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Abstract

Kaplan and Craver claim that all explanations in neuroscience appeal to
mechanisms. They extend this view to the use of mathematical models in
neuroscience and propose a constraint such models must meet in order to be
explanatory. I analyze a mathematical model used to provide explanations in
dynamical systems neuroscience and indicate how this explanation cannot be
accommodated by the mechanist framework. I argue that this explanation is
well characterized by Batterman’s account of minimal model explanations
and that it demonstrates how relationships between explanatory models in
neuroscience and the systems they represent is more complex than has been
appreciated.
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1 Introduction

Recent philosophical discussion of explanation in the special sciences has
focused on mechanist theories of explanation. These theories maintain that
explanations appeal to the mechanisms that underlie the scientific
phenomenon of interest. While there are different versions of these theories,
a significant number of them define mechanisms as the entities, activities,
and organizational features that produce a target phenomenon of interest.1

This general mechanist position provides an explanatory structure that has
been successfully identified in a number of special sciences, including
neuroscience, molecular biology, and genetics. However, this success has led
a number of philosophers to make the stronger claim that in certain sciences
mechanistic explanation is the only form of explanation. One example of this
stronger mechanist thesis is found in recent work by Kaplan and Craver who
claim that all explanations in neuroscience are mechanistic (Kaplan and
Craver 2011). They focus on dynamical systems neuroscience where there
has been significant resistance to this strong mechanist position. This
resistance has been motivated by claims that mathematical models in this
field can provide explanations without referencing the mechanisms that
underlie neural systems. In response to these claims Kaplan and Craver
argue for two main points in regard to the explanatory status of
mathematical models in dynamical systems neuroscience. They argue that
these models (1) must meet a model-to-mechanism-mapping (3M) constraint
to be explanatory and that (2) their explanatory status increases as they
include more relevant mechanistic detail.

In this paper I argue against Kaplan and Craver’s strong mechanist
position and their claims regarding the explanatory status of mathematical
models in dynamical systems neuroscience. I support this argument by
analyzing a dynamical model that provides an explanation, despite failing to
meet their mechanist requirements. I indicate how this explanation is well
characterized by Batterman’s account of minimal model explanations, which
has been used to clarify the structure of explanations in the physical
sciences, and more recently in biology (Batterman and Rice 2014).
Understanding the explanation in this example involves attending to
mathematical models and abstraction techniques that are common to
dynamical systems neuroscience and used in understanding neural behavior.
Such models can bear complex relationships to the neural systems they
represent and although they do not meet the mechanist mapping
requirements or represent the causal mechanical details of these systems, I
show how this does not prevent them from providing explanations.

In the second section I describe Kaplan and Cravers mechanist position in

1Most mechanist theories that fall under this general account originate from (Machamer,
Darden, and Craver 2000), while other versions can be found in (Bechtel and Richardson
2010; Glennan 1996; Woodward 2002).
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more detail. The third section contains a brief background on dynamical
systems neuroscience and an example of an explanation that these
mathematical models provide. In the fourth section I argue that this type of
explanation can not be accommodated by the mechanist approach and that
it can be characterized by Battermans account of minimal model
explanations. The sixth and final section contains a brief conclusion.

2 Kaplan and Craver’s Mechanist Position

This section contains further description of Kaplan and Craver’s claims
regarding explanations in neuroscience, including their 3M constraint and
the claim that the explanatory power of a model increases as it includes
more mechanistic detail. They direct these claims at mathematical models in
neuroscience and use them to distinguish between explanatory models and
those that merely provide descriptions or predictions.

According to Kaplan and Craver, all explanations in neuroscience appeal
to mechanisms as models in this field “carry explanatory force to the extent,
and only to the extent, that they reveal (however dimly) aspects of the
causal structure of a mechanism” (Kaplan and Craver 2011, 602). They
define mechanisms as the underlying component parts of a system and the
features, activities, and organization of these components that are relevant
to the production of a particular phenomena of interest (Kaplan and Craver
2011, 605). Explaining this phenomenon requires citing all and only those
actual components and activities that underlie and produce it. For example,
an adequate explanation of neural firing (or the action potential) appeals to
the relevant biological entities and activities that underlie and produce this
firing. These biological entities include the relevant ion channels, ions, and
the Na+/K+ pump, while the activities describe what these entities do, e.g.
their attraction, blocking, diffusion, etc. (Craver 2008, 1025). As an account
of causal explanation, the mechanist position depends on the rationale that
explaining a phenomena of interest requires citing the causal factors that
produce it. In other words, it requires that the explanans invoke factors that
are causally relevant to the explanandum. If a model merely describes or
predicts the explanandum, without citing the causal factors that produce it,
the model is regarded as non-explanatory.

There are two central claims that Kaplan and Craver make regarding the
explanatory status of mathematical models in neuroscience. The first is their
model-to-mechanism-mapping (3M) constraint, which states:

(3M) In successful explanatory models in cognitive and systems
neuroscience (a) the variables in the model correspond to
components, activities, properties, and organizational features of
the target mechanism that produces, maintains, or underlies the
phenomenon, and (b) the (perhaps mathematical) dependencies
posited among these variables in the model correspond to the
(perhaps quantifiable) causal relations among the components of
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the target mechanism (Kaplan and Craver 2011, 611).

