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Abstract 

I examine the adequacy of the causal graph-structural equations approach to causation for 

modeling biological mechanisms. I focus in particular on mechanisms with complex 

dynamics such as the PER biological clock mechanism in Drosophila. I show that a 

quantitative model of this mechanism that uses coupled differential equations – the well-

known Goldbeter model – cannot be adequately represented in the standard 

(interventionist) causal graph framework, even though this framework does permit causal 

cycles. The reason is that the model contains dynamical information about the mechanism 

that concerns causal properties but that does not correspond to variables that could be 

subject to independent interventions. Thus, a representation of the mechanisms as a causal 

structural model necessarily suppresses causally relevant information.  
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1. Introduction 

Recent decades have seen the advent of elaborate formal techniques for causal modeling 

(Spirtes, Glymour, and Scheines 2000; Pearl 2000). These techniques, which essentially 

link causality to manipulability, have been instrumental in taking philosophical debate 

about causation as well as about scientific explanation to a new level (e.g., Woodward 

2003, 2011; Woodward and Hitchcock 2003; Hitchcock and Woodward 2003; McKay 

Illari, Russo and Williamson 2011). Furthermore, this formal approach to causality has 

been productively applied in order to analyze causation in specific scientific disciplines. 

Originally developed mainly in the context of econometrics, it was recently also applied to 

various other sciences, e.g., neuroscience (Craver 2007, Weber 2008), genetics (Waters 

2007; Woodward 2010), evolutionary theory (Otsuka forthcoming), psychiatry (Woodward 

2008), or public health policy (Russo 2012), to name just a few.  

The basic tools of this approach are the formally definable concepts of directed 

acyclic graph (DAG), Bayesian network, and structural equation. In the standard approach, 

the causal interpretation of these formal concepts is provided by means of the concept of 

idealized intervention. The result are causal models that contain information about 

counterfactual dependencies between a set of variables as well as, in some cases, 

probability distributions defined over these variables. 

While the fruitfulness of this approach to causal modeling in scientific practice as 

well as for philosophical analysis is beyond doubt, there have not been many attempts to 

explore its limits in adequately representing causal systems. There has, of course, been 
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quite some debate concerning the question of whether a certain conception of mechanism 

is adequate for explaining biological phenomena (e.g., Bechtel 2005, 2013; Bechtel and 

Abrahamsen 2010; Braillard 2010; Kuhlmann 2011; Waskan, 2011; Weber 2012; Dupré 

2013; Woodward 2013). This debate focused on the issue of whether the standard 

conceptions of mechanism can account for biological processes that feature complex 

dynamical behavior and/or spatial structures. However, none of this work has directly 

challenged the underlying interventionist theory of causation itself. In fact, there is a whole 

range of more recent studies that attempt to show that Bayesian networks are actually 

adequate for modeling complex biological mechanisms (Casini et al. 2011; Clarke, 

Leuridan and Williamson 2014; Gebharter 2014; Gebharter and Kaiser 2014; Gebharter 

and Schurz, this symposium; Casini and Williamson, this symposium).  

In part, this problem turns on the question of how narrowly the term “mechanism” 

should be understood (Woodward 2013). In this paper, I will not be concerned with this 

issue. Rather, I want to examine to what extent the contemporary interventionist approach 

to causality is apt for representing the causal properties of a certain kind of mechanism in 

the first place. 

A critical issue will be the extent in which causal models that basically contain 

causal difference-making information can account for the dynamics and for spatial features 

of mechanisms, as such features are absolutely crucial for the explanatory force of many 

mechanisms, in biology and elsewhere. Woodward (2013) has argued that spatio-temporal 

information can always be integrated with the causal difference-making information 
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contained in causal models. While this may be true in some sense, I will show that it 

glosses over a basic problem pertaining to the dynamics of certain kinds of causal system. 

I will closely examine an example from biology that involves a mechanistic model 

consisting of a system of coupled differential equations with complex dynamics. This 

model describes the operation of a biological clock. I will assume without further argument 

that this model captures the essential causal properties of the biological clock mechanism, 

at least with respect to certain explanatory goals.1 Then, I will show that formal causal 

models fail to correctly represent these causal properties. Specifically, I will argue that 

such a model will not be able to treat time derivatives as causally relevant variables. 

I shall proceed as follows. In Section 2, I shall briefly review the core notions used 

in the causal modeling literature, in particular the notions of causal graph, structural 

equations, and ideal intervention. In Section 3, I analyze a dynamical model of a biological 

clock mechanism and show that it has no adequate causal graph representation. In Section 

4, I consider some attempts from the current causal modeling literature to represent 

differential equations in structural causal models. I show that the results coming from these 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 I am not assuming that there is just one correct way of representing a causal system. 

