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Abstract

This article introduces the method of protective measurement and
discusses its possible implications for the meaning of the wave function.
It is argued that the results of protective measurements as predicted by
quantum mechanics imply that the wave function of a quantum system is
a representation of the physical state of the system, and a further analysis
of the mass and charge distribution of the system, which is measurable
by protective measurements, may also help determine what physical state
the wave function represents.

1 Introduction

Protective measurement, in the language of standard quantum mechanics, is a
method to measure the expectation value of an observable on a single quantum
system (Aharonov and Vaidman 1993; Aharonov, Anandan and Vaidman 1993;
Aharonov, Anandan and Vaidman 1996; Vaidman 2009). For a conventional
measurement such as an impulsive measurement, the state of the measured sys-
tem is entangled with the state of the measuring device during the measurement.
By contrast, during a protective measurement the measured state is protected
by an appropriate procedure so that it neither changes nor becomes entangled
with the state of the measuring device appreciably. In this way, such protective
measurements can measure the expectation values of observables on a single
quantum system, even if the system is initially not in an eigenstate of the mea-
sured observable, and in particular, the wave function of the system can also be
measured as expectation values of certain observables.

In this article, we will introduce the method of protective measurement and
discuss its possible implications for the foundations of quantum mechanics, es-
pecially for the physical meaning of the wave function. Section 2 presents a
strict formulation of protective measurement. Sections 3 and 4 then analyze the
physical implications of protective measurement. It is argued that the results
of protective measurements as predicted by quantum mechanics imply that the
wave function of a quantum system is a representation of the physical state of
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the system, and a further analysis of the mass and charge distribution of the
system, which is measurable by a series of protective measurements, may also
help determine what physical state the wave function represents. Conclusions
are given in the last section.

2 Protective measurements

For a conventional measurement such as an impulsive measurement, if the mea-
sured system, prior to the measurement of a variable A, is not in an eigenstate
of A, then its state will be invariably entangled with the state of the device
due to the interaction. A protective measurement differs from the conventional
measurement in that the measured state is protected from entangling and chang-
ing appreciably when the measurement is being madeﬂ A universal protection
scheme is via the quantum Zeno effect. Let’s see how this can be done.

Let |¢) be the measured state of a single system at a given instant ¢ = 0. To
protect this state from being changed, we make projective measurements of an
observable P(t), for which [¢) is a nondegenerate eigenstate, a large number of
times which are dense in the measurement interval [0, 7] (Aharonov, Anandan
and Vaidman 1993). For example, P(t) is measured in [0,7] at times ¢, =
(n/N)T,n = 1,2,...,N, where N is an arbitrarily large number. At the same
time, an observable A is measured in the interval [0,7] by an independent
measurement described by the following Hamiltonian:

H(t)=Hs+ Hp + g(t)PA, (1)

where Hg and Hp are the free Hamiltonians of the measured system and the
measuring device, respectively, and P is the momentum conjugate to the pointer
variable X of the device. The time-dependent coupling strength g(t) is a smooth
function normalized to [dtg(t) =1 in [0,T], and g(0) = ¢g(T") = 0. The initial
state of the pointer at t = 0, |¢(0)), is supposed to be a Gaussian wave packet
of eigenstates of X with width wy, centered around the eigenvalue x.

Then the branch of the state of the combined system after 7', in which each
projective measurement of P(t,) results in the state of the measured system
being in [¢)), is given by
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where |11) is the state of the system after it evolves from the state 1)) under the
Hamiltonian Hg for a time interval T/N, and |¢(T")) is the state of the device
when it evolves under the Hamiltonian Hp after T. Here it is assumed that

11t might be worth noting that there appeared numerous objections to the validity of
protective measurements (see, e.g. Unruh 1994; Rovelli 1994; Ghose and Home 1995; Uffink
1999), and these objections have been answered (Aharonov, Anandan and Vaidman 1996;
Dass and Qureshi 1999; Vaidman 2009; Gao 2013a). For a more detailed introduction to
protective measurement see Gao (2013b).



[Hp, PA] is zero or its effect is negligible in the interval [0,7] for simplicity.
Thus in the limit of N — oo, we have

[t =T) = [y e F o 9OWIADIPAL (7)) — |y e~ F<A>P (), 3)

where < A >= (| A|¢) is the expectation value of the measured observable
A in the measured state 1. Since the total probability of other branches is
proportional to T2/N to the first order of N, the above state will be the state
of the combined system after T when N — ooEl It can be seen that the expo-
nential operator in Eq. shifts the center of the pointer by an amount (A),
namely that the state of the pointer after T is (x 4+ (A) |¢(T)). This indicates
that the result of the protective measurement is the expectation value of the
measured observable in the measured state, and moreover, the measured state
is not changed by the protective measurement.

It is worth stressing that under the above protection procedure the measure-
ment of an observable is not necessarily weak (when compared with the system’s
Hamiltonian), and the measurement time 7" is not necessarily long enough so
that the measurement interaction is adiabatic either (cf. Vaidman 2008)@ A
stronger measurement with a shorter measurement time is better if only the
projective measurements can be made frequently during the measurement (i.e.
the condition N — oo can be approximately valid). Certainly, the measurement
must be weaker than the projective measurements which protect the measured
state from being changed.

