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Abstract

In this paper, we propose an ontological interpretation of the wave
function in terms of random discontinuous motion of particles. Ac-
cording to this interpretation, the wave function of an N-body quan-
tum system describes the state of random discontinuous motion of N
particles, and in particular, the modulus squared of the wave function
gives the probability density that the particles appear in every possible
group of positions in space. We present three arguments supporting
this new interpretation of the wave function. These arguments are
mainly based on an analysis of the mass and charge properties of a
quantum system. It is realized that the Schrödinger equation, which
governs the evolution of a quantum system, contains more information
about the system than the wave function of the system, such as the
mass and charge properties of the system, which might help understand
the ontological meaning of the wave function. Finally, we briefly an-
alyze possible implications of the suggested ontological interpretation
of the wave function for the solutions to the measurement problem.

The wavefunction gives not the density of stuff, but gives rather (on
squaring its modulus) the density of probability. Probability of what
exactly? Not of the electron being there, but of the electron being found
there, if its position is ‘measured’. Why this aversion to ‘being’ and
insistence on ‘finding’? The founding fathers were unable to form a
clear picture of things on the remote atomic scale. (Bell 1990)
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1 Introduction

Quantum mechanics is a physical theory about the wave function and its
time evolution. There are two main problems in the conceptual foundations
of quantum mechanics. The first one concerns the physical meaning of the
wave function. The second one is the measurement problem, which concerns
the time evolution of the wave function during a measurement. Although
the meaning of the wave function should be ranked as the first interpre-
tative problem of quantum mechanics, it has been treated as a marginal
problem, especially compared with the measurement problem. There are
already several realistic alternatives to quantum mechanics which give ba-
sically satisfactory solutions to the measurement problem. However, these
theories at their present stages have not yet succeeded in making sense of
the wave function.

During recent years, more and more research has been done on the on-
tological status and meaning of the wave function (see, e.g. Monton 2002;
Lewis 2004; Gao 2011a, 2011b; Pusey, Barrett and Rudolph 2012; Ney and
Albert 2013). In particular, Pusey, Barrett and Rudolph (2012) demon-
strated that under certain assumptions the wave function of a quantum
system is a representation of the physical state of the system. This raises
a further question: what physical state does the wave function describe?
and what is the existing form of the system? Conventionally, wave func-
tion realism regards the physical entity described by the wave function of
an N-body quantum system as a continuous field existing in a fundamen-
tal 3N-dimensional space (Albert 1996). However, this view has at least
two serious problems: the so-called “problem of perception” and “prob-
lem of lacking invariances” (Monton 2002; Lewis 2004; Solé 2013)1. Facing
these difficulties, Monton (2002, 2013) and Lewis (2004, 2013) suggested
that the wave function describes certain property of discrete particles in
our ordinary three-dimensional space. The question is then which property
of particles the wave function describes. In this paper, we will propose a
concrete interpretation of the wave function in terms of particle ontology in
three-dimensional space, and present a few arguments supporting this new
interpretation.

The plan of this paper is as follows. In Section 2, we will introduce
an ontological interpretation of the wave function in terms of random dis-
continuous motion of particles. According to this interpretation, the wave
function of an N-body quantum system describes the state of random dis-
continuous motion of N particles, and in particular, the modulus squared
of the wave function gives the probability density that the particles ap-
pear in every possible group of positions in space. At a deeper level, the
wave function may represent the dispositional property of the particles that

1See Maudlin (2013) for other criticisms of this view.
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determines their motion. In Section 3, we will present three arguments sup-
porting this new interpretation of the wave function. It is realized that
the Schrödinger equation, which governs the evolution of a quantum sys-
tem, contains more information about the system than the wave function
of the system, which might help understand the ontological meaning of the
wave function. An important piece of information is the mass and charge
properties of a quantum system, which are responsible for the gravitational
and electromagnetic interactions between systems. Our main approach is
to analyze these properties. In Section 4, we will briefly discuss possible
implications of the suggested ontological interpretation of the wave function
for the solutions to the measurement problem. Conclusions are given in the
last section.

2 Interpretation

Our suggested interpretation of the wave function in terms of random dis-
continuous motion of particles can be basically formulated as follows (Gao
2011a, 2011b, 2013). For an N-body quantum system with properties such
as masses m1, m2, ... mN , there are N particles whose masses are m1,
m2, ... mN , respectively. At each instant, this system of N particles can
be represented by a point in a 3N-dimensional configuration space. Dur-
ing an infinitesimal time interval around each instant, these particles per-
form random discontinuous motion in 3-dimensional space, and correspond-
ingly, this point performs random discontinuous motion in the configuration
space. The probability density that this point appears in each position
(x1, x2, ...xN ) or the probability density that particle 1 appears in position
x1 and particle 2 appears in position x2, ..., and particle N appears in po-
sition xN is |ψ(x1, x2, ...xN , t)|2. Loosely speaking, such motion forms a
“cloud” in the configuration space, and the state of the system is repre-
sented by the density and flux density of the cloud, ρ(x1, x2, ...xN , t) and
j(x1, x2, ...xN , t), where

ρ = |ψ|2, (1)

jk =
~

2mi
[ψ∗∇kψ − ψ∇kψ∗]. (2)

The density and flux density of the cloud satisfy the continuity equation
∂ρ/∂t + ∇j = 0. Correspondingly, the wave function ψ can be uniquely
expressed by ρ and j (except for a constant phase factor). In this way,
the wave function provides a complete description of the state of random
discontinuous motion of particles.

