
How to Move an Electromagnetic Field?
Márton Gömöri and László E. Szabó
Department of Logic, Institute of Philosophy

Eötvös University, Budapest

Abstract
The special relativity principle presupposes that the states of the phys-

ical system concerned can be meaningfully characterized, at least locally,
as such in which the system is at rest or in motion with some velocity
relative to an arbitrary frame of reference. In the first part of the pa-
per we show that electrodynamic systems, in general, do not satisfy this
condition. In the second part of the paper we argue that exactly the
same condition serves as a necessary condition for the persistence of an
extended physical object. As a consequence, we argue, electromagnetic
field strengths cannot be the individuating properties of electromagnetic
field—contrary to the standard realistic interpretation of CED. In other
words, CED is ontologically incomplete.
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1 Introduction
The problem we address in this paper is on the border-line between physics and
metaphysics. We begin with the observation that the special relativity principle
(RP) is about the comparison of the behaviors of physical systems in different
states of inertial motion relative to an arbitrary inertial frame of reference.
Therefore, it is a minimal requirement for the RP to be a meaningful statement
that the states of the system in question must be meaningfully characterized
as such in which the system as a whole is at rest or in motion with some
velocity relative to an arbitrary frame of reference. Thus, to apply the RP to
classical electrodynamics (CED), it has to be meaningfully formulated when
an electrodynamic system—charged particles plus electromagnetic field—is at
rest or in motion relative to an inertial frame of reference. In the first part of
the paper we formulate a minimal condition a solution of the Maxwell–Lorentz
equations must satisfy in order to describe such an electrodynamic configuration.
Then we prove that the solutions of the Maxwell–Lorentz equations, in general,
do not satisfy these conditions.
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In the second part of the paper, we discuss the conceptual relationship be-
tween the problem of motion and the problem of persistence. We argue that
persistence presupposes—zero or non-zero—velocity. One can formulate a nec-
essary condition for the persistence of an object, in terms of its individuating
properties. This condition implies that the object must be in motion with some
instantaneous velocity; or, in case of an extended object, its local parts must
be in motion with some local and instantaneous velocities. At this point the
problem of persistence connects to the problem discussed in the first part of the
paper. As it is proved in Section 3, electromagnetic field does not satisfy this
condition. Therefore, we conclude, electromagnetic field cannot be regarded as
a real physical entity persisting in space and time; or, the field strengths cannot
be regarded as fundamental quantities individuating electromagnetic field, that
is, electrodynamics cannot be regarded as an ontologically complete description
of electromagnetic phenomena.

2 The RP Is about the Behaviors of Physical
Systems in Different States of Motion

The RP is one of the fundamental principles which must be satisfied by all laws
of physics describing any physical phenomena. Without entering into the more
technical formulation of the principle (see e.g. Gömöri and Szabó 2013), we
would like to focus on one particular aspect, which is already clearly there in
Galileo’s first formulation:

Shut yourself up with some friend in the main cabin below decks on
some large ship, and have with you there some flies, butterflies, and
other small flying animals. Have a large bowl of water with some
fish in it; hang up a bottle that empties drop by drop into a wide
vessel beneath it. With the ship standing still, observe carefully how
the little animals fly with equal speed to all sides of the cabin. The
fish swim indifferently in all directions; the drops fall into the vessel
beneath; and, in throwing something to your friend, you need throw
it no more strongly in one direction than another, the distances being
equal; jumping with your feet together, you pass equal spaces in
every direction. When you have observed all these things carefully
(though doubtless when the ship is standing still everything must
happen in this way), have the ship proceed with any speed you like,
so long as the motion is uniform and not fluctuating this way and
that. You will discover not the least change in all the effects named,
nor could you tell from any of them whether the ship was moving
or standing still. In jumping, you will pass on the floor the same
spaces as before, nor will you make larger jumps toward the stern
than toward the prow even though the ship is moving quite rapidly,
despite the fact that during the time that you are in the air the
floor under you will be going in a direction opposite to your jump.
In throwing something to your companion, you will need no more
force to get it to him whether he is in the direction of the bow or
the stern, with yourself situated opposite. The droplets will fall as
before into the vessel beneath without dropping toward the stern,



