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Abstract

We outline a framework for analyzing episodes from the history of science in
which the application of mathematics plays a constitutive role in the concep-
tual development of empirical sciences. Our starting point is the inferential
conception of the application of mathematics, recently advanced by Bueno
and Colyvan (2011). We identify and discuss some systematic problems of
this approach. We propose refinements of the inferential conception based
on theoretical considerations and on the basis of a historical case study. We
demonstrate the usefulness of the refined, dynamical inferential conception
using the well-researched example of the genesis of general relativity. Specif-
ically, we look at the collaboration of the physicist Einstein and the math-
ematician Grossmann in the years 1912–1913, which resulted in the jointly
published “Outline of a Generalized Theory of Relativity and a Theory of
Gravitation,” a precursor theory of the final theory of general relativity. In
this episode, an independently developed mathematical theory, the theory
of differential invariants and the absolute differential calculus, was applied
in the process of physical theorizing aiming at finding a relativistic theory
of gravitation. We argue that the dynamical inferential conception not only
provides a natural framework to describe and analyze this episode, but it
also generates new questions and insights. We comment on the mathemat-
ical tradition on which Grossmann drew, and on his own contributions to
mathematical theorizing. We argue that the dynamical inferential concep-
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tion allows us to identify both the role of heuristics and of mathematical
resources as well as the systematic role of problems and mistakes in the
reconstruction of episodes of conceptual innovation and theory change.

Keywords: Applicability, Mathematics, Genesis of General Relativity,
Absolute Differential Calculus, Inferential Conception, Einstein,
Grossmann, Ricci, Levi-Civita, Christoffel.

Highlights

• Extends and refines the inferential conception of the application of
mathematics

• Examines the interaction of mathematics and physics in the genesis of
general relativity

• Focus on the first application of the absolute differential calculus (ten-
sor calculus) to general relativity

• Emphasizes the internal dynamics of mathematical theories

1. Introduction

The goal of this paper is to gain a better understanding of the interaction
of mathematics and physics in the genesis of empirical theories, as well as
to the philosophical debate of the application of mathematics in empirical
science. What we intend to do is to employ, and develop, a framework for
thinking systematically about the application of mathematics. We will apply
this framework to an important historical case, the use of the “absolute
differential calculus”, what is now called tensor calculus, in the genesis of
general relativity.1

The problem of understanding how mathematics is and can be applied in
the empirical sciences has been discussed in the literature on the philosophy
of mathematics, but until recently the debate has only been marginal in
comparison to the more dominant discussion of problems associated with

1The present paper draws on Räz (2013, Part II).
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pure mathematics.2 One of the starting points of the debate, some fifty
years ago, is a famous paper by Eugene Wigner (1960) on the “unreasonable
effectiveness of mathematics in the natural sciences.” Wigner formulated his
astonishment in general terms, and his examples were taken from a variety
of different instances of applications from different epochs. But, historically,
the background for Wigner’s paper, and its impact, was the effectiveness that
mathematics had borne out in the first half of the twentieth century with the
emergence of both the general theory of relativity and the development of
quantum theory.

Although Wigner recognized the problem as a general one, in earlier times
the problem of applicability did not arise as from a moment of surprise.
Euclidean geometry deals with the geometry of straight lines and circles, and
solves construction tasks only with the help of ruler and compass. To be sure,
it gives an axiomatic treatment of the geometry of three-dimensional ruler-
compass space and it proves its assertions using language and symbolism.
But the origin of its theorems in practical geometric experience, and the
naturalness of its axioms for our physical world were all too obvious. When
Hilbert stripped the geometric axioms of their direct meaning, he still insisted
that, historically, geometry was a natural science. It had only evolved to a
state where its concepts and results had become so firm that no one doubted
their validity any more, and they could be entirely transformed into a field
of mathematics.

The origins and applicability of differential calculus may be a similar case.
Conceived by its creators as a general tool to describe physical motion—see
Newton’s term of “fluxion” for the (time-)derivative—it was meant to be a
way of putting physical phenomena into a more rigid, practical, and effective
mathematical representation. As argued by Ivor Grattan-Guinness (2008),
a historical perspective helps to alleviate much of the “unreasonableness” of
Wigner’s “unreasonable effectiveness.”

Barring perhaps obscure exceptions, Euclidean geometry in all its subtlety
was for a long time never applied to anything else than physical geometry.
This, of course, changed with Hilbert’s understanding of axiomatics, and
Hilbert himself used both the electrochemical series and the laws of heredity
of drosophila as models for the Euclidean axioms of linear congruence; see

2For recent survey articles of the issue of applicability, see Colyvan (2009) and Steiner
(2005).
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Sauer and Majer (2009, pp. 420–423), Hilbert (1930). More obvious was the
versatility and generality of differential calculus which proved not only appli-
cable but indispensable for almost any field of the natural sciences throughout
the nineteenth century. But the Göttingen praise of the “preestablished har-
mony” between mathematics and physics was also most pointedly illustrated
by the example of general relativity.3

Mark Steiner (1998) took the issue of applicability a step further. He
argued that there is not one problem of applicability, but many problems,
that have to be kept separate.4 Steiner maintains, contra Wigner, that the
use of individual mathematical concepts in empirical science may not be the
main puzzle. He emphasizes the philosophical problem that mathematics
as a whole turns out to be so enormously successful, despite the fact that
mathematics obeys anthropocentric criteria such as beauty and convenience.5

Recent discussions of applicability have shifted their focus from the dis-
cussion of problems of applicability, such as the unreasonable effectiveness,
to providing an account of the various roles that mathematics may play in
application to empirical problems. In the present paper, we intend to pick up
on one of these accounts, the so-called “inferential conception” of the appli-

3In a talk held in Copenhagen in March 1921, Hilbert said: “The mathematician, who
has noticed with surprise so often already the preestablished harmony between his own
thinking and the world, is almost forced to the conception as if nature had purposely been
created in such a way that in order to grasp her the deepest mathematical speculations are
needed.” (“Der Mathematiker aber, der schon so oft die praestabilirte Harmonie zwischen
seinem Denken und der Wirklichkeit mit Staunen bemerkt, wird fast zu der Vorstellung
gezwungen, als sei die Natur eigens so eingerichtet, dass es zu ihrer Erfassung der tiefsten
mathematischen Spekulationen bedarf.”) (Sauer and Majer, 2009, p. 387) In his lectures
on the development of mathematics in the nineteenth century, Felix Klein wrote: “But the
wonderful harmony, which we find between the developments of the pure mathematicians
and the intellectual constructions of the theoretical physicists, is confirmed once again in an
extended realm.” (“Die wunderbare Harmonie aber, welche zwischen den Entwicklungen
der reinen Mathematiker und den Gedankenkonstruktionen der neueren Physiker besteht,
bewährt sich aufs neue auf einem erweitertem Gebiete.” (Klein, 1927, p. 79)), see also his
comments on Riemannian geometry and general relativity in (Klein, 1921, pp. 557–558).

4Steiner discusses semantic applicability, concerning the validity of arguments drawing
on both empirical and mathematical premises; descriptive applicability, the problem of
the appropriateness of mathematical concepts to solve empirical problems, and problems
of analogical reasoning, reasoning that proceeds via mathematics, or the form of mathe-
matical equations.

5Steiner discusses the discovery of the field equations of GR, one of our case studies,
on pp. 94. We will turn to his argument below in section 3.3.2.
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cation of mathematics proposed by Bueno and Colyvan (2011). We find the
basic outline of the inferential conception to be promising for our goal of a
philosophical understanding of the application of mathematics. However, we
will argue that a confrontation with historical case studies forces us to extend
and dynamicize this account. We will outline the inferential conception and
its extension to a “dynamical inferential conception” in section 2 below.

We will then explore the approach with an important example of the ap-
plication of mathematics, an episode from the genesis of general relativity, in
section 3. This case not only has the advantage that we can draw on detailed
historical analyses for our study,6 it is also an example from the history of
science where mathematics has played a prominent role in concept forma-
tion of physical sciences. More specific reasons for choosing this particular
episode will be given in section 3.3

We are not claiming that the case we examine here is particularly typ-
ical, or that it warrants general lessons about how mathematics is applied.
It merely serves as a first case that exhibits some important characteristics
of application. It will be necessary to extend the examination of the use
of mathematics to other episodes in the genesis of general relativity, and to
other cases, such as the the discovery of Maxwell’s equations or the history of
quantum mechanics, and finally to other fields of empirical science, in order
to gain general and stable insight into this issue. In short, the philosophical
account will serve as a conceptual framework, which will help us to under-
stand the case better; this enhanced understanding, in turn, will lead to a
refinement of the account.

A historical approach to the issue of application and applicability has
itself a historical tradition, and there are systematic reasons why the ex-
amination of historical cases is particularly fruitful. A historical approach
has been part of the discussion at least since Steiner (1998) formulated one
problem of applicability as a puzzle about the surprising role of mathematics
in discovery; the inferential conception, as proposed by Bueno and Colyvan
(2011), has been designed to capture the historical process of application.
Systematically, we are not only interested in the finished product of the pro-
cess of applying mathematics, we are also interested in the process itself.

6The literature on the genesis and history of general relativity is quite extensive. A
good starting point are the four volumes on the genesis of general relativity edited by
Jürgen Renn (2007). More specific items will be cited where pertinent.
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WORLD MATHEMATICS

Figure 1: The mapping account: a structure-preserving mapping connects mathematical
structure with relevant parts of the world.

Indeed, we are convinced that in order to fully appreciate a mathematically
formulated empirical theory, it is indispensable to understand the historical
process that led to this theory. We will argue that the process of applying
mathematics to empirical problems plays an important role in the formation
of scientific concepts, and, more generally, in theory dynamics.

2. The Dynamical Inferential Conception

The goal of this section is to introduce a philosophical framework for the
process of the application of mathematics, which we will apply to our his-
torical cases. We begin by sketching two existing accounts of application,
the so-called “mapping account” by Christopher Pincock (2004) and the “in-
ferential conception” proposed by Otavio Bueno and Mark Colyvan (2011),
a more flexible version of the mapping account. We then discuss certain
problems of the inferential conception, which motivate an extension of the
approach to what we call the “dynamical inferential conception”.

2.1. The Mapping Account and the Inferential Conception

Bueno and Colyvan (2011) use a familiar picture of applying mathematics
as a foil for their own account. On this picture, mathematics helps us in ap-
plication, by representing empirical structures in mathematical form; we can
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then learn about the world, by examining this mathematical representation.
The application relation is established via a structure-preserving mapping,
which connects the mathematical structure with relevant parts of the world.7

The mapping account is illustrated in Fig. 1.
A city street map is a useful illustration of the mapping account. A city

street map represents parts of the structure of a city by mirroring the street
system and buildings of the city in some detail. A map will usually leave out
some information such as vertical slope, and sometimes it will not even faith-
fully mirror distances. However, there should be some correspondence, i.e. a
mapping, between elements of the street map and elements of the city—most
importantly, it should represent how various parts of the city are connected
and allow inferences about actual pathways in the city. Information about
the city can be inferred from information given by the map, and therein lies
its usefulness.