In the following, we will give a strict description of random discontinuous
motion of particles based on the measure theory. For the sake of simplicity
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but without losing generality, we analyze one-dimensional motion of a par-
ticle that corresponds to the point set in two-dimensional space and time.
The results can be readily extended to the situation of three-dimensional
motion of many particles.

Fig.1 The description of random discontinuous motion of a single particle

Consider the state of random discontinuous motion of a particle in finite
intervals ∆t and ∆x around a space-time point (ti,xj) as shown in Fig. 1.
The positions of the particle form a random, discontinuous trajectory in this
square region2. We study the projection of this trajectory in the t-axis, which
is a dense instant set in the time interval ∆t. Let W be the discontinuous
trajectory of the particle andQ be the square region [xj , xj+∆x]×[ti, ti+∆t].
The dense instant set can be denoted by πt(W ∩ Q) ∈ <, where πt is the
projection on the t-axis. According to the measure theory, we can define the
Lebesgue measure:

M∆x,∆t(xj , ti) =

∫
πt(W∩Q)∈<

dt. (3)

Since the sum of the measures of all such dense instant sets in the time
interval ∆t is equal to the length of the continuous time interval ∆t, we
have: ∑

j

M∆x,∆t(xj , ti) = ∆t. (4)

Then we can define the measure density as follows:

ρ(x, t) = lim
∆x,∆t→0

M∆x,∆t(x, t)/(∆x ·∆t). (5)

This quantity provides a strict description of the position distribution of the
particle or the relative frequency of the particle appearing in an infinitesimal

2Recall that a trajectory function x(t) is essentially discontinuous if it is not continuous
at every instant t. A trajectory function x(t) is continuous if and only if for every t and
every real number ε > 0, there exists a real number δ > 0 such that whenever a point t0
has distance less than δ to t, the point x(t0) has distance less than ε to x(t).
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space interval dx around position x during an infinitesimal interval dt around
instant t, and it satisfies the normalization relation

∫ +∞
−∞ ρ(x, t)dx = 1 by

Eq. (4). According to the above interpretation of the wave function, we
have ρ(x, t) = |ψ(x, t)|2, where ψ(x, t) is the (nomalized) wave function of
the particle. We call ρ(x, t) position measure density or position density in
brief. Note that the existence of the above limit relies on the continuity of
the evolution of |ψ(x, t)|2.

We may further define position flux density j(x, t) through the relation
j(x, t) = ρ(x, t)v(x, t), where v(x, t) is the velocity of the local position
density. It describes the change rate of the position density. Due to the
conservation of measure, ρ(x, t) and j(x, t) satisfy the continuity equation:

∂ρ(x, t)

∂t
+
∂j(x, t)

∂x
= 0. (6)

The position density ρ(x, t) and position flux density j(x, t) provide a com-
plete description of the state of random discontinuous motion of a single
particle.

The description of the motion of a single particle can be extended to
the motion of many particles. At each instant, a quantum system of N
particles can be represented by a point in a 3N -dimensional configuration
space. Then, similar to the single particle case, the state of the system can be
represented by the joint position density ρ(x1, x2, ...xN , t) and joint position
flux density j(x1, x2, ...xN , t) defined in the configuration space. They also
satisfy a continuity equation. The joint position density ρ(x1, x2, ...xN , t)
represents the relative frequency of particle 1 appearing in position x1 and
particle 2 appearing in position x2, ... and particle N appearing in position
xN . When these N particles are independent, the joint position density can
be reduced to the direct product of the position density for each particle,
namely ρ(x1, x2, ...xN , t) =

∏N
i=1 ρ(xi, t).

From a logical point of view, for the random discontinuous motion of
particles, the particles may have an instantaneous property (as a probabilis-
tic instantaneous condition) that determines the probability density that
the particles appear in every possible group of positions in space; otherwise
the particles would not “know” how frequently it should appear in each
group of positions in space. This property is usually called indeterministic
disposition or propensity in the literature3. On the other hand, since the
wave function in quantum mechanics is defined at instants, not during an

3Note that the propensity here denotes single case propensity. In addition, it is worth
stressing that the propensities possessed by particles relate to their objective motion,
not to the measurements on them. By contrast, according to the existing propensity
interpretations of quantum mechanics, the propensities a quantum system has relate only
to measurements; a quantum system possesses the propensity to exhibit a particular value
of an observable if the observable is measured on the system. See also Belot (2012) and
Esfeld et al (2013) for the particle propensity interpretation in Bohmian mechanics.
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infinitesimal time interval around a given instant, it should be regarded not
simply as a description of the state of motion of particles, but more suitably
as a description of the dispositional property of the particles that determines
their random discontinuous motion at a deeper level. In particular, the mod-
ulus squared of the wave function determines the probability density that
the particles appear in every possible group of positions in space. By con-
trast, the density and flux density of the particle cloud in the configuration
space, which are defined during an infinitesimal time interval around a given
instant, are only a description of the state of the resulting random discon-
tinuous motion of particles, and they are determined by the wave function.
In this sense, we might say that the motion of particles is “guided” by their
wave function in a probabilistic way.

