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Abstract. Turning away from entities and focusing instead exclusively on ‘structural’ 

aspects of scientific theories has been advocated as a cogent response to objections 

levelled at realist conceptions of the aim and success of science. Physical theories 

whose (predictive) past successes are genuine would, in particular, share with their 

successors structural traits that would ultimately latch on to ‘structural’ features of the 

natural world. Motives for subscribing to Structural Realism are reviewed and 

discussed. It is argued that structural retention claims lose their force if one gives up 

merely historical readings of the transition from Galilean-relativistic classical 

mechanics to the ‘special’ theory of relativity, heeding instead basic requirements that 

lead to their common derivation. Further cause for scepticism is found upon realising 

that the basic mathematical framework of quantum theory essentially reflects its 

predictive purpose, without any necessary input, be it of a ‘structural’ kind, from the 

physical world. 

 

 

 

 

1. How physics survives pessimistic induction 

Not only is realism towards events and things a ‘default’ attitude; it is also widely believed 

to be given support by the overwhelming success of science and the ubiquity of its 

technological by-products. How could we know and be able to do so much if our scientific 

theories did not somehow ‘reach out’ to the being and properties of a pre-existing objective 

world, and inform us reliably and truthfully about them? Expressed in a respectable 

academic format, this rather commonplace and straightforward doctrine goes by the name 

of Scientific Realism. Its proponents insist that, insofar as our scientific theories provide     

a successful account of phenomena, what they tell us about the entities they invoke – 

electric fields, photons, genes and so forth – must capture something of what those entities 

truly are, their properties and their (inter)actions. A worthy, ‘mature’ scientific theory 

provides, if not a true picture of reality, at least an approximately true one. The entities it 

posits, or quite similar ones, do exist in the world, and what the theory tells us about their 

attributes and behaviour is a broadly correct approximation to the truth, albeit one that may 

always be improved on
1
.  

                                                 
*
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 Scientific realists will readily concede that not everything in a theory may approximate truth to  

the same degree. A mathematised theory, for example, may include formal ‘gears and wheels’ that, 
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Empirical success is what sifts out ‘good’ theories from more or less worthy competitors, 

and the more enduring their successes, the more trusted are the winners. In the eyes of    

the realist, success stories are tell-tale signs that certain objective features of physical 

reality are properly, if only approximately accounted for. As the critics have not failed to 

point out, empirical evidence underdetermines theories, so that it can never be asserted for 

sure that any one is actually ‘closer to truth’ than other similarly successful contestants. 

Nonetheless, as supporting evidence accumulates, it gets ever more unlikely for credible 

competitors to catch up. Isn’t the winning theory simply that which, to date, yields the best 

fit with reality? Despite massive critical fire, the realist remains convinced that the position 

(s)he defends is that which makes the best possible sense of indisputable and persistent 

success. This ‘inference to the best explanation’ is usually paired with what, in its        

most radical form, has come to be known as the ‘no miracles argument’ (NMA):   

Scientific Realism is, purportedly, the only doctrine that does not make scientific success 

sound like a miracle
2
. In a slightly attenuated form, it would be the only account of theories 

that does not make their success exceedingly improbable. This ‘Greatest Likelihood 

Argument’ (GLA) succumbs to the base rate fallacy: depending on what probability value 

(as a measure of one’s degree of belief) one wishes to assign a priori to a given theory,  

any posterior, evidence-based probability that the theory in question is ‘on the right track’ 

can follow, including one that is as low as one likes– or rather wouldn’t like, if one is         

a convergent realist
3
. Whether or not one cares to quantify it, however, the NMA/GLA     

is above all the expression of a strongly-felt hunch; one that is so ingrained that the realist 

is not going to give it up without a fight. In fact, because of their unshakable commitment 

to the idea of an external world as both the source and ultimate target of scientific 

knowledge, most realists simply do not believe any serious alternative to their doctrine      

is even worth considering.  

It is tempting to think that our well-corroborated theories simply yield approximate truth 

about reality. However, didn’t past ‘scientists’ feel just the same about their own cherished, 

but defunct theories? Ptolemaic astronomy prospered for centuries, in spite of its getting 

basic facts wrong. Closer to us, Newton’s mechanics and gravitation theories, once held   

to be the pinnacle of human achievement, reached their limits on various grounds and were 

replaced by theories whose premises and methodologies are fundamentally different.   

Who knows whether the theories we now favour will not end up, like their predecessors, 

on the scrap heap?  

                                                                                                                                                
in and of themselves, do not refer to anything in the world, but whose ‘syntactical’ operation may 

none the less be required for the theory to perform its duties. 
2
 H. Putnam, ‘What is Mathematical Truth’, in Mathematics, Matter, and Method, Philosophical 

Papers Volume 1, Cambridge: Cambridge University Press 1975, pp.60-78. 
3
 For a brief discussion, see J. Worrall, ‘Miracles and Models: Why reports of the death of 

Structural Realism may be exaggerated’, in A. O’Hear (ed.), The Royal Institute of Philosophy 

Supplement: 61, Cambridge: Cambridge University Press 2007, pp.136-140. Worrall acknowledges 

the objection but chooses not to regard it as threatening his faith in the necessity of (some variety 

of) realism. 
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Some antirealists have argued that the historical record gives us serious cause for 

pessimism regarding the ability of our current theories to approximate truth.                

Larry Laudan’s contribution to the debate includes a list
4
 of past ‘scientific achievements’ 

we now regard as hopelessly off beam. Laudan’s list aims to render the NMA impotent by 

displaying a significant number of counterexamples. If the inherent fallibility of inductive 

arguments prevents it from being the last word, the ensuing inference to the irrationality   

of convergence claims, sententiously known as pessimistic (meta-)induction, would still  

be a severe setback for Scientific Realism.  

Laudan’s list is intended to impress. On closer inspection, however, does it really hold     

its promise? About a quarter of the list pertains to what we might charitably call 

‘paleobiology’: the humoral ‘theory’ of medicine, ‘theories’ of spontaneous generation,   

the vital force ‘theories’ of physiology. If those do qualify as conceptions, it is debatable 

whether they qualify as theories, let alone scientific ones, given our current understanding 

of what scientific theorising involves. They are merely plausible and to a large extent         

a priori stories about living organisms or the human body. So are the claims of 

catastrophist ‘geology’ about the Earth and its changes of appearance over millenia.    

None of those ‘theories’ relies on cautious experimentation, nor do they make use of       

the kind of highly controlled and constrained reasoning we have come to associate with  

the scientific method. What is more, paying tribute to such influential, venerable figures   

as Galen or Aristotle – not to say anything about allegiance to scriptures – is rife and 

stands in sharp contrast to the ‘find out for yourself’ attitude that has (ideally!) been that  

of scientists since, say, Galileo. As for their success, well: who did survive treatment        

in Molière’s days would most likely have recovered better and earlier without.  

Moving down the list, crystalline spheres are nothing but a concession to Aristotle’s 

metaphysics, which abhors the idea of a perfect vacuum – hence the heavenly fill-up. 

Ptolemaic astronomy itself is a mixture of traditional cosmological conceptions and 

ingenious, ad hoc algorithmic procedures. Despite its computational merits, it is hard to 

confer scientific status to it, just as we should refrain from regarding Mayan ‘astronomy’ 

as a science, regardless of the predictive accuracy of some of its ‘methods’. If Kepler’s 

carefully worked out statement of three basic laws of planetary motion qualifies as 

scientific, can his earlier Platonic speculations (Mysterium Cosmographicum) count as an 

example of theory? Are phlogiston theory, the caloric theory of heat and the effluvial 

theory of static electricity more worthy candidates? The phlogiston idea originates in 

Johann Blecher’s 1667 Physica Subterranea, in which he postulates the existence of a 

‘natural element’ – so-called terra pinguis – he imagines to be released in the process of 

combustion. Its ad hoc character makes phlogiston an unlikely candidate as the central 

                                                 
4
 L. Laudan, ‘A Confutation of Convergent Realism’, Philosophy of Science 48, 19-48 (1981); 

reprinted in D. Papineau (ed.), The Philosophy of Science, Oxford: Oxford University Press 1996, 

pp.107-138. 
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concept of a bona fide scientific theory
5
. The predictive success of the phlogiston view of 

combustion is not easy to ascertain, let alone quantify, because the theory lacked the 

support of substantial mathematisation. It probably owes its longevity and limited ‘success’ 

to a coincidence: phlogiston was imagined to operate as a sort of negative of oxygen; what 

chemistry would understand as consumption of oxygen was regarded as phlogiston release. 

