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Abstract

It is deeply entrenched dogma that relativity theory prohibits superluminal propagation. It
is also experimentally well-established that under some circumstances, classical electromag-
netic fields propagate through a dielectric medium with superluminal group velocities and
superluminal phase velocities. But it is usually claimed that these superluminal velocities do
not violate the relativistic prohibition. Here I analyze electromagnetic fields in a dielectric
medium within a framework for understanding superluminal propagation recently developed
by Geroch (1996, 2011) and elaborated by Earman (2014). I will argue that for some pa-
rameter values, electromagnetic fields do propagate superluminally in the Geroch-Earman
sense.
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1. Introduction

Few dogmas in modern physics are as well-entrenched as the one stating that relativity the-

ory prohibits superluminal propagation. And yet, despite its crucial importance to many

physical arguments—foundational and otherwise—it is not fully clear what the status of

this would-be prohibition is within relativity theory. Is it physical fields, such as electro-

magnetic fields or Klein-Gordon fields, that cannot propagate superluminally? Or is it

energy-momentum? Or is it some variety of superluminal signaling that is prohibited? If

the latter, then is there some unambiguous physical criterion for what constitutes a signal,

or does signaling depend essentially on the possible transmission of information—perhaps
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between intentional beings? And whatever the details, is the prohibition on superlumi-

nal propagation supposed to be a consequence of relativity? Or is it a brute assumption,

independent of the rest of the theory?

These questions are not idle quibbling about definitions. The idea that relativity theory,

in some sense or another, prohibits superluminal propagation directly influences physicists’

theoretical understanding of physical processes and their interpretation of experimental re-

sults. The prohibition also plays a central role in attempts to reconcile quantum physics

with relativity. Moreover, there are concrete cases where the ambiguity concerning precisely

what it is that relativity is meant to prohibit has led to confusion in the physics litera-

ture. For instance, in the context of experiments concerning light pulses in dielectric media,

which I will discuss in more detail below, various apparently superluminal effects have been

observed.1 In such cases, it is ubiquitous practice to provide some argument for why the

observed superluminal phenomena do not constitute superluminal propagation of a sort that

would conflict with relativity. But these arguments have a decidedly ad hoc flavor and rel-

atively little attention is paid, at least in this literature, to the more principled questions

of what would constitute superluminal propagation of the troubling sort and how, in these

particular cases, relativity manages to forbid it. At the very least, although relativity is

often mentioned, a satisfactory relativistic treatment of the systems in question is rarely, if

ever, on offer.

This is not to say that the more principled question is never taken up. In recent work,

Geroch (2011) and Earman (2014) have articulated a precise and general account of what it

would mean for a physical system to propagate superluminally in relativity theory.2 More

1Here I limit attention to cases where the electromagnetic field is treated classically. Examples of purport-
edly superluminal phenomena multiply if one considers quantum electrodynamics. See Butterfield (2007)
for a discussion of these examples aimed at philosophers.

2Weinstein (2006) may be seen as a sympathetic precursor to the view recently defended by Geroch and
Earman. The principal difference, if one exists at all, concerns the role of “causal cones” (see section 4,
below) in the criterion of (maximal) field propagation velocity.
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strikingly, Geroch, at least, argues that such fields should be understood as compatible

with relativity theory, and both Earman and Geroch present examples of fields that are,

in some sense, “relativistic,” and yet which exhibit superluminal propagation according to

their criterion.3

My goal in the present paper is simply to bring these two literatures together. Along

the way, I will defend three theses. First, I will argue that the sense of superluminal prop-

agation developed by Geroch and elaborated by Earman can be understood as making

precise a notion of propagation already present in the literature on electromagnetic fields in

a dielectric—namely, superluminal values of the so-called Sommerfeld-Brillouin “wavefront

velocity” associated with a field.4 Second, I will argue that in at least one highly ideal-

ized case, on a fully relativistic treatment, electromagnetic fields governed by the equations

of motion for an electromagnetic field in a dielectric do propagate superluminally in the

Geroch-Earman sense. Finally, I will argue that an oft-cited argument due to Sommerfeld

(1914) intended to show that superluminal wavefront velocities are impossible has nothing to

do with relativity per se, and instead gains what force it has from an assumption concerning

the nature of the interaction between electromagnetic fields and matter motivated by the

atomic theory of matter.

Let me also emphasize what I am not arguing. I do not mean to argue that there are

physical systems that, under realistic conditions, do exhibit superluminal propagation in the

Geroch-Earman sense. Nor do I mean to argue that it is possible to engineer a dielectric

medium through which one could send a signal superluminally, let alone that such media

3So as not to besmirch their good names, let me emphasize that neither Geroch nor Earman suggests
that there are physical systems that do propagate superluminally—and indeed, Earman takes the upshot of
the discussion to be a more precise characterization of what we intend relativity to prohibit, as a guide to
building a prohibition on superluminal propagation into relativistic quantum field theory.

4 This quantity is often called the “signal velocity” in the literature. It is interesting to note, however,
that Sommerfeld himself distinguishes the wavefront velocity he defines from the signal velocity (i.e., the
group velocity) that Brillouin discusses (Brillouin, 1960, p. 19). I will follow Sommerfeld and call this
quantity the “wavefront velocity”.
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have already been produced. In this way, the title of the paper may be misleading, as I do

not mean to argue that the dogma noted above is false. But I do hope to show that we

do not understand the relationship between relativity theory and superluminal propagation

as well as we might think, even in cases of manifest physical interest (insofar as we have

built components of optical systems that exhibit some of the relevant properties). And

in this sense, the dogma that relativity theory simply forbids superluminal propagation is

unhelpful. On the one hand, it discourages study of how relativity theory does and does not

accommodate superluminal propagation. And perhaps worse, it may blind us to systems

that do exhibit superluminal propagation in physically significant and potentially fruitful

ways.

The rest of the paper will proceed as follows. I will begin with some preliminaries regard-

ing Maxwell’s equations, to establish notation and conventions, and to provide a translation

manual between different ways of presenting Maxwell’s theory. Next I will reconstruct sev-

eral standard arguments concerning superluminal propagation of electromagnetic fields in

a dielectric. I will then present Geroch’s framework for treating the propagation of fields

and argue that his approach provides a natural way of precisely recovering the Sommerfeld-

Brillouin notion of wavefront velocity. Using this framework, I will analyze the standard

relativistic field equations for an electromagnetic field in a dielectric medium and show

that for certain parameter values, these fields will exhibit superluminal propagation in the

Geroch-Earman sense—i.e., they will have superluminal wavefront velocities. Finally, I will

return to Sommerfeld’s no-go argument for superluminal wavefront velocities and discuss

how the example I present runs afoul of his assumptions. The upshot will be that insofar as

Sommerfeld’s argument succeeds, relativity theory plays no apparent role. I will conclude

by stating, and to some extent responding to, a number of objections to the analysis I give

and suggesting avenues for future work.
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2. Preliminaries

In what follows, we work in Minkowski spacetime, (M, ηab), in units in which the speed of

light, c, equals 1 (though, for emphasis, we will sometimes continue to refer to c as the

speed of light).5 We assume that Minkowski spacetime is endowed with a fixed temporal

orientation and a fixed orientation, with associated volume element εabcd. In this context,

Maxwell’s equations for electromagnetic fields in a vacuum may be written in a compact

form as:

∇aF
a
b = Jb (1a)

∇[aFbc] = 0, (1b)

where ∇ is the Minkowski spacetime derivative operator, Fab is the electromagnetic field

tensor, and Ja is the charge-current density. Indices are raised and lowered with ηab.

The electromagnetic field Fab can be taken to encode the electric and magnetic fields as

determined by any observer, as follows. Given an observer with 4-velocity ξa at a point p in

Minkowski spacetime, the electric field determined by that observer is given by Ea = F a
bξ
b

and the magnetic field is given by Ba = 1
2
εabcdξbFcd. Similarly, σ = Jaξ

a is the charge

density as determined by that observer, whereas ja = Ja− (Jnξn)ξa is the 3-current density

determined by that observer.

It will be convenient to be able to move back and forth between this manifestly relativis-

tic form of Maxwell’s equations and a more traditional formulation, which is more common

in the literature on the propagation of electromagnetic waves.6 To do so, we will fix, once

5 Minkowski spacetime (M,ηab) is a relativistic spacetime where M is R4 and ηab is flat and geodesically
complete. Throughout we use the “abstract index” notation developed by Penrose and Rindler (1984)
and used by Wald (1984) and Malament (2012). We adopt the convention that the Minkowski metric has
signature (1, 3), so that timelike vectors have positive inner product with themselves.

6For further details on the relationship between these formulations, see Malament (2012). When I say
“relativistic” in this setting, I mean independent of a choice of observer or coordinate system.
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and for all, a constant future-directed unit timelike vector field ξa on Minkowski space-

time, representing, say, the 4-velocities of a family of co-moving inertial observers. Unless

otherwise stated, the electric and magnetic fields, Ea and Ba, and the charge and current

3-vector densities, σ and ja, will always be assumed to be determined relative to this family

of observers. The electromagnetic field tensor Fab can be reconstructed in terms of these

fields as:

Fab = 2E[aξb] + εabnmξ
nBm. (2)

Eqs. (1) then can be re-written as

∇[aFbc] = 0 ⇐⇒


∂bB

b = 0

εabc∂bEc = −ξb∇bB
a

(3a)

∇aF
a
b = Jb ⇐⇒


∂bE

b = σ

εabc∂bBc = ξb∇bE
a + ja

(3b)

where εabc = εabcnξ
n is the induced volume element on three dimensional hypersurfaces

orthogonal to ξa and ∂a = hna∇n, where hab = δab − ξaξb is the projection onto these

hypersurfaces, is the induced derivative operator on the hypersurfaces determined by ∇.