Although this statement of 3M explicitly addresses models in cognitive and
systems neuroscience, Kaplan and Craver extend it to all models in
neuroscience.2 Their 3M constraint specifies two mapping-relations that
must be met between the model and a target system in order for the model
to be explanatory. The first maps the variables of a model to components
within the system and the second maps dependencies among variables in the
model to causal relations among components in the system. These criteria
are intended to ensure that the model accurately represents the “internal
aspects of the system” (Kaplan and Craver 2011, 616). However, the degree
to which a model needs to fulfill 3M in order to be explanatory is not made
entirely explicit in their work. They indicate that models need not
completely map to the target system or refrain from idealizations and
abstractions to be explanatory. Kaplan states that “3M requires only that
some (at least one) of the variables in the model correspond to at least some
(at least one) identifiable component parts and causal dependencies among
components in the mechanism responsible for producing the target
phenomenon” (Kaplan 2011, 347-8; emphasis original). In this manner, the
3M constraint is stated such that it requires only a minimal amount of
mapping from the model to the target system.

The second main claim that Kaplan and Craver make is that among
models meeting 3M, the explanatory power of a model increases as it includes
more relevant mechanistic detail (Kaplan 2011, 347). According to Kaplan:

As one incorporates more mechanistically relevant details into the
model, for example, by including additional variables to represent
additional mechanism components, by changing the relationships
between variables to better reflect the causal dependencies among
components, or by further adjusting the model parameters to fit
more closely what is going on in the target mechanism, one
correspondingly improves the quality of the explanation (Kaplan
2011, 347).

As including increasing amounts of detail into a model further reveals the
causal structure of the mechanism, it increases the explanatory status of the
model. Kaplan and Craver sometimes refer to this claim as a “fact” and at
other times a “highly plausible assumption” (Kaplan and Craver 2011, 613;
Kaplan 2011, 347). In either case, it is presented as a complement to their
3M constraint. This more-details claim provides a natural way of assessing
the degree to which a model meets 3M or maps onto a causal mechanism. A
more detailed mechanistic model, with a higher degree of mapping, will

2They focus on cognitive and systems neuroscience to argue that mechanistic explanation
is the unique form of explanation in higher-level neuroscience, which they take to have
already been established for lower-level neuroscience (Kaplan and Craver 2011, 602-3).
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provide a better explanation because it will be able to answer a wider range
of questions about the physical system of interest.

Kaplan and Craver provide a strong mechanist position in an ongoing
debate about the explanatory status of dynamical models in neuroscience.
They use their position to argue against the claim that dynamical models
can be explanatory when they do not reveal the causal structure underlying
system-level dynamics.3 Dynamical models often contain variables
representing macroscopic and behavioral features of neural systems and these
variables do not always appear to map onto mechanisms in the 3M sense. In
these cases, Kaplan and Craver claim that these variables “are not
components in the sense of being the underlying parts of the mechanism”
and merely provide mathematically compact characterizations of system-level
behavior (Kaplan and Craver 2011, pp. 615-614). They state that these
dynamical models provide at best descriptions or predictions of the behavior
of complex mechanisms and that those who consider them explanatory
“fundamentally misidentify the source of explanatory power in their models”
(Kaplan and Craver 2011, 602). This criticism is directed towards those who
have argued for distinctly dynamical, non-mechanistic explanations in
neuroscience, which has been argued, most notably, by Stepp, Chemero, and
Silberstein.4 The most challenging objection these dynamicist accounts have
faced is that non-mechanistic dynamical models are at best descriptive or
predictive, but not explanatory. Unfortunately, these dynamicist arguments
have remained susceptible to such an objection, because they have continued
to reference the predictive success of these models without providing another
clear sense in which they are explanatory.5 The strong mechanist position
has likely benefitted from the fact that these arguments for non-mechanistic
dynamical explanation have not been viewed as entirely successful. Kaplan
and Craver continue to uphold a strong mechanist position, whereby
mechanistic considerations serve as the demarcation criterion between
models that are explanatory and those that are non-explanatory.

I have described Kaplan and Cravers mechanist position and their claims
regarding explanatory mathematical models in neuroscience. In the next
section I describe a common type of mathematical model in neuroscience, a
dynamical model, and how it is used to represent neural systems. I then

3In a separate paper, Kaplan argues for the 3M criteria in the context of computational
neuroscience (Kaplan 2011). For an informative and helpful response to this paper and
discussion of explanations in computational neuroscience see (Chirimuuta 2013).

4For these claims, see (Chemero and Silberstein 2008; Stepp, Chemero, and Turvey 2011,
12).

5In a very recent paper Chemero and Silberstein discuss specific challenges for the mech-
anistic strategies of localization and decomposition in neuroscience. They further dis-
tance themselves from their earlier predictivist claims and make a number of insightful
preliminary claims regarding the structure of non-mechanistic dynamical explanations
(Silberstein and Chemero 2013).
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provide an example of how such a dynamical model is used to provide
certain explanations in neuroscience.