As for Gilbert’s effluvial conception of static electricity, a look at his De Magnete (1600) 

betrays its Aristotelian persuasion. This is, again, a work of imagination that can at best 

support a ‘narrative’ whose plausibility must be evaluated in its historical context.  

Unlike phlogiston or effluvia, the caloric idea did contribute to undeniable scientific 

developments.  It did enjoy a fair amount of explanatory success (e.g. it does rather neatly 

account for the cooling of a hot liquid at room temperature) and could provide some 

justification for the gas laws. This and the lack of any clear and convincing alternative 

picture of heat led such prominent scientists as Carnot and Laplace to endorse it. 

Nevertheless, Carnot’s accomplishments were (thankfully) independent of what he thought 

heat was. Laplace’s rather loose commitment to the caloric view was certainly useful        

in suggesting to him the addition of a constant (currently known as the ‘adiabatic index’)  

to the equation Newton had derived for the propagation of an acoustic disturbance in        

an elastic medium
6
. This resulted in a substantial correction to Newton’s prediction of    

the speed of sound
7
. Thus caloric, as a guiding idea, was a useful fiction: it provided        

an incentive for refining the mathematical models of acoustic phenomena, and a fairly 

neutral background for reflecting, as Carnot did, on the ‘motive power of fire.’ 

We no longer believe in caloric, in phlogiston or effluvia. Neither are we greatly impressed 

by what the theories that invoked them achieved. If they were successful at all, whatever 

successes those theories did score range from plausible explanations (as judged, at least,  

by the standards of their times) to satisfactory quantitative predictions.  But the latter were 

the products of great ingenuity rather than reflections of their authors’ beliefs.          

Laudan makes much of the empirical success of Fresnel’s optics. This theory accurately 

predicts interference or diffraction effects, some of which run counter to uninformed 

expectations. The realist might seize the opportunity and highlight this as evidence that 

genuine aspects of the physical world have been captured by Fresnel’s account; aspects 

                                                 
5
 “This theorizing as to phlogiston resembles in its methods the dreaming of the Greek 

philosophers, who preferred to base their theories on pure reasoning rather than on observation and 

experiment. No attempt at first was made at the isolation of phlogiston, nor were experiments 

adduced in support of the theory.” (F. Preston Venable, A Short History of Chemistry, Boston: D.C. 

Heath & Co. 1894, p.52). 
6
 Finn B.S. 1964. ‘Laplace and the Speed of Sound’, ISIS, Vol.55, No.179, pp.7-19. 

7
 Newton had assumed that pressure changes in an acoustic disturbance are simply proportional to 

density changes (Principia, Book II, Proposition 49), which was both plausible and 

computationally convenient. Proportionality, however, would hold only if temperature remained 

constant throughout, but it is not. Regarding heat as a substance rather than as a manifestation of 

molecular motion does not affect those considerations: pressure and temperature are quantities that 

are, in either view, given a clear operational meaning. 
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that appealing to common sense or ordinary observation (as opposed to careful 

experimentation) would not be capable of revealing. There’s the rub, however, for despite 

the success of Fresnel’s predictions, the ontology he advocated (wave-like disturbances 

propagating in an all-pervading elastic medium) is now believed, with good reason, to be 

utterly mistaken. Ontologies are therefore not, Laudan concludes, necessary or even 

relevant to predictive success. He does, however, misrepresent Fresnel’s achievement, 

making it sound as if Fresnel’s belief in optical ether was actually instrumental in his 

account of diffraction. Given the fate of that particular ontology, wouldn’t such 

dependence make his striking and enduring success very implausible? What made Fresnel 

succeed was not speculation about the nature and properties of a medium for the 

propagation of light; rather, it was the effective development of key ideas, such as periodic 

variation, and how he drew fundamental implications of Huygens’s principle. It is as          

a seasoned practitioner of the art of model-making, and not as a speculative thinker,       

that Fresnel succeeded in ‘squeezing out’ correct predictions. This is how physicists and 

engineers work at their best, and certainly the reason why some of the relations Fresnel 

derived have outlived his ontological preconceptions.  

All in all, one must admit that, if ‘striking predictive success[es]...is a precondition           

of acceptance
8
’, then most items on Laudan’s list simply do not qualify. Most significantly, 

those few theories that were undeniably successful in predicting phenomena, both 

quantitatively and qualitatively, happen to fit in, however loosely, with our current 

conception of physical theories. Those are the theories that did not die in vain, i.e. the 

theories whose successful predictions have been least affected by the demise of putative 

ontologies: Fresnel’s optics, Newton’s mechanics, Maxwell’s electrodynamics...           

This resilience has very much to do with their hinging on the expert and judicious 

exploitation of mathematical resources. What remains to be seen, however, is whether 

focusing on that particular aspect can help rescue Scientific Realism or lend support         

to some variant thereof. Should one wish to follow the lead and come up with a ‘structural’ 

(presumably weakened) variety of realism, it must be borne in mind that the scope of       

the endeavour will be confined to physical theories – at least until it is proven to be 

legitimate to extend its theses to other recognized scientific domains.  

 

 

 

 

 

 

 

                                                 
8
 J. Worrall (2007), op. cit., p.127. 
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2. Realism goes structural 

Those, like Laudan, who dwell on ‘ontological losses’ suffered as a result of radical theory 

change tend to exaggerate – if only for denying it – the importance of metaphysical 

baggage as a factor crucial to the effectiveness of physical theories. Besides, there does    

at least appear to be a substantial carry-over, at some level, from one worthy physical 

theory to the next. If such inheritance, or retention, is not illusory, it would occur despite 

the loss of ‘central terms that (we now believe) were nonreferring
9
.’ Its occuring at a much 

more abstract, ‘structural’ level, would make such retention relatively insensitive to        

the fate of ontologies. In his essay La science et l’hypothèse, Henri Poincaré downplays  

the importance of postulated entities, such as Fresnel’s ether or Lorentz’s electron.          

He regards them as convenient fictions and contrasts them with the enduring truth of laws 

and equations:  

‘Never mind whether the ether really exists, for this is the business of 

metaphysicians; what matters for us [physicists] is that everything happens as if 

it did exist and that this hypothesis is convenient for the explanation of 

phenomena. After all, do we have any other reason to believe in the existence of 

material objects? There again, it is merely a convenient hypothesis; however, it 

will never cease to be, whereas one day will no doubt come when the ether is 

rejected as useless
10

. But on that very day, the laws of optics and the equations 

that express them analytically will remain true, at least as a first approximation. 

It will therefore be useful to study a doctrine that connects all those 

equations
11

.’  

Despite the eventual rejection of Fresnel’s and other theories, ‘the differential equations 

[the authors of those theories came up with and successfully used for making predictions] 

are always true, they may always be integrated by the same methods and the results of this 

integration still preserve their value
12

.’ Hypotheses that led to deriving those equations 

may well have been unwarranted beliefs or illusions, but they somehow served as a guide 

to their derivation. Be it for that reason only, the doctrines in question were certainly not 

held in vain. 

Following Poincaré’s insights, John Worrall claims that what distinguishes our most 

successful scientific theories is their being ‘structurally correct
13

’. Moreover, ‘this is            

the strongest epistemic claim about them that it is reasonable to make
14

.’ This provides      

a motive and grounds for a variant of Scientific Realism, which has come to be known as 

                                                 
9
 Laudan, op. cit., p.121. 

10
 Poincaré writes those lines in 1889. 

11
 H. Poincaré, La science et l’hypothèse, Paris: Flammarion 1968, p.215 (my translation). 

12
 H. Poincaré, Science and Hypothesis (SH), New York: Dover 1905, note 9, p.160. 

13
 J. Worral (2007), op.cit. p.125.  

14
 Ibid.  



 7 

Structural Realism
15

. Notice again, though (this is quite clear from Poincaré’s statement 

and preoccupations) that the case for Structural Realism (SR) seems to be restricted to 

physical theories, or to those scientific theories that would share with physics a very 

definite, ‘special’ kind of relationship to mathematical concepts and methods (see Section 

3). What does it mean, then, for a theory to be ‘structurally correct’? In Poincaré’s own 

words: ‘if the equations remain true, it is because the relations preserve their reality
16

’.  