In yet another notation, Eqs. (3) are just

∂bB
b = 0 ⇐⇒ ~∇ ·B = 0 (4a)

εabc∂bEc = −ξb∇bB
a ⇐⇒ ~∇× E = −∂B

∂t
(4b)

∂bE
b = σ ⇐⇒ ~∇ · E = σ (4c)

εabc∂bBc = ξb∇bE
a + ja ⇐⇒ ~∇×B =

∂E

∂t
+ j (4d)

where now ~∇ is the standard gradient operator on the R3 hypersurfaces orthogonal to ξa,
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and the time derivative is taken relative to the global time coordinate determined by ξa.

Several standard arguments are available to show that in the absence of any sources—i.e.,

for Ja = 0, which we will assume from now on—Maxwell’s equations may be understood

as a wave equation for waves propagating along null geodesics—i.e., curves whose 3-velocity

as determined by any observer would be c. For instance, following Wald (1984), one may

observe that since Minkowski spacetime is contractible, Eq. (1b) implies that there exists a

globally defined 1-form Aa such that Fab = 2∇[aAb]. This relation determines Aa only up to

the derivative of a smooth scalar field, since for any such field ψ, ∇[a∇b]ψ = 0. It follows

that one may always choose the field Aa such that ∇aA
a = 0. This choice is known as the

“Lorenz gauge”. Writing Eq. (1a) in terms of this field Aa yields

0 = ∇nF
na = ∇n∇nAa −∇n∇aAn = ∇n∇nAa, (5)

where we have used the fact that Minkowski spacetime is flat to commute the derivative

operators in deriving the last equality.

Eq. (5) is a wave equation for the vector potential. But the physical significance of this

equation may not be immediately clear, since the vector potential is not usually taken to

have direct physical significance. Note, however, that Eq. (5) implies that,

∇n∇nFab = 0, (6)

which in turn is equivalent to

∇n∇nEa = 0 (7a)

∇n∇nBa = 0 (7b)
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These last two expressions may also be written as

�E = (c2
∂2

∂t2
− ~∇2)E = 0 (8a)

�B = (c2
∂2

∂t2
− ~∇2)B = 0 (8b)

where we have introduced c for clarity. (Eqs. (8) can also be derived by applying standard

identities from vector calculus to Eqs. (4).)

Eqs. (5)-(8) may all be understood as systematically related wave equations. They all

admit wave-like solutions of the same characteristic form. For instance, taking Eq. (7a) as

an example,7 we have solutions of the form

Ea = CaeiS (9)

where S, a scalar field, is the phase of the wave and Ca is the (constant) amplitude of

the wave.8 A straightforward calculation (see Wald (1984, pp. 65-6)) shows that Eq. (5)

implies that ka ≡ ∇aS, the normal vector to surfaces of constant phase, is null; thus ka is

also tangent to the surfaces of constant phase.9 Moreover, ka can be shown to be geodesic,

i.e., kn∇nk
a = 0. This provides a sense in which solutions of the form of Eq. (9) propagate

along null geodesics, insofar as points of constant phase in the waveform may be said to

propagate along such curves. And thus, since null curves have velocity c relative to any

observer, we have a sense in which these solutions propagate at the speed of light.

The field ka has a natural interpretation as the 4-momentum density associated with an

7The other wave equations described have solutions of the same form, differing only in the details of the
amplitude vector/tensor.

8In Eq. (9) and throughout the paper, we take for granted that electromagnetic fields are represented
by the real part of any complex quantities defined. In all discussions of Fourier analysis, for instance, we
implicitly restrict attention to only the real parts of integrals over complex exponentials.

9To clarify: since null vectors have zero inner product with themselves, they count as orthogonal to
themselves. Thus if the covector ka normal to a 3−surface is null, then the vector ka = ηabkb will be tangent
to the 3−surface, since its action on ka vanishes.
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electromagnetic wave. As with any 4-momentum density, we can decompose ka relative to

ξa. We identify ω = kaξa, the energy density relative to ξa, as the frequency of the wave,

and k̂a = ka − (knξn)ξa, the 3-momentum, as the wave vector. (We will denote this latter

quantity by k when we want to emphasize that it is a 3-vector.) Note that since ka is null,

kaka = ω2 − c2k · k = 0, and thus c = ω/|k|, which is the dispersion relation relating the

frequency, 3-momentum, and speed of a wave-like solution of Maxwell’s equations.

The most important special case of wave-like solutions is that of the monochromatic

plane waves. For any (fixed) point p, these may be written as

Ea = Cae−ik
npχn = Caei(k̂·x−ωt)

where
p
χa is the position vector field centered at p,10 and where t and x are (standard

global) coordinates with origin at p. A basic result of Fourier analysis is that any solution

of Maxwell’s equations with sufficiently nice properties at infinity may be represented as an

integral over plane wave solutions, with the general form

Ea(x, t) =
1√
2π

∫
R3

dk̂Ca(k̂)ei(k̂·x−ω(k̂)t), (10)

where

Ca(k̂) =
1√
2π

∫
R3

dxEa(x, 0)e−ik̂·x. (11)

Thus, modulo behavior at infinity, any solution, wave-like or not, may be understood to

consist of a linear superposition of waves that all propagate at velocity c. This provides

an even more robust sense in which one might say that electromagnetic fields in a vacuum

10The position vector field is the unique field on Minkowski spacetime such that (1) ∇a
p
χb = δa

b and (2)

(
p
χa)|p = 0. One can think of it as the field that assigns to each point q the (parallel transport of) the vector

at p connecting p to q. In this way, it records data about a global coordinate system centered at p in a
coordinate-independent manner. See Malament (2012, p. 66) for more on the position vector field.
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propagate at c.11

3. A Dielectric Dialectic

We have now seen a sense in which a broad class of electromagnetic fields may be said

to propagate at c. But all of the considerations raised so far apply only in a vacuum; in

other contexts, these arguments do not apply, and indeed, it is fruitful in some cases to

define different velocities for light.12 For instance, light waves passing through a transparent

medium, such as water or glass, will generally refract, or bend. This behavior may be

understood as a change in the relationship between the frequency ω and the 3-momentum k

of a wave propagating through the medium, so that for a given monochromatic plane wave,

one finds

ω

|k|
7→ n

(
ω

|k|

)
,

where n is known as the index of refraction.13

Since the fact that ka is null in a vacuum implies ω/|k| = c, a refractive medium may

be interpreted as changing the velocity of light, such that now we have ω/|k| = c/n ≡def vp,

11One might still worry that these arguments are not quite as robust as one would like. For instance, it is
not clear how the constraints on the behavior of fields at infinity required for Fourier analysis are physically
motivated, particularly in the source-free case. (If one assumes all fields are generated by localized sources,
one might argue that fields should vanish at infinite distance from the sources.) Fortunately, other arguments,
not subject to such limitations, also exist to establish that electromagnetic fields should be said to propagate
at the speed of light in a vacuum. We will describe one more in detail in section 4, and then point to yet
another (related) argument in section 6. But since our purpose here is merely to establish notation and set
up some basic facts that will be necessary for what follows, we will break off the current discussion here,
and proceed to the main arguments of the paper.

12The locus classicus for discussions of wave propagation in dielectric media is Brillouin (1960). See also
Born and Wolf (1999), Oughstun and Sherman (1994), and, especially, Milonni (2005), which discusses the
experimental literature up to the book’s publication and also provides a detailed discussion of the various
senses in which light may and may not propagate superluminally.

13In general, the index of refraction will be a complex function of the frequency of a wave incident on
the medium. The imaginary part of the index encodes information about the absorptive properties of the
medium; the real part determines the velocities we discuss here. Whenever “n” appears in an expression in
what follows, it should be assumed that it is the real part of the index that is under discussion; alternatively,
one might assume we are only working in transparent frequency bands, where the imaginary part of the
index (approximately) vanishes.
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where vp is the phase velocity of the plane wave in the medium.14 The phase velocity is a

measure of the velocity of a point of constant phase in a wave-form, for a single frequency

(monochromatic) wave. In this sense, the notion of speed given by the phase velocity is

precisely the one captured by the discussion in the previous section. We may think of the

index of refraction of the vacuum, then, as 1. For familiar media, such as water or glass, at

optical frequencies—i.e., plane wave frequencies we associate with visible light—the index of

refraction is greater than 1. This immediately implies that the phase velocity of light at these

frequencies passing through such media slows relative to c. But it is also experimentally well-

established that in some media—including, for instance, glass at x-ray frequencies, as well

as various engineered media—the index of refraction may fall below 1. When this occurs,

the phase velocity becomes superluminal.

Such media are not new, and it has long been known that electromagnetic fields may have

superluminal phase velocities. But this is usually not treated as a violation of the relativistic

prohibition on superluminal propagation. Several reasons are given in the literature. For

instance, Milonni (2005) writes, “[phase velocity] is associated with monochromatic waves

and, therefore, can be greater than c without violating special relativity” (p. 58). The idea

here seems to be that phase velocity depends essentially on an idealization—that of single-

frequency (monochromatic) plane waves—and is therefore unphysical. A second argument

is that a monochromatic plane wave cannot carry “information”. The reason is that a

monochromatic plane wave is, by definition, of infinite extent, in the sense that it is non-

zero on an unbounded region of spacetime. Moreover, the waveform is completely determined

by the values of the wave on small regions of spacetime. Thus, were a monochromatic plane

wave present in a region of spacetime, the values of the field at all other regions would be

fixed, meaning that one could not use variations in the field to transmit information (while

14This value may be thought of as a “velocity” for waves propagating in one spatial dimension; otherwise,
it should really be thought of as a phase speed, since it is not a vector. However, we will adopt the standard
usage and call this the phase velocity.
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preserving the assumption that the field is a monochromatic plane wave). For these reasons,

although one can consistently assign a velocity to monochromatic plane waves, their defining

properties undermine the idea that such waves exhibit “propagation” in the salient sense.15

Insofar as these considerations are convincing, they suggest that one should look else-

where if one is interested in characterizing a sense of “propagation velocity” for (realistic)

electromagnetic fields. And indeed, electrical engineers working on, say, radio communica-

tion do look elsewhere. As we saw in the previous section, a broad class of solutions to

Maxwell’s equations may be understood as superpositions of monochromatic plane waves.