Thus, I accept the pluralist thesis according to which there is always a variety of different 

perspectives on the world none of which succeeds in providing a complete picture (Kellert, 

Longino and Waters 2006; Dupré 2013). In fact, I suggest that my arguments presented 

here could be used for actually defending such a strong form of scientific pluralism, but 

this would go beyond the scope of this paper.  
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attempts actually support my thesis. Section 5 summarizes and integrates my conclusions 

with regard to the limitations of causal modeling. 

 

2. Causal Modeling 

The formal concepts used in causal modeling include directed acyclic graphs (DAGs), 

structural equations and Bayesian Networks. In this paper, I shall focus on DAGs and 

structural equations and leave Bayesian networks aside, but it should be noted that any 

problem concerning DAGs will also affect causally interpreted structural equations as well 

as Bayesian networks because the latter two kinds of causal models contain DAGs.2  

A DAG is an ordered pair 〈V, E〉, where V is the set of variables and E is a set of 

directed edges. 

 

A DAG becomes a causal graph as soon as its edges are interpreted causally, about which I 

will say a little more below.  

Causal dependencies can also be represented by using so-called structural models 

(Pearl 2000). Such a model consists of an ordered triple 〈U, V, Q〉 where U is a set of 

exogenous variables, V a set of endogenous variables, and Q a set of structural equations. 

The structural equations give the value of each endogenous variable as a function of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 I wish to thank Lorenzo Casini for pointing this out to me. 
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values of other variables in U and V. The variables may also be interpreted as nodes that 

are connected by causal arrows. But in contrast to pure causal graphs, the structural 

equations also provide quantitative information as to how much some dependent variables 

change per unit change of the independent variable.  

Pearl (2000, p. 160) gives the following “operational” definition of a structural 

equation: 

An equation y = βx + ε is said to be structural if it is to be interpreted as follows: In 

an ideal experiment where we control X to x and any other set Z of variables (not 

containing X or Y) to z, the value y of Y is given by βx + ε, where ε is not a 

function of the settings x and z. 

 

According to this definition, it is obvious that structural equations sensu Pearl are linear 

equations in the sense of not containing derivatives of the variables. As we shall see, this 

feature constitutes a major limitation when it comes to modeling systems with complex 

dynamics. 

 Pearl’s definition of a structural equation contains the idea of an “ideal 

experiment”. This notion has been elaborated in great detail by Woodward (2003, 94-99), 

who defines it in terms of the notion of ideal intervention. On this account, an (ideal) 

intervention on some variable X with respect to some variable Y changes Y by changing X 

without changing any other variable that is a cause of Y. 

In a nutshell, these are the basic concepts of causal modeling. Thus, when I speak 

about a “causal model” in what follows, I mean a model that is expressed by using either 

causal graphs or structural equations and that uses an interventionist criterion for 
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interpreting the graphs and equations causally. The goal of this paper (as well as the paper 

by Kaiser, this symposium) is to show that these concepts fail to fully account for certain 

causal explanations in biology.  

In the following section, I show what problems are created for causal models by 

complex dynamical information. Kaiser (this symposium) does the same for spatially 

complex mechanisms. Thus, while Kaiser’s paper is about space, this one is about time. 

 

3. It’s About Time: Modeling Dynamic Processes 

3.1. Classic Examples of Dynamic Models in Biology 

There is an important class of biological models that try to account for complex series of 

events in dynamical terms. A classic example is the Hodgkin-Huxley model of the action 

potential (see, e.g., Weber 2005, 2008). This model (henceforth HH model) shows how 

changes in membrane conductance generate a temporary membrane depolarization that can 

spread along an axonal membrane and thus form the basis of information processing by 

neurons. A more recent example is Goldbeter’s (1995) model of the circadian oscillations 

of the PER protein in Drosophila, which is the heart of a biological clock mechanism. 

There are many more such models, but for the purposes of this paper we shall concentrate 

on these two.  

 

3.2. Bechtel and Abrahamsen on Dynamic Mechanistic Explanation 

In a recent series of papers, Bill Bechtel and Adele Abrahamsen have provided a very 

illuminating account of models and mechanisms in circadian clock research, including 
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Goldbeter’s model and the PER mechanism (Bechtel and Abrahamsen 2010, Bechtel 

2013). Their account will prove to be useful for our analysis, which is why it will be 

briefly reviewed here. We take the gist of their account to be that circadian clock models 

provide what they call dynamic mechanistic explanations. According to Bechtel and 

Abrahamsen, such explanations differ from other kinds of mechanistic explanations in 

providing quantitative information about the behavior of the systems in question. Dynamic 

mechanistic explanations (may) contain sequential mechanistic models that describe a 

series of events in purely qualitative terms. Figure 1 shows such a sequential mechanistic 

model.  

 

Figure 1. The sequential mechanism of the Drosophila circadian clock gene period. After 

Hardin et al. (1990). 

