, whereas map-
pings are characterized uniquely up to identity. The situation is different in the theory of so-called 2-categories,
or n-categories more generally. Regardless, the point remains that objects are only ever characterized in terms
of their mapping properties.
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claims and three hypothetical existence claims, which are expressed by the following five

axioms.

Axiom 1 (Initial and terminal objects) There is an initial object and a terminal object.

An initial object is a set from which there is exactly one mapping into each set; a terminal

object is a set into which there is exactly one mapping from each set. In the topos of sets

and mappings, an initial object is an empty set and a terminal object is a singleton set. In

orthodox set theory, the axiom of extensionality guarantees that there is at most one empty

set. As we will see below, the version of extensionality that we give in ETCS does not

guarantee this. We pick an arbitrary empty set and denote it 0, and we pick an arbitrary

singleton and denote it 1. Given a set A, we write 0A : 0 → A for the unique mapping from

0 into A; and we write 1A : A → 1 for the unique mapping from A into 1. Thus, 1A has the

effect of mapping every element of A to the one element of 1.

In ETCS, we often use the terminal object to express claims that that in orthodox set

theory are expressed using the membership relation. Since 1 is a singleton set, any mapping

from it into A represents a member of A. This thought is exploited in the next axiom.

Axiom 2 (Subobject classifier) There is a subobject classifier true : 1→ Ω.

Essentially, Ω is a set that can represent the set of truth values; and the mapping true picks out

the element of Ω that will represent the privileged truth value Truth. To say that true : 1→ Ω

is a subobject classifier is to say that each subset of a set A is represented by a characteristic

function from A into Ω, which maps all and only the elements of A that are in the subset to

Truth. But this explanation relies on the notion of a subset, which is introduced in orthodox

set theory using the membership relation. How, then, is it legitimate to appeal to this notion

in ETCS, which can make no recourse to that relation? In ETCS, a subset of a set A is

represented by an injective mapping i : B → A, where i is injective if, for any two distinct

mappings a, b : 1 ⇒ B, i ◦ a 6= i ◦ b. Thus, just as a mapping from 1 into A represents a single

element of A, an injection from B into A represents a subset of A. Given this definition, to say

that true : 1→ Ω is a subobject classifier is, firstly, to say that to each subset i : B → A, there

corresponds a mapping χi : A → Ω that assigns to an element of A the element of Ω picked

out by true if, and only if, that element of A is in the range of i. That is, true ◦ 1B = χi ◦ i,
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which ensures that if an element of A is in the range of i, it must be mapped by χi to Truth.

Secondly, the definition requires that, if there is a set C with mapping j : C → A such that

true ◦ 1C = χi ◦ j, then there is a unique mapping h : C → B such that j = i ◦ h. This

ensures that if an element of A is mapped by χi to Truth, then it is in the range of i; for if

this weren’t the case, there would be no guarantee that h exists. We call χi the characteristic

function of the subset i : B → A. The situation is illustrated by the following commutative

diagram:4
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Axiom 3 (Cartesian products) For any two sets A and B, there is a Cartesian product

πA, πB : A×B ⇒ A,B.

A Cartesian product of A and B is a set A×B, equipped with mappings πA, πB : A×B ⇒

A,B, that can represent any pair of mappings f, g : C ⇒ A,B uniquely as a single map

f × g : C → A × B. That is, for each such pair of mappings f and g, we can recover f by

applying πA to f × g and we can recover g by applying πB to f × g: that is, f = πA ◦ (f × g)

and g = πB ◦ (f × g). And f × g is the only mapping that has this property. Again, we

illustrate the situation using a commutative diagram:
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4In category theory, the nodes of a commutative diagram represent objects in the category in question,
while the edges represent the arrows or mappings. In such a diagram, we usually omit composed mappings
and identity mappings. If there are two or more routes through the arrows from one object to another, the
mappings that result from composing, in order, the arrows that make up these routes are identical. Thus,
commutative diagrams are used to make assertions of identity between mappings.

9



Axiom 4 (Equalizers) For any two mappings f, g : A ⇒ B, there is an equalizer e : E →

A.

