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Brownian computers are supposed to illustrate how logically reversible 

mathematical operations can be computed by physical processes that are 

thermodynamically reversible or nearly so. In fact, they are thermodynamically 

irreversible processes that are the analog of an uncontrolled expansion of a gas 

into a vacuum. 
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1.	  Introduction	  

 The thermodynamics of computation applies ideas from thermal and statistical physics to 

physical devices implementing computations. Its major focus has been to characterize the 

principled limits to thermal dissipation in these devices. The best case of no dissipation arises 

when we use processes that create no thermodynamic entropy. They are thermodynamically 

reversible processes in which all driving forces are in perfect balance.  

 Thermal fluctuations, such as arise through random molecular motions, are not normally 

a major consideration in thermodynamic analyses. However, they become decisive in the 

                                                
1 I thank Laszlo Kish for helpful discussion. 
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thermodynamics of computation. For the thermodynamic dissipation associated with 

thermodynamically irreversible processes is minimized by reducing the computational devices to 

the smallest scales possible, that is, to molecular scales. Thermal fluctuations now become a 

major obstacle to reducing thermodynamic dissipation. Consider a thermodynamic process, such 

as a single step of computation in a physical computer, at these molecular scales. In order to 

proceed to completion, it must overcome these fluctuations. The problem is serious. It is the 

essential idea behind a “no go” result described elsewhere (Norton, 2011, Section 7.4; 

forthcoming a; manuscript, Part II). If the process is to proceed to completion with reasonable 

probability, it follows quite generally that it must create thermodynamic entropy in excess of k ln 

2 per step. 

 This quantity of entropy, k ln 2, is the minimum amount associated by Landauer’s 

principle with the erasure of one bit of information. If each step of a computation must create 

more thermodynamic entropy that this Landauer limit, then any debate over the cogency of the 

Landauer principle is rendered superfluous. Indeed we have to give up the idea that the minimum 

thermodynamic dissipation is determined by the logical specification of the computation. For the 

minimum dissipation is fixed by the number of discrete steps in the computational procedure 

used, which makes this minimum dependent on the implementation. 

 The no go result wreaks greatest harm when the computer proceeds with what I shall call 

a “discrete protocol” tacitly presumed above. It is the familiar protocol in which the computation 

is divided into a series of discrete steps, each of which must be completed before the next is 

initiated.  

 There is an escape from the no go result. Bennett (1973, 1982) and Bennett and Landauer 

(1985) have described a most ingenious protocol for computation that minimizes its effects. In 

the protocol, called “Brownian” computation, the many logical steps of a complicated 

computation are collapsed into a single process thermodynamically. It is done by chaining the 

logical steps of the computation into a single process such that random thermal motions carry the 

computational device’s state back and forth over the steps in a way that is analogous to the 

Brownian motion of a pollen grain in water. No step is assuredly complete until the device 

happens to enter a final, dissipative trap state from which it escapes with very low probability. 

 The no go result still applies to this new, indiscrete protocol, but now the thermodynamic 

entropy creation required is merely that required for one step. It can be negligible in the context 
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of a large and complicated computation if that single step really is close to thermodynamic 

reversibility. That is the hope. However, it is not realized. 

 For all the mechanical and computational ingenuity of the devices, the thermodynamic 

analysis Bennett provides is erroneous. The devices are described as implementing 

thermodynamically reversible computations, or coming close to it, thereby demonstrating the 

possibility in principle of thermodynamically reversible computation. In fact the devices are 

thermodynamically irreversible. They implement processes that are the thermodynamic analog of 

an uncontrolled, irreversible expansion of a one-molecule gas, the popping of a balloon of gas 

into a vacuum. 

 Sections 2 and 3 below will describe the operation of a Brownian computer and give a 

thermodynamic analysis of it. The main result is that an n stage computation creates k ln n of 

thermodynamic entropy; and that extra thermodynamic entropy is created if a trap state is 

introduced to assure termination of the computation; or if an energy gradient is introduced to 

speed up the computation. 

 Section 4 affirms the main claim of this paper, that, contrary to the view in the literature, 

Brownian computation is thermodynamically irreversible. Section 5 reviews several ways that 

one might come to misidentify a thermodynamically irreversible process as reversible. The most 

important is the practice in the thermodynamics of computation of tracking energy instead of 

entropy in an effort to gauge which processes are thermodynamically reversible. 

 Finally, if a Brownian computer implements logically irreversible operations, its 

accessible phase space may become exponentially branched. This branching has been associated 

with Landauer’s principle of the necessity of an entropy cost of erasure. In Section 6, it is argued 

that the connection is spurious and that Brownian computation can provide no support for the 

supposed minimum to the entropy cost. Brownian computation is powered by a 

thermodynamically irreversible creation of entropy and it creates thermodynamic entropy 

whether it is computing a logically reversible or a logically irreversible operation. It cannot tell 

us what the minimum dissipation must be if we were to try to carry out the same operations with 

thermodynamically reversible processes. 
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2.	  Brownian	  Computers	  

 All bodies in thermal contact with their environment exhibit fluctuations in their physical 

properties. They are indiscernible in macroscopic bodies. Fluctuation driven motions are visible 

through an optical microscope among tiny particles suspended in water. The botanist Robert 

Brown observed them in 1827 as the jiggling of pollen grains, but he did not explain them. In his 

year of miracles of 1905, Einstein accounted for the motions as thermal fluctuations. When we 

proceed to still smaller molecular scales, these thermal motions become more important. In 

biological cells they can bring reagents into contact and are involved in the complicated 

chemistry of DNA and RNA. Bennett, sometimes in collaboration with Landauer (Bennett, 1973, 

1982; Bennett and Landauer 1985), notes that the molecular structures involved with DNA and 

RNA are at a level of complexity that they could be used to build computing devices whose 

function would, in some measure, be dependent on the thermal motions of the reagents. They 

then develop and idealize the idea as the notion of a mechanical computing device powered by 

these random thermal motions. These are the Brownian computers. 

 To see how these thermal motions can have a directed effect, consider the simplest case 

of a small particle released in the leftmost portion a long channel, shown from overhead in 

Figure 1. Random thermal motions will carry the particle back and forth in the familiar random 

walk. If a low energy trap is located at the rightmost end of the channel, the particle will 

eventually end up in it. It will remain there with high probability, if the trap is deep enough. 

 
Figure 1. Brownian motion of particle in a channel 

Bennett suggests that this sort of motion can drive forward a vastly more complicated 

contrivance of many mechanical parts that implements a Turing machine and hence carries out 

computations. It consists of many interlocked parts that can slide over one another. The 

continuing thermal jiggling of the parts leads the device to meander back and forth between the 

many states that comprise the steps of the computation. 

 The reader is urged to consult the works cited above for drawings and a more complete 

description of the implementation of the Brownian computer. 
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 The computer must be assembled from rigid components that interlock and slide over one 

another. It consists of various shapes that can slide up and down from their reference position to 

function as memory storage devices; actuator rods that move them; rotating disks with grooves in 

them to move the actuators; and so on. No friction is allowed, since that would be 

thermodynamically dissipative; and no springs are allowed. A spring-loaded locking pin, for 

example, would fail to function. Once the spring drives the pin home, it would immediately 

bounce out because of the time-reversible, non-dissipative dynamics assumed. 

