
 

 

Mechanisms and Model-Based fMRI 

Mark Povich 

Washington University in St. Louis 

 

Abstract. Mechanistic explanations satisfy widely held norms of explanation: the ability to 

control and answer counterfactual questions about the explanandum. A currently debated 

issue is whether any non-mechanistic explanations can satisfy these explanatory norms. 

Weiskopf (2011) argues that the models of object recognition and categorization, JIM, 

SUSTAIN, and ALCOVE, are not mechanistic, yet satisfy these norms of explanation. In this 

paper I will argue that these models are sketches of mechanisms. My argument will make use 

of model-based fMRI, a novel neuroimaging approach whose significance for current debates 

on psychological models and mechanistic explanation has yet to be explored. 
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1. Introduction  

 According to the mechanistic account of explanation, a phenomenon is explained by 

describing the entities, activities, and organization of the mechanism that produces, underlies, 

or maintains the phenomenon (see, e.g., Bechtel and Abrahamsen 2005). Mechanistic 

explanations satisfy what are widely considered normative constraints of explanation: the 

ability to answer a range of counterfactual questions regarding the explanandum 

phenomenon and the ability to manipulate and control the explanandum phenomenon (Craver 

2007). These norms capture what is distinctive about the scientific achievement of 

explanation rather than prediction, description, or categorization. A currently debated issue is 

whether any non-mechanistic forms of explanation can satisfy these explanatory norms.1 

Weiskopf (2011) argues that the models of object recognition and categorization, JIM, 

SUSTAIN, and ALCOVE, are not mechanistic, yet satisfy these norms of explanation.  

In this paper, in part using recent model-based fMRI research, I will argue that JIM, 

SUSTAIN, and ALCOVE are in fact mechanism-sketches, i.e. incomplete mechanistic 

explanations. Model-based approaches to neuroimaging allow cognitive neuroscientists to 

locate the distributed neural components of psychological models. These novel neuroimaging 

approaches have developed only recently and philosophers have yet to discuss their 

significance for current debates on psychological models and mechanistic explanation. The 

                                                 

1 A recent paper arguing affirmatively is Batterman and Rice (2014). 



 

 

opportunity to demonstrate this significance is one advantage of responding to Weiskopf 

(2011) in particular.  

 The paper is organized as follows. In Section 2, I will motivate the mechanistic 

account of explanation and introduce two crucial concepts in the mechanistic account: the 

mechanism-sketch and the how-possibly model. In Section 3, I will introduce the models of 

object recognition and categorization (JIM, SUSTAIN, and ALCOVE) that Weiskopf 

presents as non-mechanistic, yet explanatory. In Section 4, I will present Weiskopf’s 

arguments for thinking these models are non-mechanistic, yet explanatory, and I will begin 

responding to these arguments. This section demonstrates that JIM is a mechanism-sketch. 

Demonstrating that SUSTAIN and ALCOVE are mechanism-sketches requires covering 

recent studies employing model-based fMRI, a novel neuroimaging method that will be 

explained in section 5.   

2. Mechanistic Explanation 

 Salmon (1984) developed the causal-mechanical account of explanation primarily in 

response to the covering-law or deductive-nomological model of explanation (Hempel and 

Oppenheim 1948). According to the deductive-nomological model, an explanation is an 

argument with descriptions of at least one law of nature and antecedent conditions as 

premises and a description of the explanandum phenomenon as the conclusion. On this view, 

explanation is showing that the explanandum phenomenon is predictable given at least one 

law of nature and certain specific antecedent and boundary conditions. However, tying 

explanation this closely to prediction generates some famous problems for the covering-law 



 

 

model (see section 2.3 of Salmon [1989] for a review of these problems). On such a view, 

many mere correlations come out as explanatory. For example, a falling barometer reliably 

predicts the weather but the falling barometer does not explain the weather. In contrast, on 

the causal-mechanical view, explanation involves situating the explanandum phenomenon in 

the causal structure of the world. There are many ways of situating a phenomenon in the 

causal structure of the world and in this paper I am solely concerned with explanations that 

identify the mechanism that produces, underlies, or maintains the explanandum 

phenomenon.2 

 Another problem with tying explanation so closely to prediction is that we miss what 

is distinctive about the scientific achievement of explanation. Weiskopf (2011) and I agree on 

what makes explanation distinctive: explanations provide the ability to answer a range of 

counterfactual questions regarding the explanandum phenomenon and the ability to 

manipulate and control the explanandum phenomenon. These are the norms of explanation. 

