
Against Pointillisme: a Call to Arms

Jeremy Butterfield

Monday 12 July 2010: Forthcoming in
Explanation, Prediction and Confirmation: New Trends and Old Ones Reconsidered

Edited by: D. Dieks, W. Gonzalez, S. Hartmann, T.Uebel and M. Weber;
to be published by Springer

Abstract

This paper forms part of a wider campaign: to deny pointillisme. That is the
doctrine that a physical theory’s fundamental quantities are defined at points
of space or of spacetime, and represent intrinsic properties of such points or
point-sized objects located there; so that properties of spatial or spatiotemporal
regions and their material contents are determined by the point-by-point facts.

Elsewhere, I argued against pointillisme about chrono-geometry, and about
velocity in classical mechanics. In both cases, attention focussed on temporal
extrinsicality: i.e. on what an ascription of a property implies about other times.
Therefore, I also discussed the metaphysical debate whether persistence should
be understood as endurance or perdurance.

In this paper, I focus instead on spatial extrinsicality: i.e. on what an ascrip-
tion of a property implies about other places. The main idea will be that the
classical mechanics of continuous media (solids or fluids) involves a good deal
of spatial extrinsicality—which seems not to have been noticed by philosophers,
even those who have no inclination to pointillisme.

I begin by describing my wider campaign. Then I present some elementary
aspects of stress, strain and elasticity—emphasising the kinds of spatial extrin-
sicality they each involve.

I conduct the discussion entirely in the context of “Newtonian” ideas about
space and time. But my arguments carry over to relativistic physics.
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1 Introduction

This paper forms part of a wider campaign: to deny pointillisme. That is the doctrine
that a physical theory’s fundamental quantities are defined at points of space or of
spacetime, and represent intrinsic properties of such points or point-sized objects lo-
cated there; so that properties of spatial or spatiotemporal regions and their material
contents are determined by the point-by-point facts.

I will first describe this wider campaign (Section 2). The broad picture is that
we should distinguish between temporal extrinsicality, i.e. what an ascription of a
property implies about other times, and spatial extrinsicality, i.e. what an ascription of
a property implies about other places. Elsewhere, I have proclaimed the former (2004,
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2005, 2006a, 2006b). That is, I argued that there is more temporal extrinsicality
than the pointilliste admits. This led me to the metaphysical debate whether the
persistence of objects over time should be understood as endurance or as perdurance;
(and in particular to assessing the so-called ‘rotating discs argument’ (2006a)).

But here, I will proclaim spatial extrinsicality: the way that an ascription “reaches
across space” like extended arms—hence my punning title. My main point will be
that classical continuum mechanics gives us many rich examples of spatial extrinsical-
ity: which seem never to have been noticed in analytic metaphysics, even though the
relevant physics goes back to Euler. (I will confine myself to the “Newtonian” con-
ception of space and time, as applied to continuum mechanics. This restriction keeps
things simple: and at no cost, since both the debate and my arguments carry over to
relativistic physics, once one there adopts a space vs. time distinction.)

This paper also forms part of a yet wider and more positive topic, which is of interest
to philosophers who feel no attraction for pointillisme. Namely: the philosophical
richness of classical mechanics, especially continuum mechanics. This went without
saying for the natural philosophers—later divided into physicists and philosophers of
nature!—from the time of Newton to about 1910. Thereafter, the conceptual aspects,
indeed problems, of the revolutionary quantum and relativity theories grabbed centre-
stage in the philosophy of nature. But the richness of classical mechanics remains,
as emphasized in recent decades by such authors as Truesdell, in mechanics and its
history, and Mark Wilson in philosophy (1998, 2006, Chapters 4 to 6). I have no
space here, even for a list of topics; but my (2004, Section 2; 2004a, Section 2; 2004b,
Section 3f.) give some discussion and references. Here, I just note that even as regards
pointillisme, this paper is more positive than its predecessors, in two ways. The second
is more important, and deserves a separate Subsection.

First, one main focus of the earlier papers was whether properties of a point (or
point-sized object) that are represented by vectors, tensors, connections etc. can be
intrinsic to it. Typically, pointillistes try to reconcile pointillisme with the fact that
such properties certainly seem to be extrinsic. So in those papers, I argued that their
proposed reconciliations fail. (One main aspect was that their reconciliations involved
heterodox construals of the properties. So besides criticizing the reconciliations on
their own terms, I urged that once pointillisme was rejected, there was less motivation
for heterodoxy.) One really does need extrinsic properties of points, both for chrono-
geometry (my 2006) and for the concept of velocity in mechanics (2006b). But in this
paper I have no pointilliste authors as targets, for the simple reason that the spatial
extrinsicality at work in continuum mechanics has not been noticed by metaphysics—
and so no one has proposed a pointilliste reconciliation that I need to rebut.