An equalizer of f and g is a set E equipped with a mapping e : E → A such that an element

of A is in the range of e if, and only if, f and g agree on that element. One requirement is

thus that f ◦ e = g ◦ e. This ensures that, if an element of A is in the range of e, then f

and g agree on it. Another requirement is that, if there is a mapping e′ : E′ → A for which

f ◦ e′ = g ◦ e′, then there is a unique mapping k : E′ → E such that e ◦ k = e′. This ensures

that, if f and g agree on an element of A, then this element is in the range of e; for if this

weren’t the case, there would be no guarantee that k exists.

E′

e′

''n i d _ Z U P

k
//___ E e

// A
g

55

f
))
B

It follows from this definition that e : E → A is a subset of A in the category-theoretic sense

introduced above.

Axiom 5 (Power object) For any set A, there is a power object P(A) equipped with a

membership mapping ∈A: A× P(A)→ Ω.

A power object for A is any set P(A) together with membership mapping ∈A that can repre-

sent any subset of A× C uniquely as a mapping from C into P(A). Such a mapping can be

thought of as taking each element c of C to that subset of A whose elements are the elements

a of A for which (a, c) is in the subset of A × C. Given a subset i : D → A × C, we first

represent i by its characteristic function χi given by the subobject classifier axiom. The power

object axiom then says that there is a mapping χ̂i : C → P(A) that represents χi uniquely in

the following sense. Firstly, we can recover χi by applying the membership mapping ∈A to

the mapping IdA × χ̂i; that is, ∈A ◦(IdA × χ̂i) = χi. And secondly, χ̂i is the only mapping

with that property.

A× C Ω A× P(A)
∈A // Ω

D

i

OO

A× C

χi

OO

A× C

(IdA×χ̂i)

OO�
�
� χi

::uuuuuuuuuu

The most important instance of this axiom is that in which C = 1. In that case, the
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power object axiom says that P(A) together with ∈A can represent any subset i : B → A

(represented by its characteristic function χi) as a mapping from χ̂i : 1→ P(A). That is, to

each subset of A corresponds a member of P(A). In ETCS, we call power objects power sets.

Axioms 1–5 amount to the assertion that the category of sets and mappings is a topos.

But ETCS does not stop there. It goes on to ascribe to that topos various other features.

Axiom 6 (Non-degeneracy) 0 cannot be put in one-one correspondence with 1.

Axiom 7 (Well-pointedness) There are no two distinct mappings f, g : A ⇒ B such that

fx = gx for all x : 1→ A.

If we represent the members of a set A by the mappings x : 1 → A that pick out those

members, then this axiom says that a mapping on a set A is determined solely by its behaviour

on the members of A. Thus, well-pointedness is an extensionality axiom for mappings. As

noted above, it does not amount to an extensionality axiom for sets, since ETCS has models

containing many empty sets.

It is a sophisticated, but important result that, together with the axiom of non-degeneracy,

well-pointedness entails that Ω must be a two-element set, whose elements represent the truth

values Truth and Falsity.

Axiom 8 (Choice) If f : A→ B is surjective, then there is g : B → A for which f ◦g = IdB.

Choice makes a hypothetical existence claim, but it concerns mappings, not sets. This is a

faithful statement of the axiom of choice, which in orthodox set theory says that every non-

empty set of disjoint non-empty sets has a choice set. In ETCS, we represent a non-empty

set of disjoint non-empty sets as a surjective function f : A→ B. The disjoint sets are then

the subsets f−1(b) indexed by the members b of B. The axiom then asserts the existence of

a function g : B → A that picks out a single member of each such disjoint set.

Axiom 9 (Natural number object) The category of sets and mappings contains a natural

number object.

In ETCS, a natural number object is a set N equipped with two mappings z : 1 → N and

s : N → N that together guarantee the effectiveness of any recursive definition. That is, for

any set X with an initial element picked out by a : 1→ X and a mapping f : X → X, there
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is a function h : N → X that takes the zero element of N to a and takes the successor of a

‘number’ in N to the element of X that results from applying f to whatever element of X

was assigned to that number by h: in other words, h ◦ z = a and h ◦ s = f ◦ h.

1
z //

a
��???????? N

s //

h
���
�
� N

h
���
�
�

X
f

// X

Notice that this reverses Dedekind’s definition of a simply infinite system. Dedekind defines

a simply infinite system to be a set equipped with an initial element and a successor func-

tion such that it is the smallest set containing that element and closed under that successor

function. He then proves that such a set guarantees the effectiveness of any recursive defini-

tion. By contrast, a natural number object is defined to be something that guarantees the

effectiveness of recursion. That it satisfies Dedekind’s definition of a simply infinite system is

then derived as a theorem.