3 Dynamical Systems Neuroscience

With this description of Kaplan and Craver’s mechanist position, I move on
to providing some background on dynamical systems neuroscience. In this
section, I first discuss how neural excitably is understood and modeled with
the dynamical systems approach. To do this I characterize neural excitably
from a molecular perspective and contrast this with the dynamical systems
perspective. After clarifying certain aims of dynamical modeling I provide an
example of an explanatory dynamical model in neuroscience. I indicate why
this dynamical model is explanatory and what led neuroscientists to seek the
explanation it provides.

3.1 Dynamical models in neuroscience

In this section, I first discuss how neural excitably is understood and
modeled with the dynamical systems approach. To do this I characterize
neural excitably from a molecular perspective and contrast this with the
dynamical systems perspective. After clarifying certain aims of dynamical
modeling I provide an example of an explanatory dynamical model in
neuroscience. I indicate why this dynamical model is explanatory and what
led neuroscientists to seek the explanation it provides.

3.2 Dynamical Models in neuroscience

A major topic of study in neuroscience is the excitability of neurons as this is
important for understanding how they transmit information. From the
molecular perspective neural firing, or the action potential, is explained with
a generic neuron model consisting of voltage-gated ion channels sensitive to
Na+ and K+. When a neuron receives a strong enough signal a number of
things happen in succession that cause it to fire. First, the sodium channels
open quickly and Na+ rushes into the cell causing the membrane potential
to increase. This results in depolarization of the neuron and the upstroke of
the action potential. Shortly after this depolarization, the potassium
channels open and K+ rushes out of the cell, while the sodium channels
begin to close, decreasing the influx of Na+. These events cause the
membrane potential to decrease, which contributes to the repolarization of
the neuron and downstroke of the action potential. The action potential
travels down the length of the neuron and constitutes a single firing event.

In dynamical systems neuroscience, neural excitability is understood and
modeled in a different way: the main aim is to study qualitative features of
neural systems irrespective of their fine-grain molecular details. Qualitative
features of neural systems are studied by analyzing the graphical and
topological structures of dynamical models that represent these systems. A
dynamical model is a mathematical model that describes how variables
representing a particular system evolve with time. In neuroscience it is
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common to model neural excitability in this way with coupled differential
equations. For example, consider the following two-variable dynamical
model:

V̇ = f(V, n) (1)

ṅ = g(V, n) (2)

This is a system of coupled differential equations that describe how V and n
change over time. Here, V is the excitation variable, which represents neural
factors responsible for depolarization, and n is the recovery variable, which
represents neural factors responsible for repolarization. With this
two-variable model the dynamical system can be represented graphically, as
shown on the phase plane in Figure 1. In this figure V is plotted along the
x-axis and n is plotted along the y-axis. To each point (V, n) ∈ R2 there is a
corresponding vector whose x component is V̇ and whose y component is ṅ.
The vector field plotted shows (V̇ , ṅ) at each (V, n).

Figure 1: Phase plane with vector field (Izhikevich (2007), p. 113)

Graphical analysis of the vector field on the phase plane can provide
information about the system that may not be obvious from the differential
equations alone. For example, a solution to the system of equations can be
obtained from an analysis of the figure, as it is the curve (V (t), n(t)) on the
phase plane tangent to the vector field. The significance of a solution to the
system of equations is that it gives a full picture of how V and n change over
time. This solution and its portrayal as a trajectory corresponds to a
characterization of neural firing. Counter-clockwise movement on the
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trajectory tracks changes in V and n throughout the action potential and
the completion of this trajectory represents a single firing of the neuron.6

In dynamical systems neuroscience the qualitative features of neural
systems are often studied without reference to their fine-grained molecular
detail. There are two main reasons for this. First, as graphical
representations and qualitative features are exhibited by systems of differing
molecular details, explaining these qualitative features does not depend on a
shared physical structure. The fact that physically distinct neural systems
can exhibit the same qualitative behavior motivates the view that this
behavior is, in a sense, independent of any specific molecular microstructure.
Hoppensteadt and Izhikevich express this sentiment when they state that
“[b]ehavior can be quantitatively different, but qualitatively the same”
(Hoppensteadt and Izhikevich 1997, 33). As the focus in dynamical systems
neuroscience is on studying and explaining the qualitative behavior of neural
systems, the physical differences among systems that exhibit these behaviors
are rarely referenced (and sometimes the full extent of these differences are
unknown). A second reason for this inattention to molecular detail is that
preferred graphical analyses, which concisely represent the comprehensive
behavior of neural systems, constrain the number of variables that can be
implemented to characterize these systems. This requires the use of simple
models that abstract from the molecular details of neural systems, while
preserving their system-level behavior. The use of such techniques by
Fitzhugh and Nagumo et al. in the early 1960s essentially marks the
beginning of dynamical systems neuroscience (Fitzhugh 1960; Nagumo,
Arimoto, and Yoshizawa 1962). Fitzhugh pioneered this work by reducing
the number of variables in the Hodgkin-Huxley model of the action potential
so that the system could be “easily visualized” in a phase-space, leading “to
a better understanding of the complete system than can be obtained by
considering all the variables at once” (Fitzhugh 1960, 873). He reduced the
number of variables in these neural models by exploiting their different time
scales and functional effects.7 This early work explicitly distinguished the
qualitative features of neurons and the topological properties of their phase
space, from an analysis of their physical constitution. As I discuss in the
following subsections, these techniques and the general aims of dynamical
systems neuroscience are central to understanding how some models in this
field are used to provide explanations.