Bueno and Colyvan (2011) identify four problems with the mapping ac-
count and argue that it cannot be a complete story of why mathematics is
useful in application. The first is the so-called assumed structure problem;
see section 2.2.1 below. The second problem is that the mapping account
is silent on the issue of how to find the relevant structural correspondence
in the first place, and to accommodate the fact that both the empirical and
the mathematical domain have surplus structure. The third problem is that
the mapping account appears to be unable to accommodate idealizations; see
section 2.2.3 below. Finally, the fourth problem is that a static structural
correspondence seems to rule out a genuinely explanatory contribution of
mathematics to scientific explanations.

The motivation behind the inferential conception they propose is to solve
these problems, or at least indicate how they might be solved, and thus
present a more complete picture of the application of mathematics.

The inferential conception breaks down the process of applying mathe-
matics into three steps (see also Fig. 2):

1. In the immersion step, we specify a mapping from the relevant aspects
of the empirical domain to a mathematical structure.

2. In the derivation step, also called deduction step, we realize math-

7The mapping account has been spelled out in detail in Pincock (2004). Mapping
accounts have a long tradition, e.g. in the debate on scientific representation and modeling.
We will return to this point in the discussion of the inferential conception below.
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Figure 2: The inferential conception: the mapping between the empirical and mathemat-
ical domains is differentiated into an immersion step and an interpretation step, and the
deduction step allows inferences licensed by the mathematical theory.

ematical inferences, licensed by the mathematical theory, about the
immersed structure. This step takes place entirely within the mathe-
matical domain.

3. In the interpretation step, the consequences found in the derivation
step are mapped back to the empirical domain, that is, we interpret
the results of our mathematical investigation. The mapping we use in
the interpretation step is not necessarily the inverse of the immersion
mapping; it need not even be of the same kind.

The inferential conception has several advantages over the mapping ac-
count.

First, since it distinguishes between the immersion and the interpretation
step, different mappings may be used for the initial immersion step and the
subsequent interpretation of a possibly different piece of the mathematical
structure.

Second, the distinction between the immersion and interpretation steps
allows us to interpret the inferential conception in a dynamical way—the
suggestion is that by going back and forth between mathematics and the
world, one can gradually refine the mathematical description, and also dis-
cover new empirical phenomena or revise one’s assumed preconceptions about
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the world. This dynamics is a second important feature of the inferential con-
ception. This aspect of the inferential conception is supposed to solve the
second problem of the mapping account mentioned above.

A third important feature is the emphasis on the derivation step. Bueno
and Colyvan (2011) describe the usefulness of mathematics in application
emphasized by the inferential conception as follows: “[B]y embedding certain
features of the empirical world into a mathematical structure, it is possible
to obtain inferences that would otherwise be extraordinarily hard (if not
impossible) to obtain.” (p. 352).

Facilitating inferences is not the only role of mathematics in application.
Bueno and Colyvan maintain that other functions of mathematics in applica-
tion, especially unification, novel prediction, and explanation, are ultimately
tied to its inferential role. They think that these aspects depend on contex-
tual factors, and that mathematics might help to give us epistemic access to
theories, by highlighting inferential patterns.

Bueno and Colyvan (2011) are not the first to emphasize the important
role of the deduction, or inference step, when it comes to scientific represen-
tation and modeling. R.I.G. Hughes (1997) has proposed the “DDI” (Deno-
tation, Demonstration, Interpretation) account of scientific modeling, which
also emphasizes the inferential step on top of the world-model and the model-
world correspondences. Nancy Nersessian’s (2008) and Susan Carey’s (2009)
accounts of conceptual change as a process of (Quinian) “bootstrapping”
also consists of a trias of positing placeholder structures, modeling construc-
tion procedures such as analogy construction, limiting case analysis, thought
experiments, and inductive inference, and, lastly, real world interpretation.
However, there are some important differences between these accounts and
the inferential conception. First, Hughes assumes that the interpretation step
is the inverse of the denotation (or immersion) step—in this sense, his con-
ception is not able to mirror the process of application. Second, his account
concerns (scientific) modeling in general, not the application of mathemat-
ics. Similarly, Nersessian puts her emphasis on the inferential role of models,
Carey on the role of (Quinian) uninterpreted terms and mental symbols, but
neither extend their concept of bootstrapping to the specific role played by
mathematics. The role of inferences in scientific modeling and representation
has also been emphasized by Mauricio Suarez (2004).

Morphism-based accounts of scientific representation have been criticized;
see, e.g., Suarez (2003). We will comment on what we perceive to be the most
serious problems of the inferential conception in the next section. However,
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it should be noted that our topic, and our goals, are slightly different from
those discussed by, say, Suarez (2003). We are not trying to formulate a
general account of scientific modeling and representation in terms of mor-
phisms; instead, our goal is to understand the role of mathematical means of
reasoning in application. Also, as of now, we do not claim that our account is
general; we merely hope that it will illuminate the present case, and suspend
judgement as to its range of applicability until further cases are examined.

2.2. Problems of the Inferential Conception

In this section, we identify, and discuss, several potential problems of the
inferential conception.

2.2.1. The Assumed Structure Problem

The mapping account, as well as the inferential conception, are based on
the idea that a correspondence between mathematics and the world is estab-
lished via structure-preserving mappings, usually some sort of morphism. To
give an example, if we are interested in the existence of connections between
parts of a city, we need a city street map that has the topological structure
of the city, and we require the existence of a homeomorphism between the
map and the city. This creates the following problem: If we want to account
for the applicability of mathematics based on mappings, we have to assume
that some sort of structure is in the world that can be preserved by the map-
ping. However, there is simply no guarantee that the world is conveniently
structured in this way. We have to take it for granted that there is some
meaningful way of discerning and using the structure of the world. This is
the “assumed structure problem”.

Bueno and Colyvan present a solution to this problem. If we adopt the
inferential conception, we can start from a tentative assumed structure in
the world, and gradually revise that structure, after our inferential investiga-
tions, by choosing a new interpretation mapping. Bueno and Colyvan (2011)
write that there is no need to “formally revise” the initial assumed structure,
as the interpretation mapping need not be the the inverse of the immersion
mapping. Once more, the back-and-forth between empirical and mathemat-
ical domains and the emphasis on inferences are key. The assumed structure
is “something like a pre-theoretic structure of the world (or at least a pre-
modeling structure of the world).” (p. 347) As the name “assumed structure”
suggests, this is not structure that we should take metaphysically seriously.
Rather, it is “tentative” structure that can be revised once we have brought
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mathematics into play: “the assumed structure is the structure the modeling
exercise assumes to be present in the [...] empirical setup [...] the interpreta-
tion step of the process will deliver the final structure of the empirical setup
[...]” (p. 357). Thus, even if we carve the world up in a certain way prior to
the immersion step, we are not committed to this being the real empirical
structure of the world; the discovery of that structure is the result of going
back-and-forth. The inferential conception mirrors this historical process of
mathematization.

Several objections can be raised against this response of the inferential
conception to the assumed structure problem. We will discuss two objections
in the next paragraphs.

The Circularity Objection. A first objection8 against the inferential concep-
tion is that the assumed structure problem is an insurmountable difficulty
for this approach along with all accounts that rely on mappings. We have
to conceive of the immersion and interpretation mappings as mathematical
objects. Therefore, both domain and codomain have to be mathematical as
well. But then a mapping cannot account for the application of mathemat-
ics to the world. All we have is a mapping from an assumed mathematical
structure, which is not really in the world, to mathematics. Mappings can-
not possibly explain how mathematics can be applied to the world; they can
only explain how mathematics can be applied to some other mathematical
domain. The inferential conception is therefore circular.

This problem can be dissolved. We agree that, in some cases, including
the case study we are about to consider, the assumed structure is given in
mathematical form. However, this does not mean that the structure under
consideration is mathematical. Rather, the mathematics represents a certain
empirical structure. The immersion mapping establishes a correspondence
between this empirical structure and a mathematical structure, not between
two mathematical structures. As Bueno and Colyvan (2011) point out, “[i]t
will be hard to even talk about the empirical setup in question without lean-
ing heavily on the mathematical structure, prior to the immersion step.”
(p. 354). The immersion maps the mathematically represented assumed em-
pirical structure to the mathematical domain.

Our second response to the circularity objection is that it runs the risk

8We thank members of the audience at the Workshop “Metaphysics of science: objects,
relations and structures” of October 2012 in Lausanne for this objection.
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of deeming the mathematization of empirical facts inherently problematic,
unless one is willing to give up on a separation between mathematics and
the world, a position we discuss below in section 2.2.2. We are opposed to
rejecting mathematization, as this amounts to denying a large part of modern
scientific practice.

The objection nevertheless raises an important issue: we have to explain
the value of basing an account of applying mathematics on mappings, because
it seems that mappings can only connect mathematical domains. We will
make an effort to be clear on the question as to what the starting point of
the application process is, viz. how the assumed structure is constituted, and
also to explain why the assumed structure is not mathematical.

The Triviality Objection. A second objection9 is to deny that there is a prob-
lem here at all, at least from the perspective of scientific realism: of course
can we find objects, relations, structures in the world that are independent
of mathematics and yet can be mapped onto mathematical structures. The
assumed structure problem is a red herring.

This objection only has traction if we adopt a metaphysical reading of
the assumed structure, i.e. if we presuppose that it is unproblematic to
interpret the assumed structure as real, empirical structure that is mapped
to mathematics. However, if it is the goal of, say, a new theory of gravitation
to unveil the real structure of the world, but this theory is not yet available,
how can we take that very structure as a starting point of our investigation?
Saying that the assumed structure is just the structure of the world seems
like begging the question.

When Bueno and Colyvan (2011) write about the assumed structure as
the “relevant bits of the empirical world”, this should not be read metaphys-
ically. We interpret the assumed structure as the reasonable starting point of
the process of applying some specific mathematics. It is not to be confused
with the result of applying that mathematics.

2.2.2. Separating Empirical and Mathematical Domain

The inferential conception presupposes that we can draw a clear distinc-
tion between the mathematical and the empirical domain; otherwise, talk
of a correspondence via mappings between these domains would not make

9We thank Matthias Egg for raising a form of this objection in the philosophy of science
research seminar in the fall of 2012 in Lausanne.
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sense. However, it has been argued in the literature that attempts at drawing
this distinction, say, in terms of the abstract-concrete distinction, are in vain,
see, e.g., Ladyman and Ross (2007, pp. 159), or even that the distinction
between mathematics and the world is blurred, see e.g. French (2000). This
could be taken to threaten the inferentical conception, and other accounts
based on mappings.