3 Arguments

In the following, we will present three arguments supporting the above inter-
pretation of the wave function in terms of random discontinuous motion of
particles. Our main approach is to analyze the mass and charge properties
of a quantum system.

3.1 Argument one

A better way to investigate the relationship between the wave function and
the physical entity it describes is not only analyzing the structure of the wave
function itself, but also analyzing the whole Schrödinger equation, which
governs the evolution of the studied quantum system. The Schrödinger
equation contains more information about the system than the wave function
of the system, an important piece of which is the mass and charge properties
of the system that are responsible for the gravitational and electromagnetic
interactions between systems4. Based on an analysis of these properties, we
will give a heuristic argument that what the wave function of an N-body
system describes is not one physical entity, either a continuous entity or
a discrete particle, in a 3N-dimensional space, but N physical entities in 3-
dimensional space, and these entities are not continuous entities but discrete
particles.

First of all, in the Schrödinger equation for an N-body quantum system,
there are N mass parameters m1, m2, ... mN (as well as N charge parame-
ters etc). These parameters are not natural constants, but properties of the
system; they may be different for different systems. Moreover, it is arguably
that different mass parameters represent the same mass property of different

4In this sense, the wave function is not a complete description of the system (even
though one assumes that the 3N-dimensional space it lives on has a rich structure that
can group the 3N coordinates), since it contains no information about the masses and
charges of the system.
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physical entities. If a system has N mass parameters, then it will contain N
physical entities. Therefore, an N-body quantum system contains N physi-
cal entities, and the wave function of the system describes the state of these
physical entities. Next, these N entities exist in 3-dimensional space, not in
a 3N-dimensional configuration space. The reason is that in the Schrödinger
equation for an N-body quantum system, each mass parameter mi is only
correlated with each group of three coordinates (xi, yi, zi) of the 3N coor-
dinates in configuration space. Thirdly, these N entities are not continuous
entities, which are completely described by density and flux density. The
reason is that the density and flux density of N continuous entities, which are
defined in 3-dimensional space, are not enough to constitute the (entangled)
wave function defined in a 3N-dimensional space.

Therefore, it is arguably that the wave function of an N-body sys-
tem describes the state of N discrete particles with mass and charge in
3-dimensional space. Concretely speaking, at a given instant, the positions
of these N particles in 3-dimensional space are represented by a point in a
3N-dimensional configuration space. During an infinitesimal time interval
around the instant, these particles move in the real space, and correspond-
ingly, this point moves in the configuration space, and its motion forms
a cloud in the configuration space, which is described by density and flux
density or the wave function composed of these two quantities.

3.2 Argument two

An analysis of the mass and charge distributions of a quantum system and
their origin may provide further support for the existence of particles, and
may also help find how these particles move. In the following, we will mainly
analyze one-body systems.

First of all, we will argue that for a one-body quantum system with
mass m and charge Q, the corresponding physical entity described by its
wave function, ψ(x, t), is massive and charged, and the effective mass and
charge density in each position x is |ψ(x, t)|2m and |ψ(x, t)|2Q, respectively.
The existence of effective mass and charge distributions can be seen from
the Schrödinger equation that governs the evolution of the system. The
Schrödinger equation for the system in an external electrostatic potential
ϕ(x) is

i~
∂ψ(x, t)

∂t
= [− ~2

2m
∇2 +Qϕ(x)]ψ(x, t). (7)

The electrostatic interaction term Qϕ(x)ψ(x, t) in the equation indicates
that the physical entity described by ψ(x, t) has electrostatic interaction
with the external potential in all regions where ψ(x, t) is nonzero. The
existence of electrostatic interaction with an external potential in a given
region means that there exists electric charge distribution in the region,
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which has efficiency to interact with the potential and is responsible for the
interaction. Therefore, the physical entity described by ψ(x, t) is charged in
all regions where ψ(x, t) is nonzero. In other words, for a charged one-body
quantum system, the corresponding physical entity described by its wave
function has effective charge distribution in space. Similarly, the existence
of effective mass distribution can be seen from the Schrödinger equation for
a one-body quantum system in an external gravitational potential:

i~
∂ψ(x, t)

∂t
= [− ~2

2m
∇2 +mVG(x)]ψ(x, t). (8)

The gravitational interaction term mVG(x)ψ(x, t) in the equation indicates
that the (passive gravitational) mass of the system distributes throughout
the whole region where its wave function ψ(x, t) is nonzero. In other words,
the physical entity described by the wave function also has effective mass
distribution.