Insofar as such fields are used to send signals—or rather, insofar as they “propagate” in a

physically interesting sense—it turns out to be variations in these superpositions that mat-

ter, not the propagation of the individual plane waves. In many cases, we might think of

these superpositions as forming “bumps” or “packets” or “peculiarities” (Lord Rayleigh’s

term) in a wave form.16 Thus—the standard argument goes—we are not interested in phase

velocity; rather, we are interested in the group velocity,17 which is a measure of the propa-

gation speed of these peculiarities—at least in the special case where the peculiarity may be

conceived as a superposition of a group of plane waves whose 3-momenta are proportional,

but with frequency and 3-momentum length varying within a “small” range. The group

velocity is distinct from the phase velocity whenever dispersion is present, i.e., whenever the

index of refraction depends on the frequency of a monochromatic plane wave in a medium.

15There is good reason to resist both of these arguments. The second, for instance, amounts to the claim
that because we cannot use plane waves to signal, they do not propagate, which seems to be a non-sequitur.
Nonetheless, such arguments are present in the literature and form part of the motivation for looking to
other notions of wave velocity, so I report them here.

16See Rayleigh (1881). It seems to me that “pecularities” biases the discussion less than the other terms,
and so I will use it in what follows; I recognize that this is idiosyncratic by contemporary standards!

17As with phase velocity, a better expression for the quantity I will presently define might be “group
speed,” since it is not vectorial except in one spatial dimension. Recall footnote 14.
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The group velocity is typically defined as:

vg =
dω

d|k|
. (12)

Strictly speaking, this expression does not capture what we want: in general, this derivative

will be a function of the 3-momentum, whereas we want a “group velocity” to assign a single

value to a “group” of plane waves with different frequencies/3-momenta. And so what one

really wants to do is evaluate this function at some “central” value of the 3-momentum,

usually determined by physical considerations related to the problem at hand, to get a

determinate value for the group velocity.18

Using the fact that |k| = nω
c

, we can rewrite the group velocity as a function of the

derivative of the index of refraction, as:19

vg =
c

n+ ω dn
dω

, (13)

where once again the right-hand side is evaluated at some “central” frequency. Eq. (13)

clarifies the relationship between group velocity and phase velocity. In particular, it shows

that when dn
dw

= 0, i.e., when there is no dispersion, group velocity and phase velocity

coincide. Meanwhile, for frequencies of “normal dispersion”, which corresponds to dn
dω
> 0,

the group velocity will always be less than the phase velocity, which means that when the

phase velocity becomes superluminal, the group velocity may still be subluminal.20 And thus,

the argument goes, relativity is saved from superluminal phase velocities by corresponding

subluminal group velocities.

18In the language of signal processing in engineering, one typically evaluates the expression at the frequency
of the “carrier wave”.

19To see this, differentiate both sides with respect to |k| to find c = dn
d|k|ω + dω

d|k|n = dn
dω

dω
d|k|ω + dω

d|k|n =(
dn
dωω + n

)
vg.

20Though one might still worry: after all, there is no guarantee that the group velocity will be subluminal
if the phase velocity is superluminal—just that that group velocity will less than the phase velocity.
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I should emphasize that the group velocity is an essentially approximate notion. It is a

useful way of capturing the velocity of a peculiarity only when the peculiarity propagates

through a medium without significant change of shape or amplitude. This means that group

velocity is only salient when the medium is transparent to fields in the relevant frequency

band and the index of refraction depends approximately linearly on the frequency of the

wave, so that dn
dω

may be treated as a constant in Eq. (13). Moreover, it is not clear that

the group velocity, which depends on a preferred basis in Minkowski spacetime determined

by the 4-velocity of the medium and the direction of propagation of the wave, could be

extended to an invariant 4-velocity in a fruitful way. (This is not a worry for the phase

velocity, which may be defined in terms of the tangents to the surfaces of constant phase

for certain electromagnetic fields in a medium; in contrast, the group velocity depends on

facts about the interference of different monochromatic plane waves and the overall shape

of a peculiarity, determinations of which will in general vary from observer to observer.) For

these reasons, one might be cautious about assigning much foundational significance to the

group velocity.

But even if one does take the group velocity to resolve worries about superluminal prop-

agation of electromagnetic fields in cases of normal dispersion, it is a temporary victory at

best, since in the presence of so-called “anomalous dispersion,” where dn
dω
< 0, the group ve-

locity exceeds the phase velocity. And there exist media in which the dispersion is anomalous

and of sufficient magnitude that the group velocity becomes superluminal. Indeed, evidence

of superluminal group velocities was observed experimentally as early as 1970, by Faxvog

et al. (1970); more recently, superluminal group velocities were observed in the absence of

any significant change in the shape or amplitude of the peculiarity by Wang et al. (2000).

These latter experiments in particular, which have been reproduced in various forms by

several groups, are usually taken to establish that superluminal group velocities are possible
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in physical media.21

Recall that one reason that superluminal phase velocities were deemed untroubling for

relativity theory was that monochromatic plane waves cannot be used to transmit informa-

tion. But pecularities in a wave form surely can be used to transmit information (think

of AM radio!)—which is precisely what motivated the move to group velocity in the first

place. Indeed, in the early history of relativity theory, the possibility of superluminal group

velocities was a matter of considerable concern. As Brillouin put it in the preface to his

treatise on wave propagation,

...the theory of relativity ... states that no velocity can be higher than c, the
velocity of light in vacuum. Group velocity, as originally defined, became larger
than c or even negative within an absorption band. Such a contradiction had to
be resolved and was extensively discussed in many meetings about 1910. (Bril-
louin, 1960, p. vii)

Today, however, superluminal group velocities are widely viewed as unproblematic from the

perspective of relativity theory, largely on the basis of an argument due to Sommerfeld

(1914), which was offered as a response to these early worries.

Sommerfeld’s position was that one should really consider yet another notion of the

velocity of a wave,22 namely the velocity of a wavefront :

In order to say something about propagation, we must ... have a limited wave
motion: nothing until a certain moment in time, then, for instance, a series of
regular sine waves, which stop after a certain time or which continue indefinitely.
Such a wave motion will be called a signal. Here, one can speak of a propagation
of the front of the wave (wavefront velocity).... (Brillouin, 1960, p. 18)

It is this wavefront velocity—the velocity, as Sommerfeld goes on to argue, of a jump dis-

continuity in a solution to Maxwell’s equations—that Sommerfeld claims is the salient one,

21For a detailed overview of the state of the experimental literature, see Milonni (2005, Ch. 2) and
Weatherall (2009).

22Or rather, again, speed.
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at least as far as the relativistic prohibition is concerned.23 The idea is that, whatever else

is the case, a peculiarity in a wave—and thus, any information encoded therein—cannot

reach a detector before the wave itself reaches the detector. And thus, there is a sense in

which the wavefront velocity may be understood as the upper bound on the velocity of any

signal encoded in an electromagnetic field. Sommerfeld then presented an argument that the

wavefront velocity is always equal to c, irrespective of the optical properties of the medium

in which the wave is propagating. (I will discuss this argument in detail in section 6; for

now I simply record that it is widely taken to have settled the matter.)

How are we to interpret superluminal group velocities, then? On the final accounting,

it seems systems exhibiting superluminal group velocities are best conceived in terms of

dynamical reshaping of an electromagnetic field, in such a way that some particular feature

of the wave appears to propagate at a superluminal velocity. For instance, if one considers

a pulse propagating through a medium, then the leading tail might be amplified, while the

pulse itself is damped, in such a way that the leading tail comes to have qualitative features

we would have associated with the pulse, while the original pulse disappears. But this sort

of reshaping can occur only when the wave is, in a sense, already present in a medium. And

so, the argument concludes, superluminal group and phase velocities—and electromagnetic

radiation more generally—present no problems for the relativistic prohibition on superlumi-

nal propagation, since only wavefront velocity matters, and this velocity is always precisely

c.

4. Geroch and Earman on Superluminal Propagation

In the previous section, I have attempted to present various senses in which electromagnetic

fields do and do not exhibit superluminal propagation, in the terms usually discussed in

23See fn. 4. It has subsequently become common practice to call the wavefront velocity the “signal
velocity,” but I avoid that usage here. Note, too, that in the next section, we will generalize to any
discontinuity in a field or its derivatives.
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the literature on propagation in a dielectric medium. In this section I will turn to a quite

different, and in some respects more principled, treatment of field propagation that applies to

essentially any physically salient system of fields on a manifold. The analysis I will presently

describe, due to Geroch (1996), is manifestly geometrical and relativistic, at least in the sense

of being coordinate independent.24 I will begin by translating Maxwell’s equations into this

formalism. Then I will present some general definitions and propositions that allow one to

define a notion of (maximal) propagation velocity. At the end of the section, I will turn to

a proposal by Geroch (2011) and Earman (2014) to the effect that the sense of propagation

velocity given by Geroch’s analysis is the salient one in connection with relativity theory.

I will then observe a close connection between the Geroch-Earman sense of superluminal

velocity and Sommerfeld’s wavefront velocity: indeed, as I suggested above, one might take

the Geroch-Earman analysis to be a precise recovery, justification, and generalization of

Sommerfeld’s notion of wavefront propagation.

Geroch’s analysis begins with a smooth, four dimensional manifold M .25 The manifold is

meant to be interpreted as the spacetime manifold, though no metric need be presupposed.