This completes our presentation of ETCS. The theory is mutually interpretable with the

orthodox set theory Z0C, where Z0 is Zermelo set theory with subset comprehension axioms

only for bounded quantifier formulae, and C is the axiom of choice. As Osius (1974) shows, it

is possible to introduce natural category-theoretic counterparts of full subset comprehension,

as well as full replacement, in order to give extensions of ETCS that are mutually interpretable

with ZF and ZFC. The same is true of many of the usual large cardinal axioms (51, McLarty

(2004)).

3 The autonomy of theories

We saw above that ETCS is vulnerable neither to the Mismatch Objection nor to the Logical

Dependence Objection. However, a putative foundation for mathematics must boast more

than mere logical autonomy with respect to set theory if it is to be truly autonomous. It must

be possible not only to formulate the foundation without presupposing a theory of sets; it

must be possible also to understand it and to justify its claims without such a presupposition.

Unless these further conditions are met, the foundation does not truly support the discipline

of mathematics on its own and independent of other assumptions.
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Thus, we introduce the distinction between logical, conceptual, and justificatory autonomy.

Suppose T1 and T2 are theories: not the formal theories of mathematical logic, but rather

accounts of a particular part of reality.

• T1 has logical autonomy with respect to T2 if it is possible to formulate T1 without

appealing to notions that belong to T2.

• T1 has conceptual autonomy with respect to T2 if it is possible to understand T1 without

first understanding notions that belong to T2.

• T1 has justificatory autonomy with respect to T2 if it is possible to motivate and justify

the claims of T1 without appealing to T2, or to justifications that belong to T2.

Such talk of a notion belonging to a theory should be tolerably clear already at this point,

and it will become clearer when we give examples below.

We saw above that ETCS enjoys logical autonomy with respect to the orthodox foundation

for mathematics in set theory. It is possible to state ETCS without appealing to notions that

must be introduced by orthodox set theory. Of course, it is not possible to state ETCS without

appealing to the notion of set and mapping. But while these notions can be introduced by

orthodox set theory, they do not belong specifically to that theory. Rather, ETCS has an

equal claim to them.

In the next section, we consider the conceptual autonomy of ETCS with respect to ortho-

dox set theory. After that, we turn to the justificatory autonomy of ETCS, and we consider

how the categorist might argue for this and how the orthodox set theorist might respond. As

noted above, we do not conclude in favour of one or the other. Our purpose is to explore the

terrain.

4 The conceptual autonomy of ETCS

Given that ETCS enjoys logical autonomy with respect to set theory, why might we think that

it is not conceptually autonomous? We consider two objections to the conceptual autonomy

of ETCS.

The first is due to Dan Isaacson. His complaint is this. ETCS is stated in terms of

initial objects, terminal objects, Cartesian products, subobject classifiers, and power objects.
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These are characterized solely in virtue of their mapping-theoretic properties. Thus, in order

to state the corresponding axioms, we need not appeal to the membership relation or other

apparatus that belongs to the orthodox set-theoretic foundation. It is for this reason that

ETCS is logically autonomous. However, whenever we come to explain these axioms to those

unfamiliar with them, we inevitably appeal to the membership relation, the subset relation,

the notion of ordered pair, the notion of a function as a set of ordered pairs, and so on. That

is, at the point of explanation, the mapping-theoretic presentation is abandoned in favour of

a more orthodox presentation, which is required to allow us to understand the axioms. Thus,

ETCS does not have conceptual autonomy.

We see two responses to this objection. The first rejects the requirement of conceptual

autonomy on the grounds that it is too subjective. Different people with different educational

backgrounds will order theories differently with respect to conceptual dependence. What is

required for understanding in one individual need not be required in another. So we must

abandon our requirement that a foundation be conceptually autonomous.

This response seems partially correct. There will certainly be pairs of theories for which

the relation of conceptual dependence is not clear. But this does not rule out the possibility

of theories for which this relation is perfectly clear and objective. For instance, whenever T1 is

logically dependent on T2, then it is objectively the case that T1 is also conceptually dependent

on T2. Perhaps Isaacson’s objection succeeds in showing that ETCS is not conceptually

autonomous with respect to set theory in just such an objective sense.

