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Abstract

This paper attempts to make sense of a notion of “approxi-
mation on certain scales” in physical theories. I use this notion
to understand the classical limit of ordinary quantum mechanics
as a kind of scaling limit, showing that the mathematical tools
of strict quantization allow one to make the notion of approx-
imation precise. I then compare this example with the scaling
limits involved in renormalization procedures for effective field
theories. I argue that one does not yet have the mathematical
tools to make a notion of “approximation on certain scales” pre-
cise in extant mathematical formulations of effective field theo-
ries. This provides guidance on the kind of further work that is
needed for an adequate interpretation of quantum field theory.

1 Introduction

This paper attempts to make sense of a notion of “approximation on
certain scales” in physical theories. This broad notion has at least two
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potential applications. First, this notion plays a role in understand-
ing the way that quantum mechanics explains the success of classical
physics through the classical limit, in which one purports to show that
classical behavior is reproduced by quantum systems “approximately
on certain scales.” Second, this notion is required for making sense of
effective field theory interpretations of quantum field theories, on which
one claims that certain quantum field theories represent the world only
“approximately on certain scales.” In fact, the mathematics involved in
both applications appears similar, although further work is needed to
bring them together.

It is my contention in this paper that one can make claims about
“approximation on certain scales” precise for the explanation of clas-
sical behavior in the classical limit of quantum mechanics. I believe
this is of interest in its own right for how it bears on some recent dis-
cussions of the classical limit and reduction. But furthermore, I hope
to show that this discussion has implications for the interpretation of
quantum field theories. I will argue that the mathematical tools that
allow one to interpret the classical limit in terms of “approximation
on certain scales” are today still missing from the extant mathematical
formalism for quantum field theories, even on the effective field theory
approach. This leads to some suggestions about what kind of math-
ematical developments may be helpful, or perhaps even necessary, for
giving a philosophical foundation to quantum field theory.

In slightly more detail, I will argue that one can make sense of how
classical behavior arises from quantum theories “approximately on cer-
tain scales” by formalizing the classical limit in terms of continuous
fields of algebras. This mathematical setting allows one to consider a
family of quantum theories in which a parameter (Planck’s constant,
etc.) varies continuously. I will argue that the spectral theorem, which
already plays a foundational role in the interpretation of quantum theo-
ries, also allows one to reinterpret these varying parameters in terms of
varying scales, represented by the magnitude of an error bound relative
to a choice of units. The majority of the paper is devoted to making
this precise and drawing out some consequences of this interpretation
for our understanding of the classical limit.

I will then argue that this understanding of “approximation on cer-
tain scales” has implications for effective field theories. I will argue that
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the classical limit and the scaling limits used in effective field theories
are relevantly similar so that we should expect the same mathematical
tools and interpretations to apply in each case. But I will note that in
rigorous versions of effective field theories, one does not have a version
of the spectral theorem, which precludes transferring the interpretation
of the classical limit in terms of “approximation on certain scales” to
this setting. This is not in principle a problem for effective field theories
because it is possible that we need to understand the “scaling limits”
involved in effective field theories in a fundamentally different way from
the classical limit. But this does at least point to further work to be
done to establish the adequacy of effective field theory interpretations.
I will argue that either one needs to develop different methods for inter-
preting quantum field theories beyond the ones I describe here, which
rely on the spectral theorem; or else one needs to develop a mathemat-
ical framework in which one can employ these methods involving the
spectral theorem to make sense of “approximation on certain scales.”

The structure of the paper is as follows. In §2, I will lay out the
mathematical tools for understanding the classical limit of quantum
theories in terms of continuous fields of algebras, which gives rise to
the theory of so-called strict deformation quantization. In §3, I will
then use the mathematical background to spell out how one can use
the spectral theorem to interpret the classical limit in terms of “approx-
imation on certain scales” in a way reminiscent of discussions of scaling
behavior in renormalization. I will argue that such an interpretation
sheds some light on philosophical issues surrounding reduction and ex-
planation through the classical limit. In §4, I will then discuss the
implications of this work for philosophical approaches to interpreting
quantum field theory, where some appear to invoke similar interpretive
methods even though the mathematical tools I use to underlie those
methods for interpreting the classical limit are lacking. Finally, in §5,
I will conclude with some further discussion.

2 The classical limit

Although historically the term “quantization” has been reserved for
the process of constructing a quantum theory, modern mathematical
theories of deformation quantization are understood instead to provide
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tools for the “inverse” or “dual” process of taking the classical limit
of quantum theories (Landsman, 2006, 2017). This is accomplished by
constructing a family of algebras, each representing a quantum the-
ory of the same “form” (i.e., with the capacity to represent the same
physical systems), but with a different value for Planck’s constant ~.
As I will attempt to make precise later, each of these algebras can be
thought of as representing the same system on a different “scale”. One
provides additional structure to “glue” these algebras together into a
continuous field, which allows one to specify continuous limits of states
and quantities in the limit as ~ → 0. The result of this construction
is a partial explanation of the success of classical physics in approxi-
mately describing quantum systems. Of course, there are other limits
one might analyze to recover classical behavior from quantum theories
(e.g., the limit N →∞ of increasing number of particles), but I choose
to focus on the ~→ 0 limit for my purposes.

How is the ~→ 0 limit supposed to explain classical behavior? One
imagines the procedure going as follows. Start with a fully quantum
theory in which Planck’s constant takes the value ~ = 1 in natural units.
Then “zoom out” from the quantum description, looking at larger and
larger scales by letting Planck’s constant get smaller and smaller until
~ ≈ 0. The theory one obtains is an approximate classical description
of the same system on the appropriate scales.

This is a nice outline, but there are many missing pieces. What
does it mean to have the same theory of a physical system but “zoom
out”? What exactly is a “scale” in this context, and what is the notion
of approximation involved? Does the ~→ 0 limit capture this process
in a way that has explanatory force? Other accounts of this limiting
procedure or similar examples1 (Rohrlich, 1989; Batterman, 1995, 1997;
Rosaler, 2015a,b) have challenged the status of the putative explana-
tions. It is my goal in §3 to attempt a partial answer to these questions
that defends the explanatory status of the ~→ 0 limit. In order to do
so, I will need to use some details of the mathematical tools surrounding
deformation quantization, which I now present in this section.

It is worth a remark already at this stage to ward off a potential ob-
jection. My goal later in this paper is to use lessons about the classical

1For more on limiting explanations and reduction, see Nickles (1975). See also
Batterman (2002) for many examples from other areas of physics.
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limit to draw conclusions about scaling limits in effective field theories.
But one might object: the “scaling limits” involved in renormalization
are different from the ~ → 0 classical limit in important ways, so why
should we expect to learn anything about renormalization and effective
field theories from looking at the classical limit? Of course, the ~→ 0
limit is not the one taken during the renormalization process. How-
ever, I hope to show that the ~ → 0 limit can indeed be understood
as a particular “scaling limit”, and so I hope to demonstrate that it is
at least in some respects similar to the limits taken during renormal-
ization. Still, one might not be satisfied that this is the right kind of
similarity. We will need to look to the details to see how continuous
fields of C*-algebras might be used to represent both kinds of limits.

However, one should already expect the analogy to hold roughly as
follows: the classical theory in the ~ → 0 limit is an effective theory
for an underlying quantum theory just as an effective field theory in a
“scaling limit” is an effective theory for an underlying, higher-energy
(perhaps “more fundamental”) field theory. Thus, one expects to be
able to give at least a similar analysis of what it means for each of these
effective theories to hold “approximately on certain scales”. Below, I
will gesture at connections between the ~ → 0 limit in deformation
quantization and the “scaling limits” involved in renormalization for
effective field theories as I introduce continuous fields of algebras.