Weiskopf and I disagree over what kinds of explanation can satisfy these norms. 

 Within the mechanistic framework there are two important distinctions: between 

complete mechanistic models and mechanism-sketches and between how-possibly and how-

actually models (Craver 2007). Mechanism-sketches are incomplete descriptions of 

                                                 

2 Other ways of causally situating a phenomenon include etiologically and contextually 

situating it. See Bechtel (2009) for a discussion of some of these different forms of causal 

explanation. What Bechtel calls “looking down” I am here calling “mechanistic explanation.” 



 

 

mechanisms that may contain black boxes and filler terms (Ibid., 113). Mechanistic models 

rest on a continuum of more-or-less complete (114). As more details are incorporated into the 

model, the more complete it becomes – though no model is ever fully complete, just 

complete enough for practical purposes. A more complete model is not necessarily a better or 

more useful model. There can certainly be too many details for the purposes of the modeler 

and the details that are included should be relevant.3 Idealization can be readily 

accommodated within a mechanistic framework.  

 A how-possibly model describes a merely possible mechanism, whereas a how-

actually model describes the mechanism actually producing, maintaining, or underlying the 

explanandum phenomenon. As Weiskopf (315) rightly points out, this distinction is 

epistemic. Turning a how-possibly model into a how-actually model does not require 

modifying the model itself in any way; it requires testing the model. The greater the 

evidential support for the model, the more how-actually it is. In contrast, turning a 

mechanism-sketch into a complete(-enough) model requires modifying the model by filling 

in missing details. 

3. JIM, SUSTAIN, and ALCOVE 

 In this section I introduce the models of object recognition and categorization JIM, 

SUSTAIN, and ALCOVE. The next section presents Weiskopf’s arguments for thinking these 

models are non-mechanistic, yet explanatory. 

                                                 

3 See Craver (2007, section 4.8) for an account of constitutive (i.e. mechanistic) relevance. 



 

 

 According to JIM (John and Irv’s Model), in perception objects are broken down into 

viewpoint-invariant primitives called “geons”. These geons are simple three-dimensional 

shapes such as cones, bricks, and cylinders. The properties of geons are intended to be non-

accidental properties (NAPs), largely unaffected by rotation in depth (Biederman 2000). The 

geon structure of perceived objects is extracted and stored in memory for later use in 

comparison and classification. 

 The importance of NAPs is shown by the fact that sequential matching tasks are 

extremely easy when stimuli only differ in NAPs. If you are shown a stimulus, then a series 

of other, rotated stimuli, each of which differs from the first only in NAPs, it is a simple 

matter to judge which stimuli are the same as or different than the first. Sequential matching 

tasks with objects that differ in properties that are affected by rotation are much harder. 

 In JIM, this object recognition process is modeled by a seven layer neural network 

(Biederman, Cooper, and Fiser 1993). Layer 1 extracts image edges from an input of a line 

drawing that represents the orientation and depth of an object (182). Layer 2 has three 

components which represent vertices, axes, and blobs. Layer 3 represents geon attributes 

such as size, orientation, and aspect ratio. Layers 4 and 5 both derive invariant relations from 

the extracted geon attributes. Layer 6 receives inputs from layers 3 and 5 and assembles geon 

features, e.g., “slightly elongated, vertical cone above, perpendicular to and smaller than 

something” (184). Layer 7 integrates successive outputs from layer 6 and produces an object 

judgment. 



 

 

The Attention Learning Covering map (ALCOVE) is a 3-layer, feed-forward, neural 

network model of object categorization (Kruschke 1992). A perceived stimulus is represented 

as a point in a multi-dimensional psychological space with each input node representing a 

single, continuous psychological dimension. For example, a node may represent perceived 

size, in which case the greater the perceived size of a stimulus, the greater the activation of 

that node. Each node is modulated by an attentional gate whose strength reflects the 

relevance of that dimension for the categorization task. Each hidden node represents an 

exemplar and is activated in proportion to the psychological similarity of the input stimulus 

to the exemplar. Output nodes represent category responses and are activated by summing 

hidden nodes and multiplying by the corresponding weights. 