Not only must a compelling, ‘simple’ law transcend the somewhat gratuitous nature       

and unreliability of hypothesis choice, but the relations Poincaré alludes to would ‘encode’ 

and preserve, transtheoretically, reference to a certain ‘something out there’ that would 

transcend theory change
17

. 

According to Worrall and his fellow ‘structuralists’, putative qualities of physical objects 

would be mostly irrelevant to the operation of a physical theory, and therefore to its 

predictive success. Referring to such qualities would yield at best a metaphysical picture, 

an ontological gloss whose main virtue – definitely a mixed blessing – would lie in its 

stimulative power and in the incitement it may provide the theorist to develop ideas        

and ‘try them out’. With respect to the hypothetical furniture of the world, one could not do 

any better than to remain agnostic. One’s trust in a theory should not be placed in anything 

but in its mathematical, ‘operative’ content; for the latter only has, and can have,                

a significant and provable impact on predictive success. This position strongly contrasts 

with Scientific Realism in that the cognitive, epistemic import of physical theories is 

restricted to their mathematical makeup and what follows from it in terms of empirical 

(predictive) consequences. What makes it a variety of realism is the structuralist’s belief 

that physical theories are successful, and they can only be, because their key operative 

structures somehow ‘reflect’ or latch on to correspondingly ‘structural’ aspects of           

the physical world.  

 

 

 

 

                                                 
15

 J. Worrall, ‘Structural Realism: The Best of Both Worlds?’, Dialectica 43/1-2, (1989); reprinted 

in D. Papineau (ed.), The Philosophy of Science,  Oxford: Oxford University Press 1996, pp.139-

165. 
16

 SH, note 9, p.161.  
17

 Although he mentions in this context ‘true relations between real objects’ (SH, note 9, p.161),     

it is debatable whether Poincaré would have wholeheartedly embraced SR. The nearest he might 

have come to be a realist might well have been in his sharing a common hunch: that the network   

of relations (between definite quantities) which physicists work out and validate via careful 

experimentation tends towards the ideal of a ‘natural classification’ (P. Duhem, The Aim and 

Structure of Physical Theory, Princeton: Princeton University Press, 1991; translated from           

La théorie physique ; son objet, sa structure (1906)); something as objective, hence ‘natural’ as our 

endeavours can possibly get to.  
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In order to assess the case for Structural Realism, it will be convenient to break it down 

into three theses: 

(i) The primary, unshakable credo of the realist: a metaphysical claim about     

          the existence of a pre-organised reality. In the words of Elie Zahar
18

:  

‘There exists a structured reality of which the mind is a part; and, far from 

imposing their own order on things, our mental operations are simply 

governed by the fixed laws which describe the workings of nature.’ 

 

  (ii)     Transtheoretical Retention (TTR): 

Regardless of the differences in their basic hypotheses, successive [physical] 

theories that register significant success in predicting phenomena have in 

common certain structural traits e.g. in the form of similar or even identical 

equations. The similarity and retention of those traits cannot be sensibly ascribed 

to chance. 

 

(iii )   Inference to the best, ‘structural’ explanation (IBSE): 

TTR makes it reasonable to believe that such theories as considered in (ii) afford 

access to genuine aspects of the reality posited in (i). Access is provided only 

through those structural traits of theories that withstand radical changes in their 

ontological premises, and it consists in some sort of correspondence between 

those traits and suitably ‘structural’ features of physical reality. 

 

Whilst (i), or a similar claim
19

, is common to all brands of realism, (ii) and (iii) are 

distinctive of Structural Realism. TTR – the persistence of certain structural elements       

in the face of theory change, however radical that change might be at a hypothesis level – 

would be a tell-tale sign that the elements in question capture something genuine,             

of a perhaps essentially ‘relational’ nature, about the world. No less, and certainly no more. 

Much of the strength of structural realism would lie in its making no stronger claims than 

can withstand Laudan-style arguments. As J. Worrall puts it, ‘If SR isn’t realism then 

nothing defensible is
20

’. If this is so, then if SR is found ultimately wanting it is the very 

fate of realism as a justification for the success of (physical) science that must be called 

into question.  

                                                 
18

 E. Zahar, Poincaré’s Philosophy: From Conventionalism to Phenomenology, Chicago: Open 

Court 2001, note 21 p.86. Emphasis added. 
19

 Zahar’s statement, with its reference to ‘laws’ that both ‘describe’ and ‘govern’ the workings of 

nature and our cognitive processes, is open to debate, and certain realists might wish to substitute a 

more cautious, albeit fundamentally equivalent formulation of their core belief. 
20

 J. Worral (2007), op.cit., p.154. 
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TTR, and therefore Structural Realism itself, is particularly, if not exclusively, a claim 

about physical theories. Given that ‘structural’ is, more often than not, used by 

structuralists as if it were quasi-synonymous to mathematical, a review of the role            

of mathematics in the formulation – indeed, in the very constitution – of physical theories 

is in order before theses (ii) and (iii) can be addressed and criticised. Such a review is     

the object of the next section.  

 

 

3. Physics is ‘mathematical’ 

However important its role, e.g., in biomedical research, mathematics merely lends this 

and other scientific domains the precision of its techniques and a capacity to yield 

quantitative predictions. This instrumental role very strongly contrasts with the thorough 

mathematisation of physical concepts. This is so down to the very basics: without            

the notion of derivative, there is no effective idea of an instant velocity. Introducing and 

coordinating physical quantities also relies on specific structures (in the precise, 

mathematical sense of the word): for example, it is part and parcel of the classical concept 

of velocity for it to be conceived and manipulated as a vector quantity. How the word 

energy, used e.g. in casual conversation, has come to mean everything and nothing shows, 

a contrario, how a legitimate physical concept becomes vacuous when it is stripped of     

its precise mathematical expressions.  

It has often been pointed out – more to wonder about the fact than as a starting point       

for trying to elucidate an intriguing aspect of the mathematics-physics relationship             

– how twentieth-century physics has capitalised on the availability of concepts and 

structures that mathematicians had developed without any application in mind but for     

the sake of aesthetic appeal or the intellectual challenge of working out consequences of 

their axioms. Tensor calculus and Riemann’s differential geometry happened to provide 

just the right tools and concepts Einstein needed to be able to work his way from the 

postulation of an ‘equivalence principle’ to a fully local and relativistic theory of 

gravitation. Born’s recognition of matrices in Heisenberg’s ‘tables’ or ‘assemblies’ 

(Gesamtheit) is another striking instance of mathematical conquests or inventions being 

available to meet the needs of the physicist. Conversely, developments in theoretical 

physics have occasionally stimulated the production of new mathematics or suggested 

fruitful avenues for mathematical research. Thus, while Fourier’s treatment of heat belongs 

to history, the powerful techniques he developed to solve a particular partial differential 

equation have become essential items in an ever-expanding mathematical toolbox.            

In view of some scathing criticism
21

, it might also well be that work on currently 

fashionable superstring theories will mostly benefit the mathematician.  

                                                 
21

 e.g. that of R. Penrose, The Road to Reality, New York: Vintage Books, 2007. 
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A notorious cause for wonder is the fact that similar expressions, e.g. differential 

equations, occur as the outcome of addressing what may look like radically different 

problems. Feynman, for one, calls it ‘a most remarkable coincidence
22

’. Those similarities 

come in handy, for ‘having studied one subject, we immediately have a great deal of direct 

and precise knowledge about the solutions of the equations of another
23

’. For example, 

knowing the equations of electrostatics ‘you have learned at the same time how to handle 

many subjects in physics, and…keeping this in mind, it is possible to learn almost all       

of physics in a limited number of years
24

’. This is indeed extremely convenient, but the 

question remains: ‘Why are the equations from different phenomena so similar?...          

The electrostatic potential, the diffusion of neutrons, heat flow – are we really dealing with 

the same stuff?
25

’ If he makes a passing and evasive reference to ‘the underlying unity of 

nature
26

, Feynman knows his subject too well to ignore that the form of differential 

equations is determined, not by the kind of ‘stuff’ it refers to, but by the assumptions      

the physicist decides, or feels obliged to make: 

Is it possible that…the thing which is common to all the phenomena is…        

the framework into which the physics is put? As long as things are reasonably 

smooth in space, then the important things that will be involved will be the rates 

of change of quantities with position in space. That is why we always get an 

equation with a gradient. The derivatives must appear in the form of a gradient 

or a divergence; because the laws of physics are independent of direction, they 

must be expressible in vector form. The equations of electrostatics are the 

simplest vector equations that one can get which involve only the spatial 

derivatives of quantities. Any other simple problem – or simplification of a 

complicated problem – must look like electrostatics. What is common to all our 

problems is that they involve space and that we have imitated what is actually a 

complicated phenomenon by a simple differential equation
27

. 