3.3 Explanatory Dynamical Model: the Canonical Model

In this subsection, I give an example of a dynamical model in neuroscience
and present an account of its role in a particular explanation. In this

6For more on graphical representations of neural excitability see (Ermentrout and Terman
2010; Izhikevich 2007).

7For Fitzhugh’s use of these reduction techniques see (Fitzhugh 1960; Fitzhugh 1961) and
for further discussion of them see (Abbott 1994; Doi and Kumagai 2001, 69).
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example the dynamical model, referred to as a canonical model, represents
the shared qualitative features of a number of physically distinct neural
systems. I indicate how this dynamical model is used to provide explanations
after discussing the research findings that led neuroscientists to seek these
explanations.

In 1948 Hodgkin published important results from his voltage clamp
studies of single crab neurons (Hodgkin 1948). In these experiments he
measured the electrical responses of neurons after injecting them with
various levels of current. He identified three different types of neural
excitability, which he referred to as class I, class II, and class III excitability,
a categorization still used today.8 Class I neurons exhibit a low frequency of
firing to low levels of current and smoothly increase their firing with
increases in current. Class II neurons begin firing when the current stimuli
reaches a higher level and their firing frequency increasing minimally with
increases in current, as represented by the step function in Figure 2. The
relationship between current introduced into class I and class II neurons and
the frequency of their firing response is represented in the frequency-current
(F-I) graph in Figure 2. Class III neurons fail to maintain firing in response
to current stimuli (and are not depicted in the figure). The qualitative
distinctions between these classes is that for class I neurons the
frequency-current relationship starts at zero and increases continuously, for
class II neurons it is discontinuous, and for class III neurons it is not defined.

Figure 2: Graph of the frequency-current (F-I) relationship of class I and class II neurons
(Izhikevich, p. 14 (2007))

These excitability classes identify qualitative features that are shared
among large groups of physically distinct neurons. Hodgkin was particularly
interested in class I excitability because it had been identified in neurons
from many different animals (Hodgkin 1948, 167). Since his work,
neuroscientists have identified class I excitability in many other neural

8These categories are sometimes referred to as type I, type II, and type III neuronal
excitability (Hoppensteadt and Izhikevich 1997, 84).
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systems, including rat hippocampal neurons, rat cortical neurons, crustacean
motor neurons, and the majority of neurons in the mammalian cortex
(Tateno 2004; Jia, Gu, and Li 2011; Connor 1975; Cauli, Audinat, Lambolez,
Angulo, Ropert, Tsuzuki, Hestrin, and Rossier 1997). As neurons with class
I excitability are found in animals of different biological phyla and even
throughout the nervous systems of single species, it is unsurprising that this
class encompasses neurons that differ in their microstructural details. What
has been surprising, however, is the astonishing degree of this variation and
the complexity of neural structures that has been revealed by recent
advances in patch-clamp recording, heterologous expression of cloned
channels, and genomic analysis (Bean 2007). For example, consider
mammalian pyramidal neurons, the majority of which exhibit class I
excitability. These neurons have three main types of voltage-gated ion
channels responsible for excitability, including those selective for Na+, K+,
and Ca2+. Of those channels that transmit distinct ions each have an
enormous variety of subtypes, for example, there are over 100 molecularly
distinct K+ channels (Vacher, Mohapatra, and Trimmer 2008). From this
large selection of channels a single neuron typically expresses over a dozen
different types, which vary in density along the neural membrane and result
in many distinct voltage-dependent conductances. These voltage-dependent
conductances contribute to the excitability of these neurons and can be
comprised of 2-5 different currents each of ion (Na+, K+, and Ca2+) (Bean
2007). This indicates a large degree of molecular difference among
mammalian pyramidal neurons with class I excitability. The differences
between all neurons that share this behavior is, of course, much greater.

Neuroscientists have sought an explanation for why neurons that differ so
drastically in their microstructural details all exhibit the same type of
excitability. In this case the explanadum is a behavior displayed by a group
of physically distinct systems as opposed to a behavior produced by a single
physically unique system. In 1986 Ermentrout and Kopell provided the
crucial component of this explanation with their derivation of a canonical
model for class I excitability.9 Their work involves using mathematical
abstraction techniques to reduce models of molecularly diverse neural
systems to a single model, referred to as a canonical model. The canonical
model and abstraction techniques used in this approach explain why
molecularly diverse neural systems all exhibit the same qualitative behavior
and why this behavior is captured in the canonical model. The explanation
for this shared behavior is that when mathematical abstraction techniques
are used to abstract away from details of mathematical representations of
neural systems, all representations converge onto the same canonical model.
In the next subsection, I further describe the abstraction steps, canonical

9This model is also called the “Ermentrout-Kopell model” and sometimes the “theta
model” (Izhikevich 2004; Ermentrout, Rubin, and Osan 2002; Börgers, Epstein, and
Kopell 2008).
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model, and the explanations they provide.