I am perfectly happy to admit, though, that the tools of continuous
fields of C*-algebras may not be appropriate for capturing the “scaling
limits” involved in renormalization. I hope to demonstrate at least that
these tools can make explanations given in the classical limit precise.
It is striking how similar this explanation is to some of the rhetoric
surrounding “scaling limits” in effective field theories, which is the rea-
son I believe the analogy is worth discussing. But there may be better
ways of capturing the “scaling limits” in quantum field theories. If this
is the case, then I hope that others will take up the charge of making
“scaling limits” precise in some other fashion and demonstrating any
relevant disanalogies with the classical limit.
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2.1 Continuous fields of C*-algebras

My goal in this section is to describe the mathematical tools used to
represent the classical limit of a quantum theory. I take a quantum
theory to be given by a (non-commutative) C*-algebra2 representing
the bounded physical quantities of a physical system including perhaps
generalized position and momentum quantities that satisfy some canon-
ical (anti-)commutation relations (See Petz, 1990; Clifton and Halvor-
son, 2001; Ruetsche, 2011). Physicists and philosophers3 have debated
whether C*-algebras are an appropriate starting point for quantum
theories or whether we need the additional structure of a Hilbert space
representation. I will ignore these debates in what follows and simply
take as an assumption that we start with a C*-algebra for a quan-
tum theory; this should be uncontroversial because all parties to these
debates agree that we require at least the structure of a C*-algebra.4

A C*-algebra already carries enough structure to define a number of
topologies (e.g., norm, weak, etc.) that provide different notions of the
limit of a net of physical quantities within an algebra (See Feintzeig,
2018b). However, to understand the classical limit, one requires re-
sources for taking the limit of a family of algebras, where each algebra
is understood to represent a full quantum theory. Such tools are pro-
vided in the theory of strict deformation quantization.

In a strict deformation quantization, one has a family of algebras
Ah for each possible numerical value h ∈ [0, 1] of Planck’s constant ~
(more on the significance of this in §3).5 The algebra A0 at the value

2Due to constraints of space, I assume some familiarity with the theory of C*-
algebras in this paper, although all relevant results will be stated explicitly. For
mathematical background, see Sakai (1971); Dixmier (1977); Takesaki (1979); Fell
and Doran (1988); Kadison and Ringrose (1997). For algebraic quantum theory, see
Emch (1972); Haag (1992); Baez et al. (1992); Bratteli and Robinson (1987, 1996);
Landsman (1998, 2017). For a philosophical introduction, see Halvorson (2006).

3See, e.g., Segal (1959); Haag and Kastler (1964); Robinson (1966); Arageorgis
(1995); Lupher (2008); Ruetsche (2002, 2003, 2006, 2011); Feintzeig (2016, 2018b).

4It will be important to my argument later on, however, that some mathematical
physicists approach quantum field theory using only *-algebras of formal power
series rather than C*-algebras. For the purposes of dealing with the classical limit
of ordinary quantum mechanics with finitely many degrees of freedom, I hope it is
uncontroversial that C*-algebras suffice.

5One can more generally allow h ∈ I for some locally compact I ⊆ R containing

6



h = 0 will represent a classical theory; so one requires that A0 contains
as a norm dense subset a (complex) Poisson algebra (P , {·, ·}). This
Poisson algebra arises from a Hamiltonian formulation of a classical
theory, where the elements of P are smooth functions on a phase space
with the structure of a Poisson (or even symplectic) manifold, and hence
can be thought of as physical magnitudes in a natural way (Landsman,
1998). On the other hand, each algebra Ah for h 6= 0 will be a non-
commutative algebra representing a quantum theory.

The core idea of taking the limit of a collection of C*-algebras is to
gather them into a structure known as a continuous field of algebras.

Definition 1. A continuous field of C*-algebras6 ((Ah)h∈[0,1],K) con-
sists in a family of C*-algebras Ah for each value of h ∈ [0, 1] and a
C*-subalgebra K of

∏
h∈[0,1] Ah (i.e., each element K ∈ K is a map that

sends each value h ∈ [0, 1] to an element of Ah). For each h ∈ [0, 1], the
set {K(h) | K ∈ K} must be norm dense in Ah and K must satisfy:

1. For each K ∈ K, the map h 7→ ‖K(h)‖h is continuous. The
elements of K are called continuous sections of the field.

2. For eachK ∈ K, the norm inK is given by ‖K‖ = suph∈[0,1]‖K(h)‖h.

3. For each f ∈ C([0, 1]) and each K ∈ K, the map h 7→ f(h)K(h)
is a continuous section in K.

Those familiar with fiber bundles in differential geometry should recog-
nize some concepts here. The topological space [0, 1] can be understood
as a base space, with the fiber Ah above h ∈ [0, 1]. Continuous sections
are sections of the resulting bundle with the additional (pointwise) al-
gebraic structure induced by the algebraic structure of the fibers.

Notice that this definition of a continuous field of C*-algebras is not
specific to quantization and the classical limit—the algebra A0 need not
represent a classical theory.7 As such, these tools could be applied to
other limits of quantum theories—namely, the scaling limits used in

0 as an accumulation point (Landsman, 1998).
6See also Rieffel (1994); Landsman (1998, 2006, 2017). Our presentation follows

closely that of Binz et al. (2004b).
7See, e.g., (Landsman, 2006) for examples of the N → ∞ limit for which the

limit system is an infinite quantum system.
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renormalization. There, A0 would be an effective theory, while h would
represent a scaling parameter (not necessarily Planck’s constant) and
Ah a higher-energy theory.8 In this case, one does not yet actually have
C*-algebras adequate to fill the role of Ah, although one can imagine
constructing such algebras somehow from the Lagrangians defining the
field theories by appropriately implementing canonical commutation
relations on the field and momentum quantities.

I will discuss the possible use of such structures for accounting for
the limits taken in quantum field theories in §4. For the remainder
of §2-3, however, I will focus on the specific case where a continuous
field is used to represent the classical limit of a quantum theory. In
this case, the effective theory represented by A0 is a classical theory,
and Ah represents a quantum theory for a particular value h ∈ [0, 1] of
Planck’s constant. The classical limit has further structure:

Definition 2. A continuous quantization ((Ah)h∈[0,1],K,Q) of the (com-
plex) Poisson algebra (P , {·, ·}) consists in a continuous field of C*-
algebras ((Ah)h∈[0,1],K) and a linear, *-preserving map Q : P → K
such that the maps Qh : P → Ah defined by

Qh(A) := Q(A)(h)

for all A ∈ P satisfy:

(Dirac’s Condition) The h-scaled commutator, defined
for X, Y ∈ Ah by [X, Y ]h := i

h
(XY − Y X), approaches the

Poisson bracket in norm as h→ 0, i.e.,

lim
h→0
‖[Qh(A),Qh(B)]h −Qh({A,B})‖h = 0

The map Qh : P → Ah will be called the quantization map for the
value h ∈ [0, 1] of Planck’s constant. Dirac’s Condition enforces the

8See, e.g., Brunetti et al. (2009) for an application that comes quite close to
this. They fail to construct a continuous field of C*-algebras for precisely the
reason outlined in §4 that they deal with non-convergent formal power series, which
do not form a C*-algebra, but rather a *-algebra over an ordered ring. However, it
seems clear that they aim at a structure on a family of algebras closely related to
that described here.
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canonical commutation relations as they arise from the classical Poisson
bracket, at least in the limit. The structure (Ah,Qh)h∈[0,1] is also called
a strict quantization of (P , {·, ·}), the name “strict” signifying that h
is a number rather than a formal parameter. A strict quantization
is called a strict deformation quantization if Qh is injective for each
h ∈ [0, 1] and Qh[P ] is closed under the product in Ah.

The deformation condition is important because it allows one to
“pull back” the non-commutative product on Ah to the original Poisson
algebra by defining a product

A ·h B := Q−1h (Qh(A)Qh(B))

for all A,B ∈ P . This has inspired attempts to directly define the
non-commutative product ·h on P in terms of formal power series in
h (Bordemann, 2008; Waldmann, 2015). This approach, known as for-
mal deformation quantization has been useful for making renormaliza-
tion and effective field theories rigorous (Costello, 2011; Rejzner, 2016).
However, since one employs formal power series, which in general do
not converge, one does not have a C*-algebra over the field C for each
value of h, but instead a single *-algebra over an ordered ring. It is in
this sense that, since h is treated as a formal parameter, formal defor-
mation quantization differs from strict deformation quantization. The
claim I will eventually argue for is that the strict quantization approach
(in terms of C*-algebras) can make sense of a notion of “approximation
at certain scales” using mathematical resources that the formal power
series approach (in terms of *-algebras) does not have available.