1.1 Five kinds of spatial extrinsicality

We will see that continuum mechanics exhibits kinds of extrinsicality which are more
varied and richer than the temporal extrinsicality which was centre-stage in the earlier
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papers. There, temporal extrinsicality related to two main topics:
(i) implications about the existence of the same particle at different times, and so

the endurance-perdurance debate (especially 2004, 2005, 2006a); and
(ii) the idea of a spectrum of implications, arising from the sequence of successively

higher time-derivatives of position (2006a, Section 4.5; 2006b, Sections 3.2, 4.3).

Here in this paper, spatial extrinsicality will not relate to (i). There will of course
be an analogue of (ii): a spectrum of extrinsicality due to the sequence of succes-
sively higher spatial derivatives. Indeed, there is “more extrinsicality”, since one has
to consider derivatives not just of position, but also of many other quantities. But
more important: we need to recognize that continuum mechanics also involves several
other kinds of spatial extrinsicality. This paper will be mostly concerned with a kind
which, like (ii), involves a spectrum. This spectrum arises, not from higher derivatives,
but from geometric structures such as lines and planes through the spatial point in
question (and the angles between them). Taking successively more lines and-or planes
through the point yields successively higher-order tensors: another sense of “more ex-
trinsicality”. Sections 3, 4 and 5 will give examples. (For simplicity, I will consider
only rectilinear coordinates: I just note that curvilinear coordinates would give another
source of extrinsicality.)

Space prevents my going into details about continuum mechanics’ other kinds of
spatial extrinsicality. So let me just list, and then set aside, the following three.

(1) “Measure”: In treating quantities like mass and charge, continuum mechanics
takes a leaf from modern measure theory (cf e.g. Truesdell 1991, pp. 16-19, 92-94).
It attributes a quantity like mass primarily to finite volumes, and takes mass density
as a derived quantity, defined by a limiting process. This means the mass-density
at a spatial point is spatially extrinsic; (even though it is a scalar quantity—which
some discussions wrongly take to imply intrinsicality: cf. Section 2.1.1). Besides, such
densities are only defined almost everywhere, in the measure-theoretic sense: making
the spatial extrinsicality subtle (cf. my 2006, Sections 3.3.2.B and 4.6).

(2) “Metric”: I have also set aside relativity’s description of continuous matter
(or fields). Here, the idea of mass is replaced by a energy-momentum tensor whose
definition depends on the spacetime metric in various subtle ways. This suggests that
mass-energy, momentum, stress etc. are best seen as relations of the matter (or field)
to spacetime structure. Lehmkuhl (2010) is an excellent discussion of this sort of
extrinsicality.

(3) “Topology”: Facts about the global topology of space, or spacetime, or of config-
uration space, can induce another, perhaps more striking, kind of extrinsicality. For it
is natural to respond to the kinds already listed by saying that, though they no doubt
refute pointillisme beyond repair, surely they allow some doctrine of “localism”, that
takes the bearers of a physical theory’s fundamental quantities to be, not pointillisme’s
points (or point-sized bits of matter), but rather: arbitrarily small spatial or spacetime
regions (or correspondingly small bits of matter). Thus localism might be defined as
claiming that the state assigned by a physical theory to (the systems within) a spa-
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tial or spacetime region R is determined by (supervenient upon) the states assigned
to the elements of a covering of R consisting of arbitrarily small open sets. And this
looks to be compatible with the kinds of extrinsicality so far listed. (In particular,
my own earlier proclamation of temporal extrinsicality proposed such a localism as
appropriate for an anti-pointilliste defence of perdurance as an account of persistence:
2006a, Section 4.) But in electromagnetism, global topological facts can lead to phe-
nomena (most famously, the Aharonov-Bohm effect) which seem best interpreted in
terms of holonomies (values of integrals around loops), thus violating localism. (Myr-
vold (2010) is an excellent discussion: what I have dubbed ‘localism’, he calls ‘patchy
separability’.)1

To sum up: continuum classical mechanics involves at least five kinds of spatial
extrinsicality. Namely: the three kinds (1) to (3) just listed, and the two I first men-
tioned:

(4) “Derivatives”: The spectrum of extrinsicality due to successively higher spatial
derivatives;

(5) “Orders”: The spectrum of extrinsicality due to successively higher order ten-
sors.2

This paper will focus on (5). Indeed, most of my points will flow from the fact
that continuum mechanics embraces spatial extrinsicality due to surface forces, acting
at a point, with respect to a surface through that point. In Section 3, this idea will
be encapsulated in the stress tensor. (In short, stress is a codification of the forces
acting at a point.) Besides, by considering successively higher order tensors, we get
a spectrum of extrinsicality. This is illustrated in Section 5 by elasticity. Elasticity
relates stress to strain: which, in short, is a codification of how a continuous body is
distorted at the point. So as a preliminary to discussing elasticity, I need to discuss
strain, in particular the strain tensor. I do this in Section 4: where we see yet another
philosophical aspect of classical mechanics—that it treats the identity of particles as
primitive in the sense of distinguishing a configuration and its permuted image, even
if the permutation shifts only indistinguishable particles.