The effective mass and charge distributions manifest more directly dur-
ing a protective measurement, which can measure the expectation values
of observables on a single quantum system (Aharonov and Vaidman 1993,
Aharonov, Anandan and Vaidman 1993). Consider an ideal protective mea-
surement of the charge of a quantum system with chargeQ in an infinitesimal
spatial region dv around xn. This is equivalent to measuring the following
observable:

A =

{
Q, if xn ∈ dv,

0, if xn 6∈ dv.
(9)

During the measurement, the wave function of the measuring system, φ(x, t),
will obey the following Schrödinger equation:

i~
∂φ(x, t)

∂t
= − ~2

2M
∇2φ(x, t) + k

e · |ψ(xn, t)|2dvQ
|x− xn|

φ(x, t), (10)

where M and e are the mass and charge of the measuring system, respec-
tively, and k is the Coulomb constant. From this equation, it can be seen
that the property of the measured system in the measured position xn that
has efficiency to influence the measuring system is |ψ(xn, t)|2dvQ, the effec-
tive charge there5. This is also the result of the protective measurement,

5Note that even in standard quantum mechanics, it is also assumed that the above
interaction term indicates that there is a charge |ψ(xn, t)|2dvQ in the region dv. If there
exists no effective charge in the measured position which is responsible for the shift of
the pointer of the measuring device there, then a new entity existing elsewhere (which is
different from the entity described by the wave function) and a new dynamics for the entity
(which is different from the Schrödinger equation) will be needed for a realist explanation
of the shift of the pointer. For example, suppose the measured wave function is localized
in two widely-separated regions and the measurement is made in one region. If there is
nothing in the measured region, then the result of the protective measurement made there
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〈A〉 = |ψ(xn, t)|2dvQ. When divided by the volume element, it gives the
effective charge density |ψ(x, t)|2Q6.

Now we will analyze the physical origin of the effective charge distribu-
tion7. What kind of entity or process generates the effective charge distri-
bution in space or the physical efficiency of the quantity |ψ(x, t)|2dvQ? It
can be expected that the answer will help understand the ontological mean-
ing of |ψ(x, t)|2 and the wave function itself. There are two possibilities:
the effective charge distribution of a one-body system can be generated by
either (1) a continuous charge distribution with density |ψ(x, t)|2Q or (2)
the motion of a discrete point charge Q with spending time |ψ(x, t)|2dvdt
in the infinitesimal spatial volume dv around x in the infinitesimal time in-
terval [t, t+ dt]8. Correspondingly, the underlying physical entity is either a
continuous entity or a discrete particle. For the first possibility, the charge
distribution exists throughout space at the same time, while for the second
possibility, at every instant there is only a localized, point-like particle with
the total charge of the system, and its motion during an infinitesimal time
interval forms the effective charge distribution. Concretely speaking, at a
particular instant the charge density of the particle in each position is either
zero (if the particle is not there) or singular (if the particle is there), while
the time average of the density during an infinitesimal time interval around

or the shift of the pointer of the measuring device there can only be explained by the
existence of certain entity in other regions via action at a distance. This will require a
wholly new theory different from quantum theories, which will not be considered here.

6Similarly, we can protectively measure another observable B = ~
2mi

(A∇+∇A). The

measurements will give the electric flux density jQ(x, t) = ~Q
2mi

(ψ∗∇ψ−ψ∇ψ∗) everywhere
in space (Aharonov and Vaidman 1993).

7Historically, the charge density interpretation for electrons was originally suggested by
Schrödinger in his fourth paper on wave mechanics (Schrödinger 1926). Schrödinger clearly
realized that the charge density cannot be classical because his equation does not include
the usual classical interaction between the densities. Presumably since people thought that
the charge density could not be measured and also lacked a consistent physical picture, this
interpretation was soon rejected and replaced by Born’s probability interpretation. Now
protective measurements help re-endow the effective charge distribution of an electron
with reality. The question is then how to find a consistent physical explanation for it.
Our following analysis may be regarded as a further development of Schrödinger’s original
idea to some extent. For more discussions on Schrödinger’s charge density interpretation
see Bacciagaluppi and Valentini (2009) and Gao (2013).

8Note that the expectation value of an observable at a given instant such as 〈A〉 =
|ψ(xn, t)|2dvQ is either the physical property of a quantum system at the precise instant
(like the position of a classical particle) or the limit of the time-averaged property of
the system at the instant (like the standard velocity of a classical particle). These two
interpretations correspond to the above two possibilities. For the later, the observable
assumes an eigenvalue at each instant, and its value spreads all eigenvalues during an
infinitesimal time interval. Moreover, the spending time in each eigenvalue is proportional
to the modulus squared of the wave function of the system there. In this way, such ergodic
motion generates the expectation value of the observable in an infinitesimal time interval
(cf. Aharonov and Cohen 2014). We will discuss later whether this picture of ergodic
motion applies to properties other than position.
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the instant gives the effective charge density. Moreover, the motion of the
particle is ergodic in the sense that the integral of the formed charge density
in any region is equal to the expectation value of the total charge in the
region.

In the following, we will argue that the existence of a continuous charge
distribution may lead to inconsistency. If the charge distribution is contin-
uous and exists throughout space at the same time, then any two parts of
the distribution, like two electrons, will arguably have electrostatic interac-
tion described by the interaction potential term in the Schrödinger equation.
However, the existence of such electrostatic self-interaction for a quantum
system contradicts the superposition principle of quantum mechanics (at
least for microscopic systems such as electrons). Moreover, the existence
of the electrostatic self-interaction for the effective charge distribution of
an electron is incompatible with experimental observations either. For ex-
ample, for the electron in the hydrogen atom, since the potential of the
electrostatic self-interaction is of the same order as the Coulomb potential
produced by the nucleus, the energy levels of hydrogen atoms would be
remarkably different from those predicted by quantum mechanics and con-
firmed by experiments if there existed such electrostatic self-interaction. By
contrast, if there is only a localized particle at every instant, it is understand-
able that there exists no such electrostatic self-interaction for the effective
charge distribution formed by the motion of the particle. This is consistent
with the superposition principle of quantum mechanics and experimental
observations.