Note that for my purposes, quantization maps are particular tools
for constructing continuous fields of C*-algebras. Namely, specifying a
quantization map uniquely determines a collection of continuous sec-
tions that “glues” a family of C*-algebras together into a continuous
field (See Landsman (1998)). So the traditional role of quantization in
the construction of quantum theories is irrelevant for my purposes. In
what follows, I will ignore the important role that quantization plays
in theory construction in both ordinary quantum mechanics and quan-
tum field theories. Instead, I will only be interested in how one can use
continuous fields of C*-algebras to represent “scaling limits”. Again,
it is worth emphasizing that one does not expect the scaling limits in
quantum field theories to be constructed through a quantization map
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because those scaling limits are not ~ → 0 limits, but rather limits of
some other parameter. Still, it seems that those scaling limits resemble
the ~→ 0 limit as understood in the next section and so could possibly
be modeled using continuous fields of algebras.

In preparation for the next section, let us specify a notion of equiva-
lence that allows one to compare continuous quantizations constructed
with seemingly different interpretive motivations. I will say that two

strict quantizations (
1

Ah,
1

Qh)h∈[0,1] and (
2

Ah,
2

Qh)h∈[0,1] of (P , {·, ·}) are
equivalent just in case for each h ∈ [0, 1], there is a *-isomorphism

αh :
1

Ah →
2

Ah such that the following diagram commutes:9

P
1
Qh

��

2
Qh

��1

Ah
oo αh //

2

Ah

Two continuous quantizations are equivalent just in case the fibers Ah

over each point h ∈ [0, 1] are *-isomorphic, in a way that allows one to
identify the continuous sections of each resulting continuous field. If one
accepts that *-isomorphic C*-algebras have the capacity to represent
the same physical systems,10 then it follows that equivalent continu-
ous quantizations have the capacity to represent the classical limits
for the same systems. Later, I will construct two different continu-
ous quantizations corresponding to conceptually different motivations
and physical interpretations. However, I shall demonstrate that the
resulting continuous quantizations are equivalent, thus allowing us to
transfer the natural notion of approximation on one interpretation to
the mathematical structure in any of its equivalent instantiations.

9This definition of equivalence is different than that given in Landsman (1998),
who considers continuous fields of C*-algebras with identical fibers that agree
asymptotically. I drop the condition that the fibers are identical and instead only
require them to be *-isomorphic; however, the notion of equivalence here forces
more than just asymptotic agreement.

10This view is related to that expressed in Feintzeig (2015); Weatherall (2016,
2017); Fletcher (2019) concerning isomorphisms and representational capacities. I
simply take on this understanding of isomorphisms and representational capacities
as an assumption in what follows without further argument. This assumption is
controversial, but I set the issue aside for present purposes.
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2.2 Example: the Weyl algebra

I now define a particular C*-algebra, known as the Weyl algebra that is
often used to represent certain quantum systems (See Petz, 1990; Dubin
et al., 2000; Clifton and Halvorson, 2001).11 I will use this example
to illustrate the concept of a strict deformation quantization. I will
then draw upon this example in §3 to illustrate an interpretation of
the classical limit as a “scaling limit” involving a precise notion of
“approximation on certain scales.”

Start with a classical theory of a system with finitely many de-
grees of freedom that is topologically “simple” in the sense that the
phase space of the system is R2n. Such a system might consist of a
finite number n of particles, each moving in one-dimension. Then, each
point x = (q1, ..., qn, p1, ..., pn) ∈ R2n, understood in some canonical
coordinate system, lists the familiar position qi and momentum pi of
each of the n particles.

Physical magnitudes of this system can be represented as complex-
valued functions on phase space f : R2n → C. I will focus on functions
of the form W0(x) : R2n → C for each x ∈ R2n defined by

W0(x)(y) := eix·y

where · is the standard inner product on R2n. The classical Weyl alge-
bra, denotedW0, is defined as the C*-algebra containing all norm limits
of polynomials of functions of the form W0(x) for x ∈ R2n, endowed
with the algebraic structure of pointwise addition, multiplication, and
complex conjugation, and with the standard supremum norm.12

One constructs the quantum Weyl algebra by starting from the same
generating magnitudes W0(x) and deforming the commutative point-
wise multiplication relation to obtain a non-commutative algebra. I

11Feintzeig (2018a, 2019), Feintzeig et al. (2019), and Feintzeig and Weatherall
(2019) argue against the use of the Weyl algebra for representing quantum theories.
Those arguments, however, do not bear on the present issues because the claims of
the current paper about approximation can also be recovered with other algebras
favored by those authors. I employ the Weyl algebra in this paper because it
provides a clear illustration of the notion of approximation in the classical limit
through the way it encodes position and momentum quantities.

12This C*-algebra W0 is known as the algebra AP (R2n) of almost periodic func-
tions on R2n. See, e.g., Anzai and Kakutani (1943); Hewitt (1953); Rudin (1962);
Gamelin (1969).
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denote by Wh(x) the element W0(x) understood now as an element of
the quantum Weyl algebra. Define the non-commutative product on
the quantum Weyl algebra by

Wh(x)Wh(y) := e
ih
2
σ(x,y)Wh(x+ y)

for all x, y ∈ R2n. Here σ is the standard symplectic form on R2n:

σ((q, p), (q′, p′)) := q′ · p− q · p′

for q, p, q′, p′ ∈ Rn, where · in the above expression is now the standard
inner product on Rn. The quantum Weyl algebra Wh is the C*-algebra
obtained as the completion of the collection of all polynomials (now
with respect to the non-commutative multiplication operation) of mag-
nitudes of the form Wh(x) for x ∈ R2n in the so-called minimal regular
norm (Manuceau et al., 1974; Binz et al., 2004a,b).

One can use these algebraic tools to construct a strict deformation
quantization, which can be used to represent the classical limit of the
quantum systems represented by the Weyl algebra. Binz et al. (2004b)
show that there is a Poisson algebra (P , {·, ·}), norm dense in W0,
containing all “suitably smooth” magnitudes. Here, {·, ·} is just the
usual Poisson bracket determined by the standard symplectic form σ.
The quantization maps Qh : P → Wh for each h ∈ [0, 1] are defined as
the unique continuous linear extension of

Qh(W0(x)) := Wh(x)

for all x ∈ R2n. With the quantization maps so defined, the family
(Wh,Qh)h∈[0,1] is a strict deformation quantization. Furthermore, one
can define a collection of continuous sections K as the smallest C*-
subalgebra of

∏
h∈[0,1]Ah containing the maps [h 7→ Qh(A)] for each

A ∈ P . Then with the global quantization map Q : P → K defined by

Q(A)(h) := Qh(A)

for all A ∈ P , the structure ((Wh)h∈[0,1],K,Q) becomes a continuous
quantization. Thus, one can encode the classical limit of a quantum
system represented by the Weyl algebra in a continuous field of C*-
algebras. I will spell out in more detail in the next section how one can
interpret the mathematical structure specified by this continuous field
of algebras as I use this example to illustrate the notion of “approxi-
mation on certain scales” at play in the classical limit.
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3 A notion of approximation

Now that we have some familiarity with continuous quantizations, it
is the purpose of this section to interpret the mathematical tools they
provide. Specifically, in this section I will argue that continuous quan-
tizations provide tools for interpreting the classical limit of quantum
theories through a notion of “approximation on certain scales”. I will
argue that the spectral theorem (Reed and Simon, 1980; Kadison and
Ringrose, 1997), which already plays a central role in the interpretation
of quantum theories, is also essential to this notion of approximation.

3.1 The Spectral Theorem and Numerical Values

The spectral theorem states that for every real-valued physical mag-
nitude modeled by a self-adjoint element A of a C*-algebra A, there
is a projection valued measure E : B(sp(A)) → A∗∗ with the follow-
ing properties. Here, B(sp(A)) is the Borel σ-algebra of the spectrum
sp(A) of A, and E takes values in the universal enveloping W*-algebra
A∗∗ of A. The relationship between E and A is given by:

A =

∫
sp(A)

λ dEλ

where λ is understood as the identity function on sp(A). In this sec-
tion, I use the spectral theorem to aid the development of a notion
of approximation suitable for the physical interpretation of the ~ → 0
limit. After attending to the essential role played by the spectral the-
orem, I will remark in the next section that there is no version of the
spectral theorem available in the existing formalisms for effective field
theories. Thus, the notion of approximation developed in this section
cannot straightforwardly be carried over to effective field theories, at
least not without significant conceptual and mathematical work.