 The Supervised and Unsupervised Stratified Adaptive Incremental Network 

(SUSTAIN) is a network model of object categorization similar to ALCOVE (Love, Medin, 

and Gureckis 2004). Its input nodes also represent a multidimensional psychological space, 

but they can take continuous and discrete values, including category labels. Like ALCOVE, 

inputs are modulated by an attentional gate. Unlike ALCOVE, which stores all items 

individually in memory in exemplar nodes, the next layer of SUSTAIN consists of a set of 

clusters associated with a category. All of SUSTAIN’s clusters compete to respond, with 

inhibitory connections between each cluster, and the cluster closest to the stimulus in the 

multidimensional space is the winner. The cluster that wins activates the output unit 

predicting the category label. The output leads to a decision procedure that generates a 

category response.  



 

 

4. Weiskopf’s Objections 

 Weiskopf argues that the previous models are able to satisfy the norms of explanation 

but are not mechanistic models. How do these models provide the ability to answer 

counterfactual questions about, and the ability to manipulate and control, the explanandum 

phenomenon? According to Weiskopf, they satisfy explanatory norms “because these models 

depict one aspect of the causal structure of the system” (334). This claim is in tension with 

one reason Weiskopf gives for thinking these models are not mechanistic. He argues, “there 

may be an underlying mechanistic neural system, but this mechanistic structure is not what 

cognitive models capture. They capture a level of functional abstraction that this mechanistic 

structure realizes” (333). But the claim that these models are not mechanistic because they 

depict a level of functional abstraction, not causal structure, conflicts with the claim that 

these models are explanatory because they depict causal structure. This conflict results from 

the general difficulty of specifying how a model can satisfy the norms of explanation without 

being mechanistic. 

One way of trying to reconcile the above claims is to argue that these models are 

explanatory because they depict causal structure, but they are not mechanistic, because the 

causal structure that is depicted is not a mechanism. This is the line Weiskopf takes. Why, 

according to Weiskopf, are these causal structures not mechanisms? He argues that 

If parts [of mechanisms] are allowed to be smeared-out processes or distributed 

system-level properties, the spatial organization of mechanisms becomes much more 

difficult to discern. … Weakening the spatial organization constraint by allowing 



 

 

distributed, nonlocalized parts incurs costs, in the form of greater difficulty in 

locating the boundaries of mechanisms and stating their individuation conditions. 

(334) 

The causal structures depicted by JIM, SUSTAIN, and ALCOVE should not be thought of as 

mechanisms, according to Weiskopf, because these structures are highly distributed. If 

mechanisms are allowed to contain distributed parts, this will make locating them difficult. 

The problem, then, is practical. Weiskopf does not give any reason to think the philosophical 

(rather than practical) problem of mechanism individuation is made more difficult by 

allowing distributed parts. 4 Yet numerous neuroimaging methods, especially model-based 

fMRI, allow cognitive neuroscientists to locate highly distributed neural mechanisms 

corresponding to the internal variables of computational models. Cognitive neuroscientists 

are interested in more than the behavioral accuracy of these models; they are also interested 

in their mechanistic accuracy. That cognitive neuroscientists conduct neuroimaging studies 

using these models shows that they are treated as mechanistic. Next I will present some of 

the neuroimaging studies conducted with JIM and argue that JIM is a mechanism-sketch. 

                                                 

4 Weiskopf (331) also cites the phenomenon of neural reuse as inconsistent with mechanism. 

This assumes that a part of one mechanism cannot be a part of another mechanism but 

Weiskopf has not provided any reason to think this nor to think that the possibility of reuse 

should give rise to any special philosophical (rather than practical) problems of mechanism 

individuation. 



 

 

 JIM was built, not merely to produce the same behavior as human beings in object 

recognition tasks, but to model something that might really be happening in human brains. 

Biederman et al. write, “We have concentrated on modeling primal access: The initial 

activation in a human brain of a basic-level representation of an image from an object 

exemplar, even a novel one, in the absence of any context that might reduce the set of 

possible objects” (Biederman, Cooper, Hummel and Fiser 1993, 176). Accordingly, Irving 

Biederman, one of the co-creators of JIM, and others have conducted various neuroimaging 

studies to investigate the neural underpinnings of the model.  

If JIM is a mechanism-sketch, the systems and processes in the model required for the 

extraction, storage, and comparison of geon structures must to some extent correspond to 

(perhaps distributed) components in the actual object recognition mechanisms in the brain. 