 While Bennett’s accounts describe many essential parts of the Brownian computer, many 

more are not described. No doubt, a complete specification of all the parts of the Brownian 

computer would be lengthy. However, without it, we must assume with Bennett that the device 

really can be constructed from the very limited repertoire of processes allowed. That is, the 

possibility of the device and thus the entire analysis remains an unproven conjecture. I will leave 

the matter open since there are demonstrable failures in the analysis to be elaborated below, even 

if the conjecture is granted. 

 For reasons that will be apparent later, Bennett mostly considers Brownian computations 

in which each computational state has a unique antecedent state. This condition is met if the 

device computes only logically reversible operations, such as NOT. For then, if the present state 

of a memory cell is O, its antecedent state must have been 1; and vice versa. However the 

condition is not realized if the device computes logically irreversible operations, such as the 

erase function. For then, if the present state of a memory cell is the erasure value 0, its 

antecedent state may have been either a 0 or a 1. 

 That each state has a unique antecedent state requires that the whole device implement a 

vastly complicated system of interlockings, so that the entire device has only one degree 

freedom. The computation is carried out by the device meandering along this one degree of 

freedom. The effect of this requirement, as implemented by Bennett, has an important abstract 

expression. The position and orientation of each component of the massively complicated 

Brownian computer can be specified by their coordinates. The combination of them all produces 

a configuration space of very high dimension. The limitation to a single degree of freedom 

results in the accessible portion of the configuration space being a long, labyrinthine, one-

dimensional channel with a slight thickness given by the free play of the components. 
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 Figure 2 illustrates how this channel comes about in the simplest case of two components 

constrained to move together. The components are bar and a plate with a diagonal slot cut into it. 

The bar has a pin fixed to its midpoint and the pin engages with the slot in the plate. Without the 

pin, the two components would be able to slide independently with the two degrees of freedom 

labeled by x and y. The confinement of the pin to the slot constrains them to move together, 

reducing the possible motions to a single degree of freedom. That single degree of freedom 

corresponds to the diagonal channel in their configuration space shown at right. 

 

y

y

x
x  

Figure 2. Two Components with a Single Common Degree of Freedom. 

 

The channel in the configuration space of a Brownian computer would be vastly more 

complicated. It will end with a low energy trap analogous to the one shown in Figure 1 so that 

the computation is completed with high probability. 

 Here is Bennett’s (1984) brief summary: 

In a Brownian computer, such as Bennett’s enzymatic computer, the interactions 

among the parts create an intricate but unbranched valley on the many-body 

potential-energy surface, isomorphic to the desired computation, down which the 

system passively diffuses, with a drift velocity proportional to the driving force. 

The summary includes an unneeded complication. Bennett presumes that some slight energy 

gradient is needed to provide a driving force that will bring the computation towards its end 

state. In fact, as we shall see shortly, entropic forces are sufficient, if slower.  



 7 

3.	  Thermodynamic	  Analysis	  of	  Brownian	  Computers	  

 Bennett and Landauer (Bennett, 1973, 1982; Bennett and Landauer 1985) report several 

results concerning the thermodynamic and stochastic properties of Brownian computers. They do 

not provide the computations needed to arrive at the results. They are, apparently, left as an 

exercise for the reader. In this section, I will do the exercise. As we shall see in this and the 

following sections, I am able to recover some of the results concerning probabilities. However 

the fundamental claim that the Brownian computer operates at or near thermodynamic 

reversibility will prove unsustainable. 

3.1	  Uncontrolled	  Expansion	  of	  a	  Single	  Molecule	  Gas	  

 As a warm-up, I will recall the thermodynamics of the n-fold expansion of a single 

molecule ideal gas at temperature T. The gas molecule is initially trapped by a partition in the 

first cell of volume V of a long chamber of volume nV, as shown in Figure 3. The partition is 

removed and the gas expands irreversibly into the larger volume nV. 

0 1 2 3 n-1 n

0 1 2 3 n-1 n 
Figure 3. Irreversible Expansion of a one molecule gas 

 

The Hamiltonian of the single molecule is given by  

H = π(p)                                                          (1) 

in the region of space accessible to the gas and infinite elsewhere. Here p is a vector representing 

the momentum degrees of freedom of the molecule and π is some function of them, typically 

quadratic. The key point to note is that the Hamiltonian H is not a function of the spatial 
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coordinates x = (x, y, z) of the molecule. This independence drives the results that follow. We 

assume that the x coordinate is aligned with the long axis of the chamber and that it has a cross-

sectional area A. 

 At thermal equilibrium, the molecule’s position is Boltzmann distributed probabilistically 

over its phase space as 

p(x,p) = exp(-H/kT)/Z(λ)                                          (2) 

where we assume the molecule is confined to a region x=0 to x=λ of the chamber. Using V=A.1, 

the partition function Z(λ) associated with the molecule confined to the region x=0 to x=λ is 

€ 

Z(λ) =
all  p∫ exp(−H / kT )Adxdp =Vλ exp(−π (p) / kT )

all  p∫x=0

λ

∫ dp                    (3) 

The associated canonical thermodynamic entropy is 

€ 

S(λ) =
∂
∂T
(kT lnZ(λ)) = k ln(Vλ)+ Sp (T )                                       (4) 

The contribution of the momentum degrees of freedom is absorbed into a constant Sp(T) that will 

not figure in the subsequent calculations. The independence of the Hamiltonian (1) from the 

position coordinates leads to the characteristic logarithmic volume dependence of the canonical 

entropy (4), that is, that S(λ) varies as k ln (Vλ). 

 It follows that the thermodynamically irreversible n-fold increase in volume of the one 

molecule gas from λ=1 to λ=n is associated with an entropy change 

ΔSgas = k ln (Vn) – k ln V = k ln n                                                (5) 

During the expansion, the mean energy of the gas remains constant and, since it does no work, 

no net heat is exchanged with the environment. Since the environment is unchanged, we have for 

its thermodynamic entropy change 

ΔSenv = 0                                                                          (6) 

Thus the total entropy change is  

ΔStot =   ΔSgas + ΔSenv =  k ln n                                                        (7) 

Since the internal energy E is remains the same, it follows from (5) that the change in free energy 

F = E –TS of the gas is  

ΔFgas = - kT ln n                                                                (8) 

We recover the same result from (3) and the canonical expression F = -kT ln Z. 
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 The essential point for what follows is that this expansion is driven entirely by entropic 

forces. There is no energy gradient driving it; the internal energy E of the gas is the same at the 

start of the expansion, when it is confined to volume V, as at the end, when it occupies a volume 

nV. 

 More generally, this sort of process is driven by an imbalance of a generalized 

thermodynamic force. For isothermal processes whose stages are parameterized by λ, the 

appropriate generalized force is 

X = - (∂F/∂λ)                                                                (9) 

If we parameterize the states of the isothermally expanding one molecule gas by the volume 

V(λ) = Vλ, occupied at stage λ, then F(λ)= -kT ln V(λ) and the generalized force adopts the 

familiar form of the pressure of a single-molecule ideal gas:  

€ 

X =T ∂k lnV (λ)
∂V (λ)

=
kT
V (λ)

                                                     (10) 

3.2	  Brownian	  Motion	  

 One of the papers of Einstein’s annus mirabilis of 1905 gives his analysis of Brownian 

motion (Einstein, 1905). In the paper he noted that the thermal motions of small particles 

suspended in a liquid would be observable under a microscope and he conjectured that their 

motions were the same as those observed in pollen grains by the botanist Brown. Einstein’s goal 

was to give an account of these thermal motions within the molecular-kinetic theory of heat and 

thereby finally to establish it as the correct account of thermal processes.2 

 His starting point was to propose the astonishing idea that, from the perspective of the 

molecular-kinetic theory, individual molecules and microscopically visible particles can be 

treated by the same analysis and will give the same results. To reflect this astonishing idea, the 

analysis just given above of the statistical physics of a single molecule, has been written in such 

a way that it can be applied without change to a microscopically visible particle, such as a pollen 

grain. The controlling fact is that the Hamiltonian for a microscopically visible particle can be 

written as (1), for the energy of the particle will be independent of its position in the suspending 

liquid. The particular expression π(p), which gives the dependence of the Hamiltonian on the 

                                                
2 For an account of Einstein analysis, see Norton (2006, Section 3). 
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momentum degrees of freedom, will be different. For the particle is, to first approximation, 

moving through a resisting, viscous medium. However this difference will not affect the results 

derived above. 