While we agree that a wholesale solution to the problem of distinguishing
between pure and applied mathematics may not exist, this does not imply
that the distinction can therefore be dismissed, or that no solution exists in
each case. Separating the representation from what is represented is at the
core of many philosophical debates, especially in the philosophy of physics.
To give an example, one of the major problems that Einstein faced in the
process of elaborating the general theory of relativity was the correct inter-
pretation of coordinates. He only overcame these problems after significant
struggles involving the introduction of tensorial methods and the hole argu-
ment, which turns on the question of the relation between space-time points
and their representation.

This shows that, as a matter of fact, while the separation between math-
ematics and the world is not always clear from the beginning, it is part and
parcel of the process of the application of mathematics to make it clear. Giv-
ing up on the separation of the two domains would amount to dismissing this
work. This is not a viable option.

2.2.3. Idealizations and Partial Structures

There is one aspect of the inferential conception as proposed by Bueno and
Colyvan (2011) on which we will not rely in the following, the so-called “par-
tial structures” framework. They introduce this framework in order to solve
the problem of idealization. The problem of idealization is that there appears
to be no place for (deliberate) misrepresentation, if we postulate a structural
correspondence between mathematics and the world. This problem, again, is
common to all accounts based on mappings. Bueno and Colyvan think that
all accounts that are silent on this issue should be considered incomplete.

In a nutshell, partial structures are a formal framework for structural cor-
respondences (morphisms) that are more flexible than traditional structure-
preserving mappings. Two structures that are connected by a partial mor-
phism allow certain aspects of the correspondence to remain undetermined;
consequently, these aspects are not in danger of yielding misrepresentation.

In our opinion, the main strength of the partial structures account is that
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it takes vague ideas about a partial match between empirical and mathe-
matical structures and spells them out in a formal framework. Bueno and
Colyvan (2011) introduce a case study from economics to illustrate the par-
tial structures account. But this discussion remains at an informal level and
does not exploit the strength of the partial structures account. It would be
desirable to see a case study where the formal apparatus of partial structures
is really put to work.

Therefore, while we agree with Bueno and Colyvan that idealizations are
a challenge for any account of the applicability of mathematics, we are not
convinced that the solution provided by the partial structures account can
address the problem.10 But the framework of the inferential conception, on
which we build, is independent of the partial structures framework. As to the
problem of idealization, we will discuss particular instances as they occur,
and we will pay close attention to the relation between the application of
mathematics and idealization.

2.3. The Dynamical Inferential Conception

The inferential conception is a good starting point for a philosophical
understanding of the problem of applying mathematics in the sciences, but
it needs to be extended.

In this section, we introduce the extensions and modifications of the in-
ferential conception, which we find to be necessary. These extensions are
designed to accommodate a distinctively historical approach to applying
mathematics, i.e. to mirror not only the result of application, but also the
historical process leading to mathematically formulated theories of empir-
ical phenomena. The extension consists mainly in a dynamization of the
inferential conception. Only a dynamical inferential conception presents a
conceptual framework providing us with tools to better understand histori-
cal cases.11

10See, e.g., Pincock (2005) for systematic criticism of the partial structures framework.
11Bueno and Colyvan (2011) at least implicitly construe immersion, deduction, and

interpretation steps as temporal; otherwise, talk of a gradual revision process, based on
going back-and-forth between mathematics and the empirical domain, would not make
sense. Although we present the dynamical inferential conception as a framework for the
analysis of historical cases and will illustrate and explicate our conception with a case
study from the history of science, we maintain that the distinctions can also be applied to
current problems of science as a framework to analyze conceptual layers of a problem of
mathematization.
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Actual historical episodes show that certainty of success is not always
presupposed when mathematical concepts, theories, and methods are ap-
plied to obtain an understanding of aspects of the real world. Where and
when success was achieved, it appears from hindsight often as natural or
even inevitable. But closer historical scrutiny of the episodes more often
than not reveals complicated equilibration processes. These are character-
ized by initial misconceptions, unrecognized insights, dead ends, conceptual
revisions. A systematic reason for the need to equilibrate empirical structure
with mathematical structure in the process of concept formation is the fact
that theories of our empirical world are necessarily grounded on and adapted
to limited spheres of empirical experience. At the same time, in the process
of elaborating the theory the limits of empirical validity are systematically
transcended and may conflict with unexplored phenomena or with realms of
the empirical world that are conceptualized by means of a different and in-
dependently obtained theoretical framework. Instances where different fields
of phenomena are conceptualized in different conceptual frameworks which
by no means need be compatible are discussed, e.g., by Peter Galison (1997)
under the concept of “trading zones” and by Jürgen Renn’s (2006) three-
partite division of classical physics as the principal challenge for Einstein’s
early creative work.

2.3.1. Application Cycles

If we analyze cases of applying mathematics in the history of science, the
smallest unit that is iterated in temporal succession consists of immersion,
deduction and interpretation steps, as laid out in the inferential conception.
We call such a unit a cycle. A cycle is one round of going back-and-forth,
from the world to the mathematics and back to the world, one round of
assimilating a mathematical theory and a particular empirical structure. The
starting point of a cycle is the initial assumed structure, the end point is the
confirmed or revised assumed structure.

We conceive of the dynamical inferential conception as an account of ap-
plication of mathematics, not an account of successful application of mathe-
matics. The framework encompasses both successful and unsuccessful appli-
cations. Thus, there are two possible outcomes for cycles. We have a closed
cycle if the application is successful. On the other hand, if the application
fails, we are dealing with an open cycle (see also Fig. 3).

The question whether a cycle is closed or open, i.e., the notion of success,
is relative to the various goals and expectations of the scientists. Researchers
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Figure 3: In the dynamical inferential conception we distinguish between open and closed
cycles of applying mathematics.
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might want to understand a new empirical finding in an established theoret-
ical framework, they might want to explore novel implications of a theory,
they might want to establish links between parts of the conceptual structures,
or explore known propositions and statements of the theory with respect to
their logical dependencies, consistency, or completeness.

The application cycle will often be triggered by a problem that the sci-
entist identifies in the assumed structure. This problem will also prompt a
heuristics, which guides the course of the cycle. The result of an applica-
tion cycle will be compared with the expectations of the solution. It is here
that contradictions between expected results and derived results may man-
ifest themselves. It is also possible that while the result of a cycle matches
with expectations, other parts of the cycle, say, the derivation step, do not
conform with the heuristics.

Once the goal of an application cycle is set, there is a sense in which the
success, or failure, of an application cycle is independent of the scientist’s
persuasion. For example, there can simply be a match or mismatch between
a mathematical structure and the empirical structure it is applied to. We
will call this an objectively closed, or open, cycle. On the other hand, a
scientist can be persuaded, rightly or wrongly, that a cycle is open or closed.
For example, a scientist can commit a mistake in a calculation which goes
unnoticed, and consequently be persuaded that a cycle is open, even if the
cycle could be closed, were one to correct the mistake. We will call this kind
of cycle subjectively closed or open. This distinction is particularly important
in order to understand the historical genesis of a mathematized theory. We
will point out what kind of cycle we are dealing with if necessary.

Depending on the nature of the problem, and on the outcome of the ap-
plication cycle, different dynamics are triggered. If the outcome is an open
cycle, i.e., the scientist finds that there is a mismatch between the mathe-
matically derived result and the empirical domain, a process of reflection is
set in motion: The entire pathway of the open cycle is being reconsidered.
The analysis of the cycle is no longer exploratory, but the cycle is reflected
on with a view of identifying the points of failure for the open cycle.

The failure of the cycle may have occurred at any one, or several, of
the steps along the cycle, and we can use the components of the cycle as
proposed in the inferential conception as a diagnostic tool to analyze open
cycles, and potentially to overcome the difficulty. The process of engaging in
an application cycle in exploration mode and thereafter in reflection mode
captures real moments of the research process, but these categories also pro-
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vide conceptual tools to analyze the historical process, even if the actors did
not perceive their actions in those terms.

There are thus four categories of problems that can underly an objectively
open cycle, i.e. an application cycle which is unsuccessful relative to a set goal.
These problems correspond to the four components of a cycle.

1. The failure can be due to an inadequate initial assumed structure.
Maybe the empirical phenomena taken as the starting point of the
modeling process have to be investigated more closely, and more data
have to be collected. Maybe it is even necessary to find a different
conceptualization of the empirical phenomena.

2. The failure can be due to the immersion step, or the mathematical
theory we use. The framework may lack the expressive power for a
task, it can be insufficiently understood, or it can exhibit internal diffi-
culties, or even inconsistencies. In this case, the problem can be fixed,
either by revising, or further exploring, the mathematical framework,
or it could be given up entirely.

3. There could be a failure in the derivation step. Certain inferences can
be hard, or even impossible, to reach, so that it is hard to reconnect the
findings of the deduction step with the world in the interpretation. In
this case, the scientist could make an additional assumption to facilitate
the deduction, search for a different framework, or explore alternative
routes of deduction.

4. There could be a failure in the interpretation step. For example, it
could be unclear whether a solution to some equations has to be inter-
preted realistically, or if it is just a mathematical artifact. It may also
be the case that elements of the mathematical framework are misinter-
preted in their proper reference to elements of the empirical structure.

However, a cycle can also be only subjectively open, for example if the sci-
entist committed a mistake somewhere along the way. One such case occurred
during Einstein’s search for a differential operator for the field equations of
general relativity. Again, the dynamical inferential conception provides a
framework for thinking systematically about application mistakes: we can
locate the mistakes in the components of application cycles. Here are the
different kinds of mistakes that one can commit in a subjectively open ap-
plication cycle:

1. Assumed Structure Mistake: This mistake occurs when there are
wrong expectations about the starting point of an application cycle, or
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when there are wrong expectations about the empirical target structure
one expects to recover when completing a cycle.

2. Immersion Step Mistake: This is the mistake of taking some em-
pirical phenomenon and choosing an unsuitable mathematical repre-
sentation for it. It can happen that we have a clear mathematical
counterpart for one empirical object, but that it is unclear as to what
the appropriate representation of other aspects of reality will be. For
example, knowing that the line element represents distances between
space-time points does not solve the problem of how to represent points
of space-time.

3. Deduction Step Mistake: These are mistakes that occur in the de-
duction step, such as errors in calculations or the failure to fully exploit
the deductive possibilities of a mathematical theory.