To sum up, we have demonstrated that for an arbitrary but known state
of a quantum system at a given instant, we can protect the state from being
changed via the quantum Zeno effect by frequent projective measurements, and
an independent measurement of an observable A, which is made at the same
time, yields the expectation value of the observable in the measured stateﬁ

By a conventional measurement on a single quantum system, one obtains
one of the eigenvalues of the measured observable, and the expectation value of
the observable can only be obtained as the statistical average of eigenvalues for
an ensemble of identically prepared systems. Thus it seems surprising that a
protective measurement can yield the expectation value of the measured observ-
able only from a single quantum system. In fact, the appearance of expectation
values as measurement results is quite natural when the measured state is not
changed and the entanglement during the conventional measurement does not
take place as for protective measurementsﬂ In this case, the evolution of the

2Note that this result, like the quantum Zeno effect, does not depend on a particular
formulation of quantum mechanics, and especially, it is independent of whether wavefunction
collapse is real or apparent.

3 According to Vaidman (2008), “Apart from protection, the procedure consists of a stan-
dard von Neumann measurement with weak coupling which is switched on and, after a long
time, switched off, adiabatically.”

4As we will argue later, in order to analyze the physical meaning of the wave function, we
need not to measure the time evolution of the wave function, but only to measure the wave
function at a given instant.

5The measured state being unchanged permits the state as well as the expectation values of
observables in the state to be measurable. In this sense, protective measurement is not special;
it is just the very way to measure the actual state of a quantum system at a given instant. By
comparison, a non-protective measurement such as a conventional impulsive measurement will
change the measured state, and the resulting measurement result (i.e. one of the eigenvalues of



combining state is

[9(0)) [6(0)) = [(2)) [9(2)) ,t > 0 (4)

where [¢(t)) is the same as [¢/(0)) up to a phase factor during the measurement
time interval [0,T]. Then by Ehrenfest’s theorem we have
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which further leads to
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This means that the shift of the center of the pointer of the device gives the
expectation value of the measured observable in the measured state.

Note that in some special cases the universal protection procedure via the
quantum Zeno effect is not necessary, and the system’s Hamiltonian can help
protect its state from changing when the measurement interaction is weak and
adiabatic. For example, for a quantum system in a discrete nondegenerate
energy eigenstate, the system itself supplies the protection of the state due to
energy conservation. By the adiabatic theorem, the adiabatic interaction during
the measurement ensures that the measured system cannot make a transition
from one discrete energy eigenstate to another. Moreover, according to the first
order perturbation theory, for any given value of P, the energy of the measured
energy eigenstate shifts by an infinitesimal amount: 0F = (Hj) = g(t)P(A),
and the corresponding time evolution e~*F{4)/7 then shifts the pointer by the
expectation value (A). For degenerate energy eigenstates, we may not use the
universal protection procedure either. The simplest way is to add a protective
potential to change the energies of the other states and lift the degeneracy.
Then the measured state remains unchanged, but is now protected by energy
conservation like nondegenerate energy eigenstates.

Since the wave function can be reconstructed from the expectation values of
a sufficient number of observables, the wave function of a quantum system can
be measured by a series of protective measurements. Let the explicit form of
the measured state at a given instant ¢ be ¢(x), and the measured observable A
be (normalized) projection operators on small spatial regions V,, having volume
Up:
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A protective measurement of A then yields
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the measured observable) does not reflect the actual state of the measured system. Moreover,
when a quantum system interacts with another quantum system under general non-protective
conditions, its state also evolves in time, and thus the expectation values of observables do not
manifest themselves explicitly in the interaction either. For example, the interaction between
two charged quantum systems are not directly dependent on the expectation values of their
charges, but described by the potential terms in the Schréodinger equation.



which is the average of the density p(z) = |(z)|* over the small region V,.
Similarly, we can measure another observable B = 2;‘”. (AV + VA). The mea-
surement yields

@ - 07V = VU = o / ey (9)
This is the average value of the flux density j(x) in the region V,,. Then when
v, — 0 and after performing measurements in sufficiently many regions V,, we
can measure p(z) and j(x) everywhere in space. Since the wave function 1 (x,t)
can be uniquely expressed by p(z,t) and j(z,t) (except for an overall phase
factor), the whole wave function of the measured system at a given instant can
be measured by protective measurements.