3.3.1 Reducing models of neural excitability

The first step in this canonical model approach involves reducing the number
of variables in models of neural excitability. Generally, variables
characterizing the dynamics of neural systems are classified into four groups
depending on their time scale and effect on membrane potential. These
variables include: (1) the membrane potential variable, (2) excitation
variables, (3) recovery variables, and (4) adaptation variables (Izhikevich
2007, 8). Excitation variables include neural factors that contribute to the
upstroke of the action potential and firing of the neuron, while recovery
variables represent neural factors that contribute to the downstroke of the
action potential and recovery of the neuron. Adaptation variables stand for
neural features that increase during continued spiking and can alter
long-term neural excitably. This classification allows the factors
characterizing neural excitability to be collapsed into one of the four
variables that together characterize the dominant behaviors of the system.

Models for class I excitability do not contain variables of the fourth type,
so our analysis begins with dynamical models characterized by three
variables: the membrane potential variable, excitation variable, and recovery
variable. A model with these three variables can be reduced to a
two-variable model by exploiting differences in the rate of the kinetics
between the excitation and recovery variables.10 As the kinetics of the
excitation variable are often much faster than the kinetics of the recovery
variable, an idealization is introduced into the model by replacing the
excitation variable with the value it quickly approaches (Rinzel and
Ermentrout 1989). This reduces the model to two variables that characterize
the macro-level behavior and dynamics of the system: the “new” excitation
variable V , which was formerly the membrane potential variable,11 and the
recovery variable n. This two-variable dynamical model takes the same form
as the coupled differential equations (1) and (2).

When models of neural excitability are reduced to two variables and
represented graphically, those systems with class I excitability all exhibit the
same change in topological structure as they transition from resting to
sustained firing. This qualitative feature is captured in dynamical systems
theory by the presence of a particular kind of bifurcation. In the case of
neurons with class I excitability, all exhibit the saddle-node on invariant

10The use of scale differences to reduce variables in mathematical models is a well-known
approach. For more on this approach, see: (Fowler 2007; Batterman 2000).

11Once this reduction is performed it is common to refer to the variable for the membrane
potential as the “excitation variable.” This is because the membrane potential variable
tracks changes in the neural membrane due to current stimuli, which can result in
excitation of the neural system.



Pre-referee eprint
Forthcoming in Philosophy of Science

circle bifurcation (Izhikevich 2007, 164). This reduction of mathematical
models of neural excitability to two-variable models is the first step in the
canonical model approach and begins to reveal the shared qualitative
features in their topology.12

3.3.2 Ermentrout-Kopell Theorem

Identifying this particular bifurcation in all models of class I systems is
significant because Ermentrout and Kopell’s theorem for class I excitability
proves that all models which exhibit this bifurcation transform into the same
model when they are reduced. They prove this by providing a continuous
piecewise transformation, represented by h in Figure 3, that transforms any
one-variable model, among a family of models with this bifurcation, into a
single canonical model.

Figure 3: Modeling techniques in neuroscience (Izhikevich (2006))

In other words, Ermentrout and Kopell prove that all dynamical systems
with the saddle-node on invariant circle bifurcation of the form:

12This first step allows for the representation of system-level behavior in a two-dimensional
phase space and serves many important roles in understanding this behavior, e.g. in
identifying the particular bifurcation that characterizes the system. However, for the
purpose of reducing any model of neural excitability to the canonical model, so long
as the system exhibits the saddle-node on invariant circle bifurcation, technically the
Ermentrout-Kopell theorem is all that is required (Hoppensteadt and Izhikevich 1997).
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ẋ = f(x), x ∈ S1, (3)

can be mathematically transformed into the following canonical model:13

θ′ = (1− cosθ) + (1 + cosθ)r, θ ∈ S1, (4)

where θ represents the activity of a neural system given a particular current
input represented by r. Given a particular fixed value of the bifurcation
parameter r, the model describes how the activity of the neural system,
represented by θ, changes over time by specifying the location of θ on the
unit circle S1. This is represented in Figure 4, where the location of θ on the
unit circle indicates whether the neural system is in the rest, threshold
potential, spike, or refractory phase. Every completion of the unit circle by θ
represents a single firing event of the neural system. The model indicates
that with small values of r the neural system remains at rest, represented by
the variable θ at the rest potential position. Larger values of r result in
continuous firing of the neural system, represented by the continuous
movement of θ around the unit circle.

Figure 4: Physiological state diagram of a Class I neural system (Hoppensteadt & Izhike-
vich (1997), p. 228)

13Ermentrout and Kopell’s theorem pertains not just to single neurons but also to neural
networks. The equations that pertain to neural networks contain an extra term that
accounts for the connectivity and interactions between neurons. For the these equations
see (Hoppensteadt and Izhikevich 1997, 225). I have chosen the single neuron case for
simplicity of presentation.
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Figure 5: The solution x(t) of (3) is mapped to the solution θ(t) of (4), the canonical
model (Hoppensteadt & Izhikevich (1997), p. 119)

Ermentrout and Kopell’s theorem for class I excitability provides a
continuous transformation h : S1 → S1 that converts solutions of (3) to
solutions of (4), represented in Figure 5. This figure shows how any point on
the unit circle S1 of the family model is represented on the unit circle S1 of
the canonical model. This transformation preserves the behavior of the
original system and ensures that no artifacts or behavior not present in the
original system are inherited by the canonical model. Neuroscientists
describe this transformation as “extracting some particularly useful
dynamical features” from these models, which are represented in the
canonical model for class I excitability (Hoppensteadt and Izhikevich 1997,
115). This approach reveals how all models of systems with class I
excitability are transformed into the same canonical model when they are
reduced with principled mathematical techniques. This reveals how
mathematical representations of class I systems are stable under certain
perturbations by abstracting away from details of each model.