For example, if JIM is a mechanism-sketch, there is an area or a configuration of areas in the 

brain where simple parts and non-accidental properties are represented. In one study 

(Hayworth and Biederman 2006), subjects were shown line drawings that were either local 

feature deleted (LFD), in which every other vertex and line was deleted from each part, 

removing half the contour, or part deleted (PD) in which half of the parts were removed. On 

each experimental run, subjects saw either LFD or PD stimuli presented as a sequential pair 

and had to respond whether or not the exemplars were the same or different. The second 

stimulus was always mirror-reversed with respect to the first. Each run was comprised of an 

equal number of three conditions: Identical, Complementary, and Different Exemplar. In the 

Identical condition, the second stimulus was the same as the first stimulus (mirror-reversed, 



 

 

as all of the second stimuli were). In the Complementary condition, the second stimulus was 

the complement of the first, where an LFD-complement is composed of the deleted contour 

of the first and a PD-complement is composed of the deleted parts of the first. In the 

Different Exemplar condition, the second stimulus is a line-drawing of a different exemplar 

than the first. 

 An fMRI-adaptation design was used, which “relies on the assumption that neural 

adaptation reduces activity when two successive stimuli activate the same subpopulation but 

not when they stimulate different subpopulations” (Krekelberg, Boynton, van Wezel 2006, 

250; see also Kourtzi and Grill-Spector 2005). The results of the study showed adaptation 

between LFD complements and lack of adaptation between PD complements in lateral 

occipital complex, especially the posterior fusiform area, an area known to be involved in 

object recognition. These results imply that this area is “representing the parts of an object, 

rather than local features, templates, or object concepts” (Hayworth and Biederman 2006, 

4029). Biederman has conducted many other fMRI experiments, including some that 

“suggest that LO [lateral occipital cortex] is the locus of the neural correlate for the greater 

detectability for nonaccidental relations” (Kim and Biederman 1824). 

 While these results resolve Weiskopf’s worry about the difficulty of locating 

distributed parts, he has another argument for why JIM is not mechanistic. JIM has properties 

that do not and could not correspond to anything in the brain. Weiskopf (2011, 331) mentions 

JIM’s “Fast Enabling Links” (FELs), which allow the model to bind representations and 

which have infinite propagation speed. According to Weiskopf, FELs are an example of 



 

 

fictionalization, “putting components into a model that are known not to correspond to any 

element of the modeled system, but which serve an essential role in getting the model to 

operate correctly” (Ibid.), and he argues that this undermines the claim that JIM is a 

mechanism-sketch. Weiskopf is right that FELs are an essential fictionalization, but playing 

an essential role in getting a model to operate is not the same as explaining; these parts of the 

model carry no explanatory information and render the model, or at least part of it, how-

possibly (where the possibility involved is not physical possibility, since FELs are physically 

impossible). Right now FELs play the black box role of whatever-it-is-that-accounts-for-

binding. In addition to playing a black box role, they serve practical and epistemic purposes 

like the ones discussed by Bogen (2005), such as suggesting, constraining, and sharpening 

questions about mechanisms. Let me explain how by comparing FELs to Bogen’s example of 

the GHK equations.  

The Goldman, Hodgkin, and Katz (GHK) voltage and current equations are used to 

determine the reversal potential across a cell’s membrane and the current across the 

membrane carried by an ion. These equations rely on the incorrect assumptions that each ion 

channel is homogeneous and that interactions among ions do not influence their rate (Bogen 

409). About the inadequacy of these equations Bogen writes, 

While some generalizations are useful because they deliver empirically acceptable 

quantitative approximations, others are useful because they do not… Investigators 

used these and other GHK equation failures as problems to be solved by finding out 

more about how ion channels work. Fine-grained descriptions of exceptions to the 



 

 

GHK equations and the conditions under which they occur sharpened the problems 

and provided hints about how to approach them. (Bogen 410) 

The GHK equations provide a case of “using incorrect generalizations to articulate and 

develop mechanistic explanations” (Bogen 409). I argue that something similar can be said 

about FELs. Not only do FELs play an essential black box role, FELs suggest new questions 

about mechanisms, new problems to be solved. For example, Hummel and Biederman (1992) 

write, 

[T]he independence of FELs and standard excitatory-inhibitory connections in JIM 

has important computational consequences. Specifically, this independence allows 

JIM to treat the constraints on feature linking (by synchrony) separately from the 

constraints on property inference (by excitation and inhibition). That is, cells can 

phase lock without influencing one another’s level of activity and vice versa. 

Although it remains an open question whether a neuroanatomical analog of FELs will 

be found to exist, we suggest that the distinction between feature linking and property 

inference is likely to remain an important one. (510) 

Like the GHK equations, FELs suggest new lines of investigation, in this case regarding the 

relation between feature linking, property inference, and their neural mechanisms. 