We have been discussing the protective measurement of a single quantum
system. The scheme of protective measurement can also be extended to a many-
particle system (Anandan 1993). If the system is in a product state, then one can
easily measuring each state of the individual systems protectively. If the system
is in an entangled state, one need to add an appropriate protection procedure to
the whole system, and then the entangled state of the system can be protectively
measured. However, it is worth noting that the realization of such protective
measurements relies on the availability of corresponding protective interactions,
which is limited by existing physical interactionsﬂ

Lastly, we stress that the validity of the scheme of protective measurement
does not rely on the standard von Neumann formulation of measurement, in
which it might be debatable to represent a macroscopic device with a single
wave function. In the above formulation of protective measurement, the mea-
suring system can be a microscopic system such as an electron, and the shift of
the center of the wave packet of the measuring system is only determined by the
Schrédinger equation. Since the state of the measured system is not changed
during the protective measurement, a large number of identical measuring sys-
tems can be used to protectively measure the original measured system, and
the centers of their wave packets have the same shift. Then the shift can be
read out by conventional measurements of the ensemble of these identical mea-
suring systems, for which the probability distribution of the results satisfies
the Born rule. In a word, the scheme of protective measurement is only based
on the Schrodinger equation (for microscopic systems) and the Born rule, and
especially, it is independent of whether wavefunction collapse is real or not.

3 On the reality of the wave function

What are the physical implications of protective measurements? Several au-
thors, including the inventors of protective measurements, have given some
analyses of this question (Aharonov and Vaidman 1993; Aharonov, Anandan
and Vaidman 1993; Anandan 1993; Dickson 1995). According to Aharonov and
Vaidman (1993), protective measurement shows that the expectation values of
observables are properties of a single quantum system. Moreover, it provides
a strong argument for associating physical reality with the wave function of a

6For example, it seems that the entangled spatial wave function of a many-body system,
which lives on configuration space, cannot be protectively measured. The reason is that a
protective measurement cannot be performed in different positions in space at the same time.



single system. In particular, they thought that the wave function describes an
extended object or a real physical wave. According to Anandan (1993), pro-
tective measurement refutes an argument of Einstein in favor of the ensemble
interpretation of quantum mechanics. Dickson’s (1995) analysis was more philo-
sophical. He argued that protective measurement provides a reply to scientific
empiricism about quantum mechanics, but it can neither refute that position
nor confirm scientific realism, and the aim of his argument is to place realism
and empiricism on an even score in regards to quantum mechanics. It seems
that all these arguments rely on the presupposition that protective measure-
ments are completely reliable (see, e.g. Vaidman 2009). This presupposition
was objected notably by Dass and Qureshi (1999), as a realistic protective mea-
surement can never be performed on a single quantum system with absolute
certainty. For example, for a realistic protective measurement of an observable
A in a non-degenerate energy eigenstate whose measuring interval T is finite,
there is always a tiny probability proportional to 1/T? to obtain a different
result (A4),, where | refers to a normalized state in the subspace normal to
the measured state as picked out by the first order perturbation theoryﬂ Our
following arguments will avoid this major objection.

According to quantum mechanics, we can prepare a single measured system
whose wave function is 1(t) at a given instant ¢. For example, the measured
system is an electron being in the ground state of a Hydrogen atom. Now, by a
protective measurement, we can obtain the expectation value of the measured
observable in this state without disturbing the state (though with probability
smaller than one in realistic situations)ﬂ Moreover, by a series of protective
measurements of certain observables, we can obtain the value of ¢(t) only from
this measured system. Thus we can reach the conclusion that the expectation
values of observables are the physical properties of a single quantum system, and
the wave function of the system represents the physical property of the Systenﬂ
In particular, 1 (x,t), the spatial wave function of the system in position = at
instant ¢, represents the physical property of the system in position x at instant ¢.
This also means that for a quantum system, there is a physical entity spreading
out over a region of space where the spatial wave function of the system is not
Zero.

Here we assume a realist view on the theory-reality relation, which means
that the theoretical terms expressed in the language of mathematics connect to

"Moreover, after obtaining the result (A)| the measured state also collapses to the state
1 according to the standard formulation of quantum mechanics.

8When the measurement obtains the expectation value of the measured observable in the
measured state, the measured state is not changed. Moreover, the probability of obtaining a
different result and collapsing the measured state can be made arbitrarily small in principle.
By comparison, the eigenvalues values of the measured observable being measurement results
are only consequences of non-protective, strong measurements, which disturb the measured
state strongly and are arguably not good, qualified measurements.

9There might also exist other components of the underlying physical state, which are not
measureable by protective measurements and not described by the wave function, e.g. the
positions of the Bohmian particles in the de Broglie-Bohm theory (de Broglie 1928; Bohm
1952). In this case, however, the wave function is still uniquely determined by the underlying
physical state, though it is not a complete representation of the physical state. As a result, the
epistemic interpretation of the wave function will be ruled out (cf. Lewis et al 2012). Certainly,
the wave function also plays an epistemic role by giving the probability distribution of the
results of conventional impulsive measurements according to the Born rule. However, this role
is secondary and determined by the complete quantum dynamics that describes the measuring
process, e.g. the collapse dynamics in dynamical collapse theories.



the entities existing in the physical world. On this view, the wave function in
quantum mechanics describes either the state of an ensemble of identical systems
or the state of a single system. Since we can measure the wave function only from
a single system by protective measurements, the wave function must represent
the property of a single systenﬂ Note that this conclusion is independent
of whether the wave function of the measured system is known beforehand for
protective measurements. Even though we know the wave function, which is an
abstract mathematical object, we still don’t know its physical meaning, while
protective measurements can help answer this fundamental question of quantum
mechanicd™]