 First, we will be able to conclude that a single Brownian particle will exert a pressure 

conforming to the ideal gas law, as shown in (10). What this means is that the collisions of the 

Brownian particle with the walls confining it to some volume V will lead to a mean pressure 

equal to kT/V on the walls. Einstein considered the case of the confining walls as a semi-

permeable membrane that allows the liquid but not the particle to pass. Then the pressure is 

appropriately characterized as an osmotic pressure. 

 Second, the volume dependence of the thermodynamic entropy of the Brownian particle 

will conform to (4), so that an n-fold expansion of the volume accessible to the particle will be 

associated with an increase of thermodynamic entropy of ΔS = k ln n as shown in (5). By the 

same reasoning as in the case of the one molecule gas, the increase in total entropy is also ΔStot =  

k ln n as given by (7). 

  In direct analogy with the irreversible expansion described above for a single molecule 

gas, we can form a liquid filled chamber of volume nV with the Brownian particle trapped by a 

partition in the leftmost volume V, as shown in Figure 4. The particle exerts a pressure on the 

partition of kT/V. When the partition is removed, the unopposed pressure will lead to a 

thermodynamically irreversible expansion of the one Brownian particle gas into the full 

chamber. The uncontrolled expansion from volume V to nV is associated with the creation of k 

ln n of thermodynamic entropy. 

0 1 2 3 n-1 n

0 1 2 3 n-1 n 
Figure 4. Irreversible Expansion of a one Brownian particle gas 
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 Thermodynamically, the expansion of the one molecule gas and the one Brownian 

particle gas are the same. The two Figures 3 and 4, however, suggest the great dynamical 

differences. Ordinary gas molecules at normal temperatures move quickly, typically at many 

hundreds of meters per second. The motion of the one molecule is unimpeded by any other 

molecules, so it moves freely between the collisions with the walls. Brownian particles have the 

same mean thermal energy of kT/2 per degree of freedom. But since they are much more 

massive than molecules, their motion is correspondingly slower. More importantly, they undergo 

very many collisions: the jiggling motion of a pollen grain visible under a microscope is the 

resultant of enormously many collisions with individual water molecules in each second. 

 This means that the expansion of the one Brownian particle gas is very much slower than 

that of the one molecule gas. When we observe the Brownian particle under the microscope, we 

are watching it for the briefest moment of time if we set our time scales according to how long 

the particle will take to explore the volume accessible to it. If we were to watch it for an 

extended time, we would see that the particle has adopted a new equilibrium state in which it 

explores the full volume nV, just as the expanded one molecule gas explores the same volume 

nV. 

 These differences of time scales between the one molecule gas and the one Brownian 

particle gas are irrelevant, however, to the thermal equilibrium states. Both gases start out in an 

equilibrium state confined to a volume V; they undergo an uncontrolled, n-fold expansion to a 

new equilibrium state confined to volume nV; and their thermodynamic entropies each increase 

by k ln n. 

 These remarks draw on the analysis of the earlier parts of Einstein’s (1905) paper. In 

sections 3 and later, he took up another aspect of Brownian motion that will not arise in the 

otherwise analogous physics of Brownian computers. Einstein modeled the Brownian particles as 

spheres and the surrounding water as a viscous fluid. (There is no analog of the fluid in the 

Brownian computer.) Einstein then modeled the diffusion of Brownian particles through the 

liquid as governed by the balance of two forces: the driving force of osmotic pressure in a 

gradient of particles and the opposing viscous forces as the particles move. What matters for our 

purposes is that Einstein eventually arrived at a result in the new theory of stochastic processes 

being created by his paper that is more general that the particular case he analyzed. 
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 It is a result concerning particles, such as Brownian particles, that are animated in a 

random walk. Their positions spread through space according to a Gaussian distribution whose 

spatial variance is proportional to time. It follows that the average (absolute) distance d(t) 

covered in some time t is proportional to 

€ 

t . This means that we cannot speak meaningfully of 

the average speed over time of the Brownian particle, for that average speed  

d(t)/t is proportional to 1/

€ 

t  →  0 as t→∞                                        (11) 

That is, if one tries to estimate average speed by forming the familiar ratio “distance/time,” that 

ratio can be made arbitrarily small by allowing time to become arbitrarily large. Einstein (1907, 

p. 42) remarks that the “…speed thus provided corresponds to no objective property of the 

motion investigated…” 

3.3	  The	  Undriven	  Brownian	  Computer	  without	  Trap	  

 A Brownian computer behaves thermodynamically like a one molecule gas or a one 

Brownian particle gas expanding irreversibly into its configuration space. Here I will develop the 

simplest case of the undriven Brownian computer without a trap. This is the case that is closest to 

the irreversible expansion of a one molecule/Brownian particle gas. While it does not terminate 

the computation usefully, it sets the minimum thermodynamic entropy creation for all Brownian 

computers. Later we will add extra processes, such as a slight energy gradient to drive the 

computation faster, or an energy trap to terminate it. Each of these additions will create further 

thermodynamic entropy. 

 In this simplest case, the Brownian computer explores a one-dimensional labyrinthine 

channel in its phase space. All spatial configurations in the channel are assumed to have the same 

energy; there is no energy gradient pressing the system in one or other direction. As a result, the 

Hamiltonian of the Brownian computer is of the form (1), where we have the controlling fact that 

it depends only on the momentum degrees of freedom. The analysis proceeds as before. 

 We divide the very high dimensional configuration space of the computer into n stages. 

Precisely how the division is effected will depend upon the details of the implementation. One 

stage may correspond to all configurations in which the Turing machine reader head is 

interacting directly with one particular tape cell. For simplicity, we will assume that each stage 

occupies the same volume V in configuration space. Progress through the channel is 

parametrized by λ, which counts off the stages passed. 
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 To operate the computer, its state is localized initially in the volume of phase space 

corresponding to the first stage, λ=0 to λ=1. The device is then unlocked—the thermodynamic 

equivalent of removing the partition in the gas case—and the computer undertakes a random 

walk through the accessible channel in its phase space.  As with the one molecule gas, changes in 

the momentum degrees of freedom play no role in the expansion. The computer settles down into 

a new equilibrium state in which it explores the full volume nV of the channel of its 

configuration space. The expansion is driven by an unopposed generalized force X given by (9), 

and with a volume dependence in configuration space of the single-molecule ideal gas law (10) 

 The expansion is illustrated in Figure 5, which also shows the constant energy 

dependence of the computer on the configuration space. 