One then considers “fields” on the manifold, understood as local sections of arbitrary fiber

bundles over M . That is, let B
π−→M be a (smooth) fiber bundle, which consists of a smooth

surjective submersion π between smooth manifolds B and M that together have the property

that there exists some manifold F , called the typical fiber, such that for any p ∈ M , there

exists an open neighborhood U ⊆M containing p and a diffeomorphism ζ : U×F → π−1[U ]

such that π ◦ ζ : (q, f) 7→ q for all (q, f) ∈ U × F . One may think of B, called the “total

24The details of the formalism I will present here are developed by Geroch, but there is a sense in which
he merely re-packages the already well-established theory of hyperbolic systems of differential equations.
(See John (1982), Lax (2006), or Evans (2010) for more traditional presentations.) For present purposes,
the principal virtue of his approach is that it avoids worries that the notion of field propagation he describes
is coordinate or frame dependent. Such worries at least apparently arise on standard presentations of
hyperbolic systems theory.

25We assume that the manifold is connected, paracompact, and Hausdorff. In the next section we will
return to Minkowski spacetime; here, we work in this more general setting.
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space”, as a manifold consisting of copies of F associated with each point of M , the “base

space”. The map π is called the “projection map”; it takes a point in B to the point in M

that lies “beneath” it. The collection of all points of B associated with any point p of M ,

π−1[p], which forms an embedded submanifold diffeomorphic to F , is called the fiber at p. A

field, then, will be a section of this bundle, which is a smooth map φ : U ⊆M → B, where

U is any smooth embedded submanifold of M , with the property that π ◦ φ is the identity

on U .

We are interested in fiber bundles whose typical fibers may be interpreted as possible

physical states at a spacetime point p. For instance, in electromagnetism, the case we will

presently focus on, we consider a fiber bundle B
π−→ M whose typical fiber F is the six

dimensional vector space of antisymmetric rank 2 tensors Fab on M .26 This fiber, which is

naturally understood as diffeomorphic to R6, represents all possible values that the electro-

magnetic field Fab might take at a point p. The projection map π takes possible field values

at p to p. A section may be interpreted as a smoothly varying assignment of field values

to points of some submanifold of M—precisely what one would otherwise think of as an

electromagnetic field.

Following Geroch, we will use the following notation, which should be understood in the

general context of the abstract index notation.27 Vectors and tensors at a point in the base

space M (and by extension, vector and tensor fields on M) will be denoted using lower case

Latin indices, a, b, . . .. Vectors and tensors at a point in the total space B, meanwhile, will

be denoted using lower case Greek indices, α, β, . . .. Finally, we will use uppercase Latin

indices, A,B, . . ., to indicate vectors and tensors that live in (or act on) other vector spaces.

This notation is particularly useful for treating mixed-index tensors at points x of B:

that is, tensors that may be thought of as acting on (for instance) some combination of

26To see why this space is six dimensional, note that an anti-symmetric 4× 4 matrix has six independent
elements.

27Again, see the references in fn. 5.
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vectors and covectors at x and at π(x) ∈M . To give an example of such an object, consider

the pushforward along π at x, (π|x)∗ : TxB → Tπ(x)M . One might think of this as a tensor

that takes a vector ξα at x and returns a vector ξa at π(x), or, equivalently, as an object that

acts on a pair ξα, ηa, where ξα is a vector at x and ηa is a covector at π(x), to yield a real

number. In the present notation, then, this map may be written (again following Geroch)

as (∇π)aα.28 Similarly, given a section φ : U → B, the pushforward map at a point p ∈ M

may be written as (∇φ)αa, which should be understood as a tensor at the point φ(p) ∈ B.

Note that the defining condition on a section guarantees that at any point x ∈ φ[U ],

(∇π)aα(∇φ)αb = δab.

We will say that a vector ξα at a point x ∈ B is vertical if it is in the kernel of (∇π)aα,

i.e., if (∇π)aαξ
α = 0. In this case, we may think of the vector as tangent to the fiber at π(x).

It will sometimes be convenient to indicate when a Greek index is vertical. Again following

Geroch’s conventions, we will do so by adding a prime to the index—so, the vector ξα
′

at

a point x ∈ B would be vertical. Note that for contravariant indices, we can always freely

remove primes, since any vertical vector is a tangent vector, but we cannot add them, since

not every tangent vector is vertical. Meanwhile, for covariant indices, we can always add

primes, since any linear functional acting on all tangent vectors acts on vertical vectors, but

we cannot remove them, since not every functional on vertical vectors uniquely extends to

a functional on all tangent vectors.

Returning to electromagnetism, recall that the typical fiber is diffeomorphic to R6. Thus

the tangent space at any point of the fiber is also isomorphic to R6, as a vector space, and

indeed, there is a canonical isomorphism between the tangent space at any point of the

28The “∇” appearing here is not a derivative operator on either M or B; it is used simply to invoke the
fact that the pushforward map may be conceived as the differential of a smooth map between manifolds.
Note, too, that although I have defined (∇π)aα as the pushforward, it might equally well be thought to
represent the pullback map.
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typical fiber and the typical fiber itself. Composing these isomorphisms, and using the fact

that the fiber at any point of the base space is diffeomorphic to the typical fiber, provides

a natural sense in which any vertical vector at a point x ∈ B, i.e., any vector tangent to

the fiber at π(x), may be canonically associated with a point in F . Thus a vertical vector

δφα
′

at a point x ∈ B may always be thought of as an antisymmetric rank 2 tensor δFab at

π(x).29

In this language, we can now write down a general system of first-order, quasilinear

differential equations on sections (i.e., fields in our general setting). Let kA
m
α and IA be

smooth fields onB, where theA index should be understood as indicating action on vectors in

the “space of equations,” the dimension of which corresponds to the number of independent

equations in the system. Further, let φ : U → B be a smooth section of π (where we assume,

now, that U is an open subset of M). Now consider the following (system of) differential

equation(s):

kA
m
α(∇φ)m

α + IA = 0. (14)

Eq. (14) should be understood to hold at each point p ∈ U , with k and I evaluated at

φ(p) ∈ B. This is a first-order differential equation in φ in the sense that (∇φ)m
α may be

understood as a generalized first-order derivative of the section. To see this interpretation,

note that for any vector ξa at a point p ∈ U , (∇φ)αmξ
m = (φ|p)∗(ξ

a) is the vector at

φ(p) representing the infinitesimal direction of change along the section in “field space”

corresponding to an infinitesimal change in the base space M in the direction ξa. And

Eq. (14) is quasilinear in the sense that kA
m
α is understood to be a tensor acting on this

derivative of φ. The field IA, meanwhile, may be understood as the inhomogeneous, or

source, term in the differential equation.

29To be clear, the δ here is part of the name of the fields δφα
′

and δFab, and not a symbol of differentiation
or variation. The notation follows Geroch (1996). The idea is that the vector space structure of the fibers
allows one to think of vertical vectors as differences between possible field values at a point of M , and the
δ is meant to indicate that.
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To continue developing the salient example of electromagnetism, we will now translate

Eqs. (1) into the form of Eq. (14). In this case, the space of equations is eight dimensional,

corresponding to the eight linearly independent components of Eqs. (1);30 this means that

the capital Latin indices A,B, . . . label membership in an eight dimensional vector space. A

typical vector in this space would be of the form σA = (sa, sabc), where sabc = s[abc] is totally

antisymmetric; the two terms of this pair correspond to the possible coefficients of Eq. (1a)

and Eq. (1b), respectively. The IA covector, meanwhile, has the form (ia, 0), corresponding

to the source terms in Eqs. (1).31 The most convenient way of defining kA
m
α is in terms of

its action on typical vectors and covectors in the spaces on which it acts. So, at any point

x ∈ B, and for arbitrary (co)vectors σA = (sa, sabc), nm, and δφα
′
= δFab, at x, π(x), and x,

respectively,

kA
m
ασ

Anmδφ
α′

= sb(nmg
maδFab) + sabc(n[aδFbc]). (15)

Note that in Eq. (15), we do assume that there is a background metric gab on M (not

necessarily the Minkowski metric), so that the base space over which the bundle of electro-

magnetic field values is defined is a relativistic spacetime in the ordinary sense. This is the

first time a metric is presupposed, and it is important that it appears here only to specify

the system of differential equations under consideration.

To make the relationship between Eq. (14) and Eqs. (1) more transparent, note that Eq.

(15) specifies only how kA
m
α acts on vertical vectors at any point of B, as can be seen from

the ′ on δφα
′
. The field kA

m
α, meanwhile, was defined as an object that acts on all vectors at

a point of B. In fact, though, it is only the “vertical part” of kA
m
α (in the last index) that

involves the derivatives of the fields. Thus there is some freedom in how we write kA
m
α; this

freedom is off-set by a corresponding freedom in IA, required to leave Eq. (14) invariant.32

30To see this, note that on a four dimensional manifold, vectors and antisymmetric rank 3 tensors are
each specified by four independent components.

31For reasons that will be clear presently, one may not suppose, yet, that ia is equal to the charge-current
density Ja already defined.

32See Geroch (1996, pp. 8–9) for more details. The freedom amounts to a choice of “linear connection”
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In general, however, we may always choose kA
m
α in such a way that the derivatives of the

sections are taken relative to the covariant derivative operator ∇ compatible with the metric

gab. When we do so, the interaction vector IA becomes IA = (Ja, 0), where Ja is the standard

charge-current density on M . With these choices, we may write kA
m
α = (δyag

mx, εabcpε
pmxy),

where each term acts on ∇mFxy, understood as a field on spacetime.

Up to this point in the section, we have merely developed a general formalism for treating

partial differential equations and then translated Maxwell’s equations into that formalism.

Now comes the pay-off. In the following definitions and propositions, we will define the

notion of propagation velocity we have been working towards. Once we have given the

general statement of the necessary propositions, we will return to electromagnetism once

again.

Suppose we are given a differential equation in the form of Eq. (14). A hyperbolization

is a smooth field hAβ′ on B such that (1) the field hAβ′kA
m
α′ is symmetric in α′, β′ and (2)

at each point x ∈ B, there exists a covector nm at π(x) such that hAβ′kA
m
α′nm is positive

definite, i.e., is such that for all non-zero vertical vectors ξα
′

at x, nmh
A
β′kA

m
α′ξα

′
ξβ

′
> 0.