4 Meaning of the wave function

In this section, we will further analyze the physical state described by the wave
function and measurable by protective measurements. As we will see, the anal-
ysis may provide an important clue to the meaning of the wave functiotﬂ

4.1 The existence of effective charge distribution

As we have shown in Section 2, the result of a protective measurement is not
directly the wave function, but the density or flux density. What density? When
the interaction used to measure the observable A defined in Eq.@ is physically
realized by electromagnetic interaction between the measured system and the
measuring system, the density measured by the protective measurement will be
the effective charge density of the system in the measured positiorﬁ During

10We can also give a PBR-like argument for i-ontology in terms of protective measure-
ments (cf. Pusey, Barrett and Rudolph 2012). For two (known) nonorthogonal states of a
quantum system, the results of the protective measurements of them may be different with
probability that can be arbitrarily close to one. If there exists a finite probability that these
two nonorthogonal states correspond to the same physical state A, then when assuming A de-
termines the probability of measurement results as the PBR theorem assumes, the results for
the two nonorthogonal states will be the same with the finite probability. This leads to a con-
tradiction. This argument only considers one quantum system, and avoids the independence
assumption used by the PBR theorem.

H1In addition, as pointed out by Aharonov, Anandan and Vaidman (1996), the wave func-
tion of the measured system may be unknown beforehand when splitting the procedure of a
protective measurement into two stages. The first is a protection, made by one experimenter
or even just by nature, and the second is performed by another experimenter who does not
know the measured state. What this experimenter needs to know is that the state is pro-
tected and what is the degree of protection, and he does obtain new information by protective
measurement.

12Quantum mechanics is a physical theory about the wave function and its evolution. The
most fundamental interpretative problem of the theory is the physical meaning of the wave
function. Unfortunately, it has been treated as a marginal problem, especially compared with
the measurement problem (however, see Ney and Albert 2013 for a recent exception). There
are already several alternatives to quantum mechanics which give respective solutions to the
measurement problem, such as the de Broglie-Bohm theory and the many-worlds interpre-
tation (de Broglie 1928; Bohm 1952; Everett 1957; De Witt and Graham 1973). However,
these theories at their present stages are unsatisfactory at least in one aspect; they have not
succeeded in making sense of the wave function. In the following, we will argue that this funda-
mental interpretative problem may be solved independently of how to solve the measurement
problem.

13Similarly, protective measurements can also measure the effective electric flux density of
the system. This important point was also admitted by Aharonov and Vaidman (1993).



the measurement, the wave function of the measuring system, ¢(z,t), will obey
the following Schrodinger equation:

pdlet) B V2¢(,t)

o o0, (10)
where m is the mass of the measuring system, k is the Coulomb constant, x,
is the measured position, @ is the charge of the measured system, and ¥ (z,t)
is the wave function of the system. From this equation, it can be seen that the
measured quantity or the property of the measured system in the measured po-
sition x4 that has efficiency to influence the measuring system is |1 (zs, t)|?dz,Q,
the effective charge there, and when divided by the volume element dzg it is
the effective charge density |¢(ms,t)|2® This means that the charge of a
quantum system is distributed throughout space in efficiency, and the effective
charge density in each position is proportional to the modulus squared of the
wave function of the system therdﬂ

_ ke ) W(xmt)lest
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4.2 The origin of effective charge distribution

What entity or process, then, generates the physical efficiency of the quantity
|¢(2,t)|2dxQ or the effective charge distribution in spaceﬂ It can be expected
that the answer will help understand the meaning of |¢(z,t)|* and the wave
function ¥ (z,t) itself. There are two possibilities: the effective charge distribu-
tion can be generated by either (1) a continuous charge distribution with density
|¢(2,1)]2Q or (2) the motion of a discrete point charge @@ with spending time
|¢(z,t)|?dxdt in each infinitesimal spatial volume [z, 2 + dz] in the infinitesimal
time interval [t,¢ + dt]. For the first possibility, the charge distribution exists

4For a two-body system, the effective charge density in each position z is pQ(x, t) =
Q1 fj;f |h(z, x2,t)|>dze + Q2 fj:f [ (x1,x,t)|2dx1, where Q1 and Q2 are the charges of the
two subsystems, respectively, and ¥ (z1,x2,t) is the wave function of the whole system. The
existence of the effective charge distribution may also be seen from the potential terms in the
Schrodinger equation more directly. For instance, the electrostatic interaction term Qi (x,t)
in the Schrodinger equation for a charged quantum system indicates that the electrostatic
interaction exists in all regions where ¥ (x,t) is nonzero, where @ is the charge of the system,
Y(z,t) is the wave function of the system, and ¢ is an external electric scalar potential.
Thus the charge of the system should also distribute throughout these regions. If the charge
did not distribute and have efficiency in regions where the wave function is nonzero, then
there would not exist electrostatic interaction there. Note that this argument assumes that
the wave function represents the physical state of a single quantum system. Historically, the
charge density interpretation for electrons was originally suggested by Schrédinger in his fourth
paper on wave mechanics (Schrédinger 1926). Schrodinger clearly realized that the charge
density cannot be classical because his equation does not include the usual classical interaction
between the densities. Presumably since people thought that the charge density could not be
measured and also lacked a consistent physical picture, this interpretation was soon rejected
and replaced by Born’s probability interpretation. Now protective measurement re-endows
the effective charge distribution of an electron with reality by a more convincing argument.
The question is then how to find a consistent physical explanation for it. Our following
analysis may be regarded as a further development of Schrédinger’s original idea to some
extent. For more discussions of Schrédinger’s charge density interpretation see Bacciagaluppi
and Valentini (2009).