If Feynman speaks about ‘imitation’, it is because his realist leanings prompt him to regard 

the outcome of model-making as ‘a smoothed-out approximation to a mechanism 

underneath
28

’. Nevertheless, the occurrence, in the treatment of seemingly unrelated 

problems, of equations whose form turns out to be the same may have little, if anything,   

to do with the nature of whatever unknown mechanisms those equations may or may not 

‘approximate’. The basic assumptions the theorist ends up relying on: slow variation, 

neglect of higher-order terms, isotropy, homogeneity etc. are expressions of general, 

                                                 
22

R.P. Feynman, R. Leighton and M. Sands: The Feynman Lectures on Physics, Vol.2: 

Electromagnetism, Reading MA: Addison-Wesley 1965. 12-1. 
23

 Feynman et al., op. cit., 12-1. 
24

 Feynman et al., op.cit., 12-12. 
25

 Feynman et al., op. cit., 12-12. Italics are Feynman’s. 
26

 Ibid. 
27

 Ibid. Italics added. 
28

 Feynman et al., op. cit., 12-13. However, he acknowledges difficulties with such a view in e.g. 

quantum electrodynamics. 
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perceptually or cognitively motivated expectations, and operational (e.g. computational) 

necessities as much, at least, as they are responses to the ‘pressure’ of an external world. 

Such assumptions actually are a conditio sine qua non for mathematical formulation and 

effective treatment. Indeed, it takes very slight ‘corrections’ to make a set of equations 

impossible to solve. Whatever appearance of unity the similarity of equations points to 

should not, therefore, hastily be ascribed to nature. Such unity might rather be thought of 

as characterising the range of our possibilities of conceiving and effectively handling those 

distillates of (possible or actual) experience the physicist’s models are and can only be. 

Striking as they are, all observed similarities boil down to some basic requirements   for 

intelligibility, together with the concessions that must be made for an optimal use of  the 

conceptual means and powerful methods mathematics affords.  

Productive work in theoretical physics is very dependent on some carefully thought-out 

choices of representation. Second only to those choices is skillful use of well-designed and 

flexible symbolic notations. With its unique capacity to harness thought and carry it along 

in the safest possible vehicle, a consistent and well-designed formalism allows its user      

to develop all the consequences of an initial set of assumptions. Well-tried computational 

procedures all but dispense one to reflect, at every step, on what the manipulated symbols 

actually refer to, in terms of their relationship to entities or attributes. Once properly set   

on its course, under the vigilant eye of the expert, mathematisation leaves no freedom       

to improvise. Barring computational errors, one cannot be led astray without having 

betrayed one’s starting assumptions. Such may be the intricacy of what those assumptions 

imply that the most insightful and best-trained mind can do no more that guess at plausible 

outcomes. However, difficulties with analytical treatment notwithstanding, the iron hand  

of the formalism ensures that those consequences can be worked out.  

If there is a constructive role for ontological preferences to play in the matter it consists    

in making, through a mental picture or ‘narrative’, some of the key requirements               

or assumptions explicit (this is, of course, far from being foolproof). What matters most    

is that the physicist be led to decisions that will be just those required to yield exploitable 

equations. Thus, reasoning that is ‘channelled’ by a flow metaphor may lead  – once all  

the attendant assumptions have been precisely formalised – to similar partial differential 

equations, whether the object of the model is the motion of an actual fluid, cash flow        

in financial markets or traffic flow on road networks. Fresnel’s mental picture of                

a ‘rippling’ medium somehow enabled him to arrive at successful predictions.                    

If later physicists could ‘recover’ Fresnel’s results in the context of their own 

‘electromagnetic world picture’, this is because the latter prompted them to make 

essentially similar moves, when they were faced with the challenge of turning their insights 

into a workable model. This is how assumption-driven effectiveness can give appearances 

of a reality-driven transtheoretical continuity. 

Bearing in mind the specific character of the physics-mathematics relationship, 

appearances of TTR are both significant and deceptive: they are significant in pointing     

to the unity – and, by the same token, to the limited range – of the highly consequential 
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decisions the theorist must make in order for his abstracted account of phenomena            

to be effectively exploitable. But they are deceptive in that they lend themselves,         

when considered uncritically, to the simplistic view of a common thread that would run 

through successive theories, bearing the ‘structural’ imprint of an external world.  

Models and theories of specific phenomena have to comply with the requirements of basic 

theoretical frameworks – frame theories, as we shall call them here. The transition from 

one frame theory to another involves no TTR stricto sensu: basic classical equations did 

not survive the relativistic or quantum tidal waves. Instead, any links between those 

theories are usually exhibited in some appropriate limit. However, as we shall see at length 

in the next section, approaching them from a different perspective, free from the contingent 

lessons of history, leads to a very different view of the mutual relationship of classical 

mechanics and ‘special relativity’ on the one hand, and the purpose of quantum theory on 

the other. This will affect both our assessment of the value of correspondence claims and 

our judgment about the plausibility of the structuralist’s IBSE (thesis (iii)  above).] 

 

 

4. Beyond correspondence: revisiting the foundations of  

    our best frame theories 

(i) Relativity without light 

Einstein's ‘special’ theory of relativity (STR), as it is used and taught just about 

everywhere, is based upon two postulates: (i) The mathematical form of the laws              

of physics must be the same in all inertial reference frames; and (ii) The speed c at which 

light – or more generally electromagnetic radiation – propagates in vacuo happens to be     

the same in all inertial frames. Whilst (i) is a general claim about the indifference of  basic 

theoretical statements (physical laws) with respect to changes of reference frame (as long 

as those frames are in uniform translational motion relative to one another), (ii) is an 

assertion about a particular manifestation (light) of a given interaction (electromagnetism).  

Postulate (i) actually is entirely compatible with Galileo’s views about relative motion.   

On the other hand, since (ii) flatly contradicts ‘Galilean’ relativity (e.g. the additive 

composition of all velocities), blocking from the outset a ‘Galilean transformation’ Galileo 

himself never derived, a theory based upon (i) and (ii) is bound to be inconsistent          

with Newtonian mechanics, in which Galilean relativity is tacitly assumed. If the latter can 

no longer be regarded as true, it does remain, of course, very useful for dealing with cases 

where typical velocities (v) have much smaller magnitudes than the speed of light c.     

This is sanctioned by the invocation of a ‘correspondence principle’ whereby the Galilean 

tranformation is ‘recovered’ in the 0
v

c
 limit. The conceptual chasm between the two 

frameworks remains, however, breeding comments about their radical dissimilarity, if not 

their mutual ‘incommensurability’. 
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Despite the magnitude of Einstein’s achievement, the feeling might remain that his original 

and now standard two-postulate formulation is not, because of (ii), entirely faithful to 

relativistic objectives. This is all the more so since, as any textbook derivation of             

the Lorentz-Einstein transformation will readily confirm, the form of that transformation 

owes everything to the second postulate, which requires the speed of light to have the value 

c in all inertial frames. The relativity postulate (i) is, in itself, too general to help constrain, 

let alone determine, the form of change-of-frame transformations. It merely serves to 

motivate the search for a universal transformation. Given the weight of (ii) in its 

derivation, the Lorentz transformation may not appear to be so much a clear embodiment 

of relativity as a surprisingly far-reaching consequence of a striking fact about light.  

It may then come as a surprise that both the Galileo and the Lorentz-Einstein 

transformation can be derived from the same set of assumptions
29

, without any reference   

to light and its propagation (or indeed to any other kind of physical process).        

Following Galileo’s insight: mechanical, or more generally physical ‘laws’ should not 

depend in any essential manner on the state of motion of whoever describes them – as long 

as one sticks to so-called inertial frames – the aim is to work out the general form of       

the transformation of space coordinates and time that regulates passage from one inertial 

frame to another. The sought transformation should guarantee that any physical quantities, 

as functions of coordinates in any one such frame, are systematically transformed into 

corresponding functions of the coordinates in another inertial frame.   

There are no grounds, empirically or otherwise, for regarding space as inherently polarised 

(which would make certain directions a priori different from others). This is all the more 

so if space is regarded as an abstract and convenient framework for locating objects.       