Before embarking on the primary task of this section to develop
a notion of approximation to understand the ~ → 0 limit, I review
the traditional interpretive role the spectral theorem plays already in
ordinary quantum mechanics without attention to the classical limit.
Recall that while a general self-adjoint operator A ∈ A can be used
to represent a real-valued physical magnitude, one can say more about
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the representational capacities of a projection E ∈ A∗∗. Projections are
capable of representing propositions. The reason is that sp(E) = {0, 1},
so one can think of the two possible values of E as true (1) and false (0).
The usual rules for calculating the expectation value of a projection give
one the probability that the proposition E is true (a number in [0, 1]),
which is in agreement with the Born rule for calculating the probability
of a particular outcome for a self-adjoint operator.13

Notice that the interpretations of projections and general self-adjoint
operators already differ in that while the value of a physical magnitude
represented by a self-adjoint operator may depend on a choice of units,
the value of a proposition represented by a projection will not. For
example, if A is a self-adjoint operator representing the position mag-
nitude for a particle,14 then changing units of distance from m to cm
changes the possible values A can take on, scaling the numerical val-
ues by 100. Thus, one may need to use different self-adjoint operators
to represent the same physical magnitude understood in different sys-
tems of units (or at least pay close attention to how we compare these
self-adjoint operators and keep in mind the appropriate scale factor).

On the other hand, if EO is a spectral projection associated with A
for a Borel set O ⊆ sp(A), then EO can be interpreted as representing
the proposition “The particle is located in the region represented by
O”. If the particle is located in the region represented by O, then the
proposition is true and EO takes the value 1, whereas if the particle is
outside of the region represented by O, then the proposition is false and
EO takes the value 0. Even if one changes units for distance from m to
cm, if we hold fixed the proposition that we take the projection EO to
represent (e.g., by holding fixed the physical region associated with the
projection), then the value of this proposition should not change. The
particle is still either located within or outside of the region represented
by O, independent of our choice of units. Hence, one need not use a

13For the purposes of this paper, I remain agnostic about how to interpret prob-
ability assignments and measurements.

14A C*-algebra will contain only bounded operators capable of representing only
bounded physical quantities, and hence will not contain a position operator, gen-
erally. However, analogous interpretations can be given for bounded functions of
position. Additional complications arise for unbounded operators affiliated with a
C*-algebra, which I ignore. One also has a spectral theorem for unbounded self-
adjoint operators (Kadison and Ringrose, 1997).
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different operator to represent this proposition when we change units.
It is in this sense that values of physical magnitudes represented by
general self-adjoint operators may depend on a choice of units while
the values of propositions represented by projections will not.15

The spectral theorem can inform our understanding of how phys-
ical magnitudes (self-adjoint operators) relate to propositions (spec-
tral projections). Physical magnitudes assign numerical values to cer-
tain propositions. For example, the position magnitude assigns to the
proposition “The particle is 4m from the origin” the numerical value
4, when understood in units of m.16 So if one changes units, one can
leave fixed the projections representing propositions while changing the
numerical value a given physical magnitude assigns to each proposition.
For example, if one changes units from m to cm, the position magnitude
then assigns to the very same proposition “The particle is 4m from the
origin” the new numerical value 400. In other words, a change of units
induces a change A 7→ A′ ∈ A given by

A′ =

∫
sp(A)

f(λ) dEλ

where E is the projection valued measure for A, and the Borel function
f : sp(A)→ R is in general not the identity, but some rescaling function
governing how the numerical values of A in sp(A) change under the
scale transformation A 7→ A′. (In the example of the unit change from
m to cm, the function f is f(λ) = 100λ for all λ ∈ R.) This makes

15It is possible that one could give an alternative interpretation of changes of units
as leaving general self-adjoint operators representing physical quantities fixed while
changing the projection associated with any given physical proposition. While this
may be a viable alternative, it is not the one I choose in this paper. It seems to me
that interpreting changes of units as affecting self-adjoint operators and leaving pro-
jections fixed is at least feasible, and provides a clear illustration of the conceptual
structure of explanations in the classical limit, so I will stick with this interpreta-
tion in what follows. Moreover, on either interpretation, one relies on the spectral
theorem for relating projections and general self-adjoint operators, so the remarks
in §4 still hold on the alternative view.

16Projection valued measures assign projections to (even extended) regions of the
spectrum, not just particular points. The simplified interpretation mentioned here
still makes sense, however, because the projections play essentially this role when
integrated, as in the spectral theorem.
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sense because the new collection of possible numerical values of A′ is
sp(A′) = f [sp(A)]. Thus, we induce the change A 7→ A′ = f(A).

I will use this understanding of the relationship between self-adjoint
operators, spectral projections, and numerical values in different sys-
tems of units as I spell out a notion of approximation inherent in strict
quantization next.

3.2 Units, Scales, and (Counter)Factual Limits

When interpreting limits of physical constants like ~ → 0, there are
two different approaches one can take. Following Fletcher (2018) (who
draws on Rohrlich (1989)), I will call these the counterfactual and fac-
tual approaches17 to interpreting the classical limit. The counterfactual
interpretation attempts to answer the question, “How would the world
be different if Planck’s constant ~ were to take a different value in the
same system of units?” Hence, the counterfactual interpretation only
answers questions about other possibilities besides the actual world (or
so it is claimed). On the other hand, the factual interpretation at-
tempts to answer the question, “In the actual world, how do quantities
behave in different systems of units in which Planck’s constant ~ takes
different values?” Thus, the two interpretations differ on whether they
are concerned with modeling the actual world with the actual observa-
tions and experiments (factual interpretation) or alternative physical
possibilities (counterfactual interpretation).18

One might think only the factual interpretation can answer the ex-
planatory questions about approximate classical behavior outlined §2.
So if one thought that there only existed the mathematical resources
to spell out a counterfactual interpretation, then this would signify a
real conceptual and explanatory gap. In fact, it does seem that this is
how at least some philosophers approach quantization and the classical
limit. For example, Rosaler (2015a) claims that the mathematical tools
involved in the quantization procedures outlined above don’t capture

17Fletcher (2018) works out these approaches in the context of the Newtonian
limit c→∞ for general relativity. Here, I adapt the analysis to quantum theories.

18Note the similarity here between the factual/counterfactual limit distinction and
the active/passive transformation distinction. For the latter, see, e.g., (Redhead,
2003; Norton, 2018).
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the empirical content necessary for explanations in the classical limit.
And Batterman (1995) argues more generally that the classical limit
of quantum mechanics does not yield a genuine reduction because of
the “singular” nature of the limits. However, it is the goal of the cur-
rent section to show that the very same mathematical resources used
to spell out the counterfactual interpretation of the ~ → 0 limit can
be used to give a factual interpretation as well. The reason is that
when one develops the mathematical tools for quantization under each
interpretation, one finds that both approaches lead to equivalent con-
tinuous quantizations. Using the resulting continuous field of algebras
and interpretation of scaling behavior, I will argue that one avoids prob-
lems with so-called “singular” limits and achieves a genuine explanation
of classical behavior. The remainder of this section builds the math-
ematical tools for the factual and counterfactual interpretations and
illustrates the equivalence in the case of the quantization of the Weyl
algebra. At the end of this section, I return to a comparison of the
current approach with other philosophical views of the classical limit.

Counterfactual Limit

First, I will develop the counterfactual approach by constructing the
following continuous quantization of the Weyl algebra. On the counter-
factual approach, for each value of ~ one represents a different “world”
in which the physical quantities of the system are represented by a dis-

tinct algebra
CF

A h :=Wh. One keeps fixed the classical “world” in which

the quantities of the system are represented by
CF

A 0 := W0. One then
uses a quantization map to identify the “same” or “counterpart” mag-

nitudes in distinct worlds by defining
CF

Q h : P →
CF

A h for any h ∈ [0, 1]
as the unique linear, continuous extension of

CF

Q h(W0(x)) := Wh(x)

for all x ∈ R2n. According to this definition, the different “worlds”
specified by the counterfactual quantization map are really different
because they give rise to different commutation relations

Wh(x)Wh(y) = e
ih
2
σ(x,y)Wh(x+ y)
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for all x, y ∈ R2n, which clearly depends on the numerical value h of
Planck’s constant in the “world” considered. Thus, each “world” can
be interpreted as being governed by distinct physical laws (even though
the “form” of the laws in each world is in some sense the same).19 This
definition gives rise to precisely the continuous quantization of the Weyl

algebra I defined in §2.2, which we now denote by ((
CF

A h)h∈[0,1],
CF

K ,
CF

Q ).