We call such a field a hyperbolization because the differential equation

hAβ′ (kA
m
α(∇φ)m

α + jA) = 0 (16)

is symmetric hyperbolic,33 and any solution to Eq. (14) is also a solution to Eq. (16).34

Now suppose one has a differential equation in the form of Eq. (14), and suppose it

admits a hyperbolization hAβ′ . Then at each point x ∈ B, let sx be the collection of

covectors na at π(x) such that nmh
A
β′kA

m
α′ is positive definite. The set sx will in general

on the bundle of field values.
33This means, roughly, that it is a differential equation admitting wave-like solutions. For more precise

characterizations, see, for instance, Evans (2010, §7.3) or Lax (2006, Ch. 2).
34Of course, ultimately we care about the converse, i.e., when solutions of Eq. (16) are solution to Eq.

(14). But addressing this issue would require a discussion of constraints, which is not necessary for the
arguments of the present paper. See Geroch (1996, §4) for a general discussion.

22



be an open convex cone of covectors at π(x). Now let Cx be the collection of vectors ξa at

π(x) with the property that ξana ≥ 0 for every covector na ∈ sx. We call Cx, which is a

closed convex cone of vectors at π(x), the causal cone at π(x) (for field value x); vectors

in Cx will be called causal vectors at x. It is crucial to emphasize that this causal cone is

defined without reference to a spacetime metric. Of course, Lorentz-signature metrics are

also associated with causal cones; in what follows, we will distinguish causal cones, which

are associated with a system of differential equations, from “metric lightcones”, which are

the (causal) cones associated with a background spacetime metric. In general, there should

be no expectation that these will coincide. Similarly, we will attempt to clearly distinguish

causal vectors in the sense of elements of Cx for some differential equation from causal

vectors in the standard sense of timelike or null vectors relative to a metric.

In general, the causal cone associated with a system of equations has the following inter-

pretation: it is the collection of “signal propagation directions,” or perhaps better, “signal

propagation 4-velocities” for the field at π(x). To justify this interpretation, consider the

following definitions and proposition. Let S be a three dimensional embedded submanifold

of M , and suppose there are fields (i.e., local sections) ψ : S → B on S. Then we will

say that (S, ψ) is initial data for our system of differential equations (14) if at every point

p of S, the normals na to S at p are elements of sψ(p). The idea is that initial data is a

specification of field values on a collection of points that are not “causally related” according

to the standard given by Cx. A solution (U, φ) to the differential equation for initial data

(S, ψ) is a neighborhood U ⊆ M containing S and fields φ : U → B on U such that φ

satisfies the system of equations and φ|S = ψ. Given a solution (U, φ), we will say a smooth

curve γ : I → M is causal relative to (U, φ) if its tangent vector at each point of its image,

~γ|γ(s), is an element of Cφ(γ(s)) whenever γ(s) ∈ U . A point p ∈ U is an endpoint of a smooth

curve γ : I → M that is causal relative to some solution (U, φ) if p is such that, for any

open set O containing p, there is a parameter s0 ∈ I such that either for all s ≥ s0 or all
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s ≤ s0, γ(s) ∈ O. Finally, given initial data (S, ψ), the domain of dependence of S, D(S), is

the collection of all points p ∈M such that (1) there exists a solution (U, φ) for initial data

(S, ψ) where p ∈ U , and (2) given any smooth curve γ : I → M whose image contains p,

if γ is causal relative to a solution (U, φ) such that p ∈ U , and γ is without endpoint in U ,

then γ[I] intersects S.

Given these definitions, the following is a consequence of the basic uniqueness results for

symmetric hyperbolic systems.35

Proposition 1. Let (S, ψ) and (S, ψ′) be initial data for a differential equation of the form
of Eq. (14) with fixed hyperbolization. Suppose that there is some open (in the submanifold
topology on S) subset A ⊂ S on which ψ and ψ′ agree. Then any solutions (U, φ) for initial
data (S, ψ) and (U ′, φ′) for initial data (S, ψ′) must agree on the domain of dependence
D(A), i.e., φ|p = φ′|p for all points p ∈ U ∩ U ′ ∩D(A).

In other words, solutions on D(A) are entirely fixed by the initial data on A. This means

that any initial data off of A cannot contribute to the solution on D(A), and thus, one could

not perturb the initial data off of A in such a way as to send a signal (say) or otherwise

affect field values within D(A). It is in this sense that the causal cones at a point determine

the possible signal propagation directions.

We can now return to electromagnetism, to consider the causal cones associated with

Maxwell’s equations. In that case, the general hyperbolization hAβ′ at a point x ∈ B may

be defined in terms of its action on an arbitrary vertical vector δφα
′
= δFab, as

hAα′δφα
′
= (δF a

mζ
m,

3

2
ζ [aδF bc]), (17)

where all indices are raised with gab, and where ζa is some timelike vector at π(x).

Contracting the A index on hAα′ with kA
m
α′ as defined in Eq. (15) yields, for arbitrary

35See Geroch (1996, Appendix B). Of course, there are general existence results, too, though these require
a treatment of constraints. For our purposes, all that matters is uniqueness.
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vertical vectors δφα
′
= δFab and δφ̂α

′
= δF̂ab and arbitrary covector nm,

hAα′kA
m
β′nmδφ

α′
δφ̂β

′
= δF b

mδF̂abζ
mna +

3

2
ζ [aδF bc](n[aδF̂bc]) (18)

= 2ζanb
(
δFm

(aδF̂b)m +
1

4
gabδFmnδF̂

mn

)
. (19)

This last expression allows us to confirm that hAα′ as just defined is a hyperbolization, since

(1) Eq. (19) is manifestly invariant under exchange of δFab and δF̂ab (which means that

hAα′kA
m
β′ is symmetric in α′ and β′) and (2) hAα′kA

m
β′nm is positive definite on vertical

vectors if (and only if) na is timelike and co-oriented with ζa (relative to the background

spacetime metric, gab), since in this case Eq. (19) is positive whenever δFab = δF̂ab.
36 This

last observation (or rather, its converse) implies that for any point x ∈ B, sx consists in

precisely the timelike covectors at π(x). Thus, for electromagnetism, the causal cone at

any point x is precisely the collection of causal vectors (in the ordinary sense of timelike

or null vectors, relative to gab) co-oriented with ζa, the timelike vector determining the

hyperbolization. It follows that for electromagnetism, the possible signal propagations are

precisely the causal vectors (relative to a metric gab).

The discussion thus far has concerned the possible signal propagation velocities associated

with a field. But in fact, one can say a bit more. Again with a hyperbolization fixed for some

differential equation in the form of Eq. (14), call the (non-zero) boundary of sx, i.e., the

collection of non-zero covectors at π(x) that lie in the closure of sx but not the interior of sx,

the characteristic covectors at π(x) (for field value x). Suppose that one has a solution (U, φ)

of such a differential equation (for some initial data or other). A characteristic surface for

36To see that (2) holds, note that ζa
(
δFm(aδFb)m + 1

4gabδFmnδF
mn
)

= Ta
bζa, where T ab is the en-

ergy momentum tensor associated with the electromagnetic field δFab. Since the energy-momentum tensor
associated with any electromagnetic field satisfies the Dominant Energy Condition, Ta

bζa is causal and
co-oriented with ζa (see Malament, 2012, §2.6). Thus Ta

bζanb > 0 for any timelike nb co-oriented with ζa.
This establishes the “if” clause. For the converse, note that by varying δFab (for fixed ζa), one can force
Ta

bζa to be any causal vector co-oriented with ζa. Thus, for any null or spacelike na, one can always choose
δFab so that ζanbTa

b = ζanb
(
δFm(aδFb)m + 1

4gabδFmnδF
mn
)
≤ 0. This establishes the “only if” direction.
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that solution is a three dimensional embedded submanifold Σ ⊂ U that has a characteristic

covector as a normal at every point p ∈ Σ.

Characteristic surfaces are of interest because of the following classical result of the

theory of hyperbolic partial differential equations:37

Proposition 2 (Courant and Lax (1956)). Suppose (S, ψ) is initial data for a differen-
tial equation of the form of Eq. (14) with fixed hyperbolization, and suppose that ψ is smooth
everywhere except across a two dimensional embedded submanifold Γ ⊆ S, where ψ or one
of its derivatives is assumed to exhibit a jump discontinuity. Then any solution (U, φ) for
initial data (S, ψ) is smooth everywhere except across the characteristic surfaces Σ ⊆ U
containing Γ; across these surfaces, φ or one of its derivatives exhibits a jump discontinuity.

To interpret this proposition, note that the tangents to characteristic surfaces will be causal

in the sense that, at each point of these surfaces, one can always find a basis of three

vectors, all of which are elements of Cx. Moreover, at each point, these causal tangent

vectors will be boundary points of Cx. This means that, given our interpretation of causal

cones, the tangents to characteristic surfaces are, in a precise sense, the maximal 4-velocities

associated with the propagation of a field governed by the given equation. Thus the moral

of the proposition is that discontinuities in initial data (or its derivatives) propagate along

characteristic surfaces, i.e., with “maximal” 4-velocities.

On the basis of the considerations offered above, Geroch (2011) and Earman (2014) have

argued that the salient sense of (maximal) propagation velocity for a field is the one given by

the causal cones associated with that field, in the sense just described. One might condense

their discussion into a criterion of superluminal propagation for fields governed by some

differential equation as follows.

Condition 1 (Geroch-Earman). Suppose one is given a system of differential equations
of the form of Eq. (14) on sections of a bundle B

π−→ M of possible field values over a
spacetime (M, gab), and suppose one has a fixed hyperbolization of the system. Then solutions
to this system of equations may propagate superluminally if and only if there exists an open

37For more on the relationship between characteristics and causal cones, in terms that are quite close to
those developed by Geroch (1996), see Khavkine (2012).
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set O ⊆ B such that for all x ∈ O, the causal cone Cx contains as a proper subset one lobe
of the metric lightcone associated with gab at π(x).