We are then free to choose the direction of relative motion of two inertial frames as that 

which coincides with an arbitrary, conventional x axis. Specifying the transformation rule 

that regulates passage from an inertial frame R  to another one  R’ will then essentially 

amount to working out the precise form of two functions of just one space (x) and one time 

(t) variable: x’ = F(x,t) and t’=G(x,t). It is also reasonable to expect the transformation     

of any space or time interval not to depend on ‘where’ that interval is located (all intervals 

of a given amplitude a should transform by the rule into intervals of the same amplitude 

a’). This homogeneity requirement strongly constrains the form of F and G: to fit the bill, 

those must be linear functions of their inputs, i.e. 'x x t    and 't x t   .         

Taking explicity into account the relative motion, with velocity v in the x direction, of the 

                                                 
29

 Intellectual inertia and Einstein’s fame as the foremost scientific hero of our times have been 

quite successful in keeping the public and even most practitioners of STR unaware of this ‘non-

secret’. For examples of its periodic rediscovery, see J.-M. Lévy-Leblond, ‘One more derivation of 

the Lorentz transformation’, Am. J. Phys. 44, 271-277 (1976), A. Sen, ‘How Galileo could have 

derived the special theory of relativity’, Am. J. Phys. 62, 157-162 (1994), and M.J. Feigenbaum, 

‘The Theory of Relativity – Galileo’s Child’, ArXiv.org e-print 0806.1234 (2008). On a personal 

note, the dissatisfactions expressed above resurfaced – leading to the selfsame ‘rediscovery’ – as    

I was lecturing (University College London, 2000) on the emergence, in historical context, of 

Einstein’s ‘special’ theory. 
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two frames then reduces from four to two the number of unknown coefficients, each of 

which is a function of v only
30

. The precise form of those functions follows if                  

the transformations are finally required to combine among themselves as the elements of   

a group: in particular, if R , R’ and R" are any three inertial reference frames in relative 

rectilinear motion, then any given ‘F,G transformation’ from R to R’ followed by one 

transformation of the same type from R’ to R" should be equivalent to a single F,G 

transformation between R and R". The form of  F and G is thereby completely determined:         

                                         
2
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Three possibilities follow, depending on the sign or the value of the parameter . The =0 

option yields the Galileo transformation, which Newton’s mechanics implicitly assumes 

and which appeared to be borne out by all experiments until the last decades of                

the nineteenth century. A strictly positive value can be ruled out in view of its anomalous 

consequences. For example, composing the velocities of two motions in the same direction 

(v>0 and v’>0) according to the law: 
vv

vv
v






1
 (which follows from the assumptions) 

could then result in relative motion in the opposite direction (v”<0) !   

The dimensionless 
21 v factor in the remaining case (<0) is a function of the relative 

velocity v of the two frames. Since  happens to have the dimensions of the inverse of       

a velocity  squared, the appearance in the corresponding ‘Lorentz’ transformation of      

the 
2

2

1
( )

1









v
v

factor can be interpreted as implying a ‘structurally’ imposed limit    

to the relative velocity of two inertial frames. A convenient correspondence between the 

two <0 and =0 frameworks is thereby established, in the form of a smooth transition 

from one framework to the other in the 0
v


 limit. The procedure comes in handy and it 

may be ‘reassuring’, but this changes nothing to the mutual exclusiveness of the =0 and 

<0 cases. 

Now suppose, for the sake of argument, that the above derivation had been achieved prior 

to that of a package of equations for electromagnetism. If we assume in this context – 

rather unrealistically – sufficiently advanced technology (accurate clocks, and perhaps fast 

flying machines), comparison of the readings of previously synchronised clocks
31

 after 

                                                 
30

 Given that the transformation itself must be unaffected if relative motion is time-reversed           

(t  -t) or a mirror image of it is considered (which amounts here to x  -x), it follows that one of 

these functions is odd, and the other even. 
31

 Despite Einstein’s famous discussion of clock synchronisation (in the first part of his 1905                            

Zur Elektrodynamik article), the procedure through which this is achieved need not involve light – 

and why should it? If Einstein makes sure that it does, this is because he is primarily concerned 

with the consistency of electromagnetism with mechanics. Galileo had actually come up with an 

ingenious – and obviously light-free – modus operandi for ensuring that clocks are properly 
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they had been set in relative motion could have revealed discrepancies between those time 

readings, thereby calling into question the ‘obvious truth’ of the Galilean conception. 

Given the relative velocity v of the two clocks, an empirical evaluation of  would have 

immediately followed from the ratio 
21 v of the two times, without any incongruous 

reference to electromagnetism or the propagation of light. If physicists had then cared to 

express that ratio in terms of , two-clock data would have revealed that this theoretical 

limit is very high compared to speeds that had ever been experienced, or that one might 

even reasonably expect to experience. Had one, however, measured the speed of light, 

coincidence of its value in vacuo with the empirical evaluation of  would certainly have 

come as a major surprise
32

. The subsequent realisation that an adequate set of equations for 

electromagnetism is covariant under a ‘-transform’ would then have been welcomed as 

evidence of their consistency with the empirically validated <0 mechanical framework, 

raising none of the problems Lorentz and Poincaré had found themselves battling against, 

until Einstein arrived and cut the Gordian knot with the sharp blade of his second postulate. 

Let’s briefly consider the kind of dynamics that complies with a -transformation.           

Assuming that the principle of inertia remains valid, the laws of mechanics must be 

reconsidered to take into account the connection such a transformation establishes between 

space and time variables. The simple Newtonian massvelocity definition of momentum 

turns out to be inconsistent with the non-additive law for composing velocities.      

Defining momentum as p = γmv is a convenient choice that yields the classical Newtonian 

form in the 0
v


  limit. The energy variation dE for a system that undergoes an 

infinitesimal displacement dr is by definition such that 
d

d = .d
d

E
t

p
r . Writing the equation 

 d d  – d .d = 0
E

t


 
 
 

p r  suggests a parallel between 
E


 and p on the one hand, and t   

and r on the other, where the latter are connected by a -transformation.                       

Most significantly, the terms in each product are ‘Noether pairs’ that each comprise a 

variable (respectively t, r) and a physical quantity (respectively E, p) such that                

the invariance of dynamics under a shift in the value of the variable is signalled by 

conservation of the associated quantity. The left-hand side of the equation has the same 

form as the kinematical invariant d(t)
2
 – dr

2
, which is implied by the -transformation 

law. This ‘scalar product’ form and the aforementioned duality suggest that energy and 

momentum transform according to the same -transformation as time and space 

                                                                                                                                                
synchronised (that his own clocks were clepsydrae only makes it somewhat impractical for 

deciding between the =0 and the <0 variants of relativity theory…).  See Feigenbaum, op.cit. for 

a brief discussion of Galileo’s procedure. 
32

 Shouldn’t we be just as surprised to see, on the standard account, a ‘strange’ aspect of light 

determine the basic transformation rule of a relativity theory? Why  happens to coincide with the 

speed of light is just as much an enigma today as it was in 1905 (and it is not resolved by invoking 

the zero mass of the photon). 
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coordinates. If so, then given the above definition of p, the expression of energy in terms 

of mass, velocity and the universal constant   is  E = γm
2
. Again, identification of         

the value of  with the speed c of light is an empirical matter. There is no clear reason –   

to say the least – why the two should actually coincide, nor is it expected a priori that  

should be ‘actualised’ in any kind of physical phenomenon
33

. 

The resulting ‘topochronometric’ framework ensures that any well-defined physical 

quantities will systematically and correctly transform upon switching from one inertial 

frame to another. The framework operates, in accordance with the prerequisites of              

a relativistic programme, without any reference to specific interactions or entities.         

That theoretical expressions should not, other than trivially, depend on mere changes of 

(kinematical) ‘perspective’ is a necessary condition for reliable communication, 

intersubjective agreement and the legitimate identification of certain relations as 

expressions of genuine physical laws. Those cognitive-operational requisites are part and 

parcel of ongoing efforts to achieve a robust, intersubjectively valid account of  

phenomena. Among the assumptions that lead to the derivation of the -transformation, 

isotropy and homogeneity amount to denying any world-based particularity that would 

lessen the general validity of the outcome. They are formulated at a level of abstraction 

where they acquire a virtually ‘transcendental’ status
34

. In contrast to Einstein’s ‘strange’ 

claim about light, those assumptions have a sensible – indeed, rather anticlimactic – 

character, but the pay-off is considerable and immediate: the form of possible 

transformations is so contrained that the additional invocation of transitivity and 

reversibility (via group-theoretical composition) is all it takes to complete the derivation.   