As before, define the collection of counterfactual continuous sections
CF

K

to be the smallest C*-subalgebra of
∏

h∈[0,1]

CF

A h containing the maps

[h 7→
CF

Q h(A)] for all A ∈ P . Define the counterfactual global quantiza-

tion map
CF

Q : P →
CF

K by

CF

Q (A)(h) :=
CF

Q h(A)

Since this structure is identical with the structure ((Wh)h∈[0,1],K,Q),
it is a continuous quantization.

Factual Limit

To make precise the factual interpretation, I will take a somewhat differ-
ent approach. Recall that on the factual approach, one wants to specify

algebras
F

Ah that represent physical quantities in the actual world, and
use the index h only to investigate how these quantities change in dif-
ferent systems of units. Since one want to model quantities in only
the actual world, one can start with the constraint that all of the al-

gebras
F

Ah be identical. So let us fix our world in units where h = 1

and define
F

Ah := W1 for all h ∈ (0, 1]. Of course since one wants to

explain classical behavior, one still needs to let
F

A0 := W0. One then
uses a quantization map to identify how a physical quantity changes in
the actual world when one changes units so that the numerical value of
Planck’s constant changes as h′ 7→ h.

To think about these changes of units, let us start by analyzing the
classical quantities. It will be helpful to specify a canonical coordinate

19Notice here that I am not talking about dynamical laws, but only the kinematic
relations governing quantum systems like the uncertainty principle.
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system (q1, ..., qn, p1, ..., pn) on the classical phase space R2n and expand
the operators W0(x), where x = (a1, ..., an, b1, ..., bn):

W0(a1, ..., an, b1, ..., bn)(q1, ..., qn, p1, ..., pn) = ei(a1q1+...+anqn+b1p1+...+bnpn)

For concreteness, suppose that the unit change that induces the change
in the numerical value of Planck’s constant h′ 7→ h is a change of dis-
tance units (i.e., m to cm, km to mm, etc.).20 To understand how this
affects the numerical values of quantities involved, recall that Planck’s

constant has units [ (mass)·(distance)
2

time
], each position quantity qj has units

[(distance)], and each momentum quantity pj has units [ (mass)·(distance)
(time)

].

Since Planck’s constant involves units of (distance)2, while position and
momentum involve units only of (distance), if one changes units of dis-
tance in a way that induces a change in numerical values h′ 7→ h, this
will change the numerical values of position and momentum by

qj 7→
√
h

h′
· qj

pj 7→
√
h

h′
· pj

(*)

Now, let us shift focus to the magnitudes W1(a1, ..., an, b1, ..., bn)
for the corresponding quantum system. In this case, at least in the
(regular) Schrödinger representation (π, L2(Rn)) of the Weyl algebra21

the Weyl unitaries take the form:

π(W1(a1, ..., an, b1, ..., bn)) = ei(a1Q1+...+anQn+b1P1+...+bnPn)

for self-adjoint unbounded operators Q1, ..., Qn, P1, ..., Pn representing
the quantized position and momentum magnitudes. Although generally

Qj and Pj will not belong to any C*-algebra
F

Ah because they are un-
bounded, one may restrict attention to the Schrödinger representation
in which the spectral theorem still applies.

20One can in an exactly analogous way define factual continuous quantizations
for mass and time unit changes. These are equivalent to the one defined here.

21See Feintzeig (2017, 2018a, 2019); Feintzeig et al. (2019); Feintzeig and Weather-
all (2019) for reasons to focus on regular representations of the Weyl algebra, of
which the Stone-von Neumann theorem tells us the Schrödinger representation is
the unique irreducible one.

19



So suppose Qj is a position magnitudes affiliated with the quan-
tum system. Letting E denote the projection valued measure in the
Schrödinger representation associated with Qj, one has

Qj =

∫
sp(Qj)

λ dEλ

A unit change that induces the change in numerical values of Planck’s
constant h′ 7→ h leaves each projection E fixed but change the value

Qj assigns to E according to the scale factor
√

h
h′

as per Eq. (*). This

yields a change22

Qj 7→ Q′j =

∫
sp(Qj)

√
h

h′
· λ dEλ =

√
h

h′
·Qj

Similarly, suppose Pj is a momentum magnitude affiliated with the
quantum system, understood as the standard momentum operator in
the Schrödinger representation of the Weyl algebra associated with pro-
jection valued measure F :

Pj =

∫
sp(Pj)

λ dFλ

A change of units that induces the change in numerical values of Planck’s
constant h′ 7→ h leaves each projection F fixed but change the value

Pj assigns to F according to the scale factor
√

h
h′

as per Eq. (*). This

yields a change

Pj 7→ P ′j =

∫
sp(Pj)

√
h

h′
· λ dFλ =

√
h

h′
· Pj

Now, to use this change of units to define the factual quantization

map
F

Qh : P →
F

Ah, recall that we wish to model changing units from
F

Ah = W1 in which the numerical value of Planck’s constant is h′ = 1

22In a moment, I will specify this unit change directly in terms of the Weyl
unitaries. It is only for clarity of presentation that I present the unit change as it
affects first and foremost the position and momentum magnitudes.
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so this unit change induces the change in numerical values 1 7→ h with

scaling factor
√

h
h′

=
√
h. Now, this motivates defining the factual

quantization map as the unique linear norm continuous extension of

F

Qh(W0(a1, ..., an, b1, ..., bn)) := W1(
√
h · a1, ...,

√
h · an,

√
h · b1, ...,

√
h · bn)

for all (a1, ..., an, b1, ..., bn) ∈ R2n. This appears in the Schrödinger
representation as

π(W1(
√
h · a1, ...,

√
h · an,

√
h · b1, ...,

√
h · bn)) = ei(a1

√
h·Q1+...+an

√
h·Qn+b1

√
h·P1+...+bn

√
h·Pn)

with each Qj and Pj scaled by the fact
√
h as desired. More succinctly,

one can write

F

Qh(W0(x)) = W1(
√
h · x)

for all x ∈ R2n.
Notice that the operators W1(x) for x ∈ R2n obey the standard

commutation relation

W1(x)W1(y) = e
i
2
σ(x,y)W1(x+ y)

for all x, y ∈ R2n. This relation remains fixed in each of the algebras
F

Ah =W1, indicating that the “physical laws”23 remain the same in the

one “world” we represent. However, the rescaled operators
F

Qh(W0(x))
give the appearance of different physics because their commutation re-
lation is

F

Qh(W0(x))
F

Qh(W0(y)) = e
ih
2
σ(x,y)

F

Qh(W0(x+ y))

for all x, y ∈ R2n due to the fact that σ(
√
h · x,

√
h · y) = h · σ(x, y).

This expression depends on the numerical value of h and thus on the
system of units chosen.

With this factual quantization map, one can follow the procedure

above to construct a continuous quantization ((
F

Ah)h∈[0,1],
F

K,
F

Q). De-

fine the collection of factual continuous sections
F

K as the smallest
23That is, at least the kinematical laws. See fn. 19.
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C*-subalgebra of
∏

h∈[0,1]

F

Ah containing the maps [h 7→
F

Qh(A)] for all

A ∈ P . Define the factual global quantization map
F

Q : P →
F

K by

F

Q(A)(h) :=
F

Qh(A)

This structure also provides a continuous quantization of P .

Equivalence

Finally, now that we have constructed two continuous quantizations
with quite different motivations and physical interpretations—the fac-
tual interpretation for our world and the counterfactual interpreta-
tion for alternative possible worlds—I will establish that both math-
ematical structures have the same representational capacities. That

is, I will show that the factual ((
F

Ah)h∈(0,1],
F

K,
F

Q) and counterfactual

((
CF

A h)h∈[0,1],
CF

K ,
CF

Q ) continuous quantizations are equivalent. For each

h ∈ (0, 1], define αh :
CF

A h 7→
F

Ah as the unique linear, norm continuous
extension of24

αh(Wh(x)) := W1(
√
h · x)

It suffices to notice that αh is a *-isomorphism for each h ∈ (0, 1] and

αh ◦
CF

Qh =
F

Qh

Hence, the two quantizations are equivalent.
Thus, the counterfactual continuous quantization, which is exactly

the original continuous quantization of the Weyl algebra presented in
§2.2, can be given an interpretation in terms of a notion of “approxima-
tion at certain scales”. That is, one can import the notion of “approx-
imation at certain scales” from the factual continuous quantization,
which I interpret as follows.