15Similarly, the mass of a quantum system is also distributed throughout space, and the
mass density in each position is proportional to the modulus squared of the wave function of
the system there.

16Note again that the efficiency is not manifested under special conditions; rather, it is just
the manifestation of the wave function itself, which is protected to be not changed during the
interaction.



throughout space at the same time, while for the second possibility, at every
instant there is only a localized, point-like particle with the total charge of the
system, and its motion during an infinitesimal time interval forms the effective
charge distribution. Concretely speaking, at a particular instant the charge den-
sity of the particle in each position is either zero (if the particle is not there) or
singular (if the particle is there), while the time average of the density during
an infinitesimal time interval gives the effective charge density. Moreover, the
motion of the particle is ergodic in the sense that the integral of the formed
charge density in any region is required to be equal to the expectation value
of the total charge in the region. We will give two arguments supporting the
second possibility below.

First of all, it can be argued that the effective charge distribution cannot be
generated by a continuous charge distribution for many-body systems. For a
one-body system, a continuous charge distribution, which is described by charge
density and electric flux density, may represent the physical state of the system
described by its wave function, as there exists a one-to-one corresponding rela-
tion between density, flux density and the wave function (except for an overall
phase factor). However, for a N-body system, a continuous charge distribution
cannot represent the physical state of the system described by its wave func-
tion, as the density and flux density of N sub-systems defined in 3-dimensional
space are not enough to consititute the wave function defined in 3N-dimensional
configuration spacdﬂ In other words, the continuous charge distribution does
not contain the information about the entanglement between the sub-systems
of the many-body systerrE By comparison, as we will see later, the motion
of particles may contain the entanglement information, and the state of motion
of N particles in 3-dimensional space may be described by the wave function in
3N-dimensional space.

Next, it can be argued that the existence of a continuous charge distribution
for a one-body system may also lead to inconsistency. If the charge distribution
is continuous and exists throughout space at the same time, then any two parts
of the distribution, like two electrons, will arguably have electrostatic interaction
described by the interaction potential term in the Schrodinger equation. How-
ever, the existence of such electrostatic self-interaction for a quantum system
contradicts the superposition principle of quantum mechanics (at least for mi-
croscopic systems such as electrons). Moreover, the existence of the electrostatic
self-interaction for the effective charge distribution of an electron is incompati-

171t is obvious that a continuous charge distribution in a 3N-dimensional configuration space
cannot represent the physical state of a N-body system either. For example, two charges Q1
and Q2 being in two positions in 3-dimensional space cannot be represented by a charge @ in
one position in a 6-dimensional configuration space.

18Note that the 3N coordinates of a point in a configuration space are N groups of three
position coordinates in our three-dimensional space. Here is a simple argument. Suppose
the wave function of a two-body system is localized in a point (z1,y1, 21, %2, y2, 22) in the
configuration space of the system. We make a position measurement on the system. Quantum
mechanics predicts that only in positions (z1,y1,21) and (z2,y2, 22) in our three-dimensional
space can we obtain a measurement result. This means that if the wave function represents
the property or state of a physical entity, then this entity exists in positions (z1,y1,21) and
(z2,y2,22) in the three-dimensional space. This explains the meaning of the coordinates of
a point in the configuration space where the wave function lives. Note that this argument
is independent of whether our three-dimensional space is fundamental or emergent from the
3N-dimensional configuration space. For more recent analyses of configuration space and
wavefunction realism see Monton (2002) and Lewis (2004).



ble with experimental observations either. For example, for the electron in the
hydrogen atom, since the potential of the electrostatic self-interaction is of the
same order as the Coulomb potential produced by the nucleus, the energy lev-
els of hydrogen atoms would be remarkably different from those predicted by
quantum mechanics and confirmed by experiments if there existed such electro-
static self-interaction. By contrast, if there is only a localized particle at every
instant, it is understandable that there exists no electrostatic self-interaction of
the effective charge distribution formed by the motion of the particle. This is
consistent with the superposition principle of quantum mechanics and experi-
mental observationd™]

To sum up, we have argued that the effective charge distribution of a quan-
tum system such as an electron originates from the ergodic motion of a discrete
point charge. At every instant there is only a localized particle with the total
mass and charge of the system, while during an infinitesimal time interval the
ergodic motion of the particle forms the effective mass and charge distribution.
The spending time of the particle in each position is proportional to the mod-
ulus squared of the wave function of the system there, and the formed mass
and charge density in each position is equal to the modulus squared of the wave
function of the system there multiplied by the total mass and charge of the
system, respectively.