1You might object that electromagnetism is a different theory than continuum mechanics, so that
presumably the latter is free of this kind of extrinsicality. I think this objection is valid only in
letter, not in spirit. Without going into details, I would say, as regards ‘the letter’: though mechanics
does invoke holonomies in explanations, I concede that, at least so far as I know, holonomies are
not interpretatively essential to mechanics, in the way they seem to be for electromagnetism. But
as to ‘the spirit’: continuum mechanics is not a conceptually closed theory, since the treatment of
many topics, such as a body’s restorative forces or its expansion under heat, inevitably leads to other
theories of classical physics, such as thermodynamics and electromagnetism—as the Chapter titles
of any of the more comprehensive treatises attest. So when interpreting continuum mechanics, it is
artificial—indeed, merely a unconscious reflection of a common pedagogic restriction—to set aside
these adjacent theories. Indeed the holonomy interpretation of the classical electromagnetic field is
similarly based on considering adjacent theories; in that case, the quantum mechanics of a particle in
such a field. For more discussion, cf. e.g. my (2004, Section 2.2), and Belot (1998, Section 5).

2Although I here have no space to relate these kinds to each other, it is clear that this would be a
good project.
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2 The wider campaign against pointillisme

My earlier papers described this wider campaign, in particular how it relates to the
debate whether persistence should be understood as endurance or perdurance. So here
I shall just say, and in part repeat, what little is needed for later Sections.

2.1 Avoiding controversy about the intrinsic-extrinsic distinc-
tion

My campaign does not need to take sides in the ongoing controversy about how to
analyse, indeed understand, the intrinsic-extrinsic distinction. In this paper, I can
make do with a much clearer distinction, between a species of extrinsic property that
Lewis (1983, p. 114) dubbed ‘positive extrinsic’, and the rest.

The positive extrinsic properties are those that imply accompaniment, where some-
thing is accompanied iff it coexists with some wholly distinct contingent object. So the
negation of this is: properties that are compatible with being unaccompanied, i.e. be-
ing the only contingent object in the universe (for short: being lonely). Lewis pointed
out (against a proposal of Kim’s) that, since loneliness is itself obviously extrinsic,
this distinction is not the same as the intrinsic-extrinsic distinction; though ‘almost
any extrinsic property that a sensible person would ever mention is positive extrinsic’
(1983, p. 115). But this distinction is enough for me. That is, I can take pointillisme to
advocate properties that are intrinsic in the weak sense of being not positively extrinsic
(i.e. being compatible with loneliness). So this makes my campaign’s claims, i.e. my
denial of pointillisme, logically stronger; and so I hope more interesting. Anyway, my
campaign makes some novel proposals about positive extrinsicality. As we saw in Sec-
tion 1, I distinguish temporal and spatial (positive) extrinsicality; and in this paper, I
will propose degrees of (positive) spatial extrinsicality.

2.1.1 Distinction from three mathematical distinctions

Both (a) the murky intrinsic-extrinsic distinction, and (b) the clearer distinction be-
tween positive extrinsics and the rest, are different distinctions from three that are
made within mathematics and physics, especially in those parts relevant to us: viz.
pure and applied differential geometry. The first of these distinctions goes by the name
‘intrinsic’/‘extrinsic’; the second is called ‘scalar’/‘non-scalar’, and the third is called
‘local’/‘non-local’. Though my previous papers used only the third distinction, this
paper will use the second and third. These distinctions are as follows.

(i): The use of ‘intrinsic’ in differential geometry is a use which is common across
all of mathematics: a feature is intrinsic to a mathematical object if it is determined
(defined) by just the object as given, without appeal to anything extraneous—in par-
ticular a coordinate system, or an embedding of the object into another. For example,
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we say that the intrinsic geometry of a cylinder is flat; it is only as embedded in IR3

that it is curved.

(ii): Differential geometry classifies quantities according to how they transform
between coordinate systems: the simplest case being scalars which have the same
value in all coordinate systems. We will not need the algebraic details of how the other
cases—vectors, tensors, connections etc.—transform. But we will need some basic ideas
about the geometric ideas that underly the transformation rules. For these are all
about choosing appropriate lines and planes through the point in question—e.g. three
orthogonal axes to define a local coordinate system—by which to give numerical and
so algebraic expression to the quantity (vector or tensor etc.). So the geometric ideas
behind the transformation rules are the source of the spectrum of spatial extrinsicality
announced in Section 1.1. Besides, according to (i)’s mathematical usage, the choice of
lines and planes through a point is extrinsic to it. So here (i)’s usage of ‘extrinsic’, and
my philosophical usage, mesh well; (though in general the philosophical distinctions,
both (a) and (b), are different from the three mathematical ones).