although while the drops are in the air the ship runs many spans.
The fish in their water will swim toward the front of their bowl
with no more effort than toward the back, and will go with equal
ease to bait placed anywhere around the edges of the bowl. Finally
the butterflies and flies will continue their flights indifferently toward
every side, nor will it ever happen that they are concentrated toward
the stern, as if tired out from keeping up with the course of the ship,
from which they will have been separated during long intervals by
keeping themselves in the air. And if smoke is made by burning
some incense, it will be seen going up in the form of a little cloud,
remaining still and moving no more toward one side than the other.
The cause of all these correspondences of effects is the fact that the
ship’s motion is common to all the things contained in it [italics
added], and to the air also. That is why I said you should be below
decks; for if this took place above in the open air, which would
not follow the course of the ship, more or less noticeable differences
would be seen in some of the effects noted. (Galilei 1953, 187)

What is important for our present concern is that the principle is about the com-
parison of the behaviors of physical systems—flies, butterflies, fishes, droplets,
smoke—in different states of inertial motion relative to an arbitrary inertial
frame of reference. In Brown’s words:

The principle compares the outcome of relevant processes inside the
cabin under different states of inertial motion of the cabin relative
to the shore. It is simply assumed by Galileo that the same initial
conditions in the cabin can always be reproduced. What gives the
relativity principle empirical content is the fact that the differing
states of motion of the cabin are clearly distinguishable relative to
the earth’s rest frame. (Brown 2005, 34)

The RP describes the relationship between two situations: one is in which the
system, as a whole, is at rest relative to one inertial frame, say K, the other
is in which the system shows the similar behavior, but being in a collective
motion relative to K, co-moving with some K ′. In other words, the RP assigns
to each solution F of the physical equations, stipulated to describe the situation
in which the system is co-moving as a whole with inertial frame K, another
solution MV(F ), describing the similar behavior of the same system when it is,
as a whole, co-moving with inertial frame K ′, that is, when it is in a collective
motion with velocity V relative to K, where V is the velocity of K ′ relative to
K. And it asserts that the solution MV(F ), expressed in the primed variables
of K ′, has exactly the same form as F in the original variables of K.

Consequently, the following is a minimal requirement for the RP to be a
meaningful statement:

Minimal Requirement for the RP (MR) The states of the system in
question—described by the solutions F—must be meaningfully characterized as
such in which the system as a whole is at rest or in motion with some velocity
relative to an arbitrary frame of reference.

Let us show a well-known electrodynamic example in which a particles +
electromagnetic field system satisfies this condition. Consider one single charged



particle moving with constant velocity V = (V, 0, 0) relative to K and the
coupled stationary electromagnetic field (Jackson 1999, 661):

MV(F )



Ex(x, y, z, t) = qX0(
X2

0 + (y − y0)2 + (z − z0)2
)3/2

Ey(x, y, z, t) = γq (y − y0)(
X2

0 + (y − y0)2 + (z − z0)2
)3/2

Ez(x, y, z, t) = γq (z − z0)(
X2

0 + (y − y0)2 + (z − z0)2
)3/2

Bx(x, y, z, t) = 0
By(x, y, z, t) = −c−2V Ez

Bz(x, y, z, t) = c−2V Ey

%(x, y, z, t) = qδ (x− (x0 + V t)) δ (y − y0) δ (z − z0)

(1)

where (x0, y0, z0) is the initial position of the particle at t = 0, X0 =

γ (x− (x0 + V t)) and γ =
(

1− V 2

c2

)− 1
2 . In this case, it is no problem to charac-

terize the particle + electromagnetic field system as such which is, as a whole, in
motion with velocity V relative to K; as the electromagnetic field is in collective
motion with the point charge of velocity V (Fig. 1) in the following sense:1

E(r, t) = E(r−Vδt, t− δt) (2)
B(r, t) = B(r−Vδt, t− δt) (3)

that is,

−∂tE(r, t) = DE(r, t)V (4)
−∂tB(r, t) = DB(r, t)V (5)

where DE(r, t) and DB(r, t) denote the spatial derivative operators (Jacobians
1It must be pointed out that velocity V conceptually differs from the speed of light c.