4.3 Ergodic motion of particles

Which sort of ergodic motion? This is a further question that needs to be
answered. If the ergodic motion of a particle is continuous, then it can only form

19Here is a further clarification of this argument. It can be seen that the non-existence of
self-interaction of the charge distribution poses a puzzle. According to quantum mechanics,
two charge distributions such as two electrons, which exist in space at the same time, have
electrostatic interaction described by the interaction potential term in the Schrédinger equa-
tion, but for the effective charge distribution of an electron, any two parts of the distribution
have no such electrostatic interaction. Facing this puzzle one may have two choices. The
first one is simply admitting that the non-existence of self-interaction of the effective charge
distribution is a distinct feature of the laws of quantum mechanics, but insisting that the laws
are what they are and no further explanation is needed. However, this choice seems to beg
the question and is unsatisfactory in the final analysis. A more reasonable choice is to try
to explain this puzzling feature, e.g. by analyzing its relationship with the existent form of
the effective charge distribution. The effective charge distribution has two possible origins
or forms after all. On the one hand, the non-existence of self-interaction of the distribution
may help determine which possible form is the actual one. For example, one possible form
is inconsistent with this distinct feature, while the other possible form is consistent with it.
On the other hand, the actual existent form of the effective charge distribution may also help
explain the non-existence of self-interaction of the distribution. This is just what the above
argument has done. The analysis establishes a connection between the non-existence of self-
interaction of the effective charge distribution and the actual existent form of the distribution.
The reason why two wavepackets of an electron, each of which has part of the electron’s charge
in efficiency, have no electrostatic interaction is that these two wavepackets do not exist at
the same time, and their effective charges are formed by the motion of a localized particle
with the total charge of the electron. Since there is only a localized particle at every instant,
it is understandable that there exists no electrostatic self-interaction of the effective charge
distribution formed by the motion of the particle. By contrast, if the two wavepackets with
charges, like two electrons, existed at the same time, then they would also have the same form
of electrostatic interaction as that between two electrons. Note that this argument does not
assume that real charges which exist at the same time are classical charges and they have
classical interaction. By contrast, the Schrodinger-Newton equation, which was proposed by
Diési (1984) and Penrose (1998), treats the mass distribution of a quantum system as classical.
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the effective mass and charge distributions during a finite time intervam But
according to quantum mechanics, the effective mass and charge distributions at
a given instant are required to be formed by the ergodic motion of the particle
during an infinitesimal time interval near the instant. Thus it seems that the
ergodic motion of the particle cannot be continuous but must be discontinuous.
This is at least what the existing theory says. This conclusion can also be
reached by analyzing a specific example. Consider an electron in a superposition
of two energy eigenstates in two separate boxes. In this example, even if one
assumes that the electron can move with infinite velocity, it cannot continuously
move from one box to another due to the restriction of box walls. Therefore,
any sort of continuous motion cannot generate the effective charge distribution
that exists in both boxes

On the other hand, in order that the ergodic motion of a particle forms the
right mass and charge distributions, for which the mass and charge density in
each position is proportional to the modulus squared of its wave function there,
the (objective) probability density for the particle to appear in each position
must be proportional to the modulus squared of its wave function there too (and
for normalized wave functions they should be equal)@ This is understandable,
since that the mass and charge density is large in a position requires that the
spending time of the particle is long there or the frequency of the particle ap-
pearing there is high. Moreover, from a logical point of view, the particle must
also have an instantaneous property (as a probabilistic instantaneous condition)
which determines the probability density for it to appear in every position in
space; otherwise the particle would not “know” how frequently it should ap-
pear in each position in space. This property is usually called indeterministic
disposition or propensity in the literaturelﬁ

In conclusion, we have argued that the consistency of the formed mass and
charge distribution with that predicted by quantum mechanics requires that the
ergodic motion of a particle is discontinuous, and the probability density for the
particle to appear in every position is equal to the modulus squared of its wave
function there. In other words, the ergodic motion of the particle is random
and discontinuous.

20For other objections to classical ergodic models see Aharonov and Vaidman (1993) and
Aharonov, Anandan and Vaidman (1993).

210ne may object that this is merely an artifact of the idealization of infinite potential.
However, even in this ideal situation, the ergodic model should also be able to generate the
effective charge distribution by means of some sort of ergodic motion of the electron; otherwise
it will be inconsistent with quantum mechanics.

22Besides, for normalized wave functions, the (objective) probability current density must
also equal to the formed mass or charge flux density divided by the mass or charge of the
particle.

23Note that the propensity here denotes single case propensity. Long run propensity theories
fail to explain objective single-case probabilities. According to these theories, it makes no sense
to speak of the propensity of a single isolated event in the absence of a sequence that contains
it. In addition, it is worth stressing that the propensities possessed by particles relate to their
objective motion, not to the measurements on them. By contrast, according to the existing
propensity interpretations of quantum mechanics, the propensities a quantum system has
relate only to measurements; a quantum system possesses the propensity to exhibit a particular
value of an observable if the observable is measured on the system. These interpretations
cannot be wholly satisfactory because of resorting to the vague concept of measurement.
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4.4 Interpreting the wave function

According to the above analysis, microscopic particles such as electrons, which
are described by quantum mechanics, are indeed particles. Here the concept of
particle is used in its usual sense. A particle is a small localized object with
mass and charge, and it is only in one position in space at an instant. Moreover,
the motion of these particles is not continuous but discontinuous and random in
nature. We may say that an electron is a quantum particle in the sense that its
motion is not continuous motion described by classical mechanics, but random
discontinuous motion described by quantum mechanics.