This brings us to the second response to the objection. This response accepts the re-

quirement of conceptual autonomy and argues that ETCS satisfies it. While it is certainly

often easier to explain the axioms of ETCS by appealing to their counterparts in orthodox

set theory, this is not necessary. Rather, each axiom can be glossed in a way that is quite

independent of the membership relation and other apparatus peculiar to orthodox set theory.

We attempted such a gloss in section 2; Lawvere and Rosebrugh have attempted a similar

project in their introductory text on ETCS (Lawvere & Rosebrugh (2003)). In these presenta-

tions, there is no reference to the sort of membership relation that would allow us to identify

members of different sets, or to assert that one set is a member of another. We submit that

these introductory glosses are autonomous with respect to any notions that belong peculiarly

to orthodox set theory.
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To illustrate the claim, consider the notion of Cartesian product. We submit that the

following three requirements provide a plausible and completely autonomous account of what

we mean by saying that X is a Cartesian product of two given objects A and B. If conceptual

analysis is possible at all, this seems to be an instance of it. Firstly, we want there to be

projections πA, πB : X ⇒ A,B. Secondly, we want X to consist of “independent representa-

tions” of A and B, much like a cylinder consists of “independent representations” of a line

and a circle. This idea can be expressed as the requirement that any mapping of an object

Y to A and B gives rise to a mapping from Y to X; or, more precisely, that any pair of

mappings f, g : Y ⇒ A,B factorizes via X and the projections πA and πB. Thirdly, we want

X to be minimal in the sense that any ordered pair of an element of A and an element of B

has a unique representative in X. This idea can be expressed as the requirement that any

pair of mappings i, j : 1 ⇒ A,B factorizes uniquely via X and the projections. These three

requirements are easily seen to be equivalent to the official definition of Cartesian product,

under the assumption of well-pointedness.5

Another objection is due to John Mayberry. The fundamental notions of ETCS are the

notions of set and mapping. But according to this objection, the notion of mapping can

only be understood by appeal to the orthodox set theorist’s reduction of mappings to sets

of ordered pairs. Historically, the notion of mapping arises as an idealization of the notion

of a rule. And this is also how we introduce it in mathematics education. The objector

submits that the only precise account of the notion of mapping that captures the level of

idealization that is required in modern mathematics is given by the definition of a function

as a set of ordered pairs that represents a many-one or one-one relation, and this definition

belongs essentially to orthodox set theory. So in order to understand ETCS, we must appeal

at least to this part of orthodox set theory. Thus, ETCS is not conceptually autonomous

with respect to the orthodox foundation.

The categorist may respond to this objection as follows. Both sides of the dispute accept

that the notion of a mapping precedes the set theorist’s reduction of mappings to sets of

ordered pairs. The difference is that the set theorist holds that only such a reduction can

make the notion sufficiently precise. However, given a basic notion in a particular discipline,

there are at least two sorts of account we can give of that notion. We can give a reductive

5In the much less intuitive case of non-well-pointedness, the third requirement needs to be strengthened.
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(or explicit) account, which characterizes the notion in terms of something less problematic;

or we can give an axiomatic (or implicit) account, which characterizes the notion by stating

substantial facts in terms of that notion. The set theorist takes the former approach to the

notion of mapping; the categorist takes the latter. While a reductive account is usually to

be preferred, it doesn’t follow that an axiomatic account must depend conceptually upon a

reductive one. Thus, the objection is defeated.

5 The justificatory autonomy of ETCS

We have seen that the categorist can plausibly claim logical and conceptual autonomy for her

putative foundation for mathematics in ETCS, the categorical theory of sets. We now ask

whether she can also claim justificatory autonomy for it.

As we have seen, ETCS is an assertory theory: it makes many existential claims, both

categorical and hypothetical. So if it is to provide an autonomous foundation for mathematics,

it must be able to justify its assertions without appealing to orthodox set theory, or to any

aspect of the justification of orthodox set theory that belongs primarily to that theory. So

our first task is to consider the justification of orthodox set theory.