4. Interpretation Step Mistake: This is the mistake of interpreting
part of the mathematical formalism a) realistically, if the mathemat-
ical object has properties that are purely representational, or b) not
realistically, if it allows for a realistic interpretation. An important
example for our case study are coordinate systems: For a long time,
Einstein interpreted them realistically, before he realized that they are,
in fact, mere tools of representation.

If an application cycle is closed, the process of application is not over,
but a different kind of dynamics is set in motion. Usually, a closed cycle
only means that the scientist has successfully derived some consequences
within mathematics that have a meaningful empirical interpretation, not
that there is a full match between the mathematical and empirical structure.
The further goal will normally be to consolidate the closed cycle. Again, im-
provements are possible in all components: the scientist can send the revised
assumed structure back to mathematics in the second cycle, or even widen
the scope of phenomena in the assumed structure, and check whether the
cycle can still be closed; one can work out further deductions and interpre-
tations from the original immersed structure; the validity of the deductions
can still be checked; and, the interpretation can suggest further empirical
investigations, if it yields novel predictions that have not been anticipated,
and so on.
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2.3.2. The Internal Structure and Dynamics of the Two Domains

So far, we have characterized the inferential conception with a focus on the
mappings between the empirical and the mathematical domain, on deriva-
tions on the mathematical side for the sake of application, and on how these
steps shape the two domains. By adopting this perspective, we run the risk
of construing the two domains as passive entities that are exclusively shaped
by their interaction.

The examination of the historical cases confirms that this picture is too
narrow. The two domains evolve over time as a result of processes of equili-
bration between physics and mathematics, but also autonomously. We thus
advocate a dynamic picture of domains. This dynamization is compatible
with the original inferential conception; it extends the view. We will see
in our case study on the general theory of relativity, in section 3.3.3, that
notably the mathematical domain is a dynamical entity.

The fact that the mathematical domain may have a dynamics of its own
draws attention to its internal structure. By this we mean that mathematics
comes in different layers of theories, where one mathematical theory is more
abstract than the other, and we can apply the former to the latter. This
suggests that we get application cycles of a different kind, which are located
at the level of pure mathematics. We will describe one such cycle in the
case study on general relativity below. We should emphasize that while
there are parallels between the internal application of mathematics and the
application of mathematics to the world, there are good reasons to keep
these cases separate. The most important difference between the two cases
is that there is no assumed structure, and no assumed structure problem, in
mathematics; there are only morphisms between mathematical structures.

Examining the internal dynamics of mathematics forces us to be specific
about the mathematical theory that is applied, both within mathematics
and to the world. Formulating the problem of applicability of mathematics
in generic categories of mathematics and the empirical world presents the
problem in a way that is too coarse-grained. Each and every case of applying
mathematics is a case of applying a specific piece of mathematics. Also, it
should be noted that even if the kind of morphism used in the immersion
or interpretation step is specified, this need not determine the mathematical
theory that is applied, especially if it is possible to interpret one mathematical
theory in terms of another—think of a calculus with and without “intended
interpretation.”
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3. The Case of General Relativity

We now put the dynamical inferential conception to work in our historical
case study, an episode from the genesis of the general theory of relativity. We
will first sketch the state of play at the beginning of the search for GR, in
the period before the absolute differential calculus (ADC) of Tullio Levi-
Civita and Gregorio Ricci-Curbastro (1901), and provide a short overview of
the evolution of the theory up to that point. We will then reconstruct the
application of this new kind of mathematics drawing on the framework of
the dynamical inferential conception.

3.1. Initiating the Search for a Relativistic Theory of Gravitation

The search for a new—or revised—theory of gravitation was triggered
by the conflict between special relativity (SR), which postulates a finite,
constant speed of light c, and Newtonian Gravitational Theory (NGT), which
implies an instantaneous propagation of gravitational effects. These two
conceptualizations of partly distinct physical domains were inconsistent and
had to be reconciled.

While the inconsistency is rooted in physical principles, it carries over
to a formal inconsistency in the respective mathematical formulations of the
two theories: NGT in its received form does not conform to the formal re-
quirement imposed by SR, Lorentz covariance. Therefore, the mathematical
formulation of the theories had to be adapted. This set the process of the
application of mathematics in motion. However, it was not clear whether
radical changes in the mathematics, or the application of a new kind of math-
ematics were necessary, or whether a more conservative revision of NGT was
sufficient.

Historically, various theoreticians were engaged with this problem in the
period between the establishment of SR and the advent of GR, i.e. in the
decade between 1905 and 1915. There were proposals by Hermann Minkowski
and Henri Poincaré to find force laws that would be Lorentz covariant and
exhibit a finite propagation speed of electrodynamic interaction, as well as
attempts to formulate field theoretical modifications of gravitation, as pro-
posed, e.g., by Max Abraham; see Renn and Schemmel (2007a,b).12

12Other relevant developments were oblique to these dates and events, e.g. attempts
at modifying the theory of gravitation pre-1905, motivated by finding a field theory of
gravitation in analogy to electrodynamic field theory, or by finding modified force laws,
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The historical starting point of Einstein’s investigations were the two the-
ories that triggered the search for a relativistic theory of gravitation: SR on
the one hand, and NGT on the other. Within the framework of the dynam-
ical inferential conception, these two theories capture the initial assumed
structure at the beginning of the application cycles leading to GR. The ini-
tial assumed structure thus already came in mathematical form. This was to
be expected, because once physical theories have reached a certain degree of
sophistication, we do not start from scratch, but we pick up the construction
of the theory mid-stream.13

At this point, we want to be careful to keep apart the assumed structure,
i.e. the empirical phenomena described by a theory, and the mathematical
formulation of the same theory. At the same time, the theories do not capture
all relevant empirical phenomena—this motivates the distinction between
empirical domain and assumed structure. Additionally, the different theories
constituting the assumed structure exhibit inconsistencies, and play different
roles in the heuristics of the application process. We will now spell out these
points for the case at hand.

First, what empirical phenomena are captured by the two theories? Spe-
cial relativity arose from a reflection on properties of electrodynamic field
theory. It was then generalized to a restriction on any physical theory, such
as thermodynamics or classical mechanics. The restriction was formulated
in terms of restrictions on the mathematical formulation of physical theo-
ries: Their laws had to be formulated in a Lorentz covariant way. Newtonian
gravitation theory, on the other hand, had been a foundational theory for
centuries with an elaborate mathematical formulation. But with the advent
of electrodynamic field theory, it became a theory of a restricted domain of
physical phenomena. It deals with the motion of massive bodies moving in
space under the influence of the gravitational force, such as the motion of
the planets around the sun, and falling bodies on earth.

There were two lines of conflict between the two theories. First, NGT
was well confirmed for small velocities. This was not true for velocities ap-
proaching the speed of light, where the inconsistency with SR may become
apparent. Second, some isolated gravitational phenomena, in particular the

motivated by electrodynamics force laws (Weber-like laws), or motivated, in either case,
by empirical anomalies (Mercury perihelion advance); see Renn and Schemmel (2007a,b).

13The fact that the assumed structure may come in mathematical form has already been
pointed out by Bueno and Colyvan (2011); see the discussion in section 2.2.1 above.
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anomalous perihelion advance of Mercury, could only be explained within
the theoretical framework of NGT by imposing ad hoc assumptions. It was
known for quite some time that NGT could not account for this anomaly,
which is also a gravitational phenomenon; see Newcomb (1895); Rosevaere
(1982).

These two lines of conflict did not yield equal reactions. The first short-
coming was at the center of Einstein’s attention. The conflict between SR
and NGT triggered the search for GR, and it was one of the main goals of the
new theory to remove the internal inconsistency between the two theories.
The second line of conflict did not trigger the construction process of gen-
eral relativity. The empirically observed motion of Mercury—the anomalous
advance of its orbit—was part of the empirical domain, but it was not part
of the assumed structure. It could not be reproduced by applying the math-
ematics of NGT. The assumed structure thus contained a part that would
be interpreted as Mercury’s orbit (a deduced function) but that function
was known to be inconsistent with empirical data (numerical values empiri-
cally associated with the arguments of the deduced function). The mismatch
between the theoretically obtained planetary orbit, which was part of the
assumed structure, and the empirically observed orbit, which was part of
the relevant empirical domain, played a different role in the application cy-
cle. The function of the empirical observation was that of a touchstone,
it entered the construction process as part of the heuristics. One criterion
for a successful application cycle would be to see whether the mathematical
structure, into which one would map the assumed structure in the immersion
step, allowed one to account for the correct numerical value of the perihelion
advance, after mapping back to the empirical domain in the interpretation
step; see Earman and Janssen (1993). The secular advance of the perihelion
of a planet’s orbit both gives deductions in the mathematical domain a goal
and direction and it provides an empirical value that may or may not be
recovered in the application cycle.

NGT was the part of the initial assumed structure where the inconsis-
tency was located, both in its empirical falsification and in its theoretical
competition with special-relativistic electrodynamic field theory. NGT be-
came the part of the assumed structure that was perceived to be in need of
revision. There are systematic reasons for this starting point. Those reasons
have to do with the heuristic “correspondence principle,” one of the guiding
requirements identified by Renn and Sauer (1999) as shaping the search for
GR. According to the correspondence principle, the new theory should repro-
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duce NGT in a special-relativistic, weak-field limit, such that the empirical
knowledge embodied in NGT would be recovered. The heuristic requirement
of a Newtonian limit therefore fulfilled a function of utmost importance: it
guaranteed that the new theory would be empirically adequate, at least to
the same extent as NGT, and the empirical adequacy of the new theory
would not have to be demonstrated from scratch. Building the old theory
into the new one was not only a theoretical requirement: The specification of
a certain limit for the recovery of NGT opened up the possibility of revising
the assumed structure in regions where the premises of that limit would no
longer hold.

This concludes our characterization of the initial assumed structure of
general relativity. Now we will sketch how the initial assumed structure was
refined before the absolute differential calculus came into play.

3.2. The Genesis of General Relativity: A Drama in Three Acts

Following John Stachel (2007), we can conceive of the genesis of GR as a
drama in three acts. In the first act, Einstein (1907) formulated the “equiv-
alence hypothesis,” the assumption that there is a complete physical equiva-
lence between a frame of reference moving in linear, rectilinear relative accel-
eration to some inertial frame, and an acceleration-free frame endowed with
a static, homogeneous gravitational field. The equivalence hypothesis was
a heuristic tool that allowed Einstein to analyze properties of gravitational
fields using coordinate transformation between moving frames of reference.
He derived three physical consequences of his hypothesis: gravitational red
shift, gravitational light bending, and the gravitational mass of energy. In the
second act, Einstein realized that a proper mathematical representation of a
relativistic theory of gravitation would have to be based on a second-rank,
symmetric tensor field, the metric, which expressed properties of space-time
and of the gravitational potential. In order to fulfill this function, the metric
had to be non-Euclidean. The fact that the metric would play a prominent
role prompted the question as to how it would be determined by a relativistic
field equation; this is the starting point of act three. Fortunately, we have
insight into act three, the search for the relativistic field equation, by means
of a most significant historical document, Einstein’s Zurich notebook, which
has been subject of intense historical investigation; see Renn (2007). For a
while, Einstein settled on a system of gravitational field equations that is
not generally covariant, and worked in a state of suspense, until he finally
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achieved the breakthrough to full general covariance in late 1915, in hec-
tic competition with the world’s leading mathematician, David Hilbert; see
Sauer (1999).