 

An interesting feature of this sequential model according to Bechtel and Abrahamsen is the 

fact that it is possible to mentally rehearse the individual steps as well as their temporal 

arrangement.  

Bechtel and Abrahamsen: Complex Biological Mechanisms p. 17 

could suppress per transcription since PER molecules lack the necessary region for binding to 
DNA.  

 
Figure 6. Hardin, Hall, and Rosbash’s (1990) mechanism for circadian oscillations in 
Drosophila. Expression of the gene per (transcription, transport and translation) produces 
the protein, PER, which is transported back into the nucleus. There PER inhibits further 
transcription of per. As this nuclear PER breaks down, per is released from inhibition and 
a new turn of the cycle begins.  
 

Given the complexity of the interactions, mathematical modeling is needed to determine whether 
such a mechanism is actually capable of generating oscillations. Already in the 1960s, just as 
oscillatory phenomena were being discovered in living systems, Brian Goodwin (1965) offered 
an initial proposal. Inspired by the operon gene control mechanism proposed by Jacob and 
Monod (1961), he developed a system of equations that characterized a generalized version of 
that mechanism (Figure 7). Here two kinds of proteins collaborate to inhibit gene expression: (1) 
an enzyme, and (2) the product of a reaction catalyzed by that enzyme, which as a repressor 
molecule directly inhibits gene expression. The critical parameter for determining whether 
oscillations occur is n (also known as the Hill coefficient), which specifies the minimum number 
of interacting molecules needed to inhibit expression of the gene. Carrying out simulations on an 
analogue computer, Goodwin concluded that oscillations would arise with n equal to two or 
three. But subsequent simulations by Griffith (1968) determined that oscillations occurred only 
with n > 9, a condition that was deemed biologically unrealistic. However, if nonlinearities were 
introduced elsewhere (e.g., in the subtracted terms representing the removal of the various 
substrates from the system), it was possible to obtain oscillations with more realistic values of n. 
Accordingly, Goldbetter (1995b) developed his own initial model of the Drosophila circadian 
oscillator by modifying the Goodwin oscillator. By capturing the operations in the circadian 
mechanism shown in Figure 6 in a system of differential equations adapted from those in Figure 
7, he achieved a 24-hour oscillation in concentrations of per mRNA and PER. Plotting these 
against each other over multiple cycles and conditions revealed a limit cycle (i.e., the two 
periodic oscillations with their particular phase offset acted as an attractor).  
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But the most important claim made by Bechtel and Abrahamsen for our purposes is 

the following: The qualitative sequential model as shown in Figure 1 is incomplete. For 

what the model must show is that the circadian system is capable of generating stable 

oscillations. This is where the dynamical, quantitative model constructed by (Goldbeter 

1995) comes in. The model describes the change in cytoplasmic concentrations of PER 

mRNA (M) as well as the different phosphorylation states of cytoplasmic (P0, P1, P2) as 

well as nuclear (PN) PER protein with the help of differential equations. The model uses 

standard Michaelis-Menten enzyme kinetics where the Vi are maximal reaction rates and 

the Ki the so-called Michaelis constants for the different biochemical reactions involved 

(the Michaelis constant gives the substrate concentration at which the reaction rate is half 

the maximal rate). 

The structure of the dynamical model can be extracted from Figure 5. 

 

Figure 2. The structure of Goldbeter's dynamical model (after Goldbeter 1995). The 

concentration of per mRNA is represented by M, that of different forms of the PER protein 

by Pi. P0 is the unphosphorylated, P1 the monophosphorylated and P2 the biphosphorylated 

form. PN is for the nuclear PER protein, all the other concentrations are cytosolic. vs is the 
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maximal rate of mRNA synthesis, vm and Km are the maximum rate and Michaelis constant 

for the enzymatic degradation reaction of the mRNA. The Vi and Ki give the maximum 

rates and Michaelis constants for the kinases and phosphatases catalyzing reversible 

phosphorylation reactions. vd and Kd are the enzymatic parameters for the degradation 

reaction of fully phosphorylated PER. k1 is a rate constant for the transport of PER protein 

into the cell nucleus, k2 for the reverse transport. Feedback inhibition of per mRNA by 

nuclear PER is modeled by a Hill equation with a cooperativity of n and a repression 

threshold constant KI.  

 
Goldbeter wrote down the reaction rates for the different molecular species as follows: 
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Using numerical integration techniques, Goldbeter was able to show that for some 

parameter values there is indeed a limit cycle, in other words, a stable oscillation of the 

concentrations of mRNA and PER protein.  

Bechtel and Abrahamsen stress that without this quantitative model, the sequential 

model provides no explanation for the stability of the circadian behavior. Without 

introducing quantitative parameters, the sequential model could produce all kinds of 

behavior, only some of which generate a limit cycle. Thus, the dynamical model must 

complement the sequential model to obtain the full explanation. 