Unlike the deterministic continuous motion, the trajectory function z(t) can
no longer provide a useful description for random discontinuous motion. It has
been shown that the strict description of random discontinuous motion of a par-
ticle can be given based on the measure theory (Gao 2013b). Loosely speaking,
the random discontinuous motion of the particle forms a particle “cloud” ex-
tending throughout space (during an infinitesimal time interval), and the state
of motion of the particle is represented by the density and flux density of the
cloud, denoted by p(z,t) and j(z,t), respectively, which satisfy the continuity
equation % + % = 0. The density of the cloud, p(z,t), represents the
probability density for the particle to appear in position z at instant ¢, and it
satisfies the normalization condition fj;o p(z, t)dz = 1.

As we have argued above, for a charged particle such as an electron, the
cloud will be an electric cloud, and p(z,t) and j(z,t), when multiplied by the
total charge of the particle, will be the (effective) charge density and electric flux
density measurable by protective measurements, respectively. Thus we have the
following relations:

p(x,t) = |¢(x7t)|27 (11)
) = 5t o) 2820y, 22D, (12)

Correspondingly, the wave function t(z,t) can be uniquely expressed by p(z,t)
and j(z,t) (except for an overall phase factor):

. z gz’ t) 4.0
V(z,t) = \/p(z,t)e™ S S/t (13)

This means that the wave function ¥(x,t) also provides a description of the
state of random discontinuous motion of a particle.

This picture of motion of a single particle can be extended to the motion
of many particles. The extension may explain the multi-dimensionality of the
wave function (cf. Monton 2002; Lewis 2004). At a given instant, a quan-
tum system of N particles can be represented by a point in a 3/N-dimensional
configuration space. During an infinitesimal time interval, these particles per-
form random discontinuous motion in the real space, and correspondingly, this
point performs random discontinuous motion in the configuration space and
forms a cloud there. Then, similar to the single particle case, the state of
the system is represented by the density and flux density of the cloud in the
configuration space, p(z1, 2, ...xn,t) and j(x1,z2,...xN,t), where the density
p(x1, 22, ...xN, t) represents the probability density that particle 1 appears in
position z; and particle 2 appears in position xs, ..., and particle N appears in
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position x N@ Since these two quantities are defined in the 3N-dimensional con-
figuration space, the many-particle wave function, which is composed of these
two quantities, is also defined in the 3N-dimensional configuration space.

One important point needs to be stressed here. Since the wave function in
quantum mechanics is defined at a given instant, not during an infinitesimal
time interval, it should be regarded not simply as a description of the state
of motion of particles, but more suitably as a description of the dispositional
property of the particles that determines their random discontinuous motion
at a deeper leveﬂ In particular, the modulus squared of the wave function
determines the probability density that the particles appear in certain positions
in space. By contrast, the density and flux density of the particle cloud in
configuration space, which are defined during an infinitesimal time interval, are
only a description of the state of the resulting random discontinuous motion
of particles, and they are determined by the wave function. In this sense, we
may say that the motion of particles is “guided” by their wave function in a
probabilistic way.

4.5 On momentum, energy and spin

We have been discussing random discontinuous motion of particles in real space.
Does the picture of random discontinuous motion exist for other dynamical vari-
ables such as momentum and energy? Since there are also wave functions of
these variables in quantum mechanics, it seems tempting to assume that the
above interpretation of the wave function in position space also applies to the
wave functions in momentum space etﬂ This means that when a particle is
in a superposition of the eigenstates of a variable, it also undergoes random
discontinuous motion among the corresponding eigenvalues of this variable. For
example, a particle in a superposition of energy eigenstates also undergoes ran-
dom discontinuous motion among all energy eigenvalues. At each instant the
energy of the particle is definite, randomly assuming one of the energy eigenval-
ues with probability given by the modulus squared of the wave function at this
energy eigenvalue, and during an infinitesimal time interval the energy of the
particle spreads throughout all energy eigenvalues. Since the values of two non-
commutative variables (e.g. position and momentum) at every instant may be
mutually independent, the objective value distribution of every variable can be
equal to the modulus squared of its wave function and consistent with quantum
mechanics £7

24When these N particles are independent, the density p(z1,x2,...xN,t) can be reduced to
the direct product of the density for each particle, namely p(z1,z2,...xN,t) = Hfil p(xi,t).

25For a many-particle system in an entangled state, this dispositional property is possessed
by the whole system.

26Under this assumption, the ontology of the theory will not only include the wavefunction
and the particle position, but also include momentum and energy.