Basically, c is a constant of nature in the Maxwell–Lorentz equations, which can emerge in
the solutions of the equations; and, in some cases, it can be interpreted as the velocity of
propagation of changes in the electromagnetic field. For example, in our case, the stationary
field of a uniformly moving point charge, in collective motion with velocity V, can be con-
structed from the superposition of retarded potentials, in which the retardation is calculated
with velocity c; nevertheless, the two velocities are different concepts. To illustrate the differ-
ence, consider the fields of a charge at rest (9), and in motion (1). The speed of light c plays
the same role in both cases. Both fields can be constructed from the superposition of retarded
potentials in which the retardation is calculated with velocity c. Also, in both cases, a small
local perturbation in the field configuration would propagate with velocity c. But still, there
is a consensus to say that the system described by (9) is at rest while the one described by
(1) is moving with velocity V (together with K′, relative to K.) A good analogy would be a
Lorentz contracted moving rod: V is the velocity of the rod, which differs from the speed of
sound in the rod.



Figure 1: The stationary field of a uniformly moving point charge is in collective
motion together with the point charge

for variables x, y and z); that is, in components:

−∂tEx(r, t) = Vx∂xEx(r, t) + Vy∂yEx(r, t) + Vz∂zEx(r, t) (6)
−∂tEy(r, t) = Vx∂xEy(r, t) + Vy∂yEy(r, t) + Vz∂zEy(r, t) (7)

...
−∂tBz(r, t) = Vx∂xBz(r, t) + Vy∂yBz(r, t) + Vz∂zBz(r, t) (8)

The uniformly moving point charge + electromagnetic field system not only
satisfies condition MR, but it satisfies the RP: Formula (1) with V = 0 describes
the static field of the particle when they are at rest in K :

F



Ex(x, y, z, t) = q (x− x0)(
(x− x0)2 + (y − y0)2 + (z − z0)2

)3/2

Ey(x, y, z, t) = q (y − y0)(
(x− x0)2 + (y − y0)2 + (z − z0)2

)3/2

Ez(x, y, z, t) = q (z − z0)(
(x− x0)2 + (y − y0)2 + (z − z0)2

)3/2

Bx(x, y, z, t) = 0
By(x, y, z, t) = 0
Bz(x, y, z, t) = 0
%(x, y, z, t) = qδ (x− x0) δ (y − y0) δ (z − z0)

(9)

By means of the Lorentz transformation rules one can express (1) in terms of



the ‘primed’ variables of the co-moving reference frame K ′:

E′x(x′, y′, z′, t′) = q′ (x′ − x′0)(
(x′ − x′0)2 + (y′ − y′0)2 + (z′ − z′0)2

)3/2

E′y(x′, y′, z′, t′) = q′ (y′ − y′0)(
(x′ − x′0)2 + (y′ − y′0)2 + (z′ − z′0)2

)3/2

E′z(x′, y′, z′, t′) = q′ (z′ − z′0)(
(x′ − x′0)2 + (y′ − y′0)2 + (z′ − z′0)2

)3/2

B′x(x′, y′, z′, t′) = 0
B′y(x′, y′, z′, t′) = 0
B′z(x′, y′, z′, t′) = 0
%(x′, y′, z′, t′) = qδ (x′ − x′0) δ (y′ − y′0) δ (z′ − z′0)

(10)

and we find that the result is indeed of the same form as (9).
So, in this well-known particular textbook example the RP is meaningful

and satisfied. This picture is in complete accordance with the standard realistic
interpretation of electromagnetic field:

In the standard interpretation of the formalism, the field strengths B
and E are interpreted realistically: The interaction between charged
particles are mediated by the electromagnetic field, which is onto-
logically on a par with charged particles and the state of which is
given by the values of the field strengths. (Frisch 2005, 28)

In this example, the charged particle and the coupled electromagnetic field
constitute a physical system which—just like Galileo’s flies, butterflies, fishes,
droplets, and smoke—can be subject to the RP. The states F andMV(F ) can be
meaningfully characterized as such in which both parts of the physical system,
the particle and the electromagnetic field, are at rest or in motion with some
velocity relative to an arbitrary frame of reference. We will show, however, that
this is not the case in general.