I will argue now that at best the sequential model sensu Bechtel and Abrahamsen 

can be represented as a causal model. The dynamical model cannot be so represented, even 

though it clearly represents a causal process (in an idealized and simplified way). Thus, I 

shall argue that the Goldbeter model is a case of a biological explanation that cannot be 

accounted for by causal graph models. 

 

3.3 The Sequential Model as a Structural Causal Model 

I shall first attempt to represent what Bechtel and Abrahamsen call the sequential model 

within this causal framework. There is an apparent difficulty in that the sequential model is 

cyclical whereas causal graphs are acyclical. However, this problem is not new and 

solutions have been proposed by several authors (Kistler 2013; Gebharter and Kaiser 2014; 

Clarke, Leuridan and Williamson 2014). Briefly, one way of doing this is by introducing a 

time index on some of the nodes of the causal graph structures. When a system comes to 

the end of a cycle, time has passed. This new state of the system should thus be represented 
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by a different node, a variable that represents the state of the system at a later time. This 

way, the cyclical path is broken up and “rolled out” in time and presents no problems for 

the causal modeler. 

 However, it should be clear that such a causal graph fails to fully explain the 

explanandum phenomenon, because essential dynamical information is missing. The graph 

would merely represent what Bechtel and Abrahamsen refer to as the sequential model. In 

the next section, I shall examine how the dynamical model could be represented. 

 

3.4 The Dynamical Model as A Structural Causal Model 

Could the same strategy that works for the sequential model also be used for representing 

Goldbeter’s dynamical model by using causal graphs? It could be suggested that the causal 

structure of the model is captured by the following time-indexed causal graph: 

 

 

 



	  
	  

13 

 

 

Figure 3. Proposed time-indexed DAG representing the causal dependencies in the 

Goldbeter model. 

 

It could be argued, perhaps, that this DAG contains all the causal relations posited by the 

Goldbeter model. A quantitative structural model could also be constructed, for example 

by writing down rules for updating the values of the salient variables from each discrete 

time point to the next.  

 However, it should be clear that such a causal structural model would not be the 

same as the Goldbeter model. Differential equations with continuous time are 



	  
	  

14 

mathematically clearly different from a model with discrete time points.3 Perhaps there is a 

discrete-time model that makes approximately the same prediction as Goldbeter’s model. 

In fact, numerical simulations of the equation system use pretty much this strategy. 

However, the following difficulty arises: In order to really explain the explanandum 

phenomenon, a model must incorporate temporal information, namely information about 

how rates of change affect the behavior of the system. Goldbeter’s differential equations 

contain precisely such information, and this information is crucial for the model’s 

explanatory force. In fact, I wish to maintain that rates of change are causally relevant, 

because they are important determinants for the behavior of the whole causal process. 

Thus, I will show now that the Goldbeter model contains causally relevant variables that 

cannot be represented in the causal graph framework. Furthermore, to the extent that the 

model is substituted by a discrete-time model that is (approximately) predictively 

equivalent, the same difficulty arises. 

 My main argument is that Goldbeter equations do not have the right manipulability 

properties that are required by structural causal models. I will show, first, that not all causal 

variables can be subject to ideal interventions as required by the causal graph theory. 

Second, I want to show that the equations do not satisfy the modularity requirement that is 

widely thought to be important in causal models. 

First, to see the problem with ideal interventions, consider for example equation 

(1a) of the Goldbeter model. Suppose we wished to intervene on M, the mRNA 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 It is known that difference equations can have quite surprising properties, see May 

(1974). 
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concentration. This obviously cannot be done in a way that leaves the time derivative 

dM/dt unchanged (if I want to go faster on my bike, thus changing the value of v, I have to 

accelerate and thus change the value of dv/dt). The same problem occurs for all the other 

causally relevant variables in the model. Note also that a discrete model faces the exact 

same difficulty; the only difference is that the rates of change are defined over a time 

interval instead of a time point. Thus, these equations cannot be subject to the idealized 

interventions that define causal relations according to causal modelers.   

Second, to see the failure of modularity, consider for example equations (1b) and 

(1c). Let us examine what happens when we replace (1b) by the following equation (1b*): 

dP0/dt = p0, where p0 is some real number. This would not only wipe out the r.h.s. of (1b), 

it would also affect the equations that determine the value of P0. The reason is, once again, 

that dP0/dt and P0 cannot be manipulated independently of each other. The same problem 

occurs for the other M- and P-variables. Therefore, the system of equations fails to satisfy 

the condition of modularity sensu Woodward (2003, 48-49, 327-39), which can also be 

viewed as a kind of manipulability.4  

What features of the Goldbeter model are responsible for this lack of 

manipulability, including modularity? It seems to us that the main such feature is the fact 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 The purpose of the modularity condition is normally to ensure that different equations 

represent different causal pathways or mechanisms. Perhaps it could be argued that, 

indeed, some causal mechanisms in the Goldbeter model overlap. For instance, there is a 

causal cycle between M and P0 as well as between P0 and P1 and these causal cycles share 