 

0

0

0

1 2 3 n-1 n

1 2 3 n-1 nλ

energy

 
Figure 5. Undriven Brownian computer without Trap 

 

We arrive at two results. First, since the Hamiltonian is independent of the spatial configuration 

in the accessible channel, it follows from the Boltzmann distribution (2) that the computer’s state 

is distributed uniformly over the n stages of λ. That is, its probability density is 

p(λ) = 1/n                                                                   (12a) 

The thermodynamically irreversible, uncontrolled n-fold expansion will create thermodynamic 

entropy 

ΔScomp = k ln n                                                                   (5a) 

The environment will be unaffected; no work is done by the expansion and no net heat passes 

between the environment and the computer: 

ΔSenv = 0                                                                          (6a) 

Thus the total thermodynamic entropy change is  
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ΔStot =   ΔScomp + ΔSenv =  k ln n                                                        (7a) 

This is the minimum thermodynamic entropy creation associated with the operation of the 

Brownian computer. Embellished versions below add processes that create more thermodynamic 

entropy. 

 As before, the free energy change is 

ΔFcomp = - kT ln n                                                                (8a) 

3.4	  The	  Undriven	  Brownian	  Computer	  with	  Trap	  

 This last Brownian computer is not useful for computation since its final, equilibrium 

state is uniformly distributed over all stages of the computation. The remedy is to add an extra 

stage, λ=n to λ=n+1, in which the computer’s energy is dependent on the spatial positions of its 

parts, that is, on its position in configuration space. In the final trap stage, the energy of the 

system will be Etrap less than the position independent energy of the other stages, which are set 

by convention to 0. This trapping energy is set so that occupation of the final trap stage is 

probabilistically preferred to whichever extent we choose. When the computer moves into this 

final trap state, the computer state corresponds to that of completion of the computation. This is 

illustrated in Figure 6. 

0

0

0

1 2 3 n-1 n n+1

n+11 2 3 n-1 nλ

energy

-Etrap

 
Figure 6. Undriven Brownian Computer with a Low Energy Trap 

The addition of the energy trap introduces a configuration space dependence of the Hamiltonian. 

Within the accessible channel, it is now 

H = π(p) + ϕ(λ)                                                          (1b) 

where ϕ(λ) = 0 for 0<λ<n and ϕ(λ) = -E trap for n<λ<n+1. The Boltzmann distribution becomes 

p(λ,p) = exp(-H/kT)/Z(n+1)                                                   (2b) 
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where the partition function is 

€ 

Z(n+1) = exp(−H / kT )dxdp = exp(−π (p)
all  p∫∫ / kT )dp ⋅ exp(−ϕ(λ)

λ=0

n+1
∫ / kT )Vdλ  

€ 

= M ⋅V ⋅ (n+ exp(Etrap / kT ))                                          (3b) 

using the fact that the volume element of configuration space dx = Vdλ and writing the 

contribution from the momentum degrees of freedom as 

€ 

M = exp(−π (p)
all  p∫ / kT )dp . Since the 

momentum degrees of freedom are uninteresting, we integrate them out and recover the 

probability densities 

€ 

p(λ) =
1

n+ exp(Etrap / kT )
 for 0<λ<n    

€ 

p(λ) =
exp(Etrap / kT )

n+ exp(Etrap / kT )
 for n<λ<n+1               (12b) 

It follows that the probability P that the computer is in the trap state n<λ<n+1 is  

P = 1/(1 + n.exp(-Etrap/kT))      OP = exp(Etrap/kT)/n 

where OP = P/(1-P) is the odds of the computer being in the final trap state. Inverting this last 

expression enables us to determine how large the trapping energy Etrap should be for any 

nominated P or OP:  

Etrap = kT(ln n + ln OP)  =  kT ln n +  kT ln (P/(1-P))                               (13b) 

We compute the thermodynamic entropy of the expanded equilibrium state as 

€ 

S(n+1) =
∂
∂T
(kT lnZ(n+1)) =

∂
∂T
(kT lnM )+ ∂

∂T
(kT lnV )+ ∂

∂T
(kT ln(n+ exp(Etrap / kT )) 

€ 

= Sp(T )+ k lnV + k ln(n+ exp(Etrap / kT ))−P ⋅Etrap /T                       (4b) 

The first term Sp(T) represents the contribution of the momentum degrees of freedom and is 

independent of stage of computation achieved. Hence, as before, it need not be evaluated more 

specifically. 

 The thermodynamic entropy of the initial state is S(1) = Sp(T) + k ln V as before. 

Therefore, the increase in thermodynamic entropy in the course of the thermodynamically 

irreversible expansion and trapping of the computer state is 

ΔScomp = k ln (n + exp(Etrap/kT)) – P. Etrap/T                                 (5b) 

In the course of the thermodynamically irreversible expansion, when the system falls into the 

final energy trap, it will release energy Etrap as heat to the environment. More carefully, on 
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average it will release energy P. Etrap since the computer state will only be in the trap with high 

probability P. This will increase the thermodynamic entropy of the environment by3 

ΔSenv = P. Etrap/T                                                         (6b) 

Thus the total thermodynamic entropy change is  

ΔStot  =   ΔScomp + ΔSenv = k ln (n + exp(Etrap/kT)) 

= k ln n   +   k ln (1+ OP)                                  (7b) 

Hence the effect of adding the trap is to increase the net creation of thermodynamic entropy over 

that of the untrapped system (7a) by the second term k ln (1+ OP) = k ln (1/(1-P)). The added 

term will be larger according to how much we would like the trap state to be favored, that is, 

how large we set the odds OP. 

 Rearranging (5b), we find that change in free energy F=E-TS is 

ΔFcomp = - kT ln n   -  kT ln (1+ OP)                                              (8b) 

We recover the same result from (3b) and the canonical expression F = -kT ln Z. 

3.5	  The	  Energy	  Driven	  Brownian	  Computer	  without	  Trap	  

 This last case of the undriven but trapped Brownian computer is sufficient to operate a 

Brownian computer. Bennett (1973, p. 531; 1982,  p. 921), however, includes the complication 

of a slight energy gradient in the course of the computation, in order to speed up the 

computation. We can understand the thermodynamic import of this augmentation by considering 

the simpler case of an energy gradient driven computer, without the energy trap. 

 The energy gradient is included by assuming that there is linear spatial dependence of the 

energy of the system on the parameter λ that tracks progress through the accessible channel in 

the phase space. That is, we assume an energy ramp of ε per stage. The Hamiltonian becomes: 

H = π(p) - ελ                                                          (1c) 

This is illustrated in Figure 7. 

                                                
3 While the process is not thermodynamically reversible, we recover the same thermodynamic 

entropy change for the environment by imagining another thermodynamically reversible process 

in which heat energy P. Etrap is passed to the environment. 



 17 

0

0

0

-εn

1 2 3 n-1 n

1 2 3 n-1 nλ

energy

 
Figure 7. Energy Driven Brownian Computer without Trap 

 

The effect of the energy ramp will be to accelerate progress towards the completion of the 

computation as well as skewing the equilibrium probability distribution towards the final stage. It 

will, however, prove to be a thermodynamically inefficient way of assuring completion. That 

assurance is achieved more efficiently with an energy trap, as I believe is Bennett’s intent. 