3 How to Understand the RP for a General
Electrodynamic System?

What meaning can be attached to the words “a coupled particles + electromag-
netic field system is in collective motion with velocity V” (V = 0 included)
relative to a reference frame K, in general? One might think, we can read off
the answer to this question from the above example. However, focusing on the
electromagnetic field, the partial differential equations (4)–(5) imply that

E(r, t) = E0(r−Vt) (11)
B(r, t) = B0(r−Vt) (12)

with some time-independent E0(r) and B0(r). In other words, the field must
be a stationary one, that is, a translation of a static field with velocity V. But,



(11)–(12) is certainly not the case for a general solution of the equations of CED;
the field is not necessarily translating with a collective velocity. The behavior
of the field can be much more complex. Whatever this complex behavior is, it
is quite intuitive to assume that the following general principle must hold:

Mereological Principle of Motion (MPM) If an extended object as a
whole is at rest or is in motion with some velocity relative to an arbitrary ref-
erence frame K, then all local parts of it are in motion with some local instan-
taneous velocity v(r, t) relative to K.

Combining MPM with MR, we obtain the following:

Local Minimal Requirement for the RP (LMR) The states of the ex-
tended physical system in question must be meaningfully characterized as such
in which all local parts of the system are at rest or in motion with some local
instantaneous velocity relative to an arbitrary frame of reference.

Consequently, in case of electrodynamics, a straightforward minimal require-
ment for the RP to be a meaningful statement is that (2)–(3) must be satisfied
at least locally with some local and instantaneous velocity v(r, t): it is quite
natural to say that the electromagnetic field at point r and time t is moving
with local and instantaneous velocity v(r, t) if and only if

E(r, t) = E (r− v(r, t)δt, t− δt) (13)
B(r, t) = B (r− v(r, t)δt, t− δt) (14)

are satisfied locally, in an infinitesimally small space and time region at (r, t), for
infinitesimally small δt. In other words, the equations (4)–(5) must be satisfied
locally at point (r, t) with a local and instantaneous velocity v(r, t):

−∂tE(r, t) = DE(r, t)v(r, t) (15)
−∂tB(r, t) = DB(r, t)v(r, t) (16)

In other words, if the RP, as it is believed, applies to all situations in electro-
dynamics, there must exist a local instantaneous velocity field v(r, t) satisfying
(15)–(16) for all possible solutions of the following system of Maxwell–Lorentz
equations:

∇ ·E (r, t) =
n∑
i=1

qiδ
(
r− ri (t)

)
(17)

c2∇×B (r, t)− ∂tE (r, t) =
n∑
i=1

qiδ
(
r− ri (t)

)
vi (t) (18)

∇ ·B (r, t) = 0 (19)
∇×E (r, t) + ∂tB (r, t) = 0 (20)

miγ
(
vi (t)

)
ai(t) = qi

{
E
(
ri (t) , t

)
+ vi (t)×B

(
ri (t) , t

)
−c−2vi (t)

(
vi (t) ·E

(
ri (t) , t

))}
(21)

(i = 1, 2, . . . , n)



where, γ(. . .) =
(

1− (...)2

c2

)− 1
2 , qi is the electric charge and mi is the rest mass

of the i-th particle. That is, substituting an arbitrary solution2 of (17)–(21)
into (15)–(16), the overdetermined system of equations must have a solution for
v(r, t).

However, one encounters the following difficulty:

Theorem 1. There is a dense subset of solutions of the coupled Maxwell–
Lorentz equations (17)–(21) for which there cannot exist a local instantaneous
velocity field v(r, t) satisfying (15)–(16).

Proof. The proof is almost trivial for a locus (r, t) where there is a charged
point particle. However, in order to avoid the eventual difficulties concerning
the physical interpretation, we are providing a proof for a point (r∗, t∗) where
there is assumed no source at all.