P0 as a common constituent (cf. Casini and Williamson unpublished). 
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that some causal variables that occur in the model affect their own rate of change, and that 

for these variables their rate of change is of crucial relevance – indeed causal relevance – 

for the behavior of the whole system. For example, the rate of change of mRNA (M) 

depends on its own concentration. This is due to a causal process that is mediated by 

RNA-degrading enzymes. Furthermore, the concentration of monophosphorylated protein 

P1 depends causally on the concentration of unphosphorylated protein P0, which in turn 

depends on P1. Both causal dependencies are mediated by kinases, thus they are causal 

processes.5  

In Goldbeter’s representation of these processes, not only the values of the 

variables at a given time point but also their rates of change are causally relevant. In other 

words, it matters not only that a variable X change its value from x1 to x2, which is the kind 

of information that can be encoded in causal graphs. It matters also how long it takes for a 

variable to change by some amount, including an infinitesimally small amount. This rate of 

change is a causally relevant property, but this causal relevance cannot be represented as a 

causal dependence in the causal framework because the rate of change cannot be 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 An anonymous referee suggested that these dependencies are not causal but constitutive 

or due to part-whole relations. While there might be some part-whole relations involved in 

the model (e.g., in the way in which different processes contribute to the overall rate of 

change of a variable), the dependencies we are talking about here, e.g., the dependence of 

the rate of change of M on the concentration M (equation 1a) are not of this kind. This 

dependence is due to an enzyme-directed biochemical reaction, which is clearly a causal 

processes. 
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manipulated independently of all the other variables and equation as the standard causal 

theory requires it (see above; lack of independent manipulability and modularity). Rather, 

in these causal processes, concentrations and their rates of change are so intimately 

intertwined and integrated (cf. Mitchell 2009) that it is not possible to disentangle causal 

difference-making and dynamical information.   

Why can the differential equations in the Goldbeter model not be replaced by 

something more akin to the causal modeler's structural equations, e.g., difference equations 

with a discrete time variable? As I have argued, it seems the same difficulty would arise: as 

soon as the concentration variables and the time intervals are fixed, the rates of change are 

determined and therefore no longer independent.6 Furthermore, replacing the differential 

equations by standard structural equations would be like trying to do Newtonian mechanics 

without using calculus; what would be the point? 

A possible response by the causal modeler might be to deny that the differential 

equations are even contenders for representing causal dependencies. Differential equations 

contain functions of time and their derivatives and need to be integrated in order to predict 

or explain physical events. Surely, when we want to discuss the causal content of models 

such as Goldbeter’s we have to consider suitably integrated forms of equations.  

The problem with this reply is that systems of differential equations such as 

Goldbeter’s or HH can only be integrated numerically. The solutions of these equations 

that are available, showing the concentrations of various molecular species, have been 

obtained with the help of computer simulations. In these solutions, whatever causal 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 This was pointed out to me by an anonymous referee. 
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difference-making information was represented in the differential equations (if any) is 

irretrievably lost. However, these simulations provide a different kind of information: They 

show under which parameter values certain kinds of behavior are stable. In the case of the 

Goldbeter model, the behavior that is of particular importance, for obvious reasons, is 

stable oscillatory behavior. It can be represented by a limit cycle in a plane defined by 

mRNA and total PER protein concentrations. The limit cycle gives the initial conditions 

for M and Pt (= total PER protein concentration) that generate a stable oscillation, which 

functions as the basic Zeitgeber for Drosophila’s biological clock. I would not refer to this 

kind of information as causal difference-making information but as stability information.  

Perhaps it could be argued that the integrated model provides some kind of causal 

difference-making information as well. In his original 1995 paper, Goldbeter showed that 

the rate of PER protein degradation has a strong effect on the period of the oscillations. 

The more rapidly the protein is degraded in the cell, the longer the period of the 

oscillations become. The reason is intuitively clear: The more rapidly the protein 

disappears, the longer it takes for protein synthesis to rise the concentration above the 

threshold where the repression of transcription by nuclear PER protein significantly slows 

down gene expression such that the concentration of PER starts to drop after a period of 

increase. However, as intuitively obvious as this may be, the exact effect of the rate of 

decay on the period of the oscillations can only be predicted by such a dynamical model, 

which, as I have shown, contains causal information that is highly integrated with 

temporal, dynamical information and thus not representable by standard causal models, 

because the independent manipulability and modularity requirements are not satisfied.  
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In the following section, I will consider some results from the causal modeling 

literature as to how systems of differential equations can be represented by structural 

causal models. As I will show, these results, while it is highly illuminating for the problem 

at hand, actually support my thesis about the limitations of causal modeling. 