2"Note that for random discontinuous motion a property (e.g. position) of a quantum
system in a superposed state of the property is indeterminate in the sense of usual hidden
variables, though it does have a definite value at each instant. For this reason, the particle
position should not be called hidden variable for random discontinuous motion of particles,
and the resulting theory is not a hidden variable theory either. This makes the theorems that
restrict hidden variables such as the Kochen-Specker theorem irrelevant. Another way to see
this is to realize that random discontinuous motion of particles alone does not provide a way
to solve the measurement problem, and wavefunction collapse may also be needed. For details
see Gao (2013b).
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However, there is also another possibility, namely that the picture of ran-
dom discontinuous motion exists only for position, while momentum, energy etc
do not undergo random discontinuous change among their eigenvalues. This is
a minimum formulation in the sense that the ontology of the theory only in-
cludes the wave function and the particle position. On this view, the position
of a particle is an instantaneous property of the particle defined at instants,
while momentum and energy are properties relating only to its state of motion
(e.g. momentum and energy eigenstates), which is formed by the motion of the
particle during an infinitesimal time intervaﬂ This may avoid the problem
of defining the momentum and energy of a particle at instants. Certainly, we
can still talk about momentum and energy on this view. For example, when
a particle is in an eigenstate of the momentum or energy operator, we can say
that the particle has definite momentum or energy, whose value is the corre-
sponding eigenvalue. Moreover, when a particle is in a momentum or energy
superposition state and the momentum or energy branches are well separated
in space, we can still say that the particle has definite momentum or energy in
certain local regions.

Lastly, we note that spin is a more distinct property. Since the spin of a
free particle is always definite along one direction, the spin of the particle does
not undergo random discontinuous motion, though a spin eigenstate along one
direction can always be decomposed into two different spin eigenstates along
another direction. But if the spin state of a particle is entangled with its spatial
state due to interaction and the branches of the entangled state are well sep-
arated in space, the particle in different branches will have different spin, and
it will also undergo random discontinuous motion between these different spin
states. This is the situation that usually happens during a spin measurement.

5 Conclusions

Protective measurement is a measuring method, by which one can measure the
expectation value of an observable on a single quantum system, even if the sys-
tem is initially not in an eigenstate of the measured observable. This remark-
able feature makes protective measurements quite distinct from conventional
impulsive measurements, and as we have argued above, it may have important
implications for our understandings of quantum mechanics.

According to the standard view, the expectation values of observables are
not the physical properties of a single system, but the statistical properties of an
ensemble of identical systems. This seems reasonable if there exist only conven-
tional impulsive measurements. An impulsive measurement can only obtain one
of the eigenvalues of the measured observable, and thus the expectation value
can only be defined as a statistical average of the eigenvalues for an ensemble of
identical systems. However, there exist other kinds of quantum measurements,
and in particular, protective measurements can measure the expectation values
of observables for a single system. Therefore, the expectation values of observ-
ables should be taken as the physical properties of a single quantum system.
This is the first conceptual shift brought by protective measurement.

281t is worth stressing that the particle position here is different from the position property
described by the position operator in quantum mechanics, and the latter is also a property
relating only to the state of motion of the particle such as position eigenstates.
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Since the wave function can be reconstructed from the expectation values
of a sufficient number of observables, the above result will immediately lead to
the second implication, namely that the wave function of a quantum system is
a representation of the physical state (or ontic state) of the system. This result
is more definite than that obtained by Pusey, Barrett and Rudolph (2012),
which was based on an analysis of results of impulsive measurements and the
independence assumption.

The more important virtue of protective measurement is that it can fur-
ther help reveal the physical state represented by the wave function. Indeed,
it provides for the first time a method to measure the actual physical state of
a single quantum system. When a protective measurement is realized by elec-
tromagnetic or gravitational interaction between the measured system and the
measuring device, it can measure the effective charge or mass distribution of the
system. The results as predicted by quantum mechanics show that the mass
and charge of a quantum system such as an electron is distributed throughout
space in efficiency, and the effective mass and charge density in each position is
proportional to the modulus squared of its wave function there.

The effective mass and charge distribution of a quantum system has two
possible existent forms, and a further analysis is needed to find which one is
the actual form. It can be argued that the superposition principle of quantum
mechanics and the existence of quantum entanglement require that the effective
mass and charge distribution is formed by the ergodic motion of a localized
particle with the total mass and charge of the system. Moreover, the consistency
of the formed distribution with that predicted by quantum mechanics requires
that the ergodic motion of the particle is discontinuous, and the probability
density that the particle appears in every position is equal to the modulus
squared of its wave function there.

Therefore, according to the above analysis, it seems that quantum mechanics,
like Newtonian mechanics, also deals with the motion of particles in space and
time. Microscopic particles such as electrons are still particles, but they move
in a discontinuous and random way. Moreover, the wave function describes
the state of random discontinuous motion of particles, and at a deeper level,
it represents the dispositional property of the particles that determines their
random discontinuous motion. Quantum mechanics, in this way, is essentially
a physical theory about the laws of random discontinuous motion of particles.
It is a further and also harder question what the precise laws are, e.g. whether
the wave function undergoes a stochastic and nonlinear collapse evolution @
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