5.1 The iterative conception as a justification of ZFC

The standard justification for the axioms of orthodox set theory lies in the iterative conception

of set (Gödel (1983), Boolos (1971), Parsons (1983)). According to this conception, the

universe of sets may be divided into a well-ordered hierarchy of levels. To each set is assigned

a level of this hierarchy in such a way that all elements of that set are assigned to strictly

lower levels of the hierarchy. Thus, a set can occupy a stage of the hierarchy only if all of

its elements are already present at lower levels. What’s more, a set occupies only the lowest

level of the hierarchy that it can occupy; it does not recur again at any higher levels.

With this framework in place, the iterative conception of set amounts to the following claim

of set-theoretic plenitude: relative to the constraints on the hierarchy just stated, whenever

a set could occupy a level of the hierarchy, it does. To see this in action, consider the power

set axiom of Zermelo set theory. Suppose A is a set. Then A occurs at some level λ of the

hierarchy. Now suppose X is a subset of A. Since all elements of X are elements of A, they
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all occur at levels lower than λ. It follows that X must occur at level λ or below. Since X was

arbitrary, all subsets of A occur at level λ or below. So at the first level above λ, it is possible

for there to exist a set P(A) that contains all subsets of A. Hence by the plenitude claim

there is such a set. In this way, the power set axiom is justified. Similar justifications can be

given for the axioms of empty set, pair set, union, subset separation, and foundation. Infinity

requires that there be an infinite level of the hierarchy and replacement requires that the

levels of the hierarchy satisfy a cofinality condition. Whether these latter are genuinely extra

assumptions in addition to the iterative conception’s plenitude claim is a matter of debate,

but it need not detain us here. Neither need we consider the vexed question of whether the

axiom of choice is justified by appeal to the plenitude claim (Boolos (1971), Paseau (2007)).

Of course, the iterative conception does not supply the sort of justification that will

convince a sceptical nominalist who demands a justification for the claim that there are any

sets at all. But that problem will face all foundations for mathematics that posit entities

whose existence the sceptical nominalist doubts. It will face ETCS just as much as the

orthodox foundation. So we may bracket this problem. Nonetheless, the iterative conception

does provide a justification: on the assumption that there are any sets at all, it justifies many

of the particular claims about what sets there are.

5.2 The question sharpened

We claim that the justification provided by the iterative conception of set belongs primarily

to orthodox set theory. The iterative conception describes a hierarchy structured in terms of

membership relations. So this relation plays an absolutely fundamental role in the iterative

conception. This is reflected in the axioms of ZFC, which are stated precisely in terms of the

membership relation. In stark contrast, the categorical theory of sets is agnostic about all

relations of identity between elements of different sets and about all relations of membership.

As we have seen, ETCS describes sets solely in terms of the functional role that they fill. So

this approach refrains from all claims about the relation between sets and their elements.6

We conclude that orthodox ZFC provides a better articulation of the iterative conception

than ETCS, and that the justification provided by this conception thus belongs primarily to

orthodox set theory rather than to the categorical approach.

6Though it seems that mappings can exist only when their domain and codomain exist.
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It appears that the iterative conception not only makes fundamental use of the membership

relation but also draws on a fairly robust metaphysical conception of this relation. For on the

iterative conception, sets are composed of their elements in such a way that the former depend

metaphysically upon the latter. As Charles Parsons puts it, the iterative conception is “the

conception of set as a totality ‘constituted’ by its elements, so that it stands in some kind of

ontological dependence on its elements, but not vice versa” (332, Parsons (1990)).7 On this

view, the iterative conception describes substantial metaphysical relations between sets. For

instance, it supports the modal claim that a set cannot exist unless all of its elements exist

as well. If this metaphysical conception of the membership relation can be made out, it will

further strengthen our argument that the justification provided by the iterative conception

belongs primarily to orthodox ZFC.

Our question about the justificatory autonomy of ETCS thus becomes: Can ETCS provide

an analogous justification for its particular existential claims that does not depend in an

essential way on the iterative conception, which belongs primarily to the orthodox foundation?

In what follows we divide the possible justifications into two classes, depending on how they

interpret these existential claims. According to the first sort of justification, each existential

assertion of ETCS is to be understood as asserting the existence of a particular thing. For

instance, the power object axiom asserts, for each set A, the existence of a particular thing,

namely the power set of A, where this is understood as a particular object. According to the

second sort of justification, each existential assertion of ETCS is to be understood as making

a general existence claim; that is, a claim that there is at least one object capable of filling

the functional role in question. For instance, the power object axiom asserts the existence of

some object or other, equipped with a mapping, which is capable of filling the functional role

specified by the axiom for the power object. We consider each sort of justification in turn.