 As before, the probability density over the n stages of the computation is 

p(λ,p) = exp(-H/kT)/Z(n)                                                   (2c) 

where the partition function is 

€ 

Z(n) = exp(−H / kT )dxdp = exp(−π (p)
all  p∫∫ / kT )dp ⋅ exp(ελ)

λ=0

n
∫ / kT )Vdλ  

€ 

= M ⋅V ⋅ (kT /ε) ⋅ (exp(εn / kT )−1)                                      (3c) 

As before, M represents the contribution of momentum degrees of freedom. Integrating out these 

momentum degrees of freedom, we recover the probability density for the accessible channel of 

configuration space 

€ 

p(λ) =
ε
kT

exp(ελ / kT )
exp(εn / kT )−1

                                                        (12c) 

Hence the probability that the computer state is in the final stage is 

€ 

P = p(λ)dλ
n−1

n
∫ =

exp(εn / kT )− exp(ε(n −1) / kT )
exp(εn / kT )−1

≈ 1− exp(−ε / kT ) 

where the approximation is that εn/kT >> 1. Inverting, we find that the energy gradient ε per 

stage to achieve a final stage probability P is 

ε = kT ln(1/(1-P)) 
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For desirable values of P that are close to unity, this last formula shows that a steep energy 

gradient is needed. For a P = 0.99, we would require ε = kT ln(100) = 4.6 kT. Finally, If we 

assume in addition that ε << kT, this probability reduces to 

P = 1 - exp(-ε/kT)  ≈ ε/kT, 

This conforms with Bennett’s (1973, p.51) remark that: 

…if the driving force ε is less than kT, any Brownian computer will at equilibrium 

spend most of its time in the last few predecessors of the final state, spending about 

ε/kT of its time in the final state itself 

 Before computing the thermodynamic entropy change, it will be convenient to compute 

the mean energy of the initial state E(1) and the final state E(n) associated with the configuration 

space degrees of freedom.  We have for the mean energy that 

€ 

E(n) = kT 2 ∂
∂T
lnZ(n) 

€ 

= kT 2 ∂
∂T
lnM + kT 2 ∂

∂T
ln(kT /ε)+ kT 2 ∂

∂T
ln(exp(εn / kT )−1) 

€ 

= Ep(T )+ kT −
εn

1− exp(−εn / kT )
 

where Ep(T) represents the contribution of the momentum degrees of freedom and is independent 

of stage of computation achieved. Setting n=1, we find 

€ 

E(1) = Ep (T )+ kT −
ε

1− exp(−ε / kT )
 

We now compute the thermodynamic entropy of the final equilibrium state as4 

€ 

S(n) =
∂
∂T
(kT lnZ(n)) 

€ 

=
∂
∂T
(kT lnM )+ ∂

∂T
(kT lnV )+ ∂

∂T
(kT ln(kT /ε))+ ∂

∂T
(kT ln(exp(εn / kT )−1)) 

€ 

= Sp(T )−Ep (T ) /T + k lnV + k ln(kT /ε)+ k ln(exp(εn / kT )−1)+E(n) /T   

€ 

= k lnV + k ln(kT /ε)+ k ln(exp(εn / kT )−1)+E(n) /T                                          (4c) 

                                                
4 The expression is simplified using Sp(T) = Ep(T)/T. This follows from considering the 

momentum degrees of freedom contribution to both entropy and energy during a 

thermodynamically reversible heating from T=0. 
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As before, Sp(T) represents the contribution of the momentum degrees of freedom and is 

independent of stage of computation achieved. Setting n=1, we find the initial state 

thermodynamic entropy to be 

€ 

S(1) = k lnV + k ln(kT /ε)+ k ln(exp(ε / kT )−1)+E(1) /T  

 The thermodynamic entropy increase of the Brownian computer during its irreversible 

expansion from stage 1 to stage n is given by 

ΔScomp = S(n) – S(1)  

= k ln (exp(εn/kT)-1)- k ln (exp(ε/kT)-1) + (E(n) – E(1))/T                                 (5c) 

While the computer moves down the energy ramp, it will on average pass heat –(E(n)-E(1)) to 

the environment. As before this corresponds to a thermodynamic entropy increase in the 

environment of 

ΔSenv = - (E(n) – E(1))/T                                                                           (6c) 

Thus the total thermodynamic entropy change is  

ΔStot  =   ΔScomp +  ΔSenv 

= k ln (exp(εn/kT)-1)- k ln (exp(ε/kT)-1)  

€ 

= k ln exp(εn / kT )−1
exp(ε / kT )−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                                                                              (7c) 

Rearranging (5c), we find that the change in free energy F=E-TS is 

€ 

ΔFcomp = −kT ln exp(εn / kT )−1
exp(ε / kT )−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                                                                      (8c) 

We recover the same result from (3c) and the canonical expression F = -kT ln Z. 

 For very small ε, such that ε << kT/n, the total thermodynamic entropy created reverts to 

the k ln n of the undriven computer (5a), which is the minimum entropy creation: 

€ 

ΔStot = k ln exp(εn / kT )−1
exp(ε / kT )−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ k ln

1+εn / kT −1
1+ε / kT −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = k lnn  

 Correspondingly the free energy change ΔFcomp reverts to –kT ln n of (8a). 

 If ε is large so that ε>>kT, the creation of thermodynamic entropy becomes linear in n 

€ 

ΔStot = k ln exp(εn / kT )−1
exp(ε / kT )−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ k ln

exp(εn / kT )
exp(ε / kT )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = k ln(exp(ε(n −1) / kT ) = (n −1)ε /T  
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which grows with n much faster than the logarithm in k ln n. Since large values of ε would be 

needed to drive the system into its final stage with high probability, this method of assuring 

termination of the computation is thermodynamically costly. 

3.6	  The	  Energy	  Driven	  Brownian	  Computer	  with	  Trap	  

 Finally, I will provide an abbreviated account of the case of a Brownian computer that is 

both driven by an energy gradient and brought to completion with an energy trap. Its 

Hamiltonian is a combination of the two earlier cases 

H = π(p) + ϕ(λ)                                                          (1d) 

where 

ϕ(λ) = - ελ                      for 0<λ<n 

= - εn -E trap           for n<λ<n+1. 

It is illustrated in Figure 8. 
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energy

-εn-Etrap

-εn

 
Figure 8. Energy Driven Brownian Computer with Energy Trap 

Since this case incorporates both dissipative processes added in the last two cases, in operation it 

will create more thermodynamic entropy than any case seen so far, that is, in excess of k ln n, so 

I will not compute the thermodynamic entropy created. 

 If P is the probability that the fully expanded system is in the trap, we can compute the 

odds ratio OP = P/(1-P) by taking the ratio of the partition functions for the two regions of phase 

space: Z(n) for the first n stages and Z(trap) for the final trap state n<λ<n+1. From (3c) and (3b) 

we have 

€ 

Z(n) = M ⋅V ⋅ (kT /ε) ⋅ (exp(εn / kT )−1) 
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€ 

Z(trap) = M ⋅V ⋅ exp((εn+Etrap ) / kT ) 

We have for the odds ratio 

€ 

Op =
P
1−P

=
Z(trap)
Z(n)

=
exp((εn+Etrap ) / kT )

(kT /ε) ⋅ (exp(εn / kT )−1)
=
ε
kT

⋅
exp(Etrap / kT )
1− exp(−εn / kT )

 

We can invert this last expression to yield 

Etrap = kT ln (kT/ε) + kT ln (1- exp(-εn/kT)) + kT ln OP                                 (13d) 

It reverts to the corresponding expression (13b) for the undriven Brownian computer when we 

assume that εn/kT << 1, for then 

kT ln (kT/ε) + kT ln (1- exp(-εn/kT)) ≈ kT ln (kT/ε) + kT ln (εn/kT) = kT ln n 

If instead we assume more realistically that εn/kT >> 1, so that exp(-εn/kT)  ≈ 0, we recover 

Etrap = kT ln (kT/ε) + kT ln OP = kT ln (OP kT/ε) 

This seems to be the result to which Bennett (1982, p. 921) refers when he writes: 

However the final state occupation probability can be made arbitrarily large, 

independent of the number of steps in the computation, by dissipating a little extra 

energy during the final step, a “latching energy” of kT ln (kT/ε) + kT ln (1/η) 

sufficing to raise the equilibrium final state occupation probability to 1- η. 