Consider a solution
(
r1 (t) , r2 (t) , . . . , rn (t) ,E(r, t),B(r, t)

)
of the coupled

Maxwell–Lorentz equations (17)–(21), which satisfies (15)–(16). At point
(r∗, t∗), the following equations hold:

−∂tE(r∗, t∗) = DE(r∗, t∗)v(r∗, t∗) (22)
−∂tB(r∗, t∗) = DB(r∗, t∗)v(r∗, t∗) (23)
∂tE(r∗, t∗) = c2∇×B(r∗, t∗) (24)
−∂tB(r∗, t∗) = ∇×E(r∗, t∗) (25)
∇ ·E(r∗, t∗) = 0 (26)
∇ ·B(r∗, t∗) = 0 (27)

Without loss of generality we can assume—at point r∗ and time t∗—that oper-
ators DE(r∗, t∗) and DB(r∗, t∗) are invertible and vz(r∗, t∗) 6= 0.

Now, consider a 3× 3 matrix J such that

J =

 ∂xEx(r∗, t∗) Jxy Jxz
∂xEy(r∗, t∗) ∂yEy(r∗, t∗) ∂zEy(r∗, t∗)
∂xEz(r∗, t∗) ∂yEz(r∗, t∗) ∂zEz(r∗, t∗)

 (28)

with

Jxy = ∂yEx(r∗, t∗) + λ (29)

Jxz = ∂zEx(r∗, t∗)− λ
vy(r∗, t∗)
vz(r∗, t∗)

(30)

2Without entering into the details, it must be noted that the Maxwell–Lorentz equations
(17)–(21), exactly in this form, have no solution. The reason is that the field is singular
at precisely the points where the coupling happens: on the trajectories of the particles. The
generally accepted answer to this problem is that the real source densities are some “smoothed
out” Dirac deltas, determined by the physical laws of the internal worlds of the particles—
which are, supposedly, outside of the scope of CED. With this explanation, for the sake of
simplicity we leave the Dirac deltas in the equations. Since our considerations here focuses on
the electromagnetic field, satisfying the four Maxwell equations, we must only assume that
there is a coupled dynamics—approximately described by equations (17)–(21)—and that it
constitutes an initial value problem. In fact, Theorem 1 could be stated in a weaker form, by
leaving the concrete form and dynamics of the source densities unspecified.



by virtue of which

Jxyvy(r∗, t∗) + Jxzvz(r∗, t∗) = vy(r∗, t∗)∂yEx(r∗, t∗)
+vz(r∗, t∗)∂zEx(r∗, t∗) (31)

Therefore, Jv(r∗, t∗) = DE(r∗, t∗)v(r∗, t∗). There always exists a vector field
E#
λ (r) such that its Jacobian matrix at point r∗ is equal to J . Obviously,

from (26) and (28), ∇ · E#
λ (r∗) = 0. Therefore, there exists a solution of the

Maxwell–Lorentz equations, such that the electric and magnetic fields Eλ(r, t)
and Bλ(r, t) satisfy the following conditions:3

Eλ(r, t∗) = E#
λ (r) (32)

Bλ(r, t∗) = B(r, t∗) (33)

At (r∗, t∗), such a solution obviously satisfies the following equations:

∂tEλ(r∗, t∗) = c2∇×B(r∗, t∗) (34)
−∂tBλ(r∗, t∗) = ∇×E#

λ (r∗) (35)

therefore
∂tEλ(r∗, t∗) = ∂tE(r∗, t∗) (36)

As a little reflection shows, if DE#
λ (r∗), that is J , happened to be not in-

vertible, then one can choose a smaller λ such that DE#
λ (r∗) becomes invertible

(due to the fact that DE(r∗, t∗) is invertible), and, at the same time,

∇×E#
λ (r∗) 6= ∇×E(r∗, t∗) (37)

Consequently, from (36) , (30) and (22) we have

−∂tEλ(r∗, t∗) = DEλ(r∗, t∗)v(r∗, t∗) = DE#
λ (r∗)v(r∗, t∗) (38)

and v(r∗, t∗) is uniquely determined by this equation. On the other hand, from
(35) and (37) we have

−∂tBλ(r∗, t∗) 6= DBλ(r∗, t∗)v(r∗, t∗) = DB(r∗, t∗)v(r∗, t∗) (39)

because DB(r∗, t∗) is invertible, too. That is, for Eλ(r, t) and Bλ(r, t) there is
no local and instantaneous velocity at point r∗ and time t∗.