5.3 The sets of ETCS are collections of lauter Einsen

On the first sort of justification, the axioms of ETCS assert the existence of particular objects.

But in order to remain autonomous with respect to orthodox set theory, these particular

objects must be different from the objects described by the iterative conception of set.

Just such an account is given by Lawvere, who first formulated ETCS (Lawvere (1994)).

7See Potter (2004) for similar claims. However, Parsons in the end concludes that this “ontologically richer
conception of set” is not needed for the justification of ZFC (137, Parsons (2008)).
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Lawvere describes ETCS as the theory of abstract sets and arbitrary mappings between them.

For Lawvere, abstract sets are quite different from the sets introduced by the iterative con-

ception. Most importantly, while the sets that populate the iterative hierarchy generally have

members with a great deal of internal structure given in terms of the membership relation,

and a large number of intrinsic properties, Lawvere’s abstract sets are collections of what he

calls “lauter Einsen” or “pure units”, following Cantor. That is, the elements of the sets of

ETCS have no internal structure and no intrinsic properties, and their distinctness one from

another is a brute fact that is not reducible to a fact about distinguishing properties.

One way to view this proposal is to compare it to recent accounts of the abstract entities

postulated by ante rem (or sui generis) structuralism. Just as for Shapiro each natural

number has no properties other than those it has in virtue of its position in the natural

number structure, the members of Lawvere’s abstract sets have no properties other than

those they have in virtue of supporting the mappings posited by ETCS. To support these

mappings, the facts of their identity and distinctness are crucial, while any further properties

are extraneous; thus, they do not possess them.

Viewed in this way, it is no surprise to find that similar conceptions of abstract sets have

been given before. The mathematical numbers posited by Plato and Speusippus and rejected

by Aristotle are abstract sets in this sense (Aristotle Metaphysics XIII), as are the abstract

cardinal structures considered by Shapiro (1997), and the edgeless graphs discussed by Leitgeb

& Ladyman (2008).

Are such ‘purely structural’ objects metaphysically problematic? (Hellman (2001), MacBride

(2005), Linnebo (2008)). While this question demands discussion, we restrict ourselves here to

the epistemological question of whether such a conception can endow ETCS with justificatory

autonomy. Given the understanding of the axioms of ETCS as concerned with a universe of

abstract sets of featureless elements, together with the mappings between them, how might

the categorist justify those axioms? For instance, how might she justify the claim that for ev-

ery abstract set A, there is another abstract set P(A), equipped with a membership mapping

∈A: A× P(A)→ Ω, that fills the functional role required of a power object for that set? We

consider two attempted justifications. Our purpose is not to consider only justifications that

have actually been given; rather, we wish to explore the possible moves that could be made.

The first justification is Hilbertian. According to this justification, any consistent theory
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of a system of abstract objects is true. That is, for any such theory there are abstract objects

that answer to the description given by that theory. Thus, to the extent that we are justified

in believing ETCS to be consistent, we are also justified in believing that there are abstract

sets and arbitrary mappings that it describes.

This justification faces the usual problems that such Hilbertian accounts face. Why, for

instance, should we think that consistency entails existence? But even if this question can

be answered, a further worry lingers. It is often said that we are justified in believing in

the consistency of our mathematical theories because they have been in use for so long, yet

have yielded no contradictions. But this is false. It would only be true if contradictions

had actively been sought in the places where they are most likely, namely in those parts of

the theories that lie closest to paradox. But they haven’t. Rather, our confidence in the

consistency of arithmetic, real analysis, functional analysis, and even higher set theory is

justified on the basis of our clear conception of what the universe of those disciplines is like.

The iterative conception of set equips us with an understanding of the structure of the set-

theoretic universe that justifies our belief in the consistency of the theory that describes it.

And the consistency of the other disciplines follows from this, or from analogous conceptions

of their own universes. Thus, by abandoning the iterative conception of set, Lawvere does not

just abandon a particular metaphysical picture; he also dismisses a conception of the universe

of sets that is crucially involved in our best justification of the consistency of our foundation.