 

4. Differential Equations and Causal Structural Models 

Attempts to describe at least the equilibrium states of systems of differential equations with 

structural causal models can be found in the causation literature, for example, Mooij, 

Janzing and Schölkopf (2013); henceforth abbreviated as “MJS”.7 MJS treat systems of 

ordinary first-order differential equations such as they feature in many scientific models, 

e.g., the Lotka-Volterra model of predator-prey dynamics or the coupled harmonic 

oscillator in mechanics. The systems described by such equations may be considered to 

contain causal cycles. For instance, in a predator-prey system the density of predators 

affects the density of prey, which causally feeds back to the predator density. This is the 

kind of causal cycle that we also find in our biological clock case examined in the previous 

section. Even though causal graphs (DAGs) are typically acyclic, this is not a constraint 

that would somehow be necessitated by the formalism. I have already mentioned possible 

approaches to modeling causal cycles in Section. MJS take a somewhat different approach: 

They show that the equilibrium solutions of systems of coupled differential equations that 

describe systems with some causal feed-back correspond to a structural causal model.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 I wish to thank an anonymous referee for calling this work to my attention. 
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 It is not possible here to reproduce the full treatment given by MJS. Basically, they 

consider dynamical systems represented by systems of coupled differential equations of the 

following form: 

 

𝑋!(𝑡) = 𝑓! 𝑋!"𝒟 ! , 𝑋! 0 = (𝐗!)! ∀𝑖 ∈ ℐ 

 

where the indices 𝑝𝑎𝒟(i) range over the set of parents of the variable Xi, each fi is a smooth 

function of X, and each (X0)i is an initial condition. Then, they provide an account of what 

it means to intervene on such a system, as intervention is part of the standard semantics of 

causal models. In a nutshell, an idealized intervention can be described as: 

 

𝑋!(𝑡) =
0, 𝑖 ∈ 𝐼

𝑓! 𝑋!"𝒟 ! , 𝑖 ∈ ℐ ∖ 𝐼 

𝑋! 0 =
𝜉! , 𝑖 ∈ 𝐼
𝑋!! , 𝑖 ∈ ℐ ∖ 𝐼 

 

In such an intervention, some set of components I of the system are forced to take some 

target value, such that the first time derivative of the variable Xi takes the value zero (i.e., X 

remains constant), while the variable takes some fixed target value ξi.8 Thus, whatever 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 Note how this intervention must fix the values for both the variables and their rate of 

change at the same time (cf. Section 3.4). This is exactly how the structural causal model 

obliterates information that is explanatorily relevant. 
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mechanism previously determined the value of the Xi, the intervention exogenously breaks 

this mechanism and sets the variables to a fixed value. This corresponds to the well-known 

breaking of directed edges by intervention variables in ordinary causal graphs.  

 What is interesting to note in the present context is that, according to the definition 

of an idealized intervention given by MJS, such an intervention changes not just one but 

two equations. This shows, once again, that such a system of equations is not modular in 

the sense discussed in the previous section. (It might be modular in the sense that it doesn’t 

change any further equations, though).   

 The idealized interventions obviously change the equilibrium states of the system. 

For example, a Lotka-Volterra system has a steady state in which the predator and prey 

populations show an undamped oscillation. If intervened upon in the manner shown above, 

such a system changes its equilibrium state. If, for example, the intervention sets the 

predator density in a Lotka-Volterra system to ξ2, the system’s new unique stable 

equilibrium state is (Xeq
1, Xeq

2)=(0, ξ2). In general, equilibrium states of systems of 

intervened differential equations can always be obtained by setting the rates of change of 

the variables to zero by an intervention. The resulting equilibrium is then described by 

some equilibrium equations. 

 Just as in ordinary causal graph representations, nodes and directed edges can be 

used to represent the outcome of possible interventions on the variables figuring in systems 

of differential equations. In the cases such as the ones considered here, there will be a set 

of equilibrium equations for each possible intervention of the kind introduced above. MJS 

show how such equilibrium equations can be derived in general, and that they form causal 
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structural models in accordance with the causal framework assumed. Thus, it seems that 

the causal graph framework with its standard interventionist semantics is able to deal with 

systems of differential equations. MJS suggest that this approach “sheds more light on the 

concept of causality as expressed within the framework of Structural Causal Models, 

especially for cyclic models.” 

 I wish to draw a different conclusion from MJS’s highly illuminating treatment. In 

my view, their approach to dynamical systems described by differential equations reveals 

precisely the limitations to the causal graph framework that I wish to expose in this paper. 