At the same time, λ can be arbitrary small, and

lim
λ→0

Eλ(r, t) = E(r, t) (40)

lim
λ→0

Bλ(r, t) = B(r, t) (41)

Therefore solution
(
r1
λ (t) , r2

λ (t) , . . . , rnλ (t) ,Eλ(r, t),Bλ(r, t)
)
can fall into an

arbitrary small neighborhood of
(
r1 (t) , r2 (t) , . . . , rn (t) ,E(r, t),B(r, t)

)
.4

3E#
λ

(r) and Bλ(r, t∗) can be regarded as the initial configurations at time t∗; we do not
need to specify a particular choice of initial values for the sources.

4Notice that our investigation has been concerned with the general laws of Maxwell–Lorentz
electrodynamics of a coupled particles + electromagnetic field system. The proof of the



Thus, the meaning of the concept of “electromagnetic field moving with a
local instantaneous velocity v(r, t) at point r and time t”, that we obtained
by a straightforward generalization of the example of the stationary field of a
uniformly moving charge, is untenable. We do not see other available rational
meaning of this concept. Such a concept, on the other hand, would be a nec-
essary conceptual plugin to the RP. In any event, lacking a better suggestion,
we must conclude that the RP is a statement which is meaningless for a general
electrodynamic situation.

4 No Persistence without Motion
There is a long debate in contemporary metaphysics whether and in what sense
instantaneous velocity can be regarded as an intrinsic property of an object at
a given moment of time (Butterfield 2006; Arntzenius 2000; Tooley 1988; Haw-
ley 2001, 76–80; Sider 2001, 34–35). There seems to be, however, a consensus
that

[. . .] the notion of velocity presupposes the persistence of the ob-
ject concerned. For average velocity is a quotient, whose numerator
must be the distance traversed by the given persisting object: oth-
erwise you could give me a superluminal velocity by dividing the
distance between me and the Sun by a time less than eight minutes.
So presumably, average velocity’s limit, instantaneous velocity, also
presupposes persistence. (Butterfield 2005, 257)

In this section we argue that the opposite is also true: the notion of persistence
requires the existence of instantaneous velocity.

It is common to all theories of persistence—endurantism vs. perdurantism—
that a persisting entity needs to have some package of individuating properties,
in terms of which one can express that two things in two different spatiotemporal
regions are identical, or at least constitute different spatiotemporal parts of the
same entity. Butterfield writes:

I believe that [the criteria of identity] are largely independent of the
endurantism–perdurantism debate; and in particular, that enduran-
tism and perdurantism [...] face some common questions about cri-
teria of identity, and can often give the same, or similar, answers to
them. [...] [A]ll parties need to provide criteria of identity for ob-
jects, presumably invoking the usual notions of qualitative similarity
and-or causation (Butterfield 2005, 248–289)

Without loss of generality we may assume that each of these individuating
properties can be characterized as such that a certain quantity fi takes a cer-
tain value. Consider a primitive example: the redness of the ball in Fig. 2 can

theorem was essentially based on the presumption that all solutions of the Maxwell–Lorentz
equations, determined by any initial state of the particles + electromagnetic field system,
corresponded to physically possible configurations of the electromagnetic field. It is sometimes
claimed, however, that the solutions must be restricted by the so called retardation condition,
according to which all physically admissible field configurations must be generated from the
retarded potentials belonging to some pre-histories of the charged particles (Jánossy 1971, p.
171; Frisch 2005, p. 145). There is no obvious answer to the question of how Theorem 1 is
altered under such additional condition.



the world line along which the ball
persists (endures/perdures)

Figure 2: A ball is individuated by its redness, spottedness, etc.

be characterized as such that the wavelength of light reflected from the instan-
taneous surface of the ball is around 650 nm. Or, more abstractly, just imagine
a quantity the spatiotemporal distribution of which takes value 1 in a region
where redness is instantiated—for example, on the locus of the ball—and takes
value 0 otherwise.