(iii): Differential geometry uses ‘local’ (as vs. ‘global’) in various ways. But the
central use is that a mathematical object or structure is local if it is associated with a
point by being determined (defined) by the structures defined on any neighbourhood,
no matter how small, of the point. For example, the instantaneous velocity of a point-
particle at a spacetime point, and all the higher derivatives of its velocity, are local
since their existence and values are determined (in the usual way as a limit of quotients
of differences) by the particle’s trajectory in an arbitrarily small neighbourhood of the
point. Similarly, for countless other examples of a derivative, or higher derivative, of a
quantity at a point. This suggests that these derivatives represent an extrinsic property
of the point, even if the original quantity was intrinsic to it. I agree. And my previous
papers discussed:

(i): how the sequence of derivatives suggests a spectrum of extrinsicality; and
(ii): how the derivative’s being mathematically local makes the extrinsicality very

mild: to take again the example of velocity, one might say that instantaneous velocity,
acceleration and all higher derivatives, are ‘hardly extrinsic’.

2.2 Classical mechanics is not pointilliste

2.2.1 Two versions of pointillisme

I should distinguish a weaker and a stronger version of pointillisme. They differ by:
(i) the weaker version taking ‘point’ in pointillisme to mean spatial point; and so

denying spatial extrinsicality;
(ii) the stronger version taking ‘point’ in pointillisme to mean spacetime point; and

so denying temporal as well as spatial extrinsicality.
Previous papers rebutted the stronger version; (this involved rebutting the rotating
discs argument, so that one can understand persistence as perdurance). Here I rebut
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the weaker one.

Thus I take ‘pointillisme as regards space’ to be, roughly, the doctrine that the
instantaneous state of the world is fully described by all the intrinsic properties, at
that time, of all spatial points and-or point-sized bits of matter. Here, ‘intrinsic’
means ‘spatially intrinsic’. That is, attributing such a property to an object carries
no implications about spatially distant objects; but it can carry implications about
objects (perhaps temporal parts of the given object) at other times.

On the other hand: I take ‘pointillisme as regards spacetime’ to be, roughly, the
doctrine that the history of the world is fully described by all the intrinsic properties
of all the spacetime points and-or all the intrinsic properties at all the various times
of point-sized bits of matter (either point-particles, or in a continuum). And here
‘intrinsic’ means just the negation of Lewis’ ‘positive extrinsic’. So it means ‘both
spatially and temporally intrinsic’: attributing such a property carries no implications
about objects at other places, or at other times.

It is of course a delicate matter to relate either version of pointillisme to the content
of specific physical theories. One naturally asks for example, how philosophers’ idea
of an intrinsic property relates to the idea of a physical quantity. Here my tactic will
be the obvious one: to formulate pointillisme as a doctrine relativized to (i.e. as a
property of) a given physical theory. Thus I will take this paper’s target, pointillisme
as regards space, to be a trio of claims about a physical theory, as follows.

(a): the fundamental quantities of the theory are defined at points of space;
(b): these quantities represent intrinsic properties of such points;
(c): models of the theory—i.e. in physicists’ jargon, solutions of its equations, and

in metaphysicians’ jargon, possible worlds according to the theory—are fully defined
by a specification of the quantities’ values at all spatial points for all the various times.

So, putting (a)-(c) together: the idea is that the theory’s models (or solutions or
worlds) are something like conjunctions or mereological fusions of “ultralocal facts”,
i.e. facts at points. Similarly, pointillisme as regards spacetime would be a trio of
claims, but substituting ‘spacetime points’ for ‘spatial points’.

2.2.2 Mechanics violates pointillisme as regards space

Though I have not made a systematic survey, there is no doubt that pointillisme, as
regards either space or spacetime, is prominent in recent analytic metaphysics of nature,
especially of neo-Humean stripe. The prime example is the metaphysical system of
David Lewis, which is so impressive in its scope and detail: one of his main metaphysical
theses, ‘Humean supervenience’ (1986, pp. ix-xvi; 1994), is a version of pointillisme as
regards spacetime. More specifically, I think many metaphysicians believe that classical
physics—or at least classical mechanics—satisfies pointillisme, at least as regards space;
(though perhaps not as regards spacetime, because of the rotating discs argument).

I agree that there are some considerations in favour of this belief, even the stronger
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belief about all of classical physics not just classical mechanics. Most of the quantities of
most classical physical theories are defined at points of space or spacetime, with models
being defined by those quantities’ values at the various points. Witness the endemic use
of functions on space or spacetime, governed by differential equations. This supports
(a) and (c) in pointillisme’s defining trio of claims. Besides, classical physics is free of
various kinds of “holism”, and so anti-pointillisme, that are suggested by entanglement
in quantum theory; (as is often remarked: e.g. Teller (1986), Healey (1991, p. 408f.),
Esfeld (2001, Chapter 8)). I say ‘kinds’ because the basic fact of entanglement—that
the pure state of a composite system (a “whole”) is not determined by the states of
its components (“parts”)—manifests differently in different settings: e.g. (i) in the
frame-dependent description of systems in relativity (Myrvold 2002, 2003, 2009), (ii)
in heterodox versions of quantum theory such as pilot-wave theory (e.g. Holland 1993,
Chapter 7).