The two results match up close enough if we set P=1- η and approximate OP ≈ 1/(1-P) 

when P is very close to unity. However the result does not conform quite as well with 

Bennett’s (1973, p. 531) remark that: 

If all steps had equal dissipation, ε<kT, the final state occupation 

probability would be only about ε/kT. By dissipating an extra 

kT ln (3 kT/ε) of energy during the last step, this probability is 

increased to about 95%. 

A final stage probability of P = 0.95 corresponds to an odds ratio of OP = 20, so that the 

extra energy dissipated should be kT ln (20 kT/ε). Compatibility would be restored if we 

assume a missing “+” in Bennett’s formula, for ln 20 = 3, so that 

kT ln (20 kT/ε) = kT ln 20 + kT ln (kT/ε) = kT (3 + ln (kT/ε)) 
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4	  Thermodynamic	  Reversibility	  is	  Mistakenly	  Attributed	  to	  Brownian	  

Computers	  

 The results of the last section can be summarized as follows. An n stage computation on a 

Brownian computer is a thermodynamically irreversible process that creates a minimum of k ln n 

of thermodynamic entropy (see equation (7a)). Additional thermodynamic entropy of k ln (1+ 

OP) is created to complete the computation by trapping the computer state in a final energy trap 

with probability odds OP (see equation (7b)). If we accelerate the computation by adding an 

energy gradient of ε per stage, we introduce further creation of thermodynamic entropy 

according to equation (7c). For a larger gradient, the thermodynamic entropy created grows 

linearly with the number of stages. 

 While it is thermodynamically irreversible, a Brownian computer is routinely misreported 

as operating thermodynamically reversibly. Bennett (1984) writes: 

A Brownian computer is reversible in the same sense as a Carnot engine: Both 

mechanisms function in the presence of thermal noise, both achieve zero 

dissipation in the limit of zero speed, and both are, in accordance with 

thermodynamic convention, presumed to be absolutely stable against structural  

decay (e.g., thermal annealing of a piston into a more rounded shape), despite 

their being non-equilibrium configurations of matter. 

This misreporting is especially awkward since the case of the Brownian computer is offered as 

the proof of a core doctrine in the recent thermodynamics of computation: that logically 

reversible operations can be computed by thermodynamically reversible processes.  Bennett 

(1988, pp. 329-31) reports that the “proof of the thermodynamic reversibility of computation [of 

logically reversible operations]” arose through the investigation into the biochemistry of DNA 

and RNA that culminated in the notion of the Brownian computer. Bennett (2003, p. 531) reports 

that the objection against thermodynamically reversible computation of logically reversible 

operations “has largely been overcome by explicit models.” He then cites the non-

thermodynamic, hard sphere model of Fredkin and Toffoli; and “at a per-step cost tending to 

zero in the limit of slow operation (so-called Brownian computers discussed at length in my 

review article; [(Bennett, 1982)]).” 
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5.	  Thermodynamically	  Reversible	  Processes	  

 Evidently, thermodynamically reversible processes can be hard to identify correctly. The 

above misidentification remains unchallenged in the literature. Hence it will be useful to review 

here just what constitutes thermodynamic reversibility and how it can be misidentified. 

5.1	  What	  They	  Are	  

 The key notion in a thermodynamically reversible process is that all thermodynamic 

driving forces are in perfect balance. This traditional conception is found in the old text-books. 

Poynting and Thomson (1906, p. 264) give the “conditions for reversible working” that 

“indefinitely small changes in the external conditions shall reverse the order of change.” They 

list these conditions as: bodies exchanging heat “never differ sensibly” in temperature; and that 

the “pressure exerted by the working substance shall be sensibly equal to the load.” It follows 

that “exactly reversible processes are ideal, in that exact reversibility requires exact equilibrium 

with surroundings, that is, requires a stationary condition.” This means that nothing changes, so 

there is no process. They then offer the familiar escape:5 

…we can approximate as closely as we like to the conditions of reversibility, by 

making the conditions as nearly as we like [to] those required, and lengthening 

out the time of change. 

Planck (1903, §§71-73) gives an essentially similar account. He writes of pressures that differ 

“just a trifle,” “infinitesimal differences of temperature” and “infinitely slow” progress. The 

process consists of “a succession of states of equilibrium.” More fully: 

If a process consists of a succession of states of equilibrium with the exception of 

very small changes, then evidently a suitable change, quite as small, is sufficient 

to reverse the process. This small change will vanish when we pass over to the 

limiting case of the infinitely slow process… 

                                                
5 It is quite delicate matter to explain the cogency of the notion of a thermodynamically 

reversible process when proper realization of the process entails that nothing changes, so no 

process occurs. For my attempt see Norton (forthcoming b). 
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We need only add to these classic accounts that generalized thermodynamic forces, such as those 

derived from (9) and which generalize the notion of pressure, must also be in balance. 

 When a Brownian particle is released into a liquid, its resulting exploration of the 

accessible volume is driven, thermodynamically speaking, by an unbalanced osmotic pressure, as 

Einstein argued in his celebrated analysis of 1905. Hence it is a thermodynamically irreversible 

expansion. Correspondingly, when a Brownian computer is set into its initial state and then 

allowed to explore the accessible computational space, the exploration is a thermodynamically 

irreversible process. 

5.2	  How	  We	  Might	  Misidentify	  Them	  	  

 There are many ways we may come to misidentify a thermodynamically irreversible 

process as thermodynamically reversible. 

 Infinite slowness is not sufficient to identify thermodynamic reversibility. 

While thermodynamically reversible processes are infinitely slow, the converse need not hold. 

Sommerfeld (1962, p. 17) gives the simple example of an electrically charged capacitor that can 

be discharged arbitrarily slowly through an arbitrarily high resistance. While the process can be 

slowed indefinitely, it is a thermodynamically irreversible conversion of the electrical energy of 

the capacitor into heat. The driving voltage is not balanced by an opposing force. A simpler 

example is the venting of a gas at high pressure into a vacuum through a tiny pinhole. The 

process can be slowed arbitrarily, but it is not thermodynamically reversible since the gas 

pressure is unopposed. 

 Reversibility of the microscopic or molecular dynamics not sufficient to assure 

thermodynamic reversibility. 

One cannot discern thermodynamic reversibility by affirming the reversibility of the individual 

processes that comprise the larger process at the microscopic or molecular level. They may be 

reversible, in the sense that they can go either way, while the overall process is itself 

thermodynamically irreversible. As a general matter, any thermodynamically irreversible process 
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may be reversed by a vastly improbable fluctuation. That possibility depends upon the 

microscopic reversibility of the underlying processes.6 

 A pertinent example is the thermodynamically irreversible expansion of a one molecule 

gas. Its momentary, microscopic behavior is reversible. To see this, consider a one molecule gas 

suddenly released into a large chamber filled with fixed, oddly shaped obstacles. If we simply 

attend to the molecule’s motion over a brief period of time, while it undergoes one or two 

collisions, we would see mechanically reversible motions, as illustrated in Figure 9. 