The episode on which we will focus here belongs to the third act, the
search for a relativistic field equation. However, before zooming in on an
analysis of this episode in terms of the dynamical inferential conception, we
want to add some comments on the first two acts.

In the first act, sophisticated mathematical concepts and methods were
introduced by other protagonists, notably by Minkowski (1908), who refor-
mulated the original theory of SR in a formal, four-dimensional represen-
tation, drawing on mathematical traditions of matrix theory introduced by
Arthur Cayley. Initially, Einstein was sceptic towards these mathematical
reformulations, until he was confronted with their advantages in an compet-
itive encounter with Max Abraham, one of the proponents of sophisticated
mathematical methods in theoretical physics.14

For our purposes, two results of the encounter are significant. First, it
made Einstein realize the expressive and inferential power of mathematical
structure in theory construction. Second, more concretely, it showed that,
in the context of a relativistic theory of gravitation based on the equivalence
hypothesis, the Minkowski light-cone invariant had to be taken in differen-
tial form if the velocity of light c was no longer a constant. As a further
consequence, it became clear that the differential line element with variable
c actually transcended Lorentz covariance. However, this insight also paved
the way for the use of a general differential line element. This would prove to
be significant in the second act, where the metric tensor suddenly appeared
on stage as major character for the remainder of the drama.

Another important development of the first act concerns the representa-
tion of the source of the gravitational field. In NGT, the source is the mass
density, a scalar field. Again, physical and mathematical considerations in
the elaboration of SR transformed the source of the gravitation field into
a second-rank symmetric tensor, the stress-energy-momentum tensor, com-
prising mass-energy density, momentum flux, as well as stresses as physical
quantities which all contribute to the generation of a gravitational field.

With the appearance of the metric tensor, on the one hand, and the

14The encounter with Abraham can itself be analyzed in terms of the dynamical infer-
ential conception; see Räz and Sauer, manuscript in preparation.

25



energy-momentum tensor, on the other, the classical Poisson equation, which
defined their relationship, had to be transformed as well. This is what trig-
gered the dynamics of the episode to which we will now turn.

3.3. The Absolute Differential Calculus: A New Kind of Mathematics

In this section, we apply the dynamical inferential conception to one of
the most interesting episodes in the genesis of GR, the collaboration of Ein-
stein with his “mathematician friend”, Marcel Grossmann, on the so-called
Entwurf (“outline”) theory of gravitation in 1912–13, the immediate pre-
cursor theory of final general relativity.15 The collaboration began at some
time in late summer 1912 when Einstein tried to generalize the equivalence
principle to reference frames of arbitrary acceleration, but faced mathemat-
ical difficulties. Legend has it that in a state of desperation, he turned to
Marcel Grossmann, his good friend from student days and now professor of
geometry at the ETH Zurich. Grossmann identified the absolute differential
calculus (ADC), an early version of tensor calculus, as a mathematical the-
ory that could, perhaps, solve Einstein’s problems. Together, Einstein and
Grossmann reformulated gravitational theory in this new framework, and
published the first tensorial formulation of GR, which champions all essen-
tial elements of the final theory of general relativity, except for the correct
gravitational field equations.

The episode is a particularly interesting case of the application of math-
ematics for the following reasons. First, the mathematics applied in the
Entwurf, the ADC, was developed independently of the particular physical
problem at hand, gravitational theory. This sets it apart from the previous
application cycles; we will elaborate on the peculiarities of this aspect of the
cycle in section 3.3.3 below. Because of this feature, it has been discussed as
an example of the “unreasonable effectiveness” of mathematics; see Steiner
(1998). Secondly, at this stage of history, the division of labour between
mathematics and physics is discernible at several levels. The protagonists of
the episode, Einstein and Grossmann, both had clearly defined competences
and tasks: Einstein initiated the collaboration and brought the physical mo-

15The Einstein-Grossmann theory is often referred to in the literature as the Entwurf
theory with reference to Einstein’s and Grossmann’s first joint publication, entitled “Out-
line (Entwurf ) of a generalized relativity theory and a theory of gravitation” Einstein and
Grossmann (1913). For a detailed account of their collaboration and Grossmann’s role in
it; see Sauer (2014).
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tivation and knowledge to the table. Grossmann’s competence was in finding
a theory that solved a clearly-formulated mathematical problem. This divi-
sion of labour carries over to the resulting joint publication. The Entwurf
paper has two parts: Einstein was responsible for the first, physical part,
while Grossmann was responsible for the second, mathematical part. Third,
the case is interesting because Einstein and Grossmann were not yet able to
carry out the application process to their satisfaction, as the main applica-
tion cycle remained open. The characterization of the theory as an Entwurf
proved to be justified, as the Entwurf field equations turned out to be wrong
in the end.

3.3.1. Assumed Structure

Since the inception of the drama of GR in 1907 with the formulation of the
equivalence hypothesis, the assumed structure had been substantially revised
when Einstein and Grossmann began their collaboration in 1912. Einstein’s
goal, at the beginning of act three, was to find relativistic field equations of
gravitation, i.e. an equation of the form

OP (POT ) = SOURCE. (1)

This is a so-called “frame,” a template that can be instantiated in different
ways depending on the context; see (Renn and Sauer, 2007, p. 127). Its
instances are differential equations which determine a potential (POT) from
a distribution of sources (SOURCE) by way of a differential equation which
arises from a differential operator (OP) acting on the potential. Examples are
the electrostatic Poisson equation, determining the electrostatic potential ϕe
as a function of the charge density ρe, or the inhomogeneous wave equation for
the electromagnetic four-potential Aµ where the source is given by the four-
current jµ. At the beginning of the search for GR, the frame was instantiated
by the gravitational Poisson equation, at its end it would be transformed into
the Einstein equations. In 1912, two of the three components of the frame had
been generalized. The SOURCE slot was filled with the energy-momentum
(EM) tensor Tµν , and the POT slot was filled with the space-time metric gµν .
The remaining task was to find, and examine, suitable candidates for OP,
the differential operator acting on the metric.

3.3.2. Immersion Mapping

The immersion mapping connects the initial assumed structure with the
mathematical domain. In this case, the immersion hinged on a reinterpreta-
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tion of the differential line element. The expression

ds2 = gµνdx
µdxν , (2)

where gµν denotes the metric tensor, had been generated in the physical do-
main as a result of previous application cycles. By embedding it into the
mathematical domain, it was now being stripped of its physical significance,
and reinterpreted as the symbolic expression of a differential line element.
This change of perspective established a connection to the theory of differ-
ential invariants. The goal of the immersion step was to find differential
operators that could enter into the field equation. The mathematical object
that had to be carried along in the immersion, to be generalized in the math-
ematical domain, was the Laplace operator. Thus, the main task was to find
differential operators acting on the gµν . The physically motivated heuristics
translates into the search for a mathematical theory that provides covariants
of a homogeneous quadratic differential form.

Einstein’s formulation of the task in the Entwurf paper makes it clear that
the requirements on a suitable differential operator are tentative in character
and potentially subject to revision:

In accordance to [the Poisson equation], one is inclined to re-
quire that [the new relativistic field equation] be of order two.
However, it has to be emphasized that it proved to be impossible
to find a differential equation that satisfies this requirement, is a
generalization of [the Laplace operator], and is tensorial for arbi-
trary transformations. A priori we cannot exclude that the final,
exact equations of gravitation are of order bigger than two. [...]
The attempt of a discussion of such possibilities, however, would
be premature in view of our present knowledge of the physical
properties of the gravitational field (Einstein and Grossmann,
1913, p. 11).

We can extract a list of requirements, Einstein’s “check list” for differen-
tial operators, from the above quote:

1. The operator should be of order two.

2. It should be invariant under transformations larger than the Lorentz
group.

3. It should be a generalization of the Laplace operator.
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The first is a heuristic requirement derived from the Poisson equation. It
had no conclusive justification, but was based on an analogy with the classical
case. The second is based on the principle of “generalized relativity”.16 The
third, finally, is grounded in the correspondence principle.

Let us comment briefly on the first requirement. Steiner (1998, pp. 94)
discusses the use of analogies in the discovery of the equations of GR. His
main point of contention is that “the equation should be a second degree dif-
ferential equation, and linear in the second derivatives.” Citing Graves (1971,
p. 178), he claims that there is no physical justification for this choice, but
these conditions were simply adopted from the Poisson equation. He claims
that “the analogy with the Poisson equation was a Pythagorean analogy”. A
Pythagorean analogy is an analogy which proceeds by using some mathemat-
ical property of an equation, for which there is, at the time of the discovery,
no physical justification. This, however, seems to be overreaching. First,
the use of the Poisson equation is justified by the correspondence principle.
Furthermore, some properties of the Poisson equation do play a role here.
The associated Green’s function maps back to the Newtonian gravitational
potential, and for physical reasons, one would expect second-order differen-
tial equations of motion to hold, which require initial conditions of position
and velocity, and nothing more. Therefore, in the absence of theoretical rea-
sons to go beyond second-order terms, there is no physical reason to look
for higher-order differential equations, either on the level of the equations of
motion or the level of the field equation.

Most of the specifications for the differential operators were extracted
from the existing mathematical formulation of NGT, the Poisson equation.
The requirement for a wider covariance group, on the other hand, was new.
Unfortunately, the available historical sources concerning this issue are much
too vague on this point: We do not know how exactly Einstein formulated the
request for candidate differential operators when he approached Grossmann
for help, so it is not clear whether he thought that general covariance was
required, or if he had only a vague idea that the covariance group should be

16This principle is closely related to the equivalence principle. It suggests generalizing
to non-inertial frames the idea from SR that there are no privileged inertial frames. In
this sense, the principle has to do with the question as to which properties of space-time
should be accepted a priori. In Einsteins mind, the requirement to generalize SR was
closely related to finding an appropriate mathematical description of gravitation that was
independent of the chosen coordinate system.
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larger, and Grossmann filled in the details later on the bases of the ADC.17

There are later recollections of the precise formulation of Einstein’s question,
but such later accounts, as always, have to be taken with a lot of caution.