The discussion above shows that when this condition is satisfied, for at least some initial

data, discontinuities in that data will propagate outside the metric lightcone. This is the

sense in which such field theories exhibit superluminal propagation. Of course, one may

also readily cast this condition as a sufficient criterion for no superluminal propagation, by

restricting attention to systems of equations that do not meet the stated condition.38

It is worth noting what Earman and Geroch take the significance of this criterion to be.

Earman argues that with this criterion of superluminal (non-)propagation in mind, other

standard criteria—including the so-called dominant energy condition—are neither necessary

nor sufficient for no superluminal propagation. He also argues that Geroch’s approach to

characterizing superluminal propagation provides insight into how to incorporate require-

ments of “relativistic causality” into quantum field theory. Perhaps more importantly for

the present discussion, Geroch, argues (and Earman appears to accept) that on this under-

standing of propagation velocity, superluminal propagation presents no contradiction with

relativity. The idea is that relativity, be it special or general, is merely one system of differ-

ential equations on a manifold. Solutions to these equations have causal cones corresponding

to the metric lightcones, but this does not constrain the causal cones of other fields. As long

as a field has a well-defined initial value formulation, Geroch argues, it is perfectly consistent

with relativity.39

38One might also take this to be a necessary condition for no superluminal propagation. But that would
require further argument. The condition states that a field may propagate superluminally if the causal cone
Cx contains a lobe of the metric lightcone, not that fields do so propagate. Just consider: the causal cones
associated with a fluid correspond to the “sound cone”. But it hardly follows that wind always travels at
the speed of sound! In other words, not all salient features of a field correspond to discontinuities in a field
or its derivatives, and thus they need not follow the characteristics.

39 Geroch also argues that no other inconsistencies—such as the “grandfather paradox”—arise with such
theories. We will not rehearse those arguments here; the short version is that a well-posed initial value
formulation guarantees self-consistency of solutions, so that a field will never evolve so as to change its initial
data. A further worry about Geroch’s claim that superluminal propagation is consistent with relativity is
that Einstein’s equation plays no role in the Geroch-Earman condition. I will briefly return to this point at
the end of section 7.
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I am now in a position to make the promised connection between the Geroch-Earman

criterion for superluminal propagation and Sommerfeld’s criterion. Recall that Sommerfeld

identified the propagation of a wavefront, which he defined as a jump discontinuity in a

solution to Maxwell’s equations, as the salient sense of field propagation in relativity theory.

Given the interpretation of characteristic surfaces as the surfaces across which a solution (or

the derivatives of a solution) to some hyperbolic system of differential equations may have

a jump discontinuity, and the relationship between causal cones and characteristic surfaces,

we can now see that Sommerfeld’s wavefront velocity corresponds precisely to (a special case

of) the propagation velocity given by Geroch and Earman. And indeed, as we have seen

here, in the case of electromagnetic fields in a vacuum, i.e., solutions of Maxwell’s equations,

the (causal) tangents to the characteristic surfaces are precisely the null vectors, just as

Sommerfeld argued. In this sense, the discussion above amounts to yet another argument

that the relevant propagation velocity, by which we now mean the (suitably generalized)

wavefront velocity, for electromagnetic fields in a vacuum is c. Of course, Sommerfeld also

argued that the wavefront velocity would be c in any medium. It is to this claim that we

turn in the next two sections.

5. Dielectrics Revisited

With the Geroch-Earman criterion for superluminal propagation in hand, we can now re-

turn to the question with which we began, concerning whether under some circumstances,

the propagation of an electromagnetic field in a dielectric medium is properly conceived as

superluminal. To address the question in the present context, we require a system of differ-

ential equations governing the propagation of electromagnetic fields in a medium. There is

a standard choice here, known as the “macroscopic” Maxwell equations.40 These are most

familiarly written relative to a choice of constant timelike vector field ξa, analogously to Eqs.

40See, for instance, Landau et al. (1984, Ch. 9) or Jackson (1999, Ch. 6).
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3. Once again limiting attention to Minkowski spacetime (M, ηab), the equations are:41

∂bB
b = 0 (20a)

εabc∂bEc = −ξn∇bB
a (20b)

∂bD
b = σext (20c)

εabc∂bHc = ξn∇nD
a + (Jext)a. (20d)

Here we have introduced four new fields: Da, the electric displacement field, Ha, the mag-

netic field,42 and σext and Jext, which are the “external” or “free” charge and 3-current

densities, i.e., the charge and 3-current densities not associated with the medium. The Da

and Ha fields characterize the electromagnetic response of the medium; we will presently

make a (fairly standard) assumption regarding their relationship to the incident fields Ea

and Ba. It is worth emphasizing that, as with Ea and Ba, Da and Ha are defined relative

to the constant timelike vector field ξa (recall section 2). There is a sense, however, in

which there is now a privileged choice of observer field, since the medium has an associated

4-velocity, and so we assume that ξa is the 4-velocity of the medium.43

41Of course, one could take yet another step back from a covariant four dimensional presentation of the
equations, along the lines of Eqs. 4. Indeed, it is in this form that the equations are presented in classical
references, such as those cited in the previous footnote.

42To avoid notational conflicts with the literature, I am following standard practice and calling Ha the
magnetic field; Ba, in this context, is then called the “magnetic induction”. The usage is confusing, however,
since Ba continues to represent the “averaged” or “macroscopic” incident magnetic field (just as Ea repre-
sents the “macroscopic” electric field), and Ha characterizes the response of the medium. See, for instance,
Landau et al. (1984, pp. 106-7) or Jackson (1999, pp. 13-4).

43 To be clear about the role that ξa plays here: at any point, given any timelike (relative to the spacetime
metric) vector ξa, one can define Ea, Ba, Da, and Ha relative to ξa. In order to write Eqs. (20), however, one
requires ξa to be constant on an open neighborhood of p. Meanwhile, in order to understand the relationship
between Ea and Da, and Ba and Ha, in the standard way, as in Eqs. (23) and (24) below, it is necessary
to take the 4−velocity of the medium to define a privileged observer field, since Da and Ha represent the
response on the medium, in its own frame, to the incident electromagnetic fields. But in order to associate
the field ξa relative to which Eqs. (20) are written with the 4-velocity of a medium we must assume that
the 4−velocity of the medium is constant, which of course is a very strong assumption. Indeed, one might
worry that the interaction of the electromagnetic field and the medium would itself produce acceleration in
the medium. But in order to treat such acceleration, one would require a detailed theory of the medium,
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For present purposes, it will be convenient to re-write Eqs. (20) in a form analogous to

Eqs. (1). To do so, we first define two antisymmetric tensors:

Fab = 2E[aξb] + εab
cdξcBd (21a)

Pab = 2D[aξb] + εab
cdξcHd. (21b)

These fields satisfy the following differential equations.

∇aP
ab = (Jext)b (22a)

∇[aFbc] = 0 (22b)

where (Jext)b is the “external” charge-current density. In what follows, we will assume that

(Jext)b = 0.

We assume the medium is linear, which means that the electromagnetic properties of the

medium are characterized by the following constitutive relations:

Da = εa
bEb (23)

Ba = µa
bHb (24)

where εa
b is the electric permittivity and µa

b is the magnetic permeability. In principle, these

may be arbitrary tensors (for anisotropic media) depending on a number of parameters,

including location in spacetime (for inhomogeneous media) and frequency (for dispersive

with additional differential equations governing the vector field ξa, at least. This may be a reason to reject
the macroscopic Maxwell equations altogether, at least for foundational purposes. Conversely, insofar as we
take the macroscopic Maxwell equations, as expressed by Eqs. (20), to be the correct system of equations
for an electromagnetic field in a medium, we are apparently forced to this assumption, and indeed, we will
adopt it here. All that said, one can relax the assumption once one moves to Eqs. (22), below, which are at
least well-defined even in the case of curved spacetime, where constant vector fields in general do not exist.
Even in that context, however, the macroscopic Maxwell equations provide no insight into the acceleration
of the medium in response to the incident fields.
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media).44 One may also consider non-linear media, where ε and µ may depend on the field

strengths and where there may be other terms in Eqs. (23) and (24). In what follows,

however, we will consider just the very simplest case, where εa
b = εδa

b and µa
b = µδa

b, for

constant scalar fields ε and µ. This corresponds to the case where the medium’s response

to an incident beam is homogeneous, isotropic, and non-dispersive.45

In this regime, we can rewrite Eqs. (21) in terms of just the electric and magnetic fields,

Ea and Ha:

Fab = 2E[aξb] + µεab
cdξcHd (25a)

Pab = 2εE[aξb] + εab
cdξcHd. (25b)

Moreover, we can write the electric and magnetic fields relative to ξa in terms of ξa and Fab

as:

Ea = F a
bξ
b (26)

Ha =
1

2µ
εabcdξbFcd. (27)

Plugging these into Eq. (25b) allows us to write Pab in terms of Fab, as:

Pab =
1

µ

(
2(1− n2)ξ[aFb]nξ

n + Fab
)
. (28)

44There is a puzzle concerning how to think about “dispersive media” in curved spacetime, where Fourier
transforms are not generally well-defined. But we set this issue aside, since we are working in Minkowski
spacetime.

45Note that the assumption that the medium is non-dispersive means that the phase velocity and group
velocity coincide. (Recall the discussion surrounding Eq. (13).) Note, too, that I mean to assume only that
the medium’s response is homogeneous and isotropic in the sense of the stated condition on the tensors εa

b

and µa
b. I do not mean to assume that the medium is homogeneous or isotropic in other senses, and in

particular, I do not mean to make any assumptions about the energy-momentum tensor associated with the
medium.
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Here we have defined the index of refraction, n, as n =
√
εµ.46 Since we have assumed that

ε and µ are constant scalar fields, n is also a constant scalar field. In particular, n is not a

function of frequency.