In the factual continuous quantization, suppose we are given arbi-
trary classical quantities A,B ∈ P and a chosen numerical error bound

24Clearly, we can take α0 to be the identity on
CF

A 0 =
F

A0.
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ε > 0. It follows that there is a choice of units (i.e., for some combi-
nation of distance, time, and mass) in which Planck’s constant ~ takes
on a numerical value h such that in this system of units the behavior
of Qh(A) and Qh(B) is “within ε” of the behavior of A and B:

|‖Qh(A)‖h − ‖A‖| < ε

‖Qh(A)Qh(B)−Qh(AB)‖h < ε

‖[Qh(A),Qh(B)]−Qh({A,B})‖h < ε

Similarly, for every h′ < h, the above inequalities will hold with h
replaced by h′. Notice this implies that for any state ω on Ah,

|ω(Qh(A)Qh(B))− ω(Qh(AB))| < ε

|ω([Qh(A),Qh(B)])− ω(Qh({A,B}))| < ε

and so the expectation values of relevant physical quantities are within
ε of one another. Thus, Qh(A) and Qh(B) approximate A and B within
the error bound ε at all scales above the one where Planck’s constant
~ takes the numerical value h.

The notion of scale here corresponds to the physical magnitude of
the error bound that the number ε determines. The very same nu-
merical error bound ε determines a physically larger magnitude as we
change units. Even when the numerical values of the physical quantities
Qh(A)Qh(B) and Qh(AB) differ wildly in one choice choice of units,
they are very close together in another. Thus we recover the intuitive
notion that as ~ → 0, we “zoom out” from the quantum system by
caring less and less about the microscopic details. The way one coarse-
grains from the microscopic details is by fixing a numerical error bound
ε and changing units so that ε represents a physically larger and larger
magnitude of allowable error.

Notice that, as claimed, the spectral theorem plays a crucial role in
this interpretation. In order to understand the ~ → 0 limit under this
notion of “approximation at certain scales”, one understands a change
in the numerical value h to correspond to a change of units. This
can be accomplished precisely because one has spectral projections for
each physical magnitude, which are held fixed even as units change.
Thus, the spectral projections and the relations among them represent
“invariant” (under unit changes) physical content of the theory. In a

23



context without the spectral theorem (like the formalism of effective
field theories) it becomes increasingly unclear how to interpret mathe-
matical objects as physical quantities with numerical values at all. But
the point I wish to emphasize is furthermore that it is unclear how to
make sense of units, scales, and approximation without the spectral
theorem. These are precisely the notions that effective field theories
rely on for their interpretation. I will discuss this issue in §4.

It is worth a number of small remarks about the explanatory status
of the classical ~→ 0 limit before proceeding. First, in response to the
claims of Rosaler (2015a) that explanations of classical behavior must
have some empirical content, I simply note that empirical content is
indeed encoded in the way quantum magnitudes approximate classical
magnitudes within a given error bound relative to a choice of units.
The error bound may be chosen according to the empirical context at
hand—e.g., the error associated with a particular measuring device. If
one is in an empirical situation where one requires more precise de-
scriptions than the coarse-grained ones specified by the error bound,
then classical physics will not suffice to capture the empirical phenom-
ena. If, on the other hand, one is in an empirical situation where one
only requires coarse-grained precision within the specified error bound,
then classical physics will suffice to capture the empirical phenomena.
Another way of putting this point is that if the error bound appropri-
ately captures, say, the coarse-grained precision of a measuring device
employed (which defines a kind of “empirical situation”), then it will
suffice to use classical mechanics to capture the empirical phenomena
displayed by that measuring device. Thus, according to the notion
of “approximation on certain scales” I have provided for interpreting
continuous quantizations, quantum physics explains the success of clas-
sical physics by referencing empirical contexts that we associate with
particular error bounds.25

Second, in response to the claims of Batterman (1995) that the
classical limit is “singular”, I note that all of the mathematical tools
described above allow for rigorous specification of continuous limits. So

25See also (Rosaler, 2018) for discussion of the relation between his views and
deformation quantization. There, Rosaler works with formal deformation quanti-
zations and also requires the specification of a particular continuous field of states
whose position and momentum uncertainties vanish as ~→ 0.
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there is at least a sense in which a relevant ~→ 0 limit is not “singular”.
However, the continuous field of algebras I used only specifies limits
relative to one particular kind of structure, so if one looks at limits that
correspond to sections that are not continuous in the field of algebras
(i.e., if one considers a map K : h ∈ [0, 1] 7→ A ∈ Ah such that
K /∈ K), then the limits of these quantities may appear “singular”.
I believe this is an interesting feature of any limiting process, but it
does not appear to me to undermine the explanatory status of the
classical limit for the quantities that can be described by continuous
sections. The upshot is that one can recover a sense in which the ~→ 0
limit is explanatory by virtue of the structures I have provided, while
allowing for the phenomenon Batterman (1995) points to in which some
quantities appear to have “singular” limits.

Third, I note that Landsman (2017) gives a different interpretation
of the same mathematical formulation of the classical limit through
strict quantization in terms of small values of some dimensionless ratio
of Planck’s constant to other magnitudes of the system at hand. This
is in contrast to my interpretation of h as representing a dimension-
ful version of Planck’s constant. Landsman’s idea seems to be that
certain equations governing the behavior of the system will hold ap-
proximately if the dimensionless ratio considered is small (e.g., if the
system has large temperature).26 I do not know whether this interpre-
tation can be made more precise. One might wonder, for example, how
to understand the value of the dimensionless parameter varying when
it depends on physical magnitudes associated with the system. These
physical magnitudes are represented by the elements of the C*-algebras
in the continuous field, which can take on many different expectation
values in different states. It is difficult for me to see how a strict quan-
tization represents such a dimensionless ratio varying, when the values
that go into the dimensionless ratio (e.g., energy, temperature) are not
yet fixed by the specification of the algebra. Or similarly, one might ask
why the commutation relations, which may be understood as kinemati-
cal laws, change when the value of this dimensionless parameter varies.
One does not usually understand changing a parameter like energy or
temperature to change the kinematics one describes.

It seems to me that in order to make such a “dimensionless ratio”

26Although see also the discussion of rescaling on Landsman (2017, p. 247).
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interpretation more precise, one would need to specify a continuous
field of states on the continuous field of C*-algebras one is using to
represent the classical limit. One could take the physical magnitudes
in the C*-algebras to have a fixed interpretation and then specify a
continuous field of states whose expectation values appropriately rep-
resent increasing values of energy, action, temperature, etc. Then one
could make sense of the relevant dimensionless parameter in terms of
the expectation values of these states, and one would have a sense in
which the dimensionless parameter varies between different states in
this continuous field. After specifying such states, one would still need
to show that the expectation values of some relevant physical magni-
tudes will approximately satisfy the equations of classical physics. (One
might need to pick different families of states to represent the variation
of different dimensionless ratios relevant to each aspect of classical be-
havior.) If one could accomplish this, one would certainly have shown a
relevant sense in which quantum mechanics explains part of the success
of classical physics, and perhaps this is what Landsman has in mind.

However, it is worth some care concerning how Landsman’s “di-
mensionless ratio” interpretation differs from my “systems of units”
interpretation of the ~ → 0 limit. One difference comes in what the
interpretations are intended to explain. The “dimensionless ratio” in-
terpretation can explain why some equations of classical physics can be
used to adequately represent a particular system relative to a partic-
ular continuous field of states. Moreover, as far as I can tell, to even
make sense of such an interpretation of a continuous field of states as
having increasing values of action, energy, temperature, etc., one needs
a prior interpretation of the physical magnitudes that the states as-
sign expectation values to. On the other hand, the “systems of units”
interpretation I have given of the classical limit aims at a different
explanandum. It aims to explain why the kinematical framework of
classical physics can be used to represent the physical magnitudes and
the space of physically possible states of the system at all. As such, my
explanation does not depend on the specification of a continuous field of
states. Furthermore, it seems to me that this explanation of the success
of the kinematical framework of classical physics can even contribute
to Landsman’s explanatory task by helping us interpret the physical
magnitudes that a continuous field of states is assigning expectation
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values to. So I do not believe my “systems of units” interpretation is
in conflict with the “dimensionless ratio” interpretation.

On my view, then, it would be all the better if there were multiple
ways of interpreting the mathematical structures used to model the
classical limit. I only claim that the interpretation I have given above
of the classical limit as a kind of scaling limit is one possibility. This
interpretation seems quite useful for capturing the explanatory utility
of the classical limit, although it may not be the only interpretation or
even the best one for all purposes.