Nevertheless, this belief in pointillisme is false, even just for classical mechanics. The
flaw lies in claim (b). I already mentioned in Section 1.1 five reasons why (b) is false—
five kinds of spatial extrinsicality; (though one reason, viz. my (3), applied in the first
instance to branches of classical physics other than mechanics). As I announced there,
I will not develop all these reasons: I will just concentrate on one which, though very
familiar in the mechanics textbooks, has (as far as I know) been wholly ignored in the
philosophical literature. Namely, continuum mechanics embraces spatial extrinsicality
due to surface forces, acting at a point, with respect to a surface through that point.
We will first see this in Section 3’s discussion of the stress tensor. After that, by
considering successively higher order tensors, we will get a spectrum of extrinsicality. I
emphasize that all the formalism to follow was established by figures such as Euler and
Cauchy between 1770 and 1825; though I shall report it in modern guise, in particular
using vector calculus.3

So to sum up: my complaint against the widespread metaphysical view that clas-
sical mechanics is pointilliste as regards space is that, although pointillisme’s claims
(a) and (c) mostly hold good for classical mechanics, claim (b) is endemically false.
Furthermore, one main reason why it is false was known already by 1825—but seems
to have been wholly ignored in the philosophical literature.

3 Stress: extrinsicality from a tensor’s order

In all that follows, I must be brief about technicalities. So I will assume the ideas of
tensor algebra and tensor calculus on IR3, taken as our model of physical space. But
I need only consider orthonormal bases and reference frames, and so can suppress the
distinction between contravariance and covariance (upper and lower indices): I will
use lower indices. More generally, I will follow the exposition, and level of rigour, of

3For the history of vectors and vector calculus, cf. Crowe (1967). I stress again that this physics
was not overturned by the advent of relativity: although I will ignore relativity, all my arguments
apply equally to relativistic continuum mechanics.
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Gonzalo and Stuart’s4 excellent text (2008): where the details I must suppress, and
much more, can be found. (The same material is treated with more rigour (e.g. about
measure theory; cf. (1) in Section 1.1) in texts such as Gurtin (1981), Marsden and
Hughes (1983) and Truesdell (1991).)

I will also “let pointillisme off the hook” about the foundations of geometry. That
is, I will allow that the pointilliste can invoke any ideas and results of geometry, in
particular of tensor algebra and tensor calculus, as legitimately as the rest of us. But
this allowance is a matter of not flogging a dead horse, rather than conviction: my
(2006) argues that the pointilliste has grave trouble with geometry, in particular tensor
calculus.

From now on, the basic idea will be that a continuous body is placed in physical
space IR3 by occupying a suitable set B ⊂ IR3.5 B is called the placement or config-
uration of the body. I will not be precise about how to define ‘suitable set’. Suffice
it to make two comments: the first technical, the second philosophical. (i): The main
technical desideratum is that the meaning of ‘suitable’ should enable one to secure
the invaluable integral theorems of vector calculus (such as the divergence and Stokes’
theorems); and so one usually requires B to consist of a finite number (usually one!) of
open bounded disjoint components, and for the boundary ∂B to be piecewise smooth
and orientable; (cf. e.g. Gonzalo and Stuart (2008, p. 54) or Kellogg (1967)). (ii):
Unfortunately, most philosophical discussion of what ‘suitable’ should mean has been
divorced from (i), and dominated by traditional verbal conundrums about whether two
continuous bodies can touch each other: Smith (2007) is a fine attempt to connect the
philosophical discussion to the physics.

Building on this basic idea, this Section considers the forces exerted on the (ma-
terial points constituting the) body at points x ∈ B. The next Section considers the
distortion of the body.

3.1 The need for surface forces

We begin with a type of force that pointillisme can accommodate: more precisely, can
accommodate once we set aside the other kinds of spatial extrinsicality listed in Section
1.1! Namely, body forces. These are forces exerted on the body’s material points at a
distance, and so without regard to any contact between parts of the body, or between
the body and its environment. The archetypal example is gravity. We model such a
force with a continuous (or at least: suitably integrable) function on B. Thus the body
force field, per unit volume, exerted by an external influence on B is a vector-valued
function b : B→V . (We will write V , rather than IR3, for the (unique!) 3-dimensional
real vector space, when it is not being interpreted as physical space.) So the resultant
force on a sub-volume Ω ⊂ B is: rb(Ω) =

∫
Ω b(x) dVx.

4Whom I thank for permission to reproduce Figures 1 to 3 below.
5The Newtonian model of physical space is sometimes taken to be the affine space E3 (‘E’ for

Euclid), rather than IR3. But for simplicity, I “keep the origin” and use IR3.
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Similarly for the body force’s influence on rotational motion, as encapsulated in the
idea of torque. I shall not go into details about the need for this idea. Suffice it to say
that continuum mechanics needs the idea of the torque on Ω about a point z, given
by: τb(Ω) =

∫
Ω(x − z) × b(x) dVx. And under our present (charitable!) assumptions,

pointillisme can no doubt accommodate the torque τb(Ω) just as well as rb(Ω).

But continuum mechanics also needs the idea of a surface force. Physically, this is
a force that arises by contact; and its mathematical representation requires relativizing
the force to the surface along which there is contact. This latter idea is fairly intuitive,
when the surface in question is the body’s boundary and the force is exerted on the
body at the surface by the environment (or vice versa): this is called an ‘external
surface force’.