For it is clear that such an approach can only deal with stable equilibrium states of a 

system, i.e., such equilibrium states where there is no more change. This is a simple 

consequence from the kind of interventions introduced, where the first derivatives with 

respect to time of the variables considered are set to zero. Thus, the structural causal 

models represent static situations rather than dynamic processes. For some intents and 

purposes, this may be fine. But if it is accepted that the dynamical models examined here 

are representations of the causal properties of a system and that the rates by which 

variables change is such a property, this kind of causal property does not seem to be 

captured by ordinary causal structural models. 

 I wish to end this argument by disenabling a potential misinterpretation. My thesis 

of this paper should not be understood as a claim about causal discovery. None of the 

considerations presented here support the conclusion that a causal search procedure of the 

kind developed by Spirtes, Glymour and Scheines (2000) would be unable to identify all 
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the variables that values of which affect the behavior of the system.9 I am only claiming 

that the entities referred to by these variables have causal properties – in particular the rate 

of change – that cannot be given a causal interpretation by using the standard formalisms. 

  

6. Conclusions 

My intention in this paper has not been to argue that there exist forms of explanations in 

biology that are not causal. There clearly is a sense in which DNA sequence recognition by 

proteins (Kaiser, this symposium) as well as the biological clock mechanisms discussed 

here are causal processes. What I as well as Kaiser (this symposium) want to show is that 

these biological explanations contain causal information that is not reducible to causal 

difference-making information of the kind that can be expressed in the formal causal 

models available today. Biological explanations often contain causal information that is 

inextricably intertwined with, first, spatial information and, second, dynamical 

information. The spatio-temporal aspects represented in these explanations are not such 

that they could simply be integrated with the causal difference-making information to give 

the full picture. At least in the case of the dynamical information contained in systems of 

differential equations, there appears to be a deep incompatibility between the axioms of 

causation and the dynamical model. Just as the circadian clock mechanism cannot be 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 For an illuminating discussion of this important issue in the context of systems of 

differential equations see Dash (2005). It should be noted that, just like in the Mooij, 

Janzing and Schölkopf (2013), time derivatives of variables are never treated as 

independent causes. 



	  
	  

24 

understood by looking at the level of individual molecules, complex spatially organized 

cohesive interactions in DNA-protein complexes (see Kaiser, this symposium) cannot in 

practice be expressed by causal graphs in a way that brings out the explanatory power and 

utility of these models.  

 My conclusion with respect to dynamical mechanistic models differs thus 

somewhat from Bechtel’s and Abrahamsen’s illuminating analysis: What they call the 

sequential and dynamical mechanisms, respectively, represent not two models that 

complement each other. Rather, in my view they represent incompatible perspectives on 

the same phenomenon of the kind that scientific pluralists have postulated (Kellert, 

Longino and Waters 2006). 

Thus, rather than just the need of supplementing causal graphs with spatio-temporal 

labels such as to fine-tune them, a close examination of biological explanations rather 

reveals some intrinsic limitations of a certain type of causal model. Perhaps a new theory 

of causation is needed in order to do (more) justice to such explanations, in biology as well 

as in other sciences that deal with complex dynamical processes. 

 

References 

Bechtel, William (2005), Discovering Cell Mechanisms: The Creation of Modern Cell 

Biology. Cambridge: Cambridge University Press. 

Bechtel, William (2013), "From Molecules to Networks: Adoption of Systems Approaches 

in Circadian Rhythm Research", in Hanne Andersen, Dennis Dieks, Wenceslao J. 



	  
	  

25 

Gonzalez, Thomas Uebel and Gregory Wheeler (eds.), New Challenges to 

Philosophy of Science, Berlin: Springer. 

Bechtel, William, and Adele Abrahamsen (2010), "Dynamic Mechanistic Explanation: 

Computational Modeling of Circadian Rhythms as an Exemplar for Cognitive 

Science", Studies in History and Philosophy of Science Part A 41:321-333. 

Braillard, Pierre-Alain (2010), "Systems Biology and the Mechanistic Framework", 

History and Philosophy of the Life Sciences 32:43-62. 

Casini, Lorenzo, Phyllis McKay Illary, Federica Russo, and Jon Williamson (2011), 

"Models for Prediction, Explanation and Control: Recursive Bayesian Networks", 

Theoria. An International Journal for Theory, History and Foundations of Science 

70 (1):5-33. 

Clarke, Brendan, Bert Leuridan and Jon Williamson (2014), "Modelling Mechanisms With 

Causal Cycles", Synthese 191 (8):1651-1681. 

Craver, Carl (2007), Explaining the Brain: Mechanisms and the Mosaic Unity of 

Neuroscience. Oxford: Oxford University Press. 

Dupré, John (2013), "Mechanism and Causation in Biology. I—Living Causes", 

Aristotelian Society Supplementary Volume 87:19–37. 