One of the more impressive features of this canonical model is that it
provides the frequency with which any class I neuron will oscillate given a
particular fixed value of r (Hoppensteadt and Izhikevich 1997, 227-8). The
canonical model approach is valued by mathematical neuroscientists because
it provides a rigorous method for gaining information about classes of neural
systems which share a particular behavior without obscuring this similarity
behind the details of any one system (Izhikevich 2007, 278). As Izhikevich
notes, the “advantage of this approach is that we can study universal
neurocomputational properties that are shared by all members of the family
because all such members can be put into the canonical form” (Izhikevich
2007, 278). Furthermore, as this canonical model approach pertains not just
to single neurons, but also to neural networks, it indicates the relevance of
this explanatory approach to both cellular and systems-level neuroscience.14

It is worth emphasizing that this approach depends crucially on both the

14For more on Hoppensteadt and Izhikevich’s discussion of the canonical modeling ap-
proach and its use in understanding weakly connected neural networks see (Hoppen-
steadt and Izhikevich 1997, 111).
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canonical model and mathematical abstraction techniques that relate it to
models of distinct neural systems. Referring to the canonical model alone
could be viewed as merely describing or predicting the behavior of class I
neurons, as opposed to explaining it. The canonical model approach,
however, including the canonical model and abstraction techniques, does
more than just describe or predict the excitability of class I neurons. It
explains why physically distinct neural systems all share the same behavior
by showing that principled mathematical abstraction techniques–which
preserve qualitative behavior–can be used to reduce all models of these
distinct systems to the same canonical model. These abstraction techniques
involve exploiting time scale differences to introduce idealizations into
models and transforming systems into simpler models that are topologically
equivalent. This approach provides an explanation for this shared behavior –
when principled mathematical techniques abstract from the details of
different systems, they can all be simplified into the same canonical model
that exhibits this behavior.

4 Analysis of the Canonical Model Approach

In this section, I examine whether Kaplan and Craver’s 3M constraint and
claims regarding detailed models–which they created to account for
explanatory mathematical models in neuroscience–can accommodate the
explanations provided by the canonical model approach. I argue that their
mechanist criteria and framework cannot account for this type of
explanation. I then describe Batterman’s account of minimal model
explanations and indicate how it accommodates the canonical model
explanation introduced in the last section.

4.1 Kaplan and Craver’s Mechanist Account

The canonical model approach contrasts with Kaplan and Craver’s claims,
because it is used to explain the shared behavior of neural systems without
revealing their underlying causal mechanical structure. As the neural
systems that share this behavior consist of differing causal
mechanisms–different types of ion channels, with different distributions along
the membrane, and permeabilities to specific ions, etc.–a mechanistic model
that represented the causal structure of any single neural system would no
longer represent the entire class of systems with this behavior. In other
words, a mechanistic explanation can be provided to explain why any single
system displays class I excitability, but this answers a different question than
that answered by the canonical model, which takes the shared behavior of all
systems in the class as the desired explanandum. As explaining this shared
behavior is one of the goals of the canonical model, abstracting from these
differences in mechanistic detail serves an explanatory purpose.
Furthermore, this explanatory purpose can contrast with the claim that the
explanatory status of a model increases as more relevant mechanistic detail
is included. This role of abstraction in dynamical systems neuroscience is
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supported by a quote from Rinzel and Ermentrout, who state:

[W]e emphasize the value of using idealized, but biophysically
reasonable, models in order to capture the essence of system
behavior. If models are more detailed than necessary, identification
of critical elements is often obscured by too many possibilities. On
the other hand, if justified by adequate biophysical data, more
detailed models are valuable for quantitative comparison with
experiments. The modeler should be mindful and appreciate of
these two different approaches: which one is chosen depends on the
types of questions being asked and how much is known about the
underlying physiology (Rinzel and Ermentrout 1989).

To the extent that neuroscientists have sought to explain this universal
behavior and have succeeded by purposefully abstracting from mechanistic
detail, it should be regarded as a legitimate explanation. The canonical
model approach indicates that there are common types of questions in
dynamical systems neuroscience that are not answered by referencing causal
mechanisms and often involve abstracting from many of these lower-level
details.