0 1 2 3 n-1 n

0 1 2 3 n-1 n 
Figure 9. Microscopic Reversibility of a Thermodynamically Irreversible Expansion 

 

However that would mislead us. We need to attend to the initial low entropy state of confinement 

of the one molecule gas; and its final high entropy state in which it explores the larger volume 

freely in order to recognize the thermodynamically irreversible character of the expansion. 
                                                
6 For isothermal, isobaric chemical reactions, the relevant generalized force is the chemical 

potential µA = (∂GA/∂nA)T,P, where G = E + PV – TS is the Gibbs free energy of reagent A and 

nA the number of moles of A. In dilute solutions, µA = µA0 + RT ln [A] for R the ideal gas 

constant, µA0 the chemical potential at reference conditions and [A] the molar concentration. 

While each chemical reaction is reversible at the molecular level, the term RT ln [A] contributes 

an entropic force, so that a chemical reaction will be thermodynamically irreversible if the 

concentrations of the reagents and products are not constantly adjusted to keep them at 

equilibrium levels. 
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 Precisely the same must be said for both Brownian motion and a Brownian computer. 

They are both initialized in a state of low thermodynamic entropy; and then expand in a 

thermodynamically irreversible process to explore a larger space. At any moment, however, their 

motions will be mechanically reversible. We would be unable to tell whether we are observing 

their development forward in time or a movie of that development run in reverse. To separate the 

two, we would need to observe long enough to see whether the time evolution carries the system 

to explore the larger accessible space or whether it carries it back to its initial state of 

confinement. 

 Bennett (1982, p, 912) reports that a Brownian computer “is about as likely to proceed 

backward along the computational path, undoing the most recent transition, as to proceed 

forward.” Similarly Bennett and Landauer (1985, p. 54) report for the Brownian computer that 

“[i]t is nearly as likely to proceed backward  along the computational path, undoing the most 

recent transition, as it is to proceed forward.”7  

 This sort of reversibility is insufficient to establish thermodynamic reversibility. 

 Tracking internal energy instead of thermodynamic entropy is insufficient to identify 

thermodynamic reversibility. 

A thermodynamically reversible process is one in which the total thermodynamic entropy Stot = 

Ssys + Senv remains constant, where Ssys is the thermodynamic entropy of the system and Senv 

that of the environment. Thermodynamically reversible processes must be identified by tracking 

this entropy. They cannot be identified by tracking internal energy changes. 

 What confounds matters is that we often track thermodynamic reversibility by means of 

quantities that carry the label “energy,” such as free energy F = E-TS. These energies are useable 

this way in so far as they are really measures of thermodynamic entropy adapted to special 

conditions. For example, Brownian computers implement isothermal processes while in thermal 

contact with an environment with which they exchange no work. Hence, if we have a 

thermodynamic process parameterized by λ so that d = d/dλ, then the constant entropy condition 

of thermodynamic reversibility for a computer “comp” in a thermal environment “env” is 

0 = dStot = dScomp + dSenv = dScomp –dEcomp/T = - dFcomp/T. 
                                                
7 I believe the “nearly” refers to the small external force they add corresponding to the energy 

ramp of Section 3.5 above. 
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It corresponds to constancy of the free energy Fcomp of the computer.  

 Tracking internal energies gives the wrong result for Brownian computers. The 

thermodynamically irreversible n stage expansion of the Brownian computer is a constant energy 

process. The final energy trap could be replaced by a trap stage with a large volume Vtrap = 

NtrapV of accessible configuration space. Then the final trapping can also be effected without 

any change of internal energy. The odds for the computer state being in the trap are OP = P/(1-P) 

= Ntrap/n. Using (7a), the total thermodynamic entropy created is 

ΔStot =   ΔScomp + ΔSenv =  k ln (n + Ntrap) 

= k ln n + k ln (1+ Ntrap/n) = k ln n + k ln (1+ OP) 

which agrees with the thermodynamic entropy creation of the energy trap (7b). 

 Bennett (1973, p. 531) introduced a small energy gradient in order to bring some 

“positive drift velocity” into Brownian computation. As we saw in Section 3.2 and equation (11), 

without it, no average speed can be assigned to Brownian motion. However it is also unnecessary 

for completion of the computational processes. They proceed as does any diffusion process, with 

progress increasing with the square root of time. That means the computation will take longer to 

complete. Since temporal efficiency is not the issue, there seems no point in including a 

superfluous source of thermodynamic irreversibility. 

 In assessing the thermodynamic efficiency of the Brownian computation of logically 

reversible functions, Bennett and Landauer do not track thermodynamic entropy. Rather they 

track the wrong quantity, energy. Bennett writes of energy “dissipated,” both as the energy ε per 

step and in the trap energy or “latching” energy Etrap. See Bennett (1973, p. 531; 1982, p. 915, 

921). Bennett and Landauer (1985, pp. 54-56) write of energy “expended” or “dissipated”: 

A small force, provided externally, drives the computation forward. This force 

can again be as small as we wish, and there is no minimum amount of energy that 

must be expended in order to run a Brownian clockwork Turing machine. 

and 

The machine can be made to dissipate as small an amount of energy as the user 

wishes, simply by employing a force of the correct weakness. 

If the energy ε per stage is made arbitrarily small, the change of internal energy E of the 

Brownian computer will also become arbitrarily small. However it would be an elementary error 
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to confuse that with the operation of the computer becoming thermodynamically reversible, so 

that no net thermodynamic entropy is created; or to confuse it with the change in free energy 

F=E-TS becoming arbitrarily small. For one must also account for the “TS” term in free energy. 

For a Brownian computer driven by an energy gradient of ε per stage, the free energy change is 

given by (8c). As we saw in Section 3.5, it reverts to the value –kT ln n when ε becomes 

arbitrarily small. 

 Finally, I will mention another confusion here, although it has only played an indirect 

role in the misidentification of Brownian computation. It is common to assign an additional 

thermodynamic entropy of k ln 2 to a binary memory device merely if we do not know the datum 

held in the device. As I have argued in Norton (2005, §3.2), this additional assignment is 

incompatible with standard thermodynamics. If one persists in using it, one will misidentify 

which are processes of constant thermodynamic entropy and thus which are thermodynamically 

reversible. Thus Bennett (1988; 2003, p. 502) describes erasure of a cell with “random data” as 

“thermodynamically reversible,” but one with “known data” as “thermodynamically 

irreversible.” Since this literature uses the same erasure process in both cases, it follows that 

whether a process is thermodynamically reversible depends on what you know. That is 

incompatible with thermodynamic reversibility as a (near) balance of physical forces. They will 

balance independently of what we know. To rescue these claims, we need to rebuild 

thermodynamics with new notions of entropy and reversibility. Ladyman et al. (2008) have tried 

to construct such an augmented thermodynamics. Norton (2011, §8) explains why I believe their 

efforts have failed.8 

                                                
8 Bennett (1988, p. 329) writes: 

When truly random data (e.g. a bit equally likely to be 0 or 1) is erased, the 

entropy increase of the surroundings is compensated by an entropy decrease of the 

data, so that the operation as a whole is thermodynamically reversible….When 

erasure is applied to such [nonrandom] data, the entropy increase of the 

environment is not compensated by an entropy decrease of the data, and the 

operation is thermodynamically irreversible. 