The second justification of the axioms of ETCS as assertions about abstract sets is natu-

ralistic, in the sense that it defers to the opinions of working scientists. Since the assertions of

working mathematicians entail the existence of Cartesian products, power sets, infinite sets,

and so on, the rest of us too are justified in believing in the existence of these mathematical

objects. Alternatively, if one is reluctant to say that we are justified in believing all the

assertions of mathematicians, the foregoing argument is easily transformed into an indispens-

ability argument, which requires only that we are justified in believing all the assertions of

our current best theory of the physical universe. After all, as usually formulated, our current

best physical theories entail the existence of Cartesian products, power sets, infinite sets and

so on. Since we are justified in believing these theories, we are also justified in believing in

the existence of these mathematical objects.

Again, these justifications face problems. We now describe the most pressing one. (A
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more general concern about the idea of a naturalistic justification for ETCS will be developed

below.) As has often been observed, the ontology that might be justified by an indispensability

argument is underdetermined, since the same successful physical theory might be formulated

using different mathematical theories that describe different mathematical objects. In the case

of the naturalistic justification of ETCS, even the mathematical practice underdetermines the

ontology that might be justified by appealing to it. After all, while it is certainly true that

mathematicians assert the existence of Cartesian products, power sets, infinite sets, and so on,

they do not say enough about the nature of these objects to determine whether they are the

power sets from the iterative conception of sets, or the power sets from Lawvere’s conception

of abstract sets of featureless elements, or some other sort of power sets. So the prospects for

a naturalistic justification for ETCS, interpreted as a theory of Lawvere’s abstract sets, seem

bleak.

In light of the above comparison with ante rem structuralism, it might seem that the

following riposte is available to the categorist who wishes to defend Lawvere’s conception

on naturalist grounds. Recently, Shapiro has argued from mathematical practice to the

existence of his ante rem structures on the basis of two theses, which he dubs faithfulness and

minimalism (110, Shapiro (2006)). According to the former, we should assert the existence of

a mathematical object when and only when the mathematician does; according to the latter,

we should not ascribe to these objects any property that the mathematician does not ascribe to

them. Shapiro submits that mathematicians ascribe to their objects no properties other than

those that the objects have in virtue of belonging to a system with a particular structure.

Assuming this claim, it follows from minimalism that we should ascribe to mathematical

objects only their purely structural properties.

However, this claim is problematic. By asserting positively that the elements of the sets

of mathematics are featureless, we are ascribing to them a property that the mathematicians

never postulated, namely their featurelessness. Thus, minimalism does not entail that the sets

assumed by mathematicians are sets of featureless elements. This undermines both Shapiro’s

original argument and any attempt to deploy it in defence of Lawvere.

Another objection to the naturalist’s justification of ETCS is this: It is simply false that

working mathematicians are agnostic about the internal constitution of the sets about which

they speak. After all, many textbooks that introduce elementary areas of mathematics,
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such as algebra, analysis, and number theory, include an introductory section surveying the

elements of set theory, and this set theory is explicitly orthodox set theory—in particular,

it includes assertions about membership relations that cannot be made in ETCS. Thus, the

naturalist proponent of ETCS will have to say either that such assertions are not to be

included in the evidence gleaned from mathematical practice, or that such brief introductory

assertions are somehow outweighed by the vast majority of mathematical literature that does

not reveal commitment to orthodox set theory.

In sum, while Lawvere presents a novel conception of the foundations of mathematics in

a theory of abstract sets of pure units, and the mappings between them, it is not clear that it

can be used to give a justification of ETCS that is autonomous with respect to the orthodox

foundation in set theory. This concludes our discussion of those attempts to justify ETCS

that interpret its existential claims as concerning particular entities.

5.4 The sets of ETCS can be just what they have to

We turn finally to the putative justifications of ETCS that interpret its existential claims as

general existence claims. For instance, on the interpretation that underlies these justifications,

the power set axiom does not assert, for each abstract set of pure units, the existence of a

further abstract set of pure units that fills the functional role required of a power set. Rather,

it remains agnostic about the nature of the sets with which ETCS is concerned, and merely

asserts the existence of some object that, together with some map, fills the role. Echoing

McLarty’s claim about the natural numbers conceived category-theoretically, the sets can be

“just what they have to” (McLarty (1993)).