These points can be made more clear by considering Kaplan and Craver’s
3M constraint for explanatory models in neuroscience, which the canonical
model does not meet. The first part of this constraint requires that the
variables of a model map onto the mechanism of interest, i.e. the entities,
activities, and organizational features of the target system producing the
phenomena of interest. Recall that the canonical model contains a single
variable θ and the bifurcation parameter r, representing the behavior of the
neuron and a fixed input to the neuron, respectively. The bifurcation
parameter does not represent a component (or internal aspect) of the neural
system, but rather an input stimulation to the system. This leaves the
variable θ as a candidate for the first part of the 3M constraint. This single
variable (θ) cannot fulfill this constraint because it does not map onto any
identifiable entity, activity, or organizational feature of the mechanisms that
underlie these neural systems. Rather it represents the overall behavior of
the neural system by indicating its location on the unit circle. The second
3M requirement–that variables in the model map onto causal relations in the
target system–is also problematic. As the only candidates for a dependency
relation in this model are θ and r, it may be claimed that they meet the
second part of the 3M constraint: a dependency relation between a fixed
input to the neuron and its behavior. However, the fact that these variables
do not meet the first part of the 3M requirement makes this dependency
relationship difficult to interpret with the mechanist framework.
Furthermore, Craver considers this type of input/output relation to be
a“phenomenal model” that “black boxes” the underlying causal mechanism.
He claims that such phenomenal models are not explanatory because they
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fail to represent the mechanism between the input and output relations. As
he has stated, phenomenal models “are complete black boxes; they reveal
nothing about the underlying mechanisms and so merely ‘save the
phenomenon’ to be explained” (Craver 2006, 357). Thus the only possible
dependency relation in the canonical model fails to meet 3M because it
merely captures an input/output relation and fails to map onto an
underlying causal structure.

Indicating that the canonical model does not meet the 3M constraint is
not to say that the model does not represent or map onto neural systems in
a manner relevant to its explanatory power. Surely models must bear some
relationship to how things are in the real world in order to be explanatory. I
am not arguing against there being an explanatorily relevant sense in which
the canonical model maps onto physical systems. Instead I am arguing that
the mechanists’ 3M requirement does not accurately characterize this
mapping relationship for all explanatory models in neuroscience. There does
not seem to be any straightforward modification of 3M that would allow the
mechanist to accommodate the complex relationship between the canonical
model and systems with this type of shared behavior.

On this basis it is fair to conclude that the canonical model for class I
excitably cannot be accommodated by Kaplan and Craver’s mechanist
account. This model fails to meet their 3M criteria, their claims regarding
the inclusion of details in explanatory models, and their assertion that
explanatory models reveal the structure of mechanisms. The specific example
that I have provided indicates that even if the mechanist framework accounts
for many explanations in neuroscience, it cannot not account for all of them.

4.2 Batterman’s Minimal Model Explanations

An account of explanation that accommodates this canonical model example
is Batterman’s account of minimal model explanations. Explanations in
science are often considered answers to why-questions and Batterman has
distinguished between two different types of these questions: type (i) and
type (ii) why-questions (Batterman 2001, 23). A type (i) why-question asks
why a phenomenon manifests in a particular circumstance, while a type (ii)
why-question asks why a phenomenon manifests generally or in a number of
different circumstances. For example, a type (i) why-question might ask why
a particular firing behavior is exhibited by a rat hippocampal neuron. An
answer to this question is likely to provide an account of how components of
the rat hippocampal neuron bring about the spiking behavior of interest. A
type (ii) why-question, on the other hand, might ask why a particular firing
pattern is found generally among a group of microstructurally distinct
neurons, e.g. rat hippocampal neurons, crustacean motor neurons, and
human cortical neurons. An answer to this question is unlikely to reference
the lower-level components of the systems, because the components vary
from system to system. An explanation for why all of these neurons exhibit
the same firing behavior should explain why one can abstract away from the
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details of each system to achieve the same higher-level behavior. Whenever
the lower-level components of a single system are invoked, explanation of the
shared behavior of all these systems is lost.

While mechanistic explanations provide answers to type (i)
why-questions, Batterman’s minimal model explanations aim to answer type
(ii) why-questions. The first step in these explanations is the identification of
a pattern or behavior that is shared among physically distinct systems. This
shared behavior is often referred to as universal behavior and the group of
systems that exhibit it as the universality class. The universality class can
be delimited and made precise by using mathematical abstraction techniques
to show how different physical systems display the same universal behavior.
Batterman describes this strategy as involving an abstract space of possible
systems, where each point in the space represents a particular physical
system of interest.15 The goal is to apply simplifying techniques to this space
that allow for the elimination of details or degrees of freedom, while
preserving the form of behavior of each system in the space. Repeated
application of these techniques (which involve the renormalization group
theory in Batterman’s example) rescales the systems and changes their
representation in a way that can be tracked as the movement of the system
through this space. Studying the topological features of this abstract space
reveal fixed points, or points in the space where many represented systems
flow to and remain. Importantly, the systems in this space that flow to the
same fixed point are in the same universality class and their shared behavior
is determined by the fixed point that they all flow to. This procedure of
creating, simplifying, and studying systems in this abstract space provides a
precise way of delimiting the universality class (Batterman and Rice 2014).
This strategy of delimiting a universality class explains why physically
distinct systems all share the same behavior because it reveals that when
details irrelevant to the behavior of each system are removed from the
models that represent them, all systems share a common representation. As
Batterman states:

explanation of universal behavior involves the elucidation of
principled reasons for bracketing (or setting aside as “explanatory
noise”) many of the microscopic details that genuinely distinguish
one system from another. In other words, it is a method for
extracting just those features of systems, viewed macroscopically,
that are stable under perturbation of their microscopic details
(Batterman 2001, 43).

Explaining this universal behavior answers a type (ii) why-question in
explaining why physically distinct systems exhibit the same behavior.