But in order to describe how a body resists being broken up by forces that vary
across its spatial extent, continuum mechanics also needs internal surface forces. In-
deed, it needs to consider at any point x within B, with respect to an arbitrary surface
Γ through x, the surface force exerted by the material on one side of Γ, on the material
on the other side. Nowadays, textbooks take this idea in their stride. That may seem
fair enough, since after all, under small enough forces, a distorted body does not break
up along any internal surface; so presumably the description of the body will need
some sort of balance of forces across every such surface. But prima facie, the idea is
puzzling: how can a force exerted on an internal material point “pull on the point with
respect to” a surface? And certainly, to consider all such surfaces through all internal
points amounts to a major expansion of the framework for describing forces, compared
to a body force’s resultant force and torque, τb(Ω) and rb(Ω). So it is unsurprising that
historically, it was a major struggle to articulate the need for this idea. (It is no doubt
also unsurprising that the first person to realize this need, and the expanded frame-
work’s sufficiency for describing continua, was that monumental genius, Euler—in the
1770s: for details, cf. e.g. Casey (1992), Wilson 1998 (Section 6).)

History aside, the mathematical representation of internal surface forces is given
by the Euler-Cauchy Cut Principle, as follows. Let us write n̂ : Γ→V for the unit
normal field on an arbitrary oriented surface Γ. Then the Principle postulates that the
internal surface force per unit area on Γ is represented by the surface force field (also
called traction field) tn̂ : Γ→V . As with body forces, we can define a resultant force
on Γ by integration: it is rs(Γ) :=

∫
Γ tn̂(x) dAx. Here, the main point for us is that

the subscript n̂ indicates that the function’s value for a point x ∈ Γ depends on the
surface Γ: the nature of this dependence will be our next topic, in Section 3.2.

3.2 The stress tensor

In this Section, a natural simplifying assumption about how the traction field tn̂ de-
pends on the surface Γ will imply a simple and powerful representation of the field: viz.
the stress tensor. This assumption is called ‘Cauchy’s postulate’. When taken together
with two mild continuity assumptions, it implies an analogue, for the traction field, of
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Newton’s Third Law (that action and reaction are equal and opposite). This is often
called ‘Cauchy’s Lemma’. Then Cauchy’s Lemma yields (with no further assumptions)
Cauchy’s Theorem: that the traction field at any point is encoded by a second-order
tensor, the (Cauchy) stress tensor. This is, essentially, a 3 × 3 matrix with the usual
elementary rules for transforming under a change of basis vectors.

Cauchy’s postulate says that the traction field tn̂ depends on Γ only via its unit
normal n̂ at the argument-point x ∈ Γ. That is: writing N for the unit sphere in
V ≡ IR3, there is a function t : N × B→V , called the traction function for B, such
that:

tn̂(x) = t(n̂(x), x). (3.1)

Thus surfaces Γ1, Γ2, ... that are tangent to each other, with the same normal, at x
must have the same traction vector at x. Cf. Fig. 1.

Figure 1: Cauchy’s postulate: surfaces through a point x with normal n at x share the
same traction vector t at x.

This is the main assumption required for Cauchy’s Lemma.

Cauchy’s Lemma: Assume (i) that t(n̂, x) is continuous, and (ii) that the resultant
surface force on a body, divided by the surface area, goes to zero as the body’s volume
tends to zero, i.e. that

1

area(∂Ω)

∫

∂Ω
t(n̂(x), x) dAx→0 , as vol(Ω)→0. (3.2)

It follows that: t(−n̂, x) = −t(n̂, x). That is: the traction field obeys a law of action
and reaction: at each point x, the traction exerted by material on one side of a surface
Γ through x upon the material on the other side is equal and opposite to the traction
exerted by the latter material on the former.

This Lemma now yields Cauchy’s Theorem, which says that t is given by a second-
order tensor, i.e. a linear map on V . (I will denote the set of such linear maps V→V
by End(V ).)

Cauchy’s Theorem: Under these conditions, t(n̂, x) is linear in n̂. That is: there is at
x a second-order tensor S(x), i.e. a linear map S(x) : V→V , such that t(n̂, x) = S(x)n̂.

11



Let me put this less abstractly, in terms of components. Recall that the components
of a second-order tensor S : V→V , in any orthonormal frame (i.e. trio of orthogonal
unit vectors) (e1, e2, e3), are defined to be the nine numbers Sij := ei ·S(ej). One readily
checks that Cauchy’s Theorem, i.e. t(n̂, x) = S(x)n̂, implies that the nine components
of S(x) are the components (in the elementary sense for vectors) of the three traction
vectors t(ej, x) for the three coordinate planes through x. The ideas underlying this
check are that:

(i) a second-order tensor encodes the idea of extracting a real number as a bilinear
function of two vectors; and

(ii) a vector in V ≡ IR3 is normal to a plane; in particular, each basis vector defines
a coordinate plane to which it is normal: and putting (i) and (ii) together, we infer
that

(iii) the components of three vectors, each defined with respect to one of three
mutually perpendicular planes, can be represented by a second-order tensor. Cf. Fig.
2.