3.3.3. The Mathematical Domain

The target of the immersion step is the mathematical domain, one or
more mathematical theories with more or less worked out rules of inference
embodied by rules of transformation and manipulation for symbol systems.
The mathematical domain helps representing the structure immersed into it,
but it can have surplus structure. The mathematical domain should also not
be conflated with the deduction step. The mathematical domain is a general
framework which provides a space of possible structures and deductions,
while the deduction step is geared towards a specific goal of application,
putting mathematical theories to use.

According to the inferential conception, the next step in the application
process is the derivation step: once a part of the empirical domain is repre-
sented as a mathematical structure, we use a mathematical theory to gain
knowledge about this structure. However, we think that at this junction, the
inferential conception in its simple form is too coarse-grained and requires
further refinement. It leaves out important aspects of the application pro-
cess. It may not be possible to simply use an existing mathematical theory in
the derivation step, as sometimes, a considerable effort is involved in making
a mathematical theory applicable at several levels.

This point emerges from a closer look at the present episode. The main
difference between the previous application cycles and the present one is that
here, an existing, more or less worked out mathematical theory, the ADC,
is put to work in the context of gravitation for the first time. The novel
application of a mathematical theory is one of the more puzzling aspects of
applicability, so we want to be particularly careful in our examination of how
it works.18

A mathematical theory can be more or less suitable for a particular ap-
plication, it can contribute to its own application more or less successfully,
and it can be modified so as to enhance its applicability. It is fruitful to dis-

17See Sauer (2014) for a detailed discussion of this question.
18Steiner (2005, Par. II) calls this “noncanonical empirical applications”, empirical

application in a context for which the mathematics was not devised; Steiner classifies the
application of non-Euclidean geometry in GR as noncanonical.
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tinguish two aspects of the contribution of a mathematical theory towards
application: It can be implemented before, and after, the mathematical the-
ory is actually applied to a particular empirical domain. We will call the first
case “prior”, and the second case “posterior” contributions of mathematics
to application.

The “prior” contributions of mathematical theories to application are
those aspects that are regulated by considerations within pure mathematics,
and general considerations about the potential application of the mathemat-
ical theory by mathematicians, prior to the application of the mathematical
theory to any particular empirical domain. In order to understand the prior
contributions in the present case, we have to examine the evolution of the
mathematical theory before its application to gravitation.

The “posterior” contributions, on the other hand, have to do with the
adaption of the mathematical theory to one particular application. They are
not part of the derivation step, properly speaking, but prepare the ground
for this step. In the present case, Grossmann’s contributions pertain to this
aspect. We will ask: Did Grossman adapt, change, or extend the existing
mathematics in order to make it applicable? Did he make original contribu-
tions to the applied mathematics?

The Mathematical Theories in the Entwurf. Before we turn to a discussion
about the prior and posterior contributions of mathematics, we have to de-
termine which mathematical theories are applied in the Entwurf, and what
the relative importance of these theories and traditions is.19

In the mathematical part of the Entwurf, Grossmann cites the following
works: Christoffel (1869), Bianchi and Lukat (1899), Riemann (1876), Ricci
and Levi-Civita (1901), Kottler (1912). In addition, there are references to
Minkowski (1908), Sommerfeld (1910a,b), and Laue (1913). The latter are
formal reformulations of special relativity using four-dimension notation and
four-dimensional vector algebra and calculus. Although these researchers
have a background in mathematics, their works are not themselves mathe-

19The question as to what the most important mathematical tradition for the genesis of
GR was, has been debated in the historical literature; see e.g. Reich (1994); Stachel (2007).
Räz (2013, Sec. 5.2.3) is a very short introduction of the “new” mathematics applied in
the Entwurf theory, and Räz (2013, Ch. 6) discusses the influences of the mathematical
sources on the Grossmann’s part of the Entwurf. In the following, we will draw on these
works, as well as the original sources.
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matical. We therefore concentrate on the references that cite genuine math-
ematical contributions. It is notable that Abraham’s work is not explicitly
mentioned.

Not all of these mathematical sources are equally important, as was ar-
gued in detail in Räz (2013, Ch. 6). Based on Grossmann’s citations, and
on a comparison of the notation used by Grossmann and the mathematical
sources, the works by Christoffel, Bianchi, and Ricci and Levi-Civita stand
out as particularly important. Kottler’s work is probably mentioned only
to avoid a priority dispute. Finally, an analysis of Grossmann’s reference to
Riemann suggests that Grossmann did not consult Riemann’s work directly,
and that the latter’s influence was much less important than talk of the role
of Riemannian geometry for GR suggests.20

The influence of Ricci and Levi-Civita (1901) on Grossmann and Einstein
is well known: Ricci and Levi-Civita provided Grossmann with a worked out
calculus, on which he drew freely. Their paper has survey character, and
Grossmann may have used it as an entry point into the mathematical prob-
lems at hand. On the other hand, the importance of Christoffel (1869) for
Grossmann cannot be overemphasized. To give but one example, Grossmann
did not use the notation provided by Ricci and Levi-Civita for the most part,
but he went back to Christoffel’s notation. A parallel reading of Grossmann,
Christoffel, and Bianchi is also instructive. Bianchi and Lukat (1899) is a
textbook on differential geometry. However, Grossmann only used chapter
2, which is a “service chapter”, introducing, among other things, what we
now call Christoffel symbols and the Riemann tensor. Bianchi’s presentation
follows Christoffel’s paper up to notational details, and presents Christoffel’s
innovations in an accessible manner.21

If we put these lines of influence together, the following picture emerges,
see Fig. 4. Grossmann largely drew on the tradition of (algebraic) invariant
theory, or theory of differential invariants, initiated by Christoffel (1869), and
worked out by Bianchi and Lukat (1899), on the one hand, and Ricci and

20Grossmann in all probability “lifted” the reference from Ricci and Levi-Civita (1901):
The reference Grossmann gives is faulty—the page number is wrong—and the identical
fault can be found in a relevant passage of Ricci and Levi-Civita (1901). As we know
that Grossmann drew heavily on the latter source, it is plausible that he just copied the
mistake, and may not actually have consulted Riemann’s work at the time of composing
the Entwurf. See Räz (2013, Sec. 6.3) for the full argument.

21We also observe that Grossmann was Christoffel’s successor at the Zurich Polytechnic.
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Grossmann 1913
Entwurf part 2

Kottler 1912

Figure 4: The relative importance of the mathematical sources cited in Grossmann’s part
of the Entwurf.

Levi-Civita (1901), on the other. The focus was on the abstract calculus, and
some particular problems, such as the equivalence of homogeneous quadratic
differential forms. On the other hand, the geometrical interpretation of some
of the novel concepts, such as the Riemann tensor, were not yet fully worked
out, but known only in special cases—the Riemann tensor reduces to Gaus-
sian curvature in two dimensions. The explicit geometrical interpretation of
the homogeneous quadratic differential forms as a space-time metric was an
exception. The mathematical theory employed at this stage was not differen-
tial geometry, as witnessed by the minor direct influence of Riemann (1876).
This conclusion is in concordance with Karin Reich’s (1992) observation that
Riemannian geometry lacked the central concept of parallel transport until
after Einstein’s final formulation of general relativity when the concept of
affine connection was introduced into Riemannian geometry by Hermann
Weyl and Tullio Levi-Civita.

Prior Contributions: From Christoffel to the ADC. Let us turn to the prior
contributions of pure mathematics, the internal dynamics of mathematics
towards application. In the previous section, we have identified the relevant
mathematical sources prior to their application to gravitational theory. On
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closer inspection, these sources display a tendency within mathematics that
is relevant for the problem of applicability. By comparing the sources in
question, we can discern an effort of some mathematicians to make their
theories applicable. This can be seen by comparing Christoffel’s (1869) paper,
on the one hand, and Ricci and Levi-Civita’s (1901) on the other.

Christoffel’s is a technical paper in algebraic invariant theory. He solves
the equivalence problem of homogeneous quadratic differential forms. In a
nutshell, he specifies algebraic conditions under which two such differential
forms are “essentially the same,” i.e., can be transformed into each other
by coordinate transformations. This problem is directly relevant for Gross-
mann’s problem: The differential invariants emerging from Christoffel’s so-
lution are candidates for the left hand side of the field equations. However,
Christoffel’s presentation is not easily accessible; his main goal is to solve
an abstract, mathematical problem, his solution is cast in a cumbersome
technical notation, his aim is not to provide a readily applicable tool.

Ricci and Levi-Civita’s paper is entirely different. Their paper advertises
the techniques invented by Christoffel, but it explicitly aims at a wide audi-
ence of mathematicians and physicists. They take Christoffel’s—and other
mathematicians’—ideas, develop a calculus, give novel interpretations to the
symbolism, and give various possible applications of their calculus. Their pa-
per has the goal of presenting everything in an accessible, yet general manner.
They write in the introduction that it is one of their goals to make it easier
for the practitioner to get familiar with the methods of a calculus devised to
be independent of specific coordinate systems.

This shows that mathematicians do not only strive to solve abstract math-
ematical problems irrespective of application. There is a distinct tendency
within pure mathematics to work towards an application of mathematical
theories. If we extend this perspective to Riemann’s seminal geometrical
work, we get a picture of application cycles that are entirely within mathe-
matics: Riemann’s work, which generalized Gauss’s work on two-dimensional
surfaces to arbitrary dimensions, is a motivation for Christoffel’s even more
abstract and general work on differential forms, which, in turn, is taken up
and transformed by Ricci and Levi-Civita, and applied back to differential
geometry by Bianchi and later contributors, closing the application cycle.
Mathematics has its own, internal dynamics of application.

Posterior Contributions: Adapting the New Mathematics. Grossmann’s con-
tributions to the mathematics of GR, as we find them in the Entwurf, encom-
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pass a spectrum. They range from identifying the appropriate mathematical
literature, theories, and concepts, as we have seen, to notational innovations,
the reinterpretation of existing concepts, the introduction of new concepts,
and the generation of new mathematical results.22 These are all contributions
that stay within the mathematical domain and are relevant to mathematical
theory in itself. Grossmann’s contributions are aimed at, but not restricted
to, the application to GR.

We can divide Grossmann’s part of the Entwurf into two parts. The first
three paragraphs are an exposition of what we would now call tensor calcu-
lus, an exploration of a mathematical theory, not particularly geared towards
any specific application. It is only in paragraph four that specific derivations
are carried out, and the theory is put to work for the theory of gravitation.
These two parts mirror our distinction between Grossmann’s posterior con-
tributions to the development of mathematics, and the deduction steps in
the mathematical domain, properly speaking.