Now, in order to express the fact of persistence, consider a given n-tuple of
individuating quantities {fi}ni=1 that is supposed to trace out the trajectory or
spacetime tube along which the entity persists. The different theories of per-
sistence disagree in the actual content of the package {fi}ni=1, these differences
are not important from the point of view of our present concern. The following
necessary condition is however common to all intuitions:

fi(r, t) = fi(r− v (t) δt, t− δt) (42)
(i = 1, 2, . . . , n)

for all (r, t) where the object is present, at least for a small, infinitesimal, interval
of time δt (Fig. 2), with some instantaneous velocity v (t). Without loss of
generality we may assume that all functions in {fi}ni=1 are smooth (if not, we
can approximate them by smooth functions). Expressing (42) in a differential
form, we have5

−∂tfi(r, t) = Dfi(r, t)v(t) (43)
(i = 1, 2, . . . , n)

In other words, the entity is in motion with some instantaneous velocities v(t).
Let us call (43) the equations of persistence.

So far we considered the situation when the persistence can be formulated in
terms of individuating quantities {fi}ni=1 characterizing the entity in question
as a whole. Generally, however, this is not necessarily the case. An extended
object may persist, even if its holistic properties do not satisfy equations (43).
Following however the same intuition by which we formulated the Mereological
Principle of Motion, we propose the following thesis:

5For the sake of simplicity we may assume that all fi are scalar functions, and Dfi is simply
grad fi.



Figure 3: Persistence of an extended object requires the persitence of its local
parts

Mereological Principle of Persistence (MPP) If an extended object, as
a whole, persists, then its all local parts persist.

Accordingly, the persistence of an extended object requires the following
condition for the spatial distributions:

fi(r, t) = fi(r− v (r, t) δt, t− δt) (44)
(i = 1, 2, . . . , n)

or

−∂tfi(r, t) = Dfi(r, t)v(r, t) (45)
(i = 1, 2, . . . , n)

for all (r, t) where the extended object is present; where v(r, t) is a local and
instantaneous velocity field characterizing the motion of the local part of the
extended entity at the spatiotemporal locus (r, t) (Fig 3). Let us call (45) the
equations of persistence for an extended object.

5 The Ontological Incompleteness of CED
As we have seen in Theorem 1, the distributions of the two fundamental elec-
trodynamic field strengths, E(r, t) and B(r, t), do not satisfy the equations of
persistence (45). Therefore, the electromagnetic field individuated by the field
strengths cannot be regarded as a persisting physical object; in other words,
electromagnetic field cannot be regarded as being a real physical entity existing
in space and time. This seems to contradict to the usual realistic interpretation
of CED.

If electromagnetic field is a real entity persisting in space and time, then it
cannot be individuated by the field strengths. That is, there must exist some



quantities other than the field strengths, perhaps outside of the scope of CED,
individuating the local parts of electromagnetic field. This suggests that CED
is an ontologically incomplete theory.

How to conceive properties, different from the field strengths, which are ca-
pable of individuating the electromagnetic field? One might think of them as
some “finer”, more fundamental, properties of the field, not only individuat-
ing it as a persisting extended object, but also determining the values of the
field strengths. However, the following easily verifiable theorem shows that this
determination cannot be so simple:

Theorem 2. Let {fi}ni=1 be a package of quantities for which there exist a
local instantaneous velocity field v(r, t) satisfying the equations of persistence
(45) in a given spacetime region. If a quantity Φ is a function of the quantities
f1, f2, . . . , fn in the following form:

Φ(r, t) = Φ (f1(r, t), f2(r, t), ..., fn(r, t))

then Φ also obeys the equation of persistence

−∂tΦ(r, t) = DΦ(r, t)v(r, t)

with the same local instantaneous velocity field v(r, t), within the same spacetime
region.

Therefore, E(r, t) and B(r, t) cannot supervene pointwise upon some more
fundamental individuating quantities satisfying the persistence equations. How-
ever, they might supervene in some non-local sense. For example, imagine that
E(r, t) and B(r, t) provide only a course-grained characterization of the field,
but there exist some more fundamental fields e(r, t) and b(r, t), such that

E(r, t) =
ˆ

Ω

e (r′, t′) d4(r, t)

B(r, t) =
ˆ

Ω

b (r′, t) d4(r, t)

where Ω is a neighbourhood of (r, t) (Fig. 4). In this case, the more fundamental
quantities e(r, t) and b(r, t) may satisfy the equations of persistence, while
E(r, t) and B(r, t), supervening on e(r, t) and b(r, t), may not.
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