Now, appealing to the previous assumption that ξa is constant (and thus, ∇aξ
b = 0), we

can write the divergence of P ab in terms of Fab as:

0 = ∇aP
ab =

1

µ

(
2(1− n2)ξnξ[a∇aF

b]
n +∇aF

ab
)

(29)

Thus, at least under the present assumptions (including (Jext)b = 0), we can think of the

macroscopic Maxwell equations (Eqs. (22a) and (22b)) as:

2(1− n2)ξnξ[a∇aF
b]
n +∇aF

ab = 0 (30a)

∇[aFbc] = 0. (30b)

Eqs. (30a) and (30b) constitute a system of quasi-linear, first-order partial differential

equations, which means they are amenable to the Geroch analysis. This analysis is simplified

by the observation that these equations may be rewritten in terms of an effective metric η̃ab

46Why is this the index of refraction? In short, because if we rewrite Eqs. (20) using Eqs. (23) and (24)
under the present assumptions, and then consider wavelike solutions,

√
εµ plays precisely the role one would

expect of n.
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(known as “Gordon’s metric”) as:47

η̃an∇aFnb = 0 (31a)

∇[aFbc] = 0. (31b)

where

η̃ab = ηab +
1− n2

n2
ξaξb (32)

with inverse metric

η̃ab = ηab − (1− n2)ξaξb. (33)

Note that η̃ab is a flat, geodesically complete Lorentzian metric on the manifold M . (It is flat

because it is constant with respect to ∇, the Levi-Civita derivative operator associated with

gab.) Indeed, when n = 1, we have η̃ab = ηab. Meanwhile, when n > 1, η̃ab can be thought of

as implementing an effective narrowing of the lightcones relative to ηab. In other words given

any vector ζa at a point p, if ζaζbη̃ab ≥ 0, then ζaζbηab = ζaζbη̃ab − 1−n2

n2 (ξaζa)
2 ≥ 0, so the

causal vectors relative to η̃ab at any point are a subset of the causal vectors relative to ηab at

that point. Conversely, if n < 1, η̃ab implements an effective widening of the lightcones. Eqs.

(31a) and (31b), then, are none other than Maxwell’s equations in Minkowski spacetime—

but with Minkowski metric η̃ab, rather than ηab.

Given this expression of the system of equations, the analysis of vacuum electromag-

netism in the previous section carries over intact—with η̃ab taking the place of ηab. Once

again, the fibers of the bundle B
π−→M are precisely as in standard electromagnetism: they

47For more on Gordon’s metric, see Gordon (1923) or Hehl and Obukhov (2003, §E.4). See also Novello
and Bittencourt (2012) for a discussion of the relationship between Gordon’s metric and the propagation of
discontinuities. Note that to recover Eq. (31a), we need to raise b using η̃ab—or equivalently, observe that
Eq. (31a) simplifies if we multiply both sides by η̃bc. Of course, this simplification only works in the source-
free case. One might also wonder why no change is required for Eq. (31b) to reflect the fact that we are
working with an “effective metric”. Another way of writing this equation would be as ε̃abcd∇bFcd = 0, where
ε̃abcd is the volume element associated with η̃ab. Note, though, that ε̃abcd = 1

nεabcd, and so ε̃abcd∇bFcd =
0⇔ εabcd∇bFcd = 0.
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consist of the six dimensional vector space of anti-symmetric rank 2 tensors at a point p ∈M .

A typical vertical vector is of the form δφα
′
= δFab = δF[ab]. A typical vector in the space of

equations is σA = (sa, sabc), where sa is a vector and sabc = s[abc] is an antisymmetric third

rank tensor. We can define the field kA
m
α′ by defining its action on typical vectors δφ̂α

′
and

nm in the relevant spaces:

kA
m
α′σAnmδφ̂

α′
= sa(−η̃bmnmδF̂ab) + sabc(n[aδF̂bc]). (34)

The general hyperbolization hAβ′ at a point x ∈ B may again be defined by its contraction

with an arbitrary vertical vector δφα
′
= δFab, as:

hAα′δφα
′
= (δF a

mζ
m,

3

2
ζ [aδF bc]), (35)

where now all indices are raised with η̃ab. Once again, ζa is an arbitrary timelike vector

(relative to η̃ab) at π(x).

We are now in a position to identify the causal cones associated with the macroscopic

Maxwell equations. Contracting the A index on hAα′ with kA
m
α′ as just defined yields, for

arbitrary vertical vectors δφα
′
= δFab and δφ̂α

′
= δF̂ab and arbitrary covector nm,

hAα′kA
m
β′nmδφ

α′
δφ̂β

′
= 2ξanb

(
δFm

(aδF̂b)m +
1

4
η̃abδFmnδF̂

mn

)
. (36)

Eq. (36) allows us to determine the causal cones associated with Eqs. (21). Analogously to

the vacuum case, Eq. (36) is positive definite whenever nm is timelike relative to η̃ab. This

means that for any point x ∈ B, sx consists in precisely the η̃-timelike covectors at π(x)

co-oriented with ζa, and thus Cx consists of the η̃-causal vectors. It follows that when n > 1,

the causal cones associated with the macroscopic Maxwell equations are narrower than the

spacetime metric lightcones. When n < 1, however, the causal cones become wider than
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the metric lightcones. In other words, under the assumptions of the present section, and

for n < 1, solutions to the macroscopic Maxwell equations for an electromagnetic field in a

moving dielectric propagate superluminally in the Geroch-Earman sense—and thus, given

the discussion at the end of the previous section, in the Sommerfeld-Brillouin sense as well.

In other words, it would seem that at least for some parameter values, electromagnetic field

do propagate superluminally in a dielectric medium.

6. Sommerfeld Revisited

The result of the previous section—that for some parameter values, electromagnetic fields

in a dielectric may propagate superluminally in the Geroch-Earman(-Brillouin-Sommerfeld)

sense—may be surprising. After all, as I noted at the end of section 3, there is an oft-

cited and widely accepted argument, due to Sommerfeld (1914), that wavefront velocities

are always c in a medium, and thus that superluminal propagation of electromagnetic fields

in a dielectric medium is impossible. Since the velocity in question in the Geroch-Earman

analysis is precisely the wavefront velocity, there appears to be a contradiction between

Sommerfeld’s argument and the results we have just seen.

To resolve the tension, one needs to look at the details of Sommerfeld’s argument, which

thus far I have simply cited without elaboration. It may be presented as follows.48 First, as in

the previous section, we suppose that we have some dielectric medium filling all of Minkowski

spacetime, and we have an electromagnetic field within the medium. For simplicity, suppose

we are working in two spacetime dimensions, with fixed (standard) coordinates x and t.

48The version of the argument I present here follows the presentation of Oughstun and Sherman (1994,
Ch. 7). Jackson (1999, §7.11) offers a similar, albeit more impressionistic, version that suppresses some
technical details. (In this instance, Milonni (2005) is misleading; the argument he presents is a variation
on Jackson that, so far as I have been able to tell, cannot work.) Sommerfeld’s version of the argument
amounts to a special case of Oughstun and Sherman’s version; since Sommerfeld works with a specific model
of the interaction between matter and the electromagnetic field, his version makes it more difficult to isolate
the essential assumptions. Nonetheless, I will continue to refer to what I present here as “Sommerfeld’s
argument,” since it originates with him both in spirit and in much substance.
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Suppose, too, that the medium has a constant 2-velocity and that the coordinates have

been chosen so that ξa =
(
∂
∂t

)a
, where ξa is the 2-velocity of the medium. Then we can

write Eq. (10), the general solution to Maxwell’s equations, as:

E(x, t) =
1√
2π

∫
R
dkC(k)ei(kx−ω(k)t). (37)

Here I have suppressed the vector index because we are working in two dimensions, and thus

Ea is restricted to a one dimensional subspace, since it is a spacelike vector orthogonal to

ξa.

Since k and ω are functionally related, we can change variables to rewrite Eq. (37) as,49

E(x, t) =
1√
2π

∫
R
dωC̃(ω)ei(k(ω)x−ωt) =

1√
2π

∫
R
dωC̃(ω)ei(

ωn(ω)
c

x−ωt). (38)

Here we have absorbed the terms arising from the change of variables into C̃(ω), which can

then be defined directly as an inverse Fourier transform:

C̃(ω) =
1√
2π

∫
R
dtE(0, t)eiωt. (39)

We now suppose that, whatever else may be the case, for all times t < 0, E(0, t) = 0. This

assumption is meant to capture the idea that we are modeling a wave moving in the +x

direction that reaches the x = 0 plane no earlier than t = 0. Note that we are explicitly

insisting that “arrival,” here, corresponds to a non-vanishing value of E(x, t). As we have

seen, Sommerfeld thought of this “arrival” in terms of a step-function, so that one might

take E(x, 0) > 0 for all x < 0. But for present purposes, the spatial form of E(x, t) does not

49Actually, since ω is proportional to the absolute value of k, there is a term missing in Eq. (38),
corresponding to the contributions to the integral in Eq. (37) when k < 0, i.e., for waves moving in the −x
direction. We intentionally suppress that second term here, focusing only on waves moving in the positive
x direction. Of course, an identical argument can be run for waves moving in the opposite direction.
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matter, so long as the assumption above holds (and so long as we restrict to waves moving

in the +x direction). Indeed, one could allow the field to be smooth.

Sommerfeld’s argument can now be cast in terms of properties of the integral on the

right-hand side of Eq. (38). The argument require four assumptions. The first two concern

the index of refraction n(ω).

Assumption 1: The index of refraction n(ω), extended to a function of a complex variable
(with the same functional expression), is analytic in the upper half of the
complex ω plane.

Assumption 2: The index of refraction n(ω) approaches 1 uniformly as |ω| approaches∞,
for ω in the upper half of the complex ω plane.

The remaining two assumptions regard the spectral amplitude, C̃(ω).

Assumption 3: The spectral amplitude C̃(ω), extended to a function of a complex variable
(with the same functional expression), is analytic in the upper half of the
complex ω plane.

Assumption 4: The spectral amplitude C̃(ω) approaches 0 uniformly as |ω| approaches
∞, for ω in the upper half of the complex ω plane.