Gebharter, Alexander, and Marie I. Kaiser (2014), "Causal Graphs and Biological 

Mechanisms", in Marie I. Kaiser, O. Scholz, D. Plenge and A. Hüttemann (eds.), 

Explanation in the Special Sciences. The Case of Biology and History, Berlin: 

Springer. 



	  
	  

26 

Gebharter, Alexander (2014), "A Formal Framework for Representing Mechanisms?", 

Philosophy of Science 81 (1):138-153. 

Goldbeter, Albert (1995), "A Model for Circadian Oscillations In the Drosophila Period 

Protein (PER)", Proceedings of the Royal Society of London. B: Biological Sciences 

261 (1362):319-324. 

Hardin, P. E., Hall, J. C., and M. Rosbash (1990), "Feedback of the Drosophila Period 

Gene Product On Circadian Cycling of Its Messenger RNA Levels", Nature 343 

(6258): 536-540. 

Hitchcock, Christopher, and James Woodward (2003), "Explanatory Generalizations, Part 

II: Plumbing Explanatory Depth", Noûs 37 (2):181-199. 

Kellert, Stephen H., Helen E. Longino, and C. Kenneth Waters, eds. (2006), Scientific 

Pluralism, Minnesota Studies in Philosophy of Science, Vol. XIX. Minneapolis: 

University of Minnesota Press. 

Kistler, Max (2013), "The Interventionist Account of Causation and Non-Causal 

Association Laws", Erkenntnis 78:1-20. 

Kuhlmann, Meinard (2011). Mechanisms in Dynamically Complex Systems. In P. McKay 

Illari, F. Russo, & J. Williamson (Eds.), Causality in the Sciences. Oxford: Oxford 

University Press. 

May, R. M. (1974), "Biological Populations with Nonoverlapping Generations: Stable 

Points, Stable Cycles and Chaos", Science 186:645-647. 

McKay Illari, P., Russo, F., & Williamson, J. (Eds.) (2011). Causality in the Sciences. 

Oxford: Oxford University Press. 



	  
	  

27 

Mooij, Joris M., Dominik Janzing, and Bernhard Schölkopf (2013), "From Ordinary 

Differential Equations to Structural Causal Models: The Deterministic Case", in Ann 

Nicholson and Padhraic Smyth (eds.), Proceedings of the 29th Annual Conference on 

Uncertainty in Artificial Intelligence (UAI-13), Corvallis: AUAI Press, 440-448. 

Otsuka, J. (forthcoming), "Causal Foundations of Evolutionary Genetics", The British 

Journal for the Philosophy of Science 

Pearl, Judea (2000), Causality. Models, Reasoning, and Inference. Cambridge: Cambridge 

University Press. 

Russo, Federica (2012), "Public Health Policy, Evidence and Causation: Lessons From the 

Studies On Obesity", Medicine, Health Care and Philosophy 15 (2):141-151. 

Spirtes, Peter, Clark Glymour and Richard Scheines (2000), Causation, Prediction, and 

Search. Cambridge, Mass.: MIT Press. 

Waskan, Jonathan (2011), "Mechanistic Explanation at the Limit", Synthese 183 (3):389-

408. 

Waters, C. Kenneth (2007), "Causes That Make a Difference", The Journal of Philosophy 

CIV (11):551-579. 

Weber, Marcel (2005), Philosophy of Experimental Biology. Cambridge Studies in Biology 

and Philosophy. Cambridge: Cambridge University Press. 

Weber, Marcel (2008), "Causes without Mechanisms: Experimental Regularities, Physical 

Laws, and Neuroscientific Explanation", Philosophy of Science 75:995-1007. 

Weber, Marcel (2012), "Experiment in Biology", in Edward N. Zalta (ed.), The Stanford 

Encyclopedia of Philosophy. http://plato.stanford.edu/entries/biology-experiment/ 



	  
	  

28 

Woodward, James (2003), Making Things Happen: A Theory of Causal Explanation. New 

York: Oxford University Press. 

Woodward, J. (2008). Cause and Explanation in Psychiatry: An Interventionist 

Perspective. In K. S. Kendler, & J. Parnas (Eds.), Philosophical Issues in Psychiatry: 

Explanation, Phenomenology, and Nosology. Baltimore: Johns Hopkins University 

Press. 

Woodward, J. (2010). Causation in Biology: Stability, Specificity, and the Choice of 

Levels of Explanation. Biology and Philosophy, 25, 287-318. 

Woodward, James (2011), "Mechanisms Revisited", Synthese 183 (3):409-427. 

Woodward, James (2013), "Mechanistic Explanation: Its Scope and Limits", Proceedings 

of the Aristotelian Society Supplementary Volume 87 (1):39-65. 

Woodward, James, and Christopher Hitchcock (2003), "Explanatory Generalizations, Part 

I: A Counterfactual Account", Noûs 37 (1):1-24. 

 

 