Interpreted thus, how might one justify ETCS? Again, the Hilbertian option and the

naturalistic option are open to us. We have nothing to add to our discussion of the putative

Hilbertian justification.

However, in the case of the naturalist justification, the situation has changed markedly.

Above we objected to the naturalistic justification for ETCS, interpreted as a theory of

Lawvere’s abstract sets, on the grounds that this interpretation goes beyond what is warranted

by mathematicians’ own assertions about the sets with which they are concerned. Clearly

such an objection cannot be raised against a naturalistic justification of ETCS when this

theory is interpreted as making only general existential claims. On the contrary, it seems
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that ETCS, interpreted in this way, is highly appropriate to the naturalistic argument. After

all, if mathematicians remain agnostic about the internal constitution of the objects of their

study, then naturalism can at best justify a foundational theory that is similarly agnostic. In

other words, if the internal constitution of mathematical objects is not described by working

mathematicians, then naturalism will lead to a foundational theory that characterizes its

objects only up to isomorphism. And when interpreted in the way under consideration,

ETCS is exactly such a theory.

So we submit that naturalism provides the greatest hope for the categorist. If one favours

a foundation that respects the non-foundational assertions of working mathematicians, who

tend to be agnostic about the internal constitution of their objects, one ought to prefer a

foundation that specifies its objects purely in terms of what they do, rather than in terms of

what they are: that is, a foundation that specifies its objects only by their functional role,

which typically determines an isomorphism class, and not by their intrinsic nature. As we

explained above, category theory is ideally suited to such a purpose.

However, any naturalistic justification for ETCS will require a very strong form of nat-

uralism. Moderate naturalists about a particular scientific discipline hold that the opinions

of scientists working in that discipline can suffice to establish that there exists a justification

for some philosophically significant claim. But moderate naturalists also recognize the need

to identify and articulate the justification that is said to exist within the relevant discipline.

For instance, a moderate naturalist about mathematics might take the opinions of mathe-

maticians to establish that there is a justification for the existential claims of traditional,

membership-based set theory. However, she will not rest content at this point but will pro-

ceed to search for that justification within mathematics itself, perhaps aided by professional

mathematicians. And, in the iterative conception of set, she may take herself to have found

it. By contrast, extreme naturalists claim that the very existence of the opinions of working

scientists by itself provides the required justification for the claim. No further justification

is needed beyond the fact that competent scientists with the relevant expertise assent to the

claim in question.

The naturalistic justification for ETCS that we outlined above relies on extreme nat-

uralism. All the justification does is appeal to the opinions that prevail among working

mathematicians. Any attempt to articulate some substantive justification for ETCS within
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mathematics itself would go beyond the naturalistic justification that we outlined. But this

also means that any such attempt is likely to compromise the agnosticism that appeared

to make ETCS so attractive. For instance, if the substantive justification is the one pro-

vided by the iterative conception, then the justification will be better captured by orthodox

membership-based set theory.

6 Conclusion

We have argued that both SDG and ETCS are logically autonomous with respect to orthodox

set theory, and that (at least) ETCS enjoys conceptual autonomy as well. But the question

of justificatory autonomy is harder.

The justificatory autonomy of ETCS depends on what sorts of justification one is willing

to accept. Suppose one agrees with the extreme naturalist that it suffices for the justification

of ETCS that mathematicians make assertions whose truth requires the existence of things

that play the functional roles of power objects, Cartesian products, infinite sets, and so on;

that is, that mathematicians specify their foundational objects at most up to isomorphism.

Then this will be a justification for ETCS that does not depend on orthodox, membership-

based set theory, nor on any justifications that belong primarily to that theory, such as

the iterative conception. This will establish that ETCS has justificatory autonomy with

respect to orthodox set theory. On the other hand, if one requires that justifications be more

substantive than those provided by extreme naturalism, then it seems doubtful that ETCS

will have justificatory autonomy.

One final point: Suppose we agree with the extreme naturalist and conclude that ETCS

has justificatory autonomy with respect to orthodox set theory. It does not follow that we

must also hold that the justification given for orthodox set theory via the iterative conception

of set, and the autonomous justification given for ETCS via extreme naturalism are equally

good justifications. It is quite consistent to hold that both theories are justified, that each

has a justification that is independent of the other, but nonetheless that orthodox set theory

is better justified than its category-theoretic counterpart.
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