Specifically, FELs suggest questions such as, “Can biological neurons phase lock without 

influencing one another’s activity?” and “Are there other ways biological neurons could 

implement feature linking and property inference independently?”. 



 

 

 In the next section, I will explain model-based fMRI and demonstrate how recent 

model-based fMRI studies show that SUSTAIN and ALCOVE are mechanism-sketches. 

5. Model-Based fMRI 

 Model-based fMRI is a neuroimaging method that aims to discover the neural 

mechanisms that correspond to model variables. Model-based fMRI “can be used as a means 

of discriminating between competing computational models of cognitive and neural function. 

Thus, model-based fMRI provides insight into 'how' a particular cognitive function might be 

implemented in the brain, not only 'where' it is implemented” (O' Doherty, Hampton, and 

Kim 39). In this way, model-based fMRI provides a way of discriminating between 

competing, equally behaviorally confirmed cognitive models (Glascher and O’Doherty 502). 

 Functional magnetic resonance imaging (fMRI) is a neuroimaging method that 

provides an indirect measure of neuronal activity. Neuronal activity requires glucose and 

oxygen for fuel, which the vascular system provides. The oxygen is bound to hemoglobin 

molecules and the magnetic properties of deoxygenated hemoglobin are detectable by fMRI. 

In this way, fMRI measures a physiological indicator of oxygen consumption – 

deoxyhemoglobin concentration – that correlates with changes in neuronal activity (Huettel, 

Song, and McCarthy 159-160). 

 To conduct a model-based fMRI analysis, one starts with a computational model that 

describes the function(s) by which stimuli are transformed to result in behavioral output. 

Stimulus input and behavioral output are observable, but the computational model postulates 

internal variables linking input and output. The neural correlates of these internal variables, at 



 

 

each time point in the experiment, can then be located using regression analyses (O' Doherty, 

Hampton, and Kim 36).  

The variables that change from trial to trial are converted into a time series of the 

model-predicted BOLD (blood-oxygen-level dependent) response and then convolved with a 

canonical hemodynamic response function (Glascher and O’Doherty 505). This just means 

that the predicted variable values, taken over time, are mathematically combined with a 

stereotypical BOLD signal function. This is done to account for the usual lag in the 

hemodynamic response (O' Doherty, Hampton, and Kim 37). This yields a new function that, 

when put into a general linear model, can be regressed against fMRI data. General linear 

models have the following form:  

y = B0 + B1 x1 + B2 x2 + … + Bn xn + e 

where y is the observed data, the xi are regressors (the model-predicted time series), the Bi are 

variable weights (B0 represents the contribution of factors held constant throughout the 

experiment), and e is residual noise in the data (Huettel, Song, and McCarthy 343). This 

allows researchers to identify brain areas where the model-predicted time series significantly 

correlates with the observed BOLD signal changes over time. 

 I should make clear that model-based fMRI has limitations and does not obviate the 

need for other neuroimaging methods (e.g., PET, EEG, or MEG). Like fMRI in general, 

model-based fMRI can only establish correlations between neural activity and behavior. In 

order to establish causal claims about neural activity and behavior, the same methods need to 

be used that were used before the introduction of model-based fMRI, such as lesioning and 



 

 

transcranial magnetic stimulation (TMS) (O' Doherty, Hampton, and Kim 50). Like fMRI in 

general, model-based fMRI also has poor spatiotemporal resolution. This means that small 

computational signals such as those at the level of the single neuron will go undetected by 

model-based fMRI. For these reasons, a model-based approach to other neuroimaging 

methods is needed (Ibid.) 

Now that we have a basic understanding of how model-based fMRI works and what it 

can accomplish, let me return to SUSTAIN and ALCOVE and show how they are 

mechanism-sketches by drawing on recent model-based fMRI research.  

Both models were investigated in a model-based fMRI study in which participants 

completed a rule-plus-exception category learning task (Davis, Love, and Preston 2012). 

During the task, a schematic beetle was presented and subjects were asked to classify it as 

“Hole A” or “Hole B,” after which they received feedback. The beetles varied on four of the 

following five attributes, with the fifth held constant: eyes (green or red), tail (oval or 

triangular), legs (thin or thick), antennae (spindly or fuzzy), and fangs (pointy or round). Six 

of the eight beetles presented could be correctly categorized on the basis of a single attribute. 