I hope it is clear that I do not necessarily disagree with the analyses
that Rosaler, Batterman, and Landsman give of the classical limit. I
do, however, believe that value is added when one pays attention to
the interpretation of the classical limit in terms of approximation on
scales with different systems of units. I believe this interpretation helps
specify the extent to which the classical limit can be understood as
explanatory. Moreover, I believe this interpretation is useful because
of the analogy it gives rise to between the classical limit and scaling
limits in effective field theories, which is the topic of the next section.

4 Scaling limits in effective field theories

In the previous section, I focused on interpreting one particular limit—
the ~ → 0 limit—with a precise notion of “approximation on certain
scales.” Now, I turn to scaling limits in renormalization and effective
field theories.27 Effective field theory interpretations have played a
prominent role in a number of recent philosophical discussions of quan-
tum field theory.28 I will argue that the scaling limits in effective field
theories are analogous to the classical limit, at least enough so that it is
interesting and problematic to notice that the mathematical tools I used
above to interpret the classical limit are not present in contemporary

27For standard physics references, see Kadanoff (1966); Wilson (1971b,a); Wilson
and Kogut (1974); Polchinski (1984). For philosophical discussions, including in the
context of condensed matter physics, see Butterfield and Bouatta (2015); Batterman
(2017); Franklin (2018).

28The line of philosophical inquiry I have in mind comes from the debate between
Wallace (2006, 2011) and D. Fraser (2009, 2011), which has continued with Li
(2013); Williams (2018); J. Fraser (2018a,b).
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formulations of effective field theories. I will argue that this difference
in the mathematical structures of the theories has implications for work
on interpreting quantum field theories. I will give a rough classification
of two types of strategies for addressing this difference. Importantly,
the taxonomy I offer is orthogonal to a classification that has become
prominent in philosophy of physics, which distinguishes rigorous and
non-rigorous approaches to quantum field theory. I will suggest that
we have reason to forgo the old distinction.

Analogies between the classical limit and scaling limits

The claims I will make depend on the idea that the classical limit
and the scaling limits taken in effective field theories are relevantly
similar. So before proceeding, I make a case for this similarity. I
concede up front that if one finds a way of understanding scaling limits
in effective field theories that makes them relevantly disanalogous from
my interpretation of the classical limit, then the rest of my argument
will not apply. I do not know of an interpretation of the scaling limits
that would make them relevantly disanalogous from the classical limit,
but that does not mean such an interpretation is impossible. On the
other hand, I believe there is positive reason to see the scaling limits
involved in renormalization as relevantly similar to the classical limit.
The discussion of §3 already makes some of these similarities apparent.
Still, it is worth making the analogy more explicit.

As mentioned in §2, the scaling limits in effective field theories, by
virtue of being limits of entire theories, appear conducive to domes-
tication through continuous fields of C*-algebras, which seem up to
precisely this task of modeling limits of entire kinematic frameworks.
So one might hope to draw not only on physical analogies between the
classical limit and scaling limits, but also to fit effective field theories
into the same mathematical framework we have used.

Here is an outline of how this could work. Some standard ap-
proaches to renormalization in physics (e.g., Polchinski, 1984) use fam-
ilies of Lagrangians indexed by energy scales. The Lagrangian of a
quantum field theory is supposed to determine an algebra of physical
magnitudes by virtue of determining canonically conjugate field and
momentum quantities on which commutation relations are defined. So
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one could imagine the family of Lagrangians giving rise to a family of
algebras of physical magnitudes indexed by the energy scales of the
Lagrangians employed. Suitably “gluing” these algebras together (i.e.,
specifying continuous sections) could give rise to a continuous field of
algebras. And identifying elements of these algebras that correspond
to the same physical magnitude at different scales (i.e., magnitudes
that are related by some scaling transformation) could give rise to a
structure analogous to a strict deformation quantization, in which the
quantization map plays this role. In effective field theories, one would
use these tools to represent not the ~→ 0 limit, but the limit as energy
becomes relatively small (or, as a “cutoff” disappears).29

Moreover, when changing a “cutoff” or applying the renormaliza-
tion group, effective field theorists want to understand themselves as
analyzing the same physical theory (presumably with the same physi-
cal magnitudes for the same system) at a different scale. So beyond the
analogy in the mathematical formulations of these scaling limits, the
intended interpretations of the classical limit and other scaling limits
are analogous. Hence, one should be worried if one cannot find the
projections we used to identify “scale-invariant” content in the classi-
cal limit. These projections were essential for understanding why other
quantities changed under rescaling as they did. Next, we will see that
these mathematical tools indeed are missing from the extant formalism
for effective field theories.

Differences between the classical limit and scaling limits

Given these analogies between the classical limit and other scaling lim-
its, I am now in a position to state how the two cases differ. Let us
suppose that we try to interpret the scaling limits in effective field the-
ories just as we interpreted the classical limit. That is, suppose we
try to make precise the notion of “approximation on certain scales”
involved in those limits using the methods of §3. Then, we would look
at the operators we identify in the different theories at different scales
as representing the same physical magnitude. We would need to under-

29Instead of requiring Dirac’s condition, as in the classical limit, one would pre-
sumably require some other compatibility condition to hold for the scaling limits of
effective field theories.
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stand ourselves as making this identification of magnitudes by virtue
of invariant spectral projections representing the same physical propo-
sitions. The existence of these invariant projections would justify the
scaling transformations that make other physical magnitudes vary from
one scale to another. Recall this was the crucial move to understand
“approximation on certain scales” in §3.

The “hopefulness” of our analogy between the classical limit and
scaling limits in effective field theories now falls apart because these
crucial projections are nowhere to be found. One does not have a spec-
tral theorem in the formalism for effective field theories. In fact, even
in the most recent and rigorous versions of effective field theories, one
does not have C*-algebras of physical magnitudes. Instead, one works
with so-called “perturbative expansions” of physical magnitudes that
together form only *-algebras of formal power series30 (See, e.g., Re-
jzner, 2016). The algebraic tools involved in this approach to effective
field theories are similar to, and indeed inspired by, the old-fashioned
algebraic quantum field theory originated by Haag and Kastler (1964),
but they are not the same.31 Even though discussions of renormaliza-
tion have these mathematical physicists working with families of alge-
bras (Brunetti et al., 2009), these structures do not generally form a
continuous field of C*-algebras. Without the spectral theorem and the
crucial projections that supply invariant physical content under scale
transformations, one does not have the mathematical tools to give an
interpretation of scaling limits in effective field theories using the notion
of “approximation on certain scales” spelled out in §3.32

If one could establish that the formal power series expansions em-
ployed in these effective field theories converged in a relevant sense when

30Even Polchinski (1984), a standard physics reference, is very clear about work-
ing with only formal power series expansions.

31See Dütsch and Fredenhagen (2001); Brunetti and Fredenhagen (2009); Fre-
denhagen and Rejzner (2013, 2015) for a sampling of applications of these methods
in algebraic quantum field theory. See also Costello (2011) and Hairer (2015) for
further mathematical approaches to renormalization that are somewhat different
from, but appear related to, the algebraic framework for quantum field theory.

32It is noteworthy that Bordemann and Waldmann (1998) list as an open problem
the development of a “formal spectral theory” for formal deformation quantizations.
Furthermore, Waldmann (2005) investigates some properties of matrices over formal
deformation quantizations that mimic results from spectral theory.
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the formal parameter is assigned a numerical value, then one could use
them to construct a C*-algebra. However, it is well known that these
formal power series do not converge both because of so-called “large-
order divergences” that prevent one from summing the terms of the
series while maintaining a finite result and because of so-called “ultra-
violet divergences” that prevent one from even assigning the integrals
involved in individual terms of the series a finite value.33 The methods
of renormalization are meant to allow one to deal with the ultraviolet
divergences even without a solution to the problems of large-order di-
vergences. Thus, the scaling limits involved in effective field theories
are intended to produce theories that hold “approximately on certain
scales” even when it is agreed that one does not have a C*-algebra, a
spectral theorem, or invariant projections in one’s mathematical toolkit.