Here is a further clarification of this argument. It can be seen that the
non-existence of self-interaction of the charge distribution poses a puzzle.
According to quantum mechanics, two charge distributions such as two elec-
trons, which exist in space at the same time, have electrostatic interaction
described by the interaction potential term in the Schrödinger equation, but
for the effective charge distribution of an electron, any two parts of the dis-
tribution have no such electrostatic interaction. Facing this puzzle one may
have two choices. The first one is simply admitting that the non-existence
of self-interaction of the effective charge distribution is a distinct feature of
the laws of quantum mechanics, but insisting that the laws are what they
are and no further explanation is needed. However, this choice seems to
beg the question and unsatisfactory in the final analysis. A more reason-
able choice is to try to explain this puzzling feature, e.g. by analyzing its
relationship with the existent form of the effective charge distribution. The
effective charge distribution has two possible existing forms after all. On
the one hand, the non-existence of self-interaction of the distribution may
help determine which possible form is the actual one. For example, one pos-
sible form is inconsistent with this distinct feature, while the other possible
form is consistent with it. On the other hand, the actual existent form of
the effective charge distribution may also help explain the non-existence of
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self-interaction of the distribution. This is just what the above argument
has done. The analysis establishes a connection between the non-existence
of self-interaction of the effective charge distribution and the actual existent
form of the distribution. The reason why two wavepackets of an electron,
each of which has part of the electron’s charge in efficiency, have no electro-
static interaction is that these two wavepackets do not exist at the same time,
and their effective charges are formed by the motion of a localized particle
with the total charge of the electron. Since there is only a localized parti-
cle at every instant, it is understandable that there exists no electrostatic
self-interaction of the effective charge distribution formed by the motion of
the particle. By contrast, if the two wavepackets with charges, like two elec-
trons, existed at the same time, then they would also have the same form
of electrostatic interaction as that between two electrons9.

This analysis of electrostatic self-interaction also applies to many-body
systems. We can also protectively measure the charge density (and electric
flux density) of a many-body system in our three-dimensional space. A
protective measurement of the observable

∑N
i=1Ai on an N-body system

whose wave function is ψ(x1, x2, ...xN , t) yields

N∑
i=1

〈Ai〉 =

N∑
i=1

∫
...

∫
Qi|ψ(x1, ...xi−1, x, xi+1, ...xN , t)|2dv1...dvi−1dvi+1...dvNdv,

(11)
where Qi is the charge of the i-th subsystem. When divided by the volume
element dv, it yields the charge density in space. Like a one-body system,
the effective charge distribution of an N-body system are arguably generated
by the ergodic motion of N charged particles, where the spending time of
particle 1 with charge Q1 in an infinitesimal spatial volume dv1 around x1

and particle 2 with charge Q2 in an infinitesimal spatial volume dv2 around
x2 ... and particle N with charge QN in an infinitesimal spatial volume
dvn around xN is |ψ(x1, x2, ...xN , t)|2dv1...dvNdt in the infinitesimal time
interval [t, t + dt], or equivalently, the spending time of the N particles in
an infinitesimal volume dV around each position (x1, x2, ...xN ) in the 3N-
dimensional configuration space in the infinitesimal time interval [t, t + dt]
is |ψ(x1, x2, ...xN , t)|2dV dt.

Which sort of ergodic motion? This is a further question that needs to be
answered. If the ergodic motion of particles is continuous, then it can only
form the effective mass and charge distributions during a finite time interval
around a given instant10. But according to quantum mechanics, the effective

9Note that this argument does not assume that charges which exist at the same time
are classical charges and they have classical interaction. By contrast, the Schrödinger-
Newton equation, which was proposed by Diósi (1984) and Penrose (1998), treats the
mass distribution of a quantum system as classical.

10For other objections to classical ergodic models see Aharonov and Vaidman (1993)
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mass and charge distributions at a given instant are required to be formed by
the ergodic motion of particles during an infinitesimal time interval around
the instant. Thus it seems that the ergodic motion of particles cannot be
continuous but must be discontinuous. This is at least what the existing
theory says. This conclusion can also be reached by analyzing a specific
example. Consider an electron in a superposition of two energy eigenstates
in two separate boxes. In this example, even if one assumes that the electron
can move with infinite velocity, it cannot continuously move from one box to
another due to the restriction of box walls. Therefore, any sort of continuous
motion cannot generate the effective charge distribution that exists in both
boxes11.

Since quantum mechanics does not provide further information about
the positions of the particles at each instant, the discontinuous motion of
particles described by the theory is also essentially random. Moreover, the
spending time of the N particles of an N-body system around N positions
in 3-dimensional space being proportional to the modulus squared of the
wave function of the system there means that the (objective) probability
density for the particles to appear in the positions is also proportional to
the modulus squared of the wave function there (and for normalized wave
functions they are equal). This ensures that the motion of these particles
forms the right mass and charge distributions. In addition, the N particles
as a whole may also have an indeterministic disposition or propensity (as
a probabilistic instantaneous condition) which determines the probability
density for them to appear in the N positions in space.