That the Galileo and the Lorentz transformation are actually derived from the same set     

of assumptions makes it necessary to reevaluate the relation between the Newtonian and 

STR frameworks. Their actual order of succession is easily accounted for: the Galilean 

option is, of course, that which dovetails with our ordinary experience, hence with 

corresponding expectations. Experimentation with advanced means is required for 

revealing any discrepancy with the assumed =0 case and for giving empirical backing to 

the only acceptable (<0) alternative. Indeed, it took ‘anomalies’ of electromagnetism 

(from a Galilean viewpoint) and the ‘lucky coincidence’ of  with the speed of light for  

the Galilean option (never deemed an ‘option’ until then) to be challenged and finally 

overthrown.  

A realist might still insist that the world is, as a matter of fact, {<0, =c}-relativistic.   

One of the two possibilities must somehow have been objectively ‘selected’, and our 

conceptual expectations can have nothing to do with the matter. Doesn’t the identity of  

                                                 
33

 Discovering any (minute) discrepancy between  and c would undermine Einstein’s two-

postulate formulation of STR. The generic <0 relativistic framework, however, would retain its 

validity. The question would remain as to why the values of  and c, whilst not coinciding, should 

be so close to each other. 
34

 Borrowing the word should not, of course, be mistaken for endorsing any post-Kantian view  of 

cognition. 
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and c point to such natural underpinnings? Numerical models hint at an intriguing 

alternative: the world may not so much be ‘relativistic’, i.e. non-Galilean, than we are 

bound, qua observers, to experience ‘it’ as such. Starting from a random distribution within 

a finite radius, a random walk model whose dynamics is not rotationally invariant at       

the micro-level leads to the emergence, in the long run, of a distribution that is invariant 

under the continuous group of rotations. Assuming equal probabilities for ‘opposite’ 

motions in the lattice, a Galilean transformation slows down the evolution
35

 of                 

the binomial distribution by a factor γ
-2

. It takes a ‘Lorentz’ transformation, followed by          

a further scaling by a factor γ
-1

, to counteract this effect and to restore the dynamics.         

A more refined lattice-gas model of diffusion
36

 yields similar though indirect results.  

Here, dynamics is deterministic and reversible at the micro-level, but it gives rise to just 

the same macro-level phenomenology as the random walk. The system is a one-

dimensional cellular automaton with a given lattice spacing. As the spacing goes to zero 

(continuum limit), this model exhibits exact Lorentz covariance  in the following sense: 

starting from an initially uniform distribution with fixed linear density, the probability 

distribution converges in the continuum limit toward the solution of the telegrapher’s 

equation
37

 – an equation that was derived by Heaviside in the 1880s as an essential part    

of his transmission line model. Its form can be traced back to Maxwell’s equations, from 

which it inherits the ‘built-in’ property of Lorentz invariance. It is also closely related       

to that of the Klein-Gordon equation, which provides a non-Galilean ( = c) version         

of Schrödinger's equation that is suited for the treatment of a spinless system
38

.              

This computational model, together with other simulations
39

, suggests that meeting         

the requirements of STR might be an emergent phenomenon, to which the actual nature of 

the underlying dynamics is to a large extent if not entirely irrelevant. It is intriguing, 

though certainly not quite to the realist’s taste, to contemplate the possibility that Lorenz 

covariance might be the only form of relativity that is compatible with our situation          

                                                 
35

 In this model, ‘proper time’ is measured by the standard deviation. T. Toffoli, ‘How Cheap Can 

Mechanics’ First Principles Be?’, in W.H. Zurek, (ed.): Complexity, Entropy and the Physics of 

Information: Proceedings of the Santa Fe Institute Studies in the Sciences of Complexity, Vol.8,  

Redwood City CA: Addison-Wesley 1990, pp.301-318, 4.1. 
36

 T. Toffoli, op.cit., 4.2. 
37

 The same distribution also converges, in the infinite time limit, to the solution of the diffusion 

equation – another partial differential equation (so does the binomial distribution). 
38

 Another equation with a similar form is the so-called hyperbolic heat equation, which was 

introduced to overcome the inconsistency of Fourier’s equation with the requirements of STR. This 

is achieved by ‘upgrading’ the parabolic form of Fourier’s equation and making it hyperbolic, so 

that it is compatible with the non-positive metric of STR (the Lorenz transformation can be 

regarded as a hyperbolic rather than circular rotation, because of a one-one mapping between a 

planar rotation through a given angle and a Lorentz transformation with a given velocity). 
39

 T. Toffoli, ‘Four Topics in Lattice Gases: Ergodicity, Relativity, Information Flow and Rule 

Compression for Parallel Lattice-Gas Machines, in R. Monaco (ed.), Discrete Kinetic Theory, 

Lattice Gas Dynamics and Foundations of Hydrodynamics, Singapore: World Scientific 1989, 

pp.343-354. 
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as macroscopic agents and observers, alhough our low-velocity ordinary regime tends      

to impose, deceptively but usefully enough, a Galilean perspective.  

 

(ii) Another kind of probability calculus 

However much is being said about the seemingly incurable, alleged weirdness of quantum 

theory, there are compelling grounds for regarding its mathematical backbone (we shall 

refer to it as the Statistical Algorithm of Quantum Mechanics
40

 [SAQM]) as nothing but    

a linear variant of ordinary probability calculus. Recent years have witnessed some 

intriguing and certainly significant attempts at deriving basic features of the SAQM,    

from the combination of amplitudes to the Born rule, from simple sets of well-motivated, 

physically neutral assumptions. Some of the more striking derivations will be outlined 

below, with a view to weighing their outcome against the claims of the structuralist. 

In a fashion that is reminiscent of the approach to relativity discussed in section 4(i), 

Lucien Hardy has recently derived both the SAQM and a vector formulation of classical 

probability calculus from four basic and straightforward axioms
41

. Hardy’s contribution 

starts on with a simple observation: the probabilities of a complete set of K mutually 

exclusive measurement outcomes can, with no loss of generality, be written down as 

components of a K-dimensional vector. ‘Measurement’ here is to be understood in the most 

general sense of collecting data through some appropriate device or procedure. Now, any 

single trial or ‘single shot’ measurement can at most distinguish between N outcomes. 

Hardy’s first axiom asserts the existence of a functional relation between K and N, which 

moreover should be the simplest possible (there is no reason for assuming that K and N 

should be a priori equal). Constraints will then typically reduce the number of possible 

outcomes, and it is sensible to assume that the dimension K of the probability vector space 

should be reduced accordingly (this is Hardy’s second axiom). In the case of simultaneous 

dice throws, of jointly produced pairs of particles etc., how do the K and N for pairs relate 

to those that correspond to measurements performed on their members separately?            

If measurements performed on each subsystem, and on that subsystem alone, suffice to 

determine the corresponding probability vector, then it is sensible to assume that such 

measurements are, together, sufficient to completely determine the probability vector that 

                                                 
40

 M.L.G. Redhead, Incompleteness, Nonlocality and Realism, Oxford: Clarendon Press 1987, p.5. 
41

 L. Hardy, ‘Quantum Theory from Five Reasonable Axioms’, Arxiv.org e-print quant-ph/0101012 

(2001);  L. Hardy, ‘Why is Nature described by Quantum Theory?’, in J. D. Barrow, P.C.W. 

Davies and C.L. Harper Jr (eds) : Science and Ultimate Reality: Quantum theory, Cosmology and 

Complexity, Cambridge: Cambridge University Press 2004, pp.45-71. One of Hardy’s five axioms 

can actually be dispensed with, expressing as it does the author’s commitment to a frequentist 

(rather than e.g., Bayesian) interpretation of probability. One’s position in this matter is actually 

irrelevant to the derivation of the SAQM. 
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pertains to the combined system (‘local accessibility’ thesis
42

). Letting K1 and K2 be        

the dimensions of the probability vector spaces relative to each pair member, and N1 and 

N2 be the related N (through Axiom 1), the assumption amounts to letting K = K1K2 and 

N=N1N2 (Axiom 3). The underlying intuition is that a scheme that implements local 

accessibility will make optimal use of the information supplied by measurements 

performed separately on the two subsystems.  