Figure 2: The traction vectors for the coordinate planes with normals e1, e2 and e3 at
x.

The Cauchy stress tensor S is fundamental to all of continuum mechanics; and we
will return to it in Section 5. There we will build on this Section’s idea that a tensor
encodes how a physical quantity can be relative to the lines or planes through a point;
and that this implies spatial extrinsicality. More specifically: we will see how going to
successively higher-order tensors gives a spectrum of spatial extrinsicality. This will be
illustrated by elasticity. But to understand that, we first need the idea of strain.

4 Strain: haecceitist kinematics

I now turn from dynamics to kinematics: from forces, that cause a body to accelerate
and-or deform, to the geometric description of motion and deformation. This Section
has two goals. In Section 4.1, I introduce deformation and related ideas, especially
strain. I emphasize how the mathematics takes for granted the underlying identity of

12



the body’s material points: hence the title’s mention of ‘haecceitism’. In Section 4.2, I
discuss strain. It will be clear that there are various measures of this. For simplicity,
I discuss just one: the Cauchy-Green strain tensor.

4.1 The description of deformations

At any instant, a body occupies a (suitable) open subset B of IR3. The set B does not
by itself define the configuration of the body, since it does not specify which material
point (infinitesimal point-mass) is at which point within B: think of how rotating a
solid ball around its centre gives different configurations with the same occupied sphere.

But having noted this, we will not need to represent in the formalism: we can
take the placement of material points at spatial points as understood, and call B a
configuration. This is to be compared with some other configuration B′. We write X ∈
IR3, called material coordinates, for the location of a material point in B; and x ∈ IR3,
called spatial coordinates, for its location in B′. Thus we compare the configurations,
and keep track of each material point, by x and X being functions of each other:
x = x(X) and X = X(x). We call B the reference configuration, and B′ the deformed
configuration; although, as in the ball example, B′ may have the same shape as (even
be the same subset of IR3 as) B. We focus on x being a function of X, rather than
vice versa. So we define the deformation map φ : B 3 X 7→ φ(X) := x ∈ B′. (This
yields the obvious ancillary notion, viz. the displacement field u : B→V ≡ IR3 defined
by u(X) := φ(X)−X ∈ V . But we will not need this.)

We assume the deformation map φ is 1-1, onto, of positive determinant, and smooth.
Then we can expect to describe the local nature of a deformation using the deformation
gradient (a second-order tensor) F := ∇φ : X ∈ B 7→ ∇φ(X) ∈ End(V ). In particular,
we focus on the case where B is a small ball, often written as Ω, of radius α, and its
image Ω′ = φ(Ω); and we consider the limit as α→0. We use ‘strain’ as a general
term to describe the limiting relative differences in the shapes of Ω and Ω′; and so we
envisage various measures of strain defined in terms of F .

4.2 The Cauchy-Green strain tensor

One such measure is the Cauchy-Green strain tensor C. It is often useful because (as
we shall see) it does not encode information about any overall rotation that there might
be in the deformation from B to B′.

C is defined by multiplying F (on the left) by its transpose F T . That is: C :=
F T F : B → End(V ). To interpret this definition, consider the ball Ω of radius α
around X ∈ B, and any two unit vectors ê and d̂, thus defining points Y = X +αê and
Z = X + αd̂ on the surface of Ω. Let x, y, z denote the corresponding deformed points
in Ω′, and let θ ≡ θ(ê, d̂) be the angle between the vectors v := y − x and w := z − x.
Cf. Figure 3.
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Figure 3: Interpreting the strain tensor C. Three points X, Y, Z in Ω are mapped
to corresponding points x,y, z in Ω′. C quantifies the limiting changes in the relative
position and orientation of the points.

Then it is readily shown that as α→0:

|y − x|
|Y −X| →

√
[ê · Cê] =: λ(ê) ,

|z − x|
|Z −X| →

√
[d̂ · Cd̂] =: λ(d̂) ; and (4.1)

θ ≡ cos−1 v · w
|v||w| → cos−1 ê · Cd̂

λ(ê)λ(d̂)
=: cos−1(γ(ê, d̂)).

Thus the limiting value λ(ê) is called the stretch in the direction ê at X. It is the limit
of the ratio of deformed length to initial length for line segments that initially lie along
ê at X. And the angle γ(ê, d̂) is the limiting value of θ as Y and Z tend to X along
ê and d̂. Denoting the angle between ê and d̂ by Θ(ê, d̂), the limiting change in angle
between these line segments at X, i.e. the quantity γ(ê, d̂)−Θ(ê, d̂), is called the shear
between ê and d̂ at X.