Superficially viewed, Grossmann’s exposition of tensor calculus in the
first part only pulls together the necessary concepts that were provided by
the ADC. On closer inspection, Grossman introduced quite some changes
in comparison to the original ADC. They provide his posterior contribu-
tions. First, Grossmann introduced a change in notation, which may seem
odd from our modern perspective. While Ricci and Levi-Civita had denoted
their co- and contravariant “systems” by subscript and superscript indices,
respectively, Grossmann wrote all indices as subscripts and denoted the char-
acter of covariance or contravariance by using Latin or Greek characters for
the tensor symbol itself. From a modern perspective, Grossmann’s change
in notation seems like a step in the wrong direction. However, Ricci and
Levi-Civita never considered the possibility of a mixed tensor, i.e. one that
carries both covariant and contravariant indices. Grossmann, on the other
hand, explicitly introduced tensors of mixed transformation behavior by us-
ing Gothic characters instead of Latin or Greek ones, and by separating the
co- and contravariant indices with a little vertical line.23 Second, Grossmann

22For a detailed exposition of Grossmann’s contributions, see Räz (2013, Ch. 6) and
Sauer (2014).

23It could be speculated that the generalization of a mathematical concept, viz. the
introduction of mixed tensors, reversed a previous notational innovation, the position
system for indices, because it was not clear (to Grossmann) whether and how the notation
could be consistently generalized along with the concept. Ricci and Levi-Civita, on the
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introduced new terminology. He referred to Ricci’s and Levi-Civita’s “sys-
tems” as “tensors”, thus reinterpreting one purely mathematical concept in
terms of another mathematical concept that had already been endowed with
a physical interpretation. Third, Grossmann also contributed new results
to pure mathematics; most importantly his proofs that Beltrami parameters
(differential operators), and generalizations thereof, can be given a particular
form, that is useful to prove, say, the energy-momentum balance equation.

The application of the ADC to a relativistic theory of gravity left its traces
in the mathematical domain: the reinterpretation of mathematical notions,
such as Ricci and Levi-Civit’s (1901) co- and contravariant “systems” as
tensors, which was a physical concept previously, the introduction of new
concepts that are needed in application, such as mixed tensors and the Ricci
tensor; new notation that is motivated or necessitated by the application,
such as the distinction between co- and contravariant and mixed tensors
using different kinds of letters. Many, but not all of these innovations are
now standard in tensor calculus.

3.3.4. Three Cycles of Applying Mathematics

The fourth paragraph of Grossmann’s part of the Entwurf is divided
into three subsections, each presenting the details of a specific mathematical
argument, or derivation. In view of the dynamical inferential conception,
each of these three parts corresponds to a cycle, the first and third to a
closed cycle, the second to an open cycle. We will comment on each of these
cycles separately.

It is not surprising that the application of the ADC in GR encompasses
more than one cycle, i.e., that the mathematical theory is applied to more
than one particular physical problem. Up to this point, it was one problem
that pushed Einstein and Grossmann towards the application of the ADC:
the generalization of the differential operator acting on the metric. However,
once the ADC was established as a more or less suitable tool for this task,
the mathematical theory offered itself as a framework in which other aspects
of physics could be reformulated as well – mathematics pulled in further
applications, so to speak. One such problem is the reformulation of energy
conservation, the first cycle to be discussed below.

other hand, did not anticipate the usefulness of mixed tensors; they may have considered
the concept overly general. Its introduction was only properly justified by the application
in GR.
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The three cycles we find in Grossmann’s part of the Entwurf encompass
immersion, deduction, and interpretation steps. The deduction step, one of
the focal points of the inferential conception, takes place within the mathe-
matical domain. In this step, we draw on a calculus, or on inference rules,
in order to extract information about the mathematical structure in ques-
tion. These inference rules can be implicit or explicit, and are ideally, but
not necessarily, deductive. Some deduction steps may not be fully worked
out. Material aspects, such as notation, become important, because these
can influence how easy or difficult it is to draw inferences—typically these
difficulties only become apparent at this stage of concrete operation within
the mathematical domain to achieve a certain deduction. In the interpreta-
tion step, some of the results of the deduction step are mapped back to the
empirical domain, and compared either with empirical results or theoretical
background knowledge. This step is not purely mathematical, as empiri-
cal and other theoretical considerations come into play—the results of the
deduction are brought into contact with the assumed structure.

The First Cycle. In the first argument, Grossmann shows that the energy-
momentum conservation equation∑

νn

∂

∂xn

(√
−g gmνΘνn

)
− 1

2

∑
µν

√
−g ∂gµν

∂xm
Θµν = 0, (3)

transforms generally covariant under arbitrary coordinate transformations.
Here Θµν denotes the contravariant energy-momentum tensor, and g the de-
terminant of the metric tensor. Grossmann’s result is appreciated by noting
that if we denote the covariant energy-momentum tensor by Tµν , covariant
differentiation by separating the relevant index with a semicolon, and use the
summation convention, eq. (3) translates, in modern notation, to the familiar
covariant divergence

(
√
−g T nm);n = 0. (4)

This was an important result, because it establishes that the conservation
principle could be written in generally covariant form—the goal of the cycle
is the generalization of an existing result.

In the interpretation step, Einstein interpreted eq. (3) as a continuity
equation for the energy (m = 4) and momentum density (m = 1, 2, 3)
by interpreting the first term as a divergence and the second term as ex-
pressing the effect of the gravitational force, represented by the derivative
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of the metric, acing on the energy-momentum content. Importantly, while
the structure in question, the energy-momentum tensor, had been derived
from special-relativistic principles, the general covariance of the generalized
energy-momentum balance equation could only be derived using the deduc-
tive possibilities provided by the ADC and by Grossmann’s preliminary work.
Grossmann used the ADC, as well as some of his own results, on the form of
differential operators which he had elaborated in paragraph 2 of his part.

This is an example of a closed cycle. Grossmann succeeded in show-
ing that the energy-momentum balance equation carries generally covariant
form, as was expected on the grounds of the generalized relativity princi-
ple. In establishing this result, he had made substantial use of mathematical
properties of the tensor calculus, such as the preservation of the property
of general covariance under operations of covariant differentiation. The fact
that the cycle was closed, in turn, strengthened the original heuristics of ap-
plying advanced and elaborated mathematics as a strategy in the search for
a general relativistic theory of gravitation.

The Second Cycle. From the point of view of the dynamical inferential con-
ception, Einstein’s and Grossmann’s search for a suitable instantiation of
the OP slot is an instructive and relevant example of an open application
cycle, as it was their original goal to formulate a generally covariant theory
of gravitation.

The deduction step of this cycle has two parts. First, Grossmann noted
that under the heuristic requirements specified in the immersion step, the
Riemann-Christoffel24 tensor is the differential operator from which all other
possible operators that could enter into the field equation can be generated by
algebraic operations. Historically, this is Grossmann’s most important con-
tribution to the genesis of GR. This step cannot be overestimated. Reinter-
preting the spatio-temporal distance ds2 between neighboring events, given
in eq. (2), as a differential line-element brings to bear on the problem the
rich resources of an elaborated mathematical theory of differential invariants.
However, this approach was not yet carried out successfully in the Entwurf.

24From here on, we will follow Einstein, as e.g. in Einstein and Fokker (1914, pp. 325,
328), Einstein (1914, pp. 1053, 1080), in referring to what is now commonly called the
Riemann tensor as the Riemann-Christoffel tensor. By adopting this terminology we do
not wish to make a statement on priority but simply to indicate our claim that for Einstein
and Grossmann, the source of the expression is Christoffel’s work.
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To a certain degree, the same may be said of the concepts of space-time met-
ric, and of manifold. It is here that these concepts were put to work for the
first time in the context of gravitational theory, but the ramifications and
geometrical interpretations of these concepts had not yet been explored.

Second, Grossmann invoked inferential rules provided by the ADC, car-
rying out concrete formal operations on the level of the symbolic represen-
tation, in order to create an object whose representations conformed with
the constraints of the field equation frame and its given instantiations. More
specifically, the instantiation of the SOURCE slot of the frame (1) of the
gravitational field equation by the energy-momentum tensor, a second-rank
tensor, created a constraint on the possible instantiations of the OP slot,
which also needed to be a second-rank tensor. Grossmann therefore ap-
plied the covariant operation of a contraction to the fourth-rank Riemann-
Christoffel tensor, which produced a second-rank tensor. He thereby created
a new mathematical object, the Ricci tensor. The Ricci tensor did not figure
in the original ADC as presented in Ricci and Levi-Civita (1901). It appears
that Ricci (1904) had already considered what is now called the Ricci tensor,
but we have no evidence that Grossmann knew of Ricci’s paper; we assume
that he found this result on his own. We know from the analysis of the
Zurich notebook that Grossmann and Einstein considered further methods
of constructing second-rank tensors from the Riemann-Christoffel tensor,25

all of which compromised on the original strategy of maintaining general
covariance by employing only covariance-preserving operations.

Other commentators on this episode have focused on the next step, the
interpretation step in order to explain the failure of this application cycle.
The dynamical inferential conception suggests to closely examine the deduc-
tion step as well. Grossmann, it must be said, did not exploit all deductive
possibilities provided by the ADC. There are other two-index tensors that
can be generated from the Riemann-Christoffel tensor in a way that fully
preserves general covariance. Consulting the mathematical sources, we find
that nothing in the exposition of the ADC in Ricci and Levi-Civita (1901),
or in Christoffel’s (1869) paper, precluded the addition of a trace term like in
the Einstein tensor, or the addition of a scalar term like the later cosmolog-

25To wit, the construction of the so-called November tensor, which is the part of the
Ricci tensor that transforms covariantly under unimodular coordinate transformations,
and the further postulation of the so-called Hertz- and ϑ-restrictions; see the discussion
in Janssen et al. (2007).
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ical term. Grossmann may even have considered non-linear contractions of
products of the Riemann-Christoffel tensor without violating the covariance-
preserving rules of the ADC. On the other hand, it was not easy to get an
overview of the deductive possibilities from the presentation in Ricci and
Levi-Civit’s (1901) paper, let alone from Christoffel’s paper.26 Crudely put,
this is a failure both of the mathematical literature, which did not make
the deductive possibilities sufficiently explicit, and of Grossmann, as he did
not fix the problem by trying to get an exhaustive overview of the algebraic
possibilities.

We have to turn to the interpretation step if we want to understand why
Einstein and Grossmann failed to see that the resources provided by the
Riemann-Christoffel tensor actually did provide a suitable mathematization
of a relativistic theory of gravitation. In evaluating the Ricci tensor as a
possible candidate of an instantiation of the OP slot, we have evidence in
the Zurich Notebook (p. 14L) how the interpretation step failed, see Janssen
et al. (2007, pp. 610ff). The contraction of the Riemann-Christoffel tensor
yielded four terms with second derivatives of the metric, only one of which
reduced to the Laplacian on going to the weak-field limit. The other three
terms could not be interpreted in terms of the assumed structure of NGT
on going to the limit where the assumed structure should be valid. The
candidate differential operator, the Ricci tensor, did not yield the Newtonian
limit as Einstein expected, and thus violated the main heuristic requirement,
the correspondence principle. Thus, the cycle remained open from Einstein’s
and Grossmann’s point of view.