For example, three out of four Hole A beetles might have thick legs and three out of four 

Hole B beetles could have thin legs. The other beetles were exceptions to the rule, having 

legs that appeared to match the other category.  

 Two predictions from SUSTAIN and ALCOVE were tested. First, during stimulus 

presentation SUSTAIN predicts a recognition advantage for exceptions but ALCOVE 

predicts no recognition advantage. This is called the recognition strength measure. This 



 

 

difference in recognition strength measure predictions arises because in ALCOVE, but not in 

SUSTAIN, all items are stored individually in memory regardless of whether they are 

exceptions or rule-following items. Second, when subjects are given feedback, both 

SUSTAIN and ALCOVE predict that exceptions should lead to greater prediction error. This 

is called the error correction measure (Ibid., 263-4).  

 The results showed that the recognition strength measures and error correction 

measures predicted by SUSTAIN found correlations in MTL regions including bilateral 

hippocampus, parahippocampal cortex, and perirhinal cortex, and regions in bilateral 

hippocampus and perirhinal cortex, respectively. ALCOVE's predicted recognition strength 

measures did not find correlations in MTL, although its error correction predictions found 

correlations in MTL similar to SUSTAIN's (Ibid., 266-7). These results “suggest that, like 

SUSTAIN, the MTL contributes to category learning by forming specialized category 

representations appropriate for the learning context” (Davis, Love, and Preston 269). 

Furthermore, these correspondences to brain areas open a whole new range of opportunities 

for manipulation and provide answers to counterfactual questions that were not available 

before, thereby increasing the explanatory power of these models. 

  SUSTAIN and ALCOVE are mechanism-sketches. SUSTAIN is more how-actually 

than ALCOVE because both of SUSTAIN’s prediction measures (recognition strength and 

error correction) were significantly correlated to areas of brain activation, whereas only one 

of ALCOVE’s (error correction) was correlated. SUSTAIN, therefore, has more evidential 

support than ALCOVE. These results also show that cognitive neuroscientists are currently 



 

 

advancing the ability to map the entities and activities in psychological models to distributed 

neural systems, such as MTL regions spanning bilateral hippocampus, parahippocampal 

cortex, and perirhinal cortex.  

Davis, Love, and Preston (2012) are at times quite explicit about the mechanistic 

nature of the models they are investigating, although they do not use the term “mechanistic.” 

For instance, they write, “We use a model-based functional magnetic resonance imaging 

(fMRI) approach to test the proposed mapping between MTL function and SUSTAIN’s 

representational properties” (261) and “The theory we forward relating SUSTAIN to the 

MTL…goes beyond the model’s equations by tying model operations to brain regions” (270). 

Given their emphasis on mapping models to the brain, it is clear that they intend the models 

to be mechanistic. They are interested in more than the behavioral accuracy of these models. 

SUSTAIN and ALCOVE are already behaviorally well-confirmed, but model-based fMRI 

allowed Davis et al. to test their mechanistic accuracy. 

6. Conclusion 

 Weiskopf (2011) presented three models of object recognition and categorization, 

JIM, ALCOVE, and SUSTAIN, that he claimed were non-mechanistic, yet explanatory. He 

argued that they were not mechanistic because their parts could not be neatly localized and 

they contained some components, such as Fast Enabling Links (FELs), which could not 

correspond to anything in the brain but are nevertheless essential for the proper working of 

the model. I argued on the contrary that these models are mechanism-sketches. In addition to 



 

 

playing a black box role, FELs possess non-explanatory virtues such as suggesting new lines 

of investigation about feature linking and property inference.  

My argument for the claim that SUSTAIN and ALCOVE are mechanism-sketches 

relied on model-based fMRI research. Model-based fMRI and other model-based 

neuroimaging approaches are beginning to allow cognitive neuroscientists to map 

psychological models onto the brain. Cognitive neuroscientists can then discriminate 

between equally behaviorally confirmed psychological models. The development of these 

model-based approaches has broader implications, beyond the narrow dispute over JIM, 

SUSTAIN, and ALCOVE, for the debate over the explanatory and mechanistic status of 

psychological models. As cognitive neuroscientists continue to test psychological models 

against neuroimaging data using model-based techniques, they will retain those models that 

find correspondences in the brain and reject those that do not, and in so doing reveal that 

explanatory progress in cognitive neuroscience consists in the development of increasingly 

mechanistic models. 
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