5 Elasticity: further along the spectrum of extrin-

sicality

We reviewed in Section 3 how a second-order tensor at a point, such as the stress tensor,
encodes the idea of extracting a real number as a bilinear function of two vectors there;
or equivalently, of giving one vector as a function of another. The emphasis there was
on how, since a vector defines (and is defined by) the plane to which it is normal, this
corresponds to a function from planes through the point to vectors at it: for the stress
tensor, the vector is the traction field (with respect to any surface tangent to the given
plane).
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I now turn to the way in which tensor algebra provides a spectrum of spatial ex-
trinsicality, viz. by going to successively higher-order tensors, i.e. multilinear functions
of successively more than two vectors. In particular: by combining the ideas of stress
and strain, we can find physically important quantities that lie further along this spec-
trum. Thus the main quantitative relationships between stress and strain are given
by a fourth-order tensor—with the appropriate name ‘elasticity’. Such a tensor corre-
sponds to extracting a real number from a quadrilinear function of four vectors. The
details are as follows.

The main physical idea is simply that stress arises from strain! That is: when
we deform a body, putting it under strain, restorative forces arise, preventing it from
falling apart (at least for small strains!). The details of exactly what stress arises
depend of course on the constitution of the body. In particular, we define an elastic
solid as one in which the stress at any point X ∈ B depends only on the present strain,
as encoded by the deformation gradient F at X: not on its rate of change, nor on
its past history. This represents a generalization of the familiar Hooke’s law, that the
force (stress, tension) in a stretched spring is proportional to its extension (strain).
Formally: for an elastic solid, the Cauchy stress tensor S is of the form

S(X, t) = Ŝ(F (X, t), X) , ∀X ∈ B (5.1)

where Ŝ : End(V )×B→End(V ) is a function, called the stress response function, that
depends on the body’s constitution; and t of course represents time.

Now we can already see why there is a physically important fourth-order tensor. Let
us for simplicity consider a homogeneous elastic solid, for which Ŝ(F,X) is independent
of its second argument X. So: S(X, t) = Ŝ(F (X, t)). Then we expect to use the
tensor calculus (essentially: multi-variable calculus) to analyse how S depends on its
argument F . So we consider the derivatives of the components of Ŝ with respect to the
components of F . This gives a four-index quantity: it is indeed a fourth-order tensor,
the elasticity tensor, which I write as E:

Eijkl :=
∂Ŝij

∂Fkl

. (5.2)

6 Conclusion: yet more extrinsicality

It is clear that as regards physics, the discussion in Sections 3 to 5 has barely scratched
the surface: there is much more to be said about continuum mechanics. The same
goes, I submit, for philosophy. In particular, as regards pointillisme: for brevity, I have
restricted my critique. I have set aside various kinds of, or sources of, extrinsicality—
both physical and philosophical. I will not now lift these restrictions, nor even repeat
the list of them from Section 1.1—why flog a dead horse?

But as a final remark, I will mention that yet “more” extrinsicality ensues when
contingent claims, in particular the laws of a theory, are allowed as implicit premises
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in the implications that make a property extrinsic. In other words: many properties
that are intrinsic in philosophers’ (kind of) sense are nomically very extrinsic. That is:
their ascriptions, when taken together with laws, will have many implications for states
of affairs beyond the property’s instance. Let me mention two very striking examples,
each with a reference.

(1): The position, and even the existence, of a classical point-particle is nomically
extrinsic, when we consider how classical particles are constituted, by decoherence,
from the quantum state; (Butterfield (2006a, Section 5)).

(2): The second example is purely classical, and concerns point-particles in a New-
tonian world, interacting by instantaneous forces such as gravity; (the forces need not
have an inverse-square dependence on distance). It is due to Schmidt (1997, 1998). He
proves that a particle’s trajectory in spacetime, over a finite time-interval (no matter
how short!), completely determines its trajectory throughout all time—regardless of
how the other particles are moving. Agreed, the theorem needs some assumptions; but
they are entirely reasonable.6 Thus the innovation here, in comparison with the usual
idea of determinism for Newtonian gravity, is as follows. Usually one specifies the posi-
tions and momenta of all the point-particles across all of space at an instant. But here,
one uses the idea that in a finite time-interval (no matter how short!), the trajectory
of the particle one is considering encodes information about all the other particles’
influence on it: and then the theorem is that it in fact encodes enough information to
determine the entire future and past trajectory.

Let us transcribe this result into our jargon of nomic extrinsicality. That is, let us
spell out its consequences for how much is implied about the rest of the universe by
a statement of the history of the particle(s) in a spacetime region—when the implica-
tion is allowed to use the laws of motion and the reasonable assumptions as implicit
premises, together with the particular history. The result is very striking. Namely:
the history of a particle in a spacetime region of finite but arbitrarily small extent is
nomically as extrinsic as one could imagine it to be. For when taken together with
the laws of motion and reasonable assumptions, this small patch of history implies the
particle’s entire history!
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6Namely: (i) the number of particles is finite; (ii) there is a distance less than which no pair of
particles ever approach each other; (iii) there is a speed that no particle ever exceeds; (iv) like (iii):
there is an acceleration (and so on for higher derivatives) that no particle ever exceeds. Cf. Schmidt
(1997, p 446), (1998, pp. 83-84).
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