Together, the three axioms entail that K = N
r
, where r is a positive integer. The simplicity 

requirement of Axiom 1 further restricts the possible values of r to 1 and 2. The r=1        

(K = N) case is nothing but a vector space formulation of classical probability theory, 

whereas r=2 yields all the essential features of the SAQM. In both cases the probability 

vectors evolve between observations in a fashion that does preserve, as required, the basic 

(e.g. adding-up-to-1) properties of probability. ‘Reduction’ of the probability vector in    

the r=2 case simply signals the updating of probability upon acquisition of new 

information. Besides, Hardy’s derivation settles a vexed issue: why the SAQM should 

require Hilbert spaces to be defined over the field of complex numbers. As it turns out,  

real Hilbert spaces cannot accommodate local accessibility: the specification of probability 

vectors in the bipartite case would then require more (K>K1K2) than can provide data 

gathered locally on the two subsystems.  

The very fact that the SAQM is actually derived from the same set of assumptions as        

(a vector implementation of) classical probability calculus, where the latter is clearly not a 

physical theory, throws doubt on a widespread opinion: that the basic features of the 

SAQM somehow ‘reflect’ the ‘quantal’ nature, or the ‘quantal structure’, of the physical 

world. Given the composition of the axioms and the generality of their double-headed 

outcome, we might rather expect a r=2 scheme to have potentially wider applicability than 

one might have surmised, given our knowledge of one instance only of such a scheme, 

namely quantum mechanics. And one can indeed find some successful, or at least 

promising efforts to develop, in domains far removed from physics, a useful probabilistic 

framework that is isomorphic to the SAQM
43

. When it comes to drawing the line between 

the two options, Hardy reduces the matter to acceptance or rejection of a continuity 

requirement: in a r=2 framework, any probability vector can be continuously and 

reversibly transformed into any number of other probability vectors – this is indeed what 

‘superpositions’ are all about. The ‘classical’ (r=1) alternative excludes the possibility of 

                                                 
42

 W.K. Wootters, ‘Local Accessibility of Quantum States’, in W.H. Zurek (ed.): Complexity, 

Entropy and the Physics of Information: Proceedings of the Santa Fe Institute Studies in the 

Sciences of Complexity, Vol.8, Redwood City CA: Addison-Wesley 1990, pp.39-46. 
43

 See in particular D. Aerts and L. Gabora, ‘A Theory of Concepts and their Combination. I:  The 

Structure of the Sets of Contexts and Properties & II: A Hilbert Space Representation’, Kybernetes 

34, pp.167-191 & pp.192-221 (2005) [ArXiv.org e-print quant-ph/0402207 & quant-ph/0402205]. 

The authors develop a scheme, the logico-algebraic (lattice) structure of which matches that of    

the SAQM, and in which probabilities are computed according to the usual, basic ‘quantum’ rules. 

The purpose of that scheme is to yield statistics of concepts on the basis of certain criteria, such as 

their typicality (so that e.g. ‘snake’, or even ‘goldfish’, is a less typical, hence lower probability 

instance of ‘pet’ than ‘cat’) . 
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any such transformation (which makes it, in a sense, less ‘natural’ than the other option: 

one hardly feels the need for a vector formulation of ordinary probability calculus). 

Bearing in mind that probability vectors need not be regarded as representatives of ‘states’ 

(a word that is dangerously loaded with ontological overtones), there is little reason for 

claiming that the continuity-based r=1 vs. r=2 distinction ‘reflects’ anything essential 

about an objective physical world.  No more, indeed, than we can find any reason to do so 

when it comes to distinguishing a priori between the two relativistic =0 and <0 options.   

Besides Hardy’s, other contributions support a view of the SAQM as a specific type of 

probabilistic framework. Let us start with the idea of labelling with ‘amplitudes’, i.e. real 

or possibly complex numbers, a connection we establish, for purposes of prediction, 

between an ‘initial preparation’ (I) and a ‘target event’ (T). Given an intermediate event S, 

such that it can – but it may not always – be ascertained that the IT transition does 

proceed via S, it is reasonable to expect the IT amplitude to be a function f of               

the ‘partial’ amplitudes one assigns to IS and to ST. Likewise, denoting by {S,S’}      

a complete set of mutually exclusive ‘intermediate’ events, the ‘total’ IT amplitude will 

be a function g of the amplitudes associated with the IST and IS’T sequences. 

Consistent assignment then requires both functions to be associative and  f to be 

distributive over g. Assuming those functions are analytical, then Feynman’s rules for the 

combination of amplitudes follow: the total amplitude for a permissible sequence is        

the product of the amplitudes of its terms, and amplitudes of mutually exclusive terms or 

sequences add up to yield a total amplitude
44

. One further step towards ‘recovery’  of        

the SAQM consists in letting amplitudes be the coordinates of suitable vectors
45

. Requiring 

that probability, as a function of amplitude, retain its form under vector basis changes 

implies a power form relationship of probability to amplitude. This form will be consistent 

with the metric structure of the representative space, associated with the definition of  a 

scalar product and norm, if and only if probability relates to amplitude as its squared 

modulus
46

. In contrast to Hardy’s, it is a shortcoming of this approach that the nature of  

the field over which the metric vector space (Hilbert space) must be defined remains 

undetermined.   

Besides, the question arises of why one should bother at all to introduce amplitudes as an 

auxiliary device for prediction, i.e. for the calculation of probabilities. Hardy’s derivation, 

among others, suggests that resorting to amplitudes affords a means of enhancing statistical 

                                                 
44

 Y. Tikochinsky, ‘On the generalized multiplication and addition of complex numbers’, Journal 

of Mathematical Physics 29 (2), 398-399 (1988); Y. Tikochinsky, ‘Feynman Rules for Probability 

Amplitudes’, International Journal of Theoretical Physics 27 (5), 543-549 (1988). A. Caticha, 

‘Consistency, amplitudes, and probabilities in quantum theory’, Physical Review A57, 1572 (1998), 

ArXiv.org e-print quant-ph/9804012. 
45

 These should not be confused with Hardy’s vectors, whose components are probabilities.   
46

 One early argument to that effect is found in P. Destouches-Février, ‘Signification profonde du 

principe de décomposition spectrale’, Comptes Rendus de l’Académie des Sciences 222, 866-868 

(1946); see also P. Destouches-Février, L’interprétation physique de la mécanique ondulatoire et 

des théories quantiques, Paris : Gauthier-Villars 1956.  



 21 

distinguishability. Suppose that one decides to test three variables on a population.         

The probability triple for each population can be represented as a point on a triangle         

or simplex. Letting each probability be the square of a (real) amplitude, the amplitude 

triples then lie on a curvilinear triangle, which is ‘stretched’ relative to the simplex.           

If two populations A and B are such that probabilities assigned to some of their features 

appear to be closer than those for two other populations C and D, as shown by the distance 

between the corresponding points on the simplex, then A and B might seem to be harder to 

distinguish from each other than C from D on the basis of the considered variables. 

Statistical analysis will, however, sometimes belie that impression. Whenever this occurs, 

switching to amplitudes shows that the apparent difference is a mere artefact of the linear 

representation (on the curved triangle, the distance between A and B may in fact be the 

same
47

 as that between C and D). Although much clarification is needed here, this suggests 

that optimising the distinguishability of probability distributions is a key trait of a 

predictive scheme like the SAQM, whether its formulation explicitly makes use of 

amplitudes (whose modulus, equivalent to Hilbert space angle, provides a measure of 

statistical distance
48

) or it takes the general form of a r=2 framework.  

Granted that its ‘nonclassical’ features are those of a specific kind of probabilistic 

algorithm, quantum mechanics is nonetheless a physical theory. What makes it such owes 

everything to the linear representation of groups. Group-theoretical considerations shape 

and constrain physical quantities, the distribution of their possible (in-principle 

measurable) values and their mutual relationships. Given the specific structure of the 

SAQM, they also determine the relative phases of amplitudes and the fact that those 

amplitudes are more generally complex
49

 (that they must be in general follows, as we have 

seen, from a local accessibility assumption). Fundamental types of invariance in pre-

quantum mechanics are connected to space-time symmetries associated with translations, 

rotations and inertial transformations (STR substitutes the Poincaré group for the Galileo 

group). In quantum mechanics, such symmetries apply in conjunction with the linear and 

projective structure of the SAQM to determine the form of the operator representatives of 

physical quantities, hence the constitution of their spectra. If the modulus of the inner 

product of any two predictive vectors, and therefore probability, is to remain unaffected by 

symmetry transformations of Hilbert space, then Wigner’s theorem implies that those 

transformations must be implemented by a unitary or an anti-unitary operator. If such 

transformations form a group, then the corresponding operators must satisfy the 
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multiplicative group law, and there must exist a unitary projective representation of the 

group in the Hilbert space ‘of’ the system. Which types of systems are possible comes 

down to the types of linear group representations that can be accommodated. In the case of 

space-time symmetries, the relevant groups are continuous Lie groups, whose 

representations can only be unitary. The Stone-Naimark theorem then guarantees the 

existence, for any one-dimensional subgroup of the symmetry group, of a self-adjoint 

operator that is the infinitesimal generator of the group, whereby a representation of the 

Lie algebra of the symmetry group obtains
50

.  