To sum up, based on an analysis of the mass and charge distributions of a
quantum system and their origin, we have argued that the physical entities
described by the wave function are discrete, localized particles, and the
ergodic motion of the particles, which forms the effective mass and charge
distributions measurable by protective measurements, is discontinuous and
random, and the probability density for the particles to appear in every
group of positions is equal to the modulus squared of the wave function of
the system there.

3.3 Argument three

In the following, we will give another argument supporting the existence of
particles and their discontinuous motion based on an analysis of entangled
states.

Consider a two-body system whose wave function is defined in a six-

and Aharonov, Anandan and Vaidman (1993).
11One may object that this is merely an artifact of the idealization of infinite potential.

However, even in this ideal situation, the ergodic model should also be able to generate
the effective charge distribution by means of some sort of ergodic motion of the electron;
otherwise it will be inconsistent with quantum mechanics.
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dimensional space. We first suppose the wave function of the system is
localized in one position (x1, y1, z1, x2, y2, z2) in the space at a given instant.
This wave function can be decomposed into a product of two wave functions
which are localized in positions (x1, y1, z1) and (x2, y2, z2) in our ordinary
three-dimensional space, respectively. It is uncontroversial that this wave
function describes two independent physical entities, which are localized in
positions (x1, y1, z1) and (x2, y2, z2) in our three-dimensional space, respec-
tively. Moreover, as argued above, the Schrödinger equation that governs the
evolution of the system may further indicate that these two physical entities
have masses m1 and m2 (as well as charges Q1 and Q2 etc), respectively.

Next, suppose the wave function of the two-body system is localized
in two positions (x1, y1, z1, x2, y2, z2) and (x

′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2) in the six-

dimensional space at a given instant. This is an entangled state, which can
be generated from a non-entangled state by the Schrödinger evolution of
the system. The existence of similar entangled states has also been con-
firmed by experiments. In this case, there are still two physical entities with
the same masses and charges, since these properties of the system do not
change during the evolution, and it is arguably that the Schrödinger evolu-
tion does not create or annihilate physical entities either. According to the
above analysis, the wave function of the two-body system being localized
in position (x1, y1, z1, x2, y2, z2) means that physical entity 1 with mass m1

and charge Q1 exists in position (x1, y1, z1) in three-dimensional space, and
physical entity 2 with mass m2 and charge Q2 exists in position (x2, y2, z2)
in three-dimensional space. Similarly, the wave function of the two-body
system being localized in position (x

′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2) means that physical

entity 1 exists in position (x
′
1, y

′
1, z

′
1) in three-dimensional space, and physical

entity 2 exists in position (x
′
2, y

′
2, z

′
2) in three-dimensional space. Moreover,

since the physical entities described by the wave function exist in the region
of space where their wave function is not zero, the wave function of the
two-body system being localized in both positions (x1, y1, z1, x2, y2, z2) and
(x
′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2) means that the above two physical situations both exist

in reality. The question is: In what form?
An obvious existent form is that physical entity 1 exists in both posi-

tions (x1, y1, z1) and (x
′
1, y

′
1, z

′
1), and physical entity 2 exists in both positions

(x2, y2, z2) and (x
′
2, y

′
2, z

′
2). However, since the physical entities described by

the wave function do not exist in the region of space where the wave function
is zero, when physical entity 1 exists in (x1, y1, z1), physical entity 2 cannot
exist in (x

′
2, y

′
2, z

′
2), and when physical entity 1 exists in (x

′
1, y

′
1, z

′
1), physical

entity 2 cannot exist in (x2, y2, z2), or vice versa. In other words, the wave
function that describes this existent form should be localized in four po-
sitions (x1, y1, z1, x2, y2, z2), (x

′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2), (x1, y1, z1, x

′
2, y

′
2, z

′
2), and

(x
′
1, y

′
1, z

′
1, x2, y2, z2) in the six-dimensional space.

Although the above two situations cannot exist at the same time at a
single instant, they may exist “at the same time” during an infinitesimal
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time interval around the instant12. Concretely speaking, the situation in
which physical entity 1 is in (x1, y1, z1) and physical entity 2 is in (x2, y2, z2)
exists in one part of continuous time, and the situation in which physical
entity 1 is in (x

′
1, y

′
1, z

′
1) and physical entity 2 is in (x

′
2, y

′
2, z

′
2) exists in

the other part. The restriction is that the temporal part in which each
situation exists cannot be a continuous time interval during an arbitrarily
short time interval; otherwise the wave function describing the state in the
time interval will be not the original superposition of two branches, but
one of the branches. This means that the set of the instants when each
situation exists is not a continuous set but a discontinuous, dense set. At
some discontinuous instants, physical entity 1 with mass m1 and charge
Q1 exists in position (x1, y1, z1), and physical entity 2 with mass m2 and
charge Q2 exists in position (x2, y2, z2), and at other discontinuous instants,
physical entity 1 exists in position (x

′
1, y

′
1, z

′
1), and physical entity 2 exists in

position (x
′
2, y

′
2, z

′
2). By this way of time division, the above two situations

exist “at the same time” during an arbitrarily short time interval or during
an infinitesimal time interval around the given instant.