15For more on Batterman’s discussion of these points, see (Batterman 2001; Batterman
2010; Batterman and Rice 2014).
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Delimiting the universality class can be used to identify what Batterman
calls a “minimal model,” which is known to be in the universality class and
thus, shares features of all models in the class. A minimal model often
provides a compact characterization of universal behavior and, as Nigel
Goldenfeld states, is a model that “most economically caricatures the
essential physics” (Goldenfeld, Martin, and Oono 1989; Batterman 2002).
Thus, minimal models characterize the behavior of a universality class
without representing the lower-level physical details of systems in the class.
Such simple models are often used to study and explain universal behaviors,
which Batterman refers to as minimal model explanations. What justifies
the use of a minimal model in studying and explaining universal features?
This justification is provided by the mathematical techniques that delimit
the universality class and the identification of the minimal model as a
member of this class.

There are striking similarities between Batterman’s account of minimal
model explanations and the explanations provided by the canonical model
approach. Like minimal model explanations, the canonical model approach is
used to explain the universal behavior of class I neurons. It provides an
answer to a type (ii) why-question by explaining why a particular neural
behavior is found among physically distinct neural systems. Models of these
systems are represented in the abstract space of phase diagrams where
mathematical techniques are used to identify the stable features of these
models. As Hoppensteadt and Izhikevich write:

“instead of saying that the [canonical] model loses information
about the original phenomena, we say that our model is insensitive
to the dynamics within an equivalence class...and that it captures
properties [of models in the family] that are transversal to the
partitioning” (Hoppensteadt and Izhikevich 1997, 116).

The canonical model for class I excitability is a minimal model in the sense
that it provides a compact characterization of the behavior of a universality
class, which has been precisely demarcated and includes the canonical model
as a member. As Hoppensteadt and Izhikevich state:

Canonical [m]odels arise when one studies critical regimes, such as
bifurcations in brain dynamics. It is often the case that general
systems at a critical regime can be transformed by a suitable
change of variables to a canonical model that is usually simpler,
but that captures the essence of the regime (Hoppensteadt and
Izhikevich 1997, 4).

Moreover:

Using comprehensive models [which attempt to take into account
all known neurophysiological facts and data] could become a trap,
since the more neurophysiological facts are taken into
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consideration during the construction of the model, the more
sophisticated and complex the model becomes. As a result, such a
model can quickly come to a point beyond reasonable analysis
even with the help of a computer. Moreover, the model is still far
from being complete (Hoppensteadt and Izhikevich 1997, 3, 5).

Mathematical neuroscientists abstract away from the physical differences
among systems that exhibit class I excitability, in order to explain this
shared behavior. This procedure involves extracting such behavior with
mathematical reduction techniques and representing it with dynamical
models. The dynamical models that concisely capture these shared behaviors
are often referred to as canonical models. Neuroscientists consider the
canonical model for class I excitability a “one-dimensional caricature of a
‘real’ neuron” and they use it to study and explain this universal neural
behavior (Gutkin and Ermentrout 1998). An all too common objection to
the explanatory status of dynamical models has been the claim that–in the
absence of representing components of biological mechanisms–they are
merely phenomenological models that are only capable of describing or
predicting scientific phenomena. Kaplan and Craver insist that “there is no
currently available and philosophically tenable sense of ‘explanation’
according to which such models explain,” arguing that their mechanist
theory alone best represents the standards of neuroscience. (Kaplan and
Craver 2011, 602). This paper is intended to refutes such claims in light of
Batterman’s account of minimal model explanations and the similarity of
this explanatory structure to explanations neuroscientists provide with the
canonical model approach. This approach demonstrates how the techniques
of dynamical systems neuroscience are used to explain why such universal
behaviors are exhibited by physically distinct systems, as opposed to just
providing descriptions or predictions of these behaviors or revealing their
underlying causal mechanisms. Such explanations are provided by
simplifying neural models of these systems in a way that reveals their shared
qualitative features. That such features are represented by the canonical
model is explained by using techniques to demarcate the universality class, of
which the canonical model is a member.

I have indicated why Kaplan and Craver’s mechanist position cannot
account for the explanations provided by the canonical model approach and
how they can be characterized by Batterman’s account of minimal model
explanations. This analysis indicates that there are explanations in
neuroscience that do not meet Kaplan and Craver’s mechanistic account of
explanation and, thus, that it should not be considered the sole form of
explanation in neuroscience.

5 Conclusion

I have argued that there are explanations in neuroscience that are not
accommodated by Kaplan and Cravers mechanist theory of explanation. An
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example of such an explanation is the canonical model approach, where a
dynamical model is explanatory in virtue of abstracting from the physical
details or mechanisms of distinct neural systems. I indicated how the
explanatory structure of this approach can be characterized by Battermans
account of minimal model explanations, which captures a role mathematical
abstraction techniques can play in explaining universal behaviors. The
canonical model approach shows how neuroscientists can understand and
study neural behavior by deliberately removing details from models of these
systems and that explanations in neuroscience can be attained even when
simple mapping constraints are not met. It is typically presumed that for a
model to be explanatory it must bear some relationship to how things are in
the real world. The canonical model approach reveals that this relationship
can be quite complex and that it is not captured by Kaplan and Cravers
account of explanation in neuroscience.
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