To interpret these remarks, one needs to know that Bennett tacitly assumes an inefficient erasure 

procedure that also creates k ln 2 of thermodynamic entropy that is passed to the environment. 
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6	  Relation	  to	  Landauer’s	  Principle	  

 Brownian computation is normally limited to logically reversible operations, so that the 

accessible phase space forms a linear channel. If it is applied to logically irreversible operations, 

the accessible phase space becomes branched, possibly exponentially so. This branching has 

been associated with Landauer’s principle of the entropy cost of information erasure. I have 

argued elsewhere (Norton, 2005, 2011) that, even 50 years after its conception, the principle is at 

best a poorly supported speculation.9 None of the attempts to demonstrate it have succeeded. 

Can Brownian computation finally provide the elusive justification? We shall see below that the 

principle gains no support from Brownian computation. 

6.1	  The	  Principle	  

Bennett (2003, p. 501) describes it as: 

Landauer’s principle, often regarded as the basic principle of the thermodynamics 

of information processing, holds that any logically irreversible manipulation of 

information, such as the erasure of a bit or the merging of two computation paths, 

must be accompanied by a corresponding entropy increase in non-information-

bearing degrees of freedom of the information-processing apparatus or its 

environment. 

He then asserts a converse: 

Conversely, it is generally accepted that any logically reversible transformation of 

information can in principle be accomplished by an appropriate physical 

mechanism operating in a thermodynamically reversible fashion. 

6.2	  Computing	  Logically	  Irreversible	  Operations	  

 The simplest instance of logical irreversibility is erasure. An n stage erasure program 

applied to a single memory cell has two computational paths. One takes the cell, initially holding 

0 to the end state, holding 0; the other takes a cell initially holding 1 to the end state 0.  This 

                                                
9 For other critiques of Landauer’s principle, see Maroney (2005) and Hemmo and Shenker 

(2012, Ch. 11-12). 
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logical branching backwards from the 0 end state is implemented in a Brownian computer as 

backward branched channels in the accessible phase space, as shown on the top left in Figure 10. 

 While we may initialize the program to run on a cell holding, say, 0, when the computer 

state diffuses through the accessible phase space, it will also enter the other branch. This 

increases the accessible configuration space from nV to 2nV and that will lead to a 

corresponding increase in thermodynamic entropy creation. The analyses of Section 3 still apply 

since they depend only on the accessible volume of phase space, not whether it has a linear or 

branched structure. For an undriven, trapped Brownian computer, replacing n with 2n in (7b), we 

find that 

ΔStot= k ln 2n  +  k ln (1+ OP) = k ln 2  +  k ln n  +  k ln (1+ OP) 

That is, there is an increase of thermodynamic entropy creation due to exploration of the 

additional branches of k ln 2. 

 Figure 10 shows the more general case in which the program uses the same n stages 

sequentially to erase an N cell memory device, holding binary data. 
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Figure 10. Accessible Configuration Space for an N Cell Erasure Program in Brownian 

Computation 

 

The volume of configuration space accessible is 
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2nV + 4nV + 8nV + … + 2NnV = nV(2N+1-2) 

Replacing n with n(2N+1-2) in (7b), we find that 

ΔStot= k ln n(2N+1-2)  +  k ln (1+ OP) = k ln (2N+1-2)  +  k ln n  +  k ln (1+ OP) 

The increase in thermodynamic entropy creation is 

k ln (2N+1-2)                                                                       (14) 

6.3	  Failure	  of	  the	  Connection	  to	  Landauer’s	  Principle	  

 One might be tempted to see some sort of vindication of Landauer’s principle in this 

entropy increase. It is not there. 

 The lesser problem is that expression (14) is the wrong formula. The Landauer limit for 

erasure of memory cells with binary data is k ln 2 per cell; that is Nk ln 2 for an N cell device. 

For large N, (14) approaches (N+1)k ln 2. 

 The main problem is that nothing in the logical irreversibility of the erasure operation 

necessitates the creation of the entropy of (14). Rather, it is an awkward artifact of Brownian 

computation that it unnecessarily makes accessible volumes of phase spaces associated with 

unintended branches of the computation. In this regard it is akin to the category of failed proofs 

of Landauer’s principle listed in (Norton, 2011, §3) as “proof by thermalization.” Those proofs 

thermalize a memory device, thereby introducing an unnecessary thermodynamically irreversible 

expansion and then misreport the thermodynamic entropy created as a necessity of erasure. 

 The issue with Landauer’s principle is to determine which operations can be carried out 

by thermodynamically reversible computations and which cannot; and to specify how much 

thermodynamic entropy the latter must create. Brownian computation is driven by 

thermodynamically irreversible processes. Hence it is the wrong instrument to use.  That some 

Brownian computation creates some amount of thermodynamic entropy is no basis for 

determining that another device, operating in a thermodynamically reversible way, cannot do 

better. 

 Thermodynamic entropy is always created in Brownian computation. Its extent depends 

only on the volume of phase space into which the computation expands and not on whether the 

operation computed is logically reversible. Consider a logically reversible operation that chains 

(2N+1-2) operations in series, such that each operation involves nV of configuration space. The 

operation is logically reversible but its computation will create exactly as much thermodynamic 
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entropy as the erasure of the N cell memory device above. What matters is not whether a 

logically reversible operation is computed, but whether the two computations are driven by the 

same expansion of phase space volume. 

6.4	  Landauer’s	  Principle	  as	  a	  Temporal	  Effect?	  

 Bennett’s analysis differs from that just given, as it must. It cannot include the 

thermodynamic entropy (14), for his analysis neglects the entropic forces that create it. Instead, 

Bennett’s concern is that exploration of the additional accessible phase will slow down the 

computation unacceptably. He writes (Bennett, 1982, p. 922)10 

In a Brownian computer, a small amount of logical irreversibility can be tolerated 

…, but a large amount will greatly retard the computation or cause it to fail 

completely, unless a finite driving force (approximately kT ln 2 per bit of 

information thrown away) is applied to combat the computer’s tendency to drift 

backward into extraneous branches of the computation. Thus driven, the 

Brownian computer is no longer thermodynamically reversible, since its 

dissipation per step no longer approaches zero in the limit of zero speed. 

That is, we must create more thermodynamic entropy to drive the computation forward to its end 

state and keep in out of the extraneous branches. Bennett (1973 pp. 531-32) gives the 

quantitative expression: 

 This in turn means (roughly speaking) that the dissipation per step must exceed 

kT ln m, where m is the mean number of immediate predecessors 1) averaged 

over states near the intended path, or 2) averaged over all accessible states, 

whichever is greater. For a typical irreversible computer, which throws away one 

bit per logical operation, m is approximately two, and thus kT ln 2 is, as Landauer 

has argued ([Landauer 1961]), an approximate lower bound on the energy 

dissipation of such machines. 

Bennett leaves unclear whether the “energy dissipation” indicated is derived from a computation 

not provided or is presumed on the prior authority of Landauer’s principle. I will not pursue the 

                                                
10 See also Bennett (1982, pp. 905-906, 923) for similar remarks. 
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question. Since this dissipation arises in addition to the entropy creation described in Section 6.1 

above, it is at best only a part of the full account. 

 More generally, unless the branching structure introduces infinite phase volume, the extra 

dissipation is unnecessary and can provide no vindication of Landauer’s principle. For Bennett’s 

concern over the speed of computation is misplaced. It is standard in thermodynamics to allow 

processes unlimited but finite time for completion, so that they can approach thermodynamic 

reversibility arbitrarily closely. If one’s interest is what is possible in principle by a 

thermodynamically reversible process, one should not create additional thermodynamic entropy 

merely to speed up the process. That will only confound the analysis. 
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