The failure of this application cycle is a famous episode in the history of
science. The fact that in their Entwurf, Einstein and Grossmann actually
considered the Ricci tensor as a possible tensor to enter into the gravita-
tional field equation, but dismissed this possibility as physically not viable,

26One of the problems of the ADC paper is that Ricci and Levi-Civita do not state
definitions of some relevant concepts. On p. 162, they give the recipe for the construction
of “all absolute differential invariants of order µ”. This recipe relies on the the notions
of “absolute differential invariants” and “algebraic invariants”. While one can guess what
these notions encompass, no explicit definitions are stated in the ADC paper; rather, the
reader is referred to other publications. It is not entirely clear how to construct these
invariants. Thus, the ADC paper is not self-contained at critical points, despite Ricci and
Levi-Civita’s stated goal of making the tools of invariant theory available to practitioners;
see the mission statement on p. 128.
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has puzzled commentators for decades; see, e.g. Pais (1982, sec. 12d). The
puzzle got even bigger when John Norton (1984) pointed out that the Zurich
Notebook contained a discussion also of the reduced tensor that was taken
up later in the first of Einstein’s November papers. Closer inspection of
the Zurich Notebook then revealed that Einstein and Grossmann even had
considered the (linearized) full Einstein equations in their search for a grav-
itational field equation; see Renn and Sauer (1999). A subsequent detailed
line-by-line analysis of the Zurich Notebook, Janssen et al. (2007), revealed
the intricate dynamics of Einstein’s and Grossmann’s applying tensor calcu-
lus in their search for a relativistic gravitational field equation.

We have evidence from the Zurich Notebook how Einstein and Grossmann
reacted to the failure of the application cycle. They reflected on the steps of
the cycle and concluded that the deduction step that produced a differential
operator for the OP slot from the Riemann-Christoffel tensor needed to be
modified. They introduced additional constraints in order to extract two-
index objects from the Riemann-Christoffel tensor that could be interpreted
in terms of the correspondence principle by taking the Newtonian limit. All
such attempts failed, since Einstein and Grossmann interpreted the addi-
tional constraints realistically as constraints on the gravitational field and
not only on its possible representations.27 When a number of such attempts
had all failed, Einstein and Grossmann gave up on the application cycle
altogether and dismissed the theory of differential invariant as a possible
mathematical structure for their physics problem.

The Third Cycle. In the third part of the supplement, Grossmann provides
the third specific argument, the explicit steps involved in the derivation of
the “Entwurf operator”. From the point of view of the dynamical inferential
conception, this is a deduction step that does not draw on the novel mathe-
matical knowledge provided by the ADC. Rather, Einstein and Grossmann
had given up on the possibility of applying covariance preserving mathemat-
ical methods altogether and the derivation only used tools of algebra and
standard differential calculus.

The strategy now was to go back to the result of the first successful
application cycle, the energy-balance equation (3). But instead of further

27We follow the “majority opinion” of Janssen et al. (2007) of distinguishing between
coordinate conditions and coordinate restrictions and interpreting the Hertz- and ϑ-
conditions as restrictions. See Norton (2007) for the minority interpretation.
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exploiting the resources of the theory of differential invariants, Einstein and
Grossmann took the features of the assumed structure as the guiding princi-
ple. They now proceeded by inserting a tentative differential operator Γµν for
Θµν , which they assumed to have the expected form suggested by the New-
tonian limit, and to fix the second-derivatives terms by formal manipulations
that only preserved the validity of eq. (3).

The derivation of the Entwurf operator along this strategy yielded a
closed application cycle—even though the Entwurf theory eventually proved
untenable—because at the time, the formal algebraic manipulations estab-
lished the Entwurf operator as a uniquely determined object that satisfied
almost all heuristic expectations—Newtonian limit and energy-momentum
conservation—except for the open question as to its precise covariance group.
Two years later, Einstein discovered that his reasoning did not establish the
Entwurf operator as the unique solution to his heuristics, an insight that
contributed to the demise of the Entwurf theory.

3.3.5. The ADC Cycles: Taking Stock

Looking back at the process of applying mathematics in the ADC episode,
we can discern the following steps and cycles. The specific problem of find-
ing a differential operator acting on the metric (immersion step) which would
take the Poisson equation (assumed structure) to a new, more general field
equation (following the heuristics of the principle of generalized relativity) led
Einstein and Grossmann to explore the ADC, and its predecessors, mainly
as a theory of differential invariants (mathematical domain). Examining the
set of generally covariant differential operators, they were able to produce
a candidate differential operator, the Ricci tensor, of the right form (de-
duction step). However, they were unable to produce the right Newtonian
limit (failure of the interpretation step, conflict with correspondence princi-
ple), and thus failed to find a generally covariant field equation (second cycle
subjectively open). Reflecting on the open cycle, they concluded that a gen-
erally covariant approach to the field equations may be unfeasible (subjective
immersion step mistake), while neglecting some deductive possibilities (ob-
jective deduction step mistake), and, most importantly, wrong expectations
about some intermediate steps in going to the Newtonian limit (objective
interpretation step mistake). This concluded the second cycle. What made
the situation more complicated was that, once they had identified the ADC
as a suitable framework, the application to other problems, e.g. to the energy
balance equation, was successful (first cycle closed). This may have suggested
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that a tensorial formulation of a theory of gravitation would be worthwhile,
thus creating a tension between the first and the second cycle. Finally, they
were able (driven by the conservation principle) to derive a field equation of
restricted, unknown covariance, the Entwurf equations (third cycle closed),
which, however, did not draw on the ADC (different mathematical domain).
As pointed out before, the Entwurf character can be read off Grosmann’s
part: The paper only provides an outline of a tensorial theory of gravitation,
as the crucial second application cycle remained open for the time being.

3.4. The Aftermath

After settling on the Entwurf field equation, Einstein and Grossmann
penned their joined publication. Einstein held on to the theory for another
two-and-half years, before he gave it up in a dramatic return to general covari-
ance in the fall of 1915, in fierce competition with David Hilbert, see Sauer
(1999). This part of the drama is a topic in its own right, and we will not
go into details here. On our interpretation, the outcome of the application
cycles leading to the Entwurf theory had temporarily stabilized the assumed
structure, but it had done so by introducing into the mathematical repre-
sentation elements that, objectively, were in conflict with and transcended
empirical phenomena such as the Mercury perihelion. Over the course of the
next two-and-a-half years, changes in the assumed structure were prepared
that, in the fall of 1915, led to a renewed attempt of an application of ten-
sor calculus and the theory of differential invariants on Einstein’s part that
eventually led to a revision of theory which, in turn, enabled a closure of
the global application cycle of using tensor calculus for the formulation of a
relativistic theory of gravitation.

4. Conclusions

The conceptual tools provided by the dynamical inferential conception
allow us to analyze the process of the application of mathematics in a de-
scriptively adequate and philosophically insightful manner.

We have identified application cycles as suitable units that constitute the
(historical) process of applying mathematics. Depending on their success,
they can be open and closed; usually, the construction of a mathematically
formulated empirical theory will be an iteration of many cycles, both open
and closed, objectively or in the eyes of the working scientists. Cycles can be
further analyzed into the components suggested by the inferential conception
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as proposed by Bueno and Colyvan. These components follow their own logic,
and, once a cycle is completed, the components make it possible to guide the
further course of action in a process of reflection.

We argued that the distinction between assumed structure, the empirical
phenomena which are the starting point of the application process on the
one hand, and empirical phenomena on the other, is useful. Not all relevant
gravitational phenomena are part of the assumed structure – the anomalous
precession of Mercury’s perihelion did not play a role in the formulation of
GR, but rather served as a test for the completed theory.

The distinction between immersion step and an interpretation step, as
suggested by Bueno and Colyvan, is instructive. We interpreted the immer-
sion step as the search for a suitable mathematical theory and the embedding
of particular empirical phenomena in that theory. The interpretation step
brings aspects of the mathematical representation into contact with empirical
phenomena.

Based on the historical study, we argued that the mathematical domain
itself has to be treated as a separate arena of application. We found that some
mathematicians work on abstract mathematical puzzles with negligible ties
to direct application, as witnessed by Christoffel’s work, while others, such
as Ricci and Levi-Civita, strive to make mathematical theories applicable,
facilitating inferences, and even suggesting potential domains of application
– we called this the prior contributions. We also found that Grossmann him-
self put a considerable effort into the application of the ADC to gravitation,
contributing to many aspects of the mathematical theory – we called this the
posterior contributions. The application of mathematics shapes mathemati-
cal theories both from within and through the application process.

We examined the various mathematical sources used in the formulation
of the Entwurf theory, and we found that it is vital to be precise about
the mathematical theory that is actually put to use. In the present case, the
importance of an abstract, invariant-theoretic viewpoint should be stressed as
opposed to the view that differential geometry was the central mathematical
theory for Einstein and Grossmann.

We also sketched the interactions between different application cycles.
The second cycle, prompted by the open OP slot in the field equation frame,
led Einstein and Grossmann to the ADC. This, in turn, made it possible to
reformulate other aspects of the available physical knowledge – the mathe-
matical domain pulls in further applications, as the first cycle shows. How-
ever, this created a tension between the cycles, which could not be resolved
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at the time, and was only seemingly fixed in the third cycle, the derivation
of the Entwurf field equations.

There are, of course, many open questions and potential for further im-
provement. We have only begun to explore the larger dynamics that arise if
we consider many iterations of application cycles. We would like to say more
on the role of reflection on completed cycles, on the different ways in which
cycles can be open, closed, on the ways in which cycles can collide and how
conflicts can be resolved, and on the different problems that can arise within
a cycle, notably the various mistakes in the application steps. We would also
like to elaborate on the application dynamics that is directly related to the
mathematical theories, for example, on the transformation of mathematical
concepts and the corresponding notation – think of Grossmann’s problems
with the ADC’s notation.

In order to further refine the picture we sketched here, it will be useful to
consider further episodes in the genesis of GR, particularly if we want to get
a better understanding of the long-term dynamics of cycles. Also, the present
picture should be extended to other cases from the history of physics. The
genesis of QM is a prime example in this respect. Of course, application of
the dynamical inferential conception to examples from other sciences should
also be carried out.
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Räz, T. (2013). On the Applicability of Mathematics—Philosophical and
Historical Perspectives. Ph.D. thesis, Université de Lausanne .
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