It is worth a small remark concerning why one only has *-algebras
of formal power series and not C*-algebras in effective field theories be-
cause this will help us ward off a potential confusion. Difficulties dealing
with non-linear interactions in field theories with infinitely many de-
grees of freedom leads to the use of formal deformation quantizations
to construct those theories rather than the strict deformation quantiza-
tions we used above.34 As mentioned in §2, formal deformation quan-
tizations are similar to the tools of strict deformation quantization we
have used, except that they employ formal power series in order to de-
fine the non-commutative products between physical magnitudes that
form the core of quantum theories. So the fact that the projections we
need to make sense of scaling limits (as I have argued in §3) are missing
in some sense traces back to difficulties in constructing the quantum
field theories that are at issue.

However, I want to emphasize that the difficulties in constructing
interacting quantum field theories (e.g., through these quantization pro-
cedures) are not the ones I am pointing to in this paper. One might
think that it is possible to employ and interpret renormalization meth-

33For references and discussion, see Butterfield and Bouatta (2015); Miller (2017).
34For some discussion of the differences between strict and formal deformation

quantization, see Bordemann (2008); Waldmann (2015); Landsman (2017). Founda-
tional works in formal deformation quantization include Kontsevich (2003), who es-
tablishes the existence of formal deformation quantizations for theories with finitely
many degrees of freedom, but those methods cannot be extended to field theories
with infinitely many degrees of freedom.
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ods and effective field theories even without addressing potential issues
about the construction of quantum field theories; indeed this seems to
be the position taken by Wallace (2006, 2011), Williams (2018), and
J. Fraser (2018b). For example, one might think that understanding
quantization is only important for the ~→ 0 limit, which does not typ-
ically play any role in renormalization procedures. What I am arguing
is that interpretive problems in the construction of quantum field the-
ories (and conversely, their classical limit) trickle down to interpretive
problems with other limiting procedures taken in those theories, includ-
ing the scaling limits one may have thought to be safe. I claim that
the move to *-algebras of formal power series as employed in formal
deformation quantization for interacting quantum field theories leads
to a framework in which the mathematical resources are missing for
interpreting scaling limits, even though these scaling limits are distinct
from the ~→ 0 limit of the quantum field theory.

Implications for interpreting quantum field theories

Suppose one accepts my argument that the current mathematical frame-
work for effective field theories lacks the mathematical resources to
make sense of the notion of “approximation on certain scales” used
in the interpretation of renormalization and scaling limits. Or more
specifically and more modestly, suppose one accepts that the current
mathematical framework for effective field theories does not have the
mathematical resources that were crucial to the notion of “approxima-
tion on certain scales” presented for the classical limit in §3. Then what
is to be done? I see two routes to address this problem:

(i) First, one could keep the mathematical tools currently employed
for scaling limits in effective field theories—namely, formal power
series—and attempt to develop methods for interpreting these lim-
its with a notion of “approximation on certain scales” that does
not depend on spectral projections.

(ii) Second, one could attempt to implement the same mathematical
tools for scaling limits in effective field theories that I used to
make sense of the classical limit—namely, continuous fields of C*-
algebras, or other tools with an analog of the spectral theorem.
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One might take approach (i) if one does not find my argument for the
similarity of the classical limit and other scaling limits convincing and
instead believes there are alternative, distinct methods for interpreting
quantum field theories from those described in §3. One might take
approach (ii) if one believes that the classical limit is analogous to the
scaling limits in effective field theories and that the classical limit helps
identify the mathematical tools necessary for interpreting scaling limits.

I will not take a stance concerning the relative merits of approaches
(i) and (ii); however, I do wish to point out that one can use this distinc-
tion to classify some contemporary research programs. For example,
Miller (2017) appears to take approach (i), arguing that quantum field
theory gives us reason to use an alternative to the standard semantics
for physical theories. On the other hand, some mathematical physicists
appear to take approach (ii), at least implicitly. For example, this atti-
tude seems implicit in work that attempts to prove convergence results
for the formal power series constructions in some models of quantum
field theories (e.g., Bahns and Rejzner, 2017).35 In that case, one uses
perturbative methods as a stepping stone toward the construction of
a non-perturbative theory. Another avenue that I believe also falls
under (ii) is to attempt to construct the non-perturbative theories di-
rectly and make sense of scaling limits with them. This route is taken
by researchers who use so-called “scaling algebras” to construct a C*-
algebraic framework for renormalization (Buchholz, 1996a,b; Buchholz
and Verch, 1995, 1998). On either of these strategies for approach (ii), I
believe further philosophical attention could be of value for interpreting
the resulting mathematical structures. So there is a real opportunity
here for philosophical work that engages with the cutting edge of re-
search in mathematical physics.

Perhaps most importantly for the philosophical literature, the dis-
tinction between (i) and (ii) has nothing to do with whether one requires
quantum field theories to be rigorous. The issue of rigor was the pri-
mary focus of the debate between Wallace (2006, 2011) and D. Fraser
(2009, 2011), which led to a number of recent philosophical discussions
of the issue. But my perspective suggests that rigor is beside the point

35cf. also fn. 32, which references the possibility of formal approaches to spectral
theory. If those tools were developed, they could provide a different route to the
kinds of interpretations one has in the presence of convergence.
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because both the non-perturbative C*-algebraic approaches and the
perturbative formal power series approaches are mathematically rigor-
ous. Researchers who choose approach (i) could be satisfied with the
existing rigorous approaches to quantum field theory and aim only at
interpretive developments. And researchers who choose approach (ii)
need not aim for more rigor, but rather to apply existing rigorous tools
to realistic quantum field theories.

I am not the only one to challenge the view that rigor is the cen-
tral issue in the interpretation of quantum field theories. D. Fraser
(2011) herself and Koberinski (2016) have already noticed that the
recent philosophical literature has been misleading about whether rig-
orous and non-rigorous approaches to quantum field theory are “com-
peting research programs.” Li (2015) also makes this point by noticing
that applications of the “exact” renormalization group are perfectly
rigorous, so rigor cannot be the main concern in the interpretation of
quantum field theory. However, Li makes this point in the context of
non-perturbative approaches to constructive field theory, which do not
involve effective field theory interpretations like the one originally given
by Wallace (2006). So the current paper has gone further by showing
that rigor is not the issue even within effective field theory interpreta-
tions. Finally, J. Fraser (2018a) also argues that in the perturbative
approach to effective field theories, rigor is not the central interpretive
issue. I agree with J. Fraser’s diagnosis, but we differ on one further
point. J. Fraser describes effective field theories as approximate theories
for which one does not yet know the underlying theory to be approx-
imated. If my argument in this paper is correct, then to the contrary
one does not yet have the resources to interpret effective field theories
as approximations. So the comparison I have undertaken between the
classical limit and other scaling limits leads to a new and precise way
identifying a problem for interpreting quantum field theories.

5 Conclusion

In this paper, I have argued that one has mathematical resources in
continuous fields of C*-algebras for making sense of a notion of “ap-
proximation on certain scales” in the interpretation of the classical limit
of quantum mechanics. I argued that because these mathematical tools
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are not available in perturbative quantum field theories, further work
is needed to make sense of the effective field theory approach, which re-
lies on an interpretive notion of “approximation on certain scales.” The
advocate of effective field theories either needs to develop new interpre-
tive methods, or do further mathematical work to connect the existing
mathematical tools for effective field theories with the resources that
exist in continuous fields of C*-algebras.

I believe the analysis offered here of approximation in the interpre-
tation of the classical limit is interesting in its own right. But it gains
special significance because of the comparison it allows with scaling
limits in effective field theories.

This comparison between the classical limit and other scaling limits
leads to an important conclusion for contemporary philosophical discus-
sions of quantum field theory. I argued that once one sees the problem,
one sees that there are two possible broad strategies for dealing with the
lack of mathematical resources in effective field theories: either develop
more mathematical resources or different interpretive resources. This
classification shows that previous philosophical discussions that classify
approaches to quantum field theory as rigorous or non-rigorous seem
to miss the real issue. Moreover, I believe this discussion is important
because on either of the approaches for interpreting effective field the-
ories that I outlined, there is room for philosophical investigation that
can make a difference to ongoing work in mathematical physics.
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Brunetti, R., M. Dütsch, and K. Fredenhagen (2009). “Perturbative
Algebraic Quantum Field Theory and the Renormalization Groups.”
Advances in Theoretical and Mathematical Physics, 13 (5), 1541–
1599.

Brunetti, R. and K. Fredenhagen (2009). “Quantum Field Theory on
Curved Backgrounds.” Lecture Notes in Physics, 786, 129–155.

Buchholz, D. (1996a). “Phase space properties of local observables and
structure of scaling limits.” Annales de l’Institut Henri Poincaré,
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