This way of time division implies a picture of discontinuous motion for
the involved physical entities. It is as follows. Physical entity 1 with mass
m1 and charge Q1 jumps discontinuously between positions (x1, y1, z1) and
(x
′
1, y

′
1, z

′
1), and physical entity 2 with mass m2 and charge Q2 jumps dis-

continuously between positions (x2, y2, z2) and (x
′
2, y

′
2, z

′
2). Moreover, they

jump in a precisely simultaneous way. When physical entity 1 jumps from
position (x1, y1, z1) to position (x

′
1, y

′
1, z

′
1), physical entity 2 always jumps

from position (x2, y2, z2) to position (x
′
2, y

′
2, z

′
2), or vice versa. In the limit

situation where position (x2, y2, z2) is the same as position (x
′
2, y

′
2, z

′
2), physi-

cal entities 1 and 2 are no longer entangled, while physical entity 1 with mass
m1 and charge Q1 still jumps discontinuously between positions (x1, y1, z1)
and (x

′
1, y

′
1, z

′
1). This means that the picture of discontinuous motion also

exists for one-body systems. As argued before, since quantum mechanics
does not provide further information about the positions of physical entities
at each instant, the discontinuous motion described by the theory is also
essentially random.

The above analysis can be extended to an arbitrary entangled wave func-
tion of an N-body system. Since each physical entity is only in one position
in space at each instant, it may well be called particle. Here the concept
of particle is used in its usual sense. A particle is a small localized object
with mass and charge etc, and it is only in one position in space at an in-
stant. Therefore, the physical entities described by the wave function such
as physical entities 1 and 2 are localized particles. Moreover, the motion of

12This means that the state of the physical entity described by the wave function is
defined during an infinitesimal time interval around a given instant, like the standard
velocity in classical mechanics. We have discussed this point when analyzing the origin of
mass and charge distributions of a quantum system in the last section.
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these particles is not continuous but discontinuous and random in nature,
and especially, the motion of entangled particles is precisely simultaneous.

4 Discussions

We have been analyzing random discontinuous motion of particles in posi-
tion space. Does the picture of random discontinuous motion exist for other
observables such as momentum and energy? Since there are also momen-
tum wave functions etc in quantum mechanics, it seems tempting to assume
that the above interpretation of the wave function in position space also
applies to the wave functions in momentum space etc. This means that
when a particle is in a superposition of the eigenstates of an observable, it
also undergoes random discontinuous motion among the eigenvalues of this
observable. For example, a particle in a superposition of momentum eigen-
states also undergoes random discontinuous motion among all momentum
eigenvalues. At each instant the momentum of the particle is definite, ran-
domly assuming one of the momentum eigenvalues with probability given
by the modulus squared of the wave function at this momentum eigenvalue,
and during an infinitesimal time interval around the instant the momentum
of the particle spreads throughout all momentum eigenvalues.

However, there is also another possibility, namely that the picture of
random discontinuous motion exists only for position, while momentum and
energy etc are not instantaneous properties of a particle and they do not
undergo random discontinuous change either. There are several reasons sup-
porting this possibility. The first is that our previous arguments for random
discontinuous motion of particles apply only to position, not to other observ-
ables such as momentum and energy etc. For example, since the interaction
Hamiltonian for a many-particle system relates to the positions of these
particles, not to their momenta and energies, the previous analysis of elec-
trostatic self-interaction applies only to position. Next, the Kochen-Specker
theorem requires that under certain reasonable assumptions only a certain
number of observables can be assigned definite values at all times (Kochen
and Specker 1967). This strongly suggests that the picture of random dis-
continuous motion exist only for a certain number of observables. Moreover,
since there are infinitely many other observables and these observables ar-
guably have the same status, this may further imply that the picture of
random discontinuous motion does not exist for any observable other than
position. Lastly, the meaning of observables as Hermitian operators acting
on the wave function lies in the corresponding ways to decompose (and also
to measure) the same wave function. For example, position and momen-
tum reflect two ways to decompose the same spatial wave function. In this
sense, the existence of random discontinuous motion for momentum will be
redundant.
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Therefore, it seems more reasonable to assume that the picture of ran-
dom discontinuous motion exists only for position. On this view, the posi-
tion of a particle is the only instantaneous property of the particle defined at
instants (besides its wave function), while momentum and energy are prop-
erties relating to the state of motion of the particle (e.g. momentum and
energy eigenstates), which is formed by the motion of the particle during
an infinitesimal time interval around a given instant13. Certainly, when a
particle is in a momentum or energy eigenstate, we may still say that the
particle has definite momentum or energy, whose value is the corresponding
eigenvalue. Moreover, when a particle is in a momentum or energy super-
position state and the momentum or energy branches are well separated in
space, we may also say that the particle has definite momentum or energy
in each separated region.