Insofar as the self-adjoint operators are expressions of invariance under space-time 

transformations, they fulfil the most elementary requirements for being regarded as 

representatives of basic physical quantities. The association, via Noether’s theorem, of 

continuous space-time symmetries with conservation laws – of energy with time shifts, of 

angular momentum with rotations etc. – provides the best available justification for the 

usual practice of referring to those operators using the names of their classical analogues: 

Hamiltonian, angular momentum etc. Such terminological usage may encourage 

unwarranted expectations and lead to puzzlement when those are not fulfilled. 

Nevertheless, its legitimacy is not ultimately based upon vague analogies or putative 

‘correspondence’ with classical physics. Losing a sense of ‘intuitiveness’ or 

Anschaulichkeit might actually be a fairly low price to pay for the group-theoretical 

foundation of basic quantities like linear and angular momentum to be put on a firm basis.  

If something substantial ends up being carried over, albeit not merely ‘retained’, from 

classical to quantum mechanics, enabling ‘correspondence’ and fuelling hopes among 

structuralists, this is because those two frameworks, despite all their dissimilarities, must 

hinge on similar prerequisites of theorisation (e.g. regarding spatio-temporal or other types 

of invariance). In the quantum mechanical setting, the familiar descriptive, anschaulich 

style of classical mechanics gives way to the blind efficiency of a probabilistic algorithm 

(SAQM), whose symbolic machinery is brought to bear on group-theoretically regulated 

physical quantities. The classical and ‘quantal’ ways of handling those essential 

prerequisites and of developing their consequences are too dissimilar for classical relations 

to actually ‘survive’ the change. Thus, Newton’s Second Law and the expression of force 

as the gradient of potential are ‘recovered’ only as the outcome of an averaging procedure 

(Ehrenfest’s theorem). If this and other correspondence rules are convenient shortcuts, a 

thoroughly group-theoretical approach is required for quantities without a classical 

analogue, like spin, to be accounted for (the latter emerges as another variety of angular 

momentum, with its fundamental association to rotation). Yet another weakness of 
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correspondence claims is that quantum mechanical treatments give rise to a number of 

‘classical limits’ whose mutual consistency is far from guaranteed
51

.  

Hardy’s axioms are just as operational as are the assumptions from which the joint 

derivations of the Lorentz and Galileo transformations follow. Nothing in them clearly or 

plausibly points to any ‘pressure’ from a pre-existing and pre-structured external world, 

which would somehow result in a r=2 scheme being enforced as ‘nature’s choice’. A key 

to the efficiency of the SAQM may well be its capacity to optimise the distinguishability of 

probability distributions, as encapsulated e.g. in a Hardy vector. Can this capacity make 

sense as an inherent trait of external, ‘observer-free’ reality? As for those considerations of 

symmetry and invariance that determine and guarantee the physicality of both the classical 

and the quantum mechanical frameworks, the possibility of imputing them all to the 

constitution of the physical world remains open, but neither more nor less than they had 

been before the emergence of the quantum. However, the justification of conservation laws 

as reflections of invariance under space or time shifts, rotations and so forth might just as 

well, if not better, be regarded as expressing essential, part cognitive, part operational 

requirements for intelligibility and predictive effectiveness.  

 

 

5. On the dubious value of the structuralist’s hunches  

The observed ‘resilience’ of certain equations and formulae strongly suggests that 

theoretical accounts of physical phenomena are to a large extent insensitive to 

metaphysical tenets and ontological preferences. Far from being helpful, clinging to certain 

kinds of entities or processes is more likely than not to become obstructive
52

. However, 

certain ‘metaphysical’ preconceptions also act as motivators for coming up with 

assumptions whose selection will determine the success of a particular account of 

phenomena. Assuming, for instance, a certain mode of space or time variation, with 

attendant prerequisites of uniformity etc., implies the selection and use of appropriate types 

of mathematical objects, e.g. a divergence or a Laplace operator, such that the ‘behaviour’ 

of a system will be expressed as relations (e.g., differential equations) that involve those 

objects. Following ‘natural’ human inclinations, credit for any significant success will be 

given to the postulated ontology… until further developments make that particular 

ontology untenable, despite the predictive success of the models it fostered.  

Now, whatever ideas happen to ‘drive’ the physicist, effective theorisation is the product of 

painstaking, focused effort. It requires an unequivocally precise formalisation of ideal 

‘systems’, subject to clearly delineated and articulated conditions and constraints, all of 
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which must comply with basic assumptions of accepted frame theories. Such a programme 

must also face the necessity of arriving at equations that can be solved, or at least exploited 

in certain useful ways. Because of all those needs and concessions, widespread similarities 

in theoretical, mathematised treatment and its outcome (e.g. partial differential equations  

of the same form) are inevitable; and this is so regardless of glaring dissimilarities between 

the actual objects of those treatments
53

. Resemblances in mathematical formulation and 

processing can always be traced back to conceptual and methodological decisions that 

determine whether any given model is to be successful. 

Structuralists wish to capitalise (TTR) on the actual ‘recovery’ of formulae that pertain to 

former frameworks, from expressions derived using the resources of their radically 

different successors. The joint derivation of both the Galileo and the Lorentz-Einstein 

transformation, from the very same set of assumptions, should make it clear, however, that 

this is not merely a case of the later framework having (somehow) retained something 

significant from the former. Neither can it suffice to point out that such retention, or 

whatever commonality between the two frameworks the word retention is intended to 

highlight,  would operate at a ‘structural level’. Upon closer scrutiny, the two change-of-

frame transformations turn out to be alternative outcomes of expecting a transformation 

rule to satisfy a minimal number of sensible and operationally motivated requirements. 

There are no serious grounds for seeing in those assumptions, as the structuralist invites us 

to infer (thesis (iii)), any putative ‘reflection’ of  the structure of the world, whatever clear 

meaning this expression can be given.  

Likewise, there are some compelling reasons for believing that the basic features of the 

SAQM are responses to requiring a probabilistic, linear scheme for prediction to satisfy 

elementary demands, which may come down to rather straighforward matters of 

distinguishability and of local accessibility. The vector character of this type of framework 

may well be optimal given the linear representation of groups, from which quantum 

theories derive their physical content. There again, there is no clear sense in which  

quantum-mechanical structure should be thought of as mirroring a correspondingly quantal 

structure of the natural world, and there certainly is no conceptual, epistemological 

advantage in following the structuralist down a road that looks like nothing more than a 

metaphysical dead end.  

One must beware of a seldom resisted temptation, which is to reify invariant (or suitably 

covariant) quantities, and to believe that they offer glimpses of a stable and objective, 

observation or abstraction-independent reality. The invariants the physicist is concerned 

with are such only given specified, or implicitly assumed, experimental or perceptual 

conditions – what may be referred to as a context. Despite a tendency to focus on the 
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entities themselves as the locus or source of invariance, the latter is a structural property of 

a set of operations (usually formalised in terms of groups) rather than anything externally 

enforced ‘by the world’. It is thus illegitimate to invoke any kind of invariance or 

systematic change (captured by some definite rules) as evidence of theories latching on to 

the world .  

However well-reasoned our scepticism may be, it is most unlikely that the structuralist  

will be willing to come to terms with the possibility that the conceptual or structural 

content of physical theories may not ‘mirror’ relational aspects of an external world but, 

nonetheless, be effective and intellectually worthwhile. For it is his/her ‘default 

assumption’, as John Worrall puts it, that given appearances of  TTR between predictively 

successful theories, those theories ‘have latched on in some way to the ‘deep structure’ of 

the universe
54

.’ Promoting realist hunches may not, however, be the best way of achieving 

a deep understanding of physical theories, and of helping elucidate how their 

mathematisation can make them so reasonably effective. 
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