Finally, we note that spin is a more distinct property. Since the spin of
a free particle is always definite along one direction, the spin of the particle
does not undergo random discontinuous motion, though a spin eigenstate
along one direction can always be decomposed into two different spin eigen-
states along another direction. But if the spin state of a particle is entangled
with its spatial state due to interaction and the branches of the entangled
state are well separated in space, the particle in different branches will have
different spin, and it will also undergo random discontinuous motion be-
tween these different spin states. This is the situation that usually happens
during a spin measurement.

5 Implications

In this section, we will briefly discuss possible implications of the new inter-
pretation of the wave function for the solutions to the measurement problem.

It can be seen that random discontinuous motion of particles, unlike the
continuous motion of particles in the de Broglie-Bohm theory or Bohmian
mechanics, does not provide a solution to the measurement problem. This is
not against expectation, since it only provides an ontological interpretation
of the wave function, and what the precise laws of motion are still needs
to be determined. However, as we will argued below, this ontological inter-
pretation of the wave function might also have implications for the existing
solutions to the measurement problem.

13Note that the particle position here is different from the position property represented
by the position observable in quantum mechanics, and the latter is also a property relating
only to the state of motion of the particle such as position eigenstates. In addition, for
random discontinuous motion the position of a particle in a position superposed state is
indeterminate in the sense of usual hidden variables, though it does have a definite value
at each instant. Another way to see this is to realize that random discontinuous motion
of particles alone does not provide a way to solve the measurement problem. For further
discussions see Gao (2013).
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An important aspect of the measurement problem is to explain the ori-
gin of the Born probabilities or the probabilities of measurement results.
According to our interpretation of the wave function in terms of random
discontinuous motion of particles, the ontological meaning of the modulus
squared of the wave function of an electron in a given position is that it
represents the probability density that the electron as a particle appears
in this position, while according to the Born rule, the modulus squared of
the wave function of the electron in the position also gives the probability
density that the electron is found there. It is hardly conceivable that these
two probabilities have no connection. On the contrary, it seems natural to
assume that the origin of the Born probabilities is the random discontinu-
ous motion of particles. If this assumption turns out to be true, then it will
have significant implications for the solution to the measurement problem,
because the existing solutions have not accommodated this assumption. In
Bohmian mechanics (Goldstein 2013), the Born probabilities are epistemic.
In the latest formulation of the many-worlds theory (Wallace 2012), the
Born probabilities are subjective. In dynamical collapse theories, although
the Born probabilities are objective, it is usually assumed that the random-
ness originates from a classical noise field independent of the wave function
of the studied system (Ghirardi 2011). In short, none of these main solutions
to the measurement problem assumes that the Born probabilities originate
from the wave function itself.

Therefore, if the Born probabilities originate from the objective proba-
bilities inherent in the random discontinuous motion of particles described
by the wave function, then all these realistic alternatives to standard quan-
tum mechanics need to be reformulated. The reformulation may be easier
for some alternatives, but more difficult for others. For example, it is rela-
tively easy to find a dynamical collapse model where the chooser or the noise
source that collapses the wave function is the underlying random discontinu-
ous motion of particles (Gao 2013). Moreover, it seems possible or even more
promising to reformulate the many-worlds theory or the many-minds theory
in terms of the objective probabilities inherent in the random discontinuous
motion of particles. However, it seems difficult to find a new formulation of
Bohmian mechanics in which the probabilities of measurement results come
from the wave function.

Certainly, if one rejects the interpretation of the wave function in terms
of random discontinuous motion of particles, then the above implications
will be totally irrelevant. However, these analyses at least indicate that
understanding the origin of the Born probabilities may be a key to solving
the measurement problem. Moreover, if one rejects this interpretation of
the wave function, then one must reject either the arguments supporting
the interpretation or the basic realistic assumption used in these arguments.
This realistic assumption is that the wave function of a quantum system at
each instant describes the state of a physical entity or many physical entities
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either at the instant or during an infinitesimal interval around the instant.
A formulation of Bohmian mechanics does reject this assumption, and it
assumes a nomological interpretation of the wave function (Goldstein 2013).
On the other hand, if one accepts this realistic assumption, then one needs
to find loopholes in our arguments in order to avoid the above implications
for the solutions to the measurement problem.

6 Conclusions

The physical meaning of the wave function is an important interpretative
problem of quantum mechanics. Notwithstanding more than eighty years’
developments of the theory, it remains hot topic of debate. In this paper,
we propose a new approach for solving this problem, which is to analyze
the mass and charge properties of a quantum system. It is realized that the
Schrödinger equation, which governs the evolution of a quantum system,
contains more information about the system than the wave function of the
system, such as the mass and charge properties of the system, which, as
we have argued, may help understand the ontological meaning of the wave
function. These analyses lead to a new ontological interpretation of the wave
function in terms of random discontinuous motion of particles. According
to this interpretation, quantum mechanics, like Newtonian mechanics, also
deals with the motion of particles in space and time. Microscopic particles
such as electrons are still particles, but they move in a discontinuous and
random way. The wave function describes the state of random discontinuous
motion of particles, and in particular, the modulus squared of the wave
function gives the probability density that the particles appear in every
possible group of positions in space. Quantum mechanics, in this way, is
essentially a physical theory of the laws of random discontinuous motion
of particles. It is a further and also harder question what the precise laws
are, e.g. whether the wave function undergoes a stochastic and nonlinear
collapse evolution.
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