The argument then relies on the following (slight strengthening) of Jordan’s lemma, a clas-

sical result from complex analysis.50

Proposition 3 (Jordan). Given a complex-valued continuous function f(z), if (1) f(z) =
g(z)eia(z)z for all z ∈ CR = {z : z = Reiθ, θ ∈ [0, π]}, where (2) a(z) is such that there exists
some ε > 0 such that a(z) > ε for all z ∈ CR for sufficiently large R and (3) g(z) approaches
0 uniformly as |z| approaches ∞ in the upper half of the complex plane, then

lim
R→∞

∫
CR

f(z)dz = 0. (40)

We apply the result to the current case as follows. We first define a(ω, x, t) = n(ω)x/c−t

and g(ω) = C̃(ω)/
√

2π, so that the integrand in Eq. (38) may be written as

I(ω, x, t) = g(ω)eia(ω,x,t)ω.

50Compare, for instance, with Brown and Churchill (2004, p. 272-4). The present strengthened version
of the result is proved in Appendix A.
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Now consider (fixed) x and t such that x/c − t > 0. By assumption 2, n(ω) approaches

1 uniformly as |ω| → ∞ in the upper half of the complex ω plane, and thus, given any

δ > 0, we can always find some Ω such that whenever |ω| > Ω in the upper half of the

complex plane, 1 + δ > n(ω) > 1 − δ. Suppose, without loss of generality, that x ≥ 0.51

Then, for sufficiently large |ω|, a(ω, x, t) ≥ (1 − δ)x/c − t = x/c − t − δx/c. But since

x/c − t > 0, we can always choose δ small enough that x/c − t > δx/c. Thus there is an

ε = (x/c− t− δx/c)/2 > 0 such that a(ω, x, t) > ε for all sufficiently large |ω| in the upper

half of the complex plane. Invoking assumption 4 and the Jordan’s lemma, we may conclude

that whenever x/c− t > 0,

lim
R→∞

∫
CR

I(ω, x, t)dω = 0, (41)

where, as in the proposition, CR is a semi-circular contour of radius R in the upper half of

the complex plane.

Eq. (41) implies that whenever x/c − t > 0, adding limR→∞
∫
CR
I(ω, x, t)dω to E(x, t)

contributes nothing. Thus,

E(x, t) = E(x, t) + lim
R→∞

∫
CR

I(ω, x, t)dω (42)

=
1√
2π

lim
R→∞

(∫ R

−R
dωC̃(ω)ei(

ωn(ω)
c

x−ωt) +

∫
CR

dωC̃(ω)ei(
ωn(ω)
c

x−ωt)
)

(43)

=
1√
2π

lim
R→∞

∮
γR

C̃(ω)ei(
ωn(ω)
c

x−ωt), (44)

where γR is the closed contour constructed by appending CR to the interval [−R,R] on

the real line. But now note that, by assumptions 1 and 3, C̃(ω)ei(
ωn(ω)
c

x−ωt) is everywhere

analytic within the region enclosed by γR, for any R > 0. Thus, by appeal to Cauchy’s

51If x ≤ 0, then an analogous argument with the same conclusion holds, beginning with the observation
that for sufficiently large |ω|, a(ω, x, t) ≥ (1 + δ)x/c− t.
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integral theorem, we know that for every R > 0,

∮
γR

C̃(ω)ei(
ωn(ω)
c

x−ωt) = 0. (45)

So we can conclude that

E(x, t) = 0 (46)

whenever x > ct—i.e., E(x, t) vanishes everywhere to the right of the null line x = ct. It is

this result that is taken to rule out superluminal propagation of an electromagnetic field in

a dielectric medium, since it shows that if an electromagnetic field is propagating in the +x

direction, and it vanishes for x > 0 and t = 0, then it vanishes for all x > ct.

We are now in a position to say why Sommerfeld’s no-go result does not conflict with

the calculation in section 5. The reason is simple: the two arguments make incompatible

assumptions. Specifically, the argument in section 5 assumes that the index of refraction

n is independent of frequency, and it finds superluminal propagation only when n < 1 for

all ω. Sommerfeld’s argument, meanwhile, allows n to vary with ω—but it requires that

for sufficiently large frequency, n(ω) approach 1. This explicit assumption of Sommerfeld’s

argument—assumption 2—rules out the case studied in section 5 and relieves any apparent

tension.

Indeed, one can say a bit more. First of all, we saw in section 5 that in the case

where n ≥ 1, the causal cones associated with the electromagnetic field in the medium

were always no wider than the metric lightcones, and thus the argument above agrees with

Sommerfeld’s argument in the case where both apply. Moreover, if one weakens assumption

2 of Sommerfeld’s argument slightly, and insists only there exists some constant N such

that n approach N uniformly as |ω approaches ∞ in the upper half of the complex plane,

without requiring that N = 1, then Sommerfeld’s argument would still go through—except

that the result would be that E(x, t) = 0 whenever x > ct/N . And in particular, if N < 1
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, Sommerfeld’s argument does not rule out propagation of the field at the superluminal

velocity c/n. And so once again, we see agreement between the argument of section 5 and

Sommerfeld’s argument in a (different) case where the assumptions of both apply.

It seems, then, that what we make of Sommerfeld’s no-go result turns on the status of the

assumptions underlying it—particularly assumption 2.52 The assumption is usually justified

by physical considerations. For instance, one might argue that atoms have characteristic

length scales associated with them; arbitrarily high frequency waves have short wavelengths

(assuming the index of refraction is well behaved), and waves with wavelengths much shorter

than the characteristic length of an atom will not interact strongly, so that the waves do not

“see” the atoms (Milonni, 2005, p. 13). Similarly, one might argue that atoms interact with

light only near atomic resonance frequencies; sufficiently high-frequency light “misses” these

frequencies (Jackson, 1999, pp. 313-4). Or one might reason that high frequency waves are

changing so rapidly that the matter does not have time to react, so there is no interaction

(Landau et al., 1984, p. 267). The upshot of all of these arguments is that matter should

become transparent to light of sufficiently high frequency, and so n(ω) should approach 1 as

|ω| approaches ∞.

Of course, such arguments are heuristic, though they appear to be supported by standard

modeling methods (Jackson, 1999, §7.5). But I will not discuss them further. For present

purposes, one might just stipulate that such arguments do justify assumption 2, and even

that they explain why we do not appear to observe superluminal propagation of electromag-

52The other three are more mild. Assumptions 3 and 4, for instance, may be derived by requiring that
E(0, t) and its first derivative are bounded (Oughstun and Sherman, 1994, §7.1). Assumption 1, meanwhile,
may be derived, in the presence of some other modest assumptions, from the requirement that a medium
cannot “respond” to an electromagnetic field prior to the arrival of the field. (See Jackson (1999, §7.10)
for an extended discussion.) This latter assumption is also sometimes thought of as a kind of causality
requirement—an effect may not precede its cause—albeit one of a different character than the “relativistic
causality” requirements under consideration in the present paper. That said, there is a sense in which the
ultimate justification for assumption 1—and the justification that Jackson (1999, p. 337) ultimately relies
on—is the same as the justification for assumption 2: both assumptions are met by standard “realistic”
models of matter. Thus, though I do not pursue this line here, one might also put pressure on whether
assumption 1 has anything to do with “relativistic” considerations.
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netic fields in real media. The important point is that, whatever else might be the case, such

arguments have nothing to do with relativity theory. In other words, there is no sense in

which the crucial assumption of Sommerfeld’s theorem follows from, or is otherwise imposed

by, relativistic considerations. It is justified by appeal to the atomic theory of matter and

models of interactions between electromagnetic fields and atomic resonances. Even if this

justification is sound and convincing, it is some collection of assumptions about the nature

of matter that do the work in ruling out superluminal wavefront velocities on Sommerfeld’s

argument. And as we have seen, if we relax this assumption, even Sommerfeld’s argument

appears to allow for superluminal propagation.

7. Reservations and Prospectives

I have now made the principal arguments of the paper. I have defended three theses: (1) the

Geroch-Earman criterion of superluminal propagation may be understood to make precise,

and to generalize, the sense of superluminal propagation given by Sommerfeld (1914); (2) by

the Geroch-Earman criterion of superluminal propagation (and thus, in a straightforward

sense, by the Sommerfeld criterion), for some parameter values, the macroscopic Maxwell

equations exhibit superluminal propagation; and (3) the widely cited Sommerfeld (1914) no-

go result crucially depends on an assumption that bears no apparent connection to relativity

theory, and indeed, relaxing that assumption appears to allow superluminal propagation.

None of these theses imply that any real physical systems exhibit superluminal prop-

agation under realistic conditions; indeed, it would seem real physical systems satisfy the

assumptions of Sommerfeld’s theorem. But I believe the arguments given here do support

the more modest claim that our understanding of the relationship between relativity theory

and superluminal propagation requires further study—and in particular, that insofar as we

have convincing arguments that electromagnetic fields do not propagate superluminally in

a medium, relativity theory plays no role.
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Still, even this modest moral should be hedged. There are various well-known senses in

which superluminal propagation in relativity theory may seem pathological. For instance,

some timelike observers will say that a superluminal field is propagating instantaneously or

even backwards in time, since the surfaces of constant phase are spacelike. Similarly it is

not clear that one can coherently associate properties such as mass or 4-momentum to such

fields. One might take such considerations to reflect, or even amount to, a general sort of

incompatibility between relativity and superluminal propagation, of a sort that falls short

of outright contradiction—and for that reason, perhaps cannot be captured in a clean no-go

theorem—but which nevertheless leads to significant theoretical problems. In other words,

even if Geroch (2011) is correct that there is a sense in which superluminal propagation is

compatible with the geometry of Minkowski spacetime, one might worry that our standard

interpretation of the physical significance of that geometry is so severely undermined by

superluminal propagation as to render relativity theory unusable or otherwise unacceptable.

If one adopts such a line, then Sommerfeld’s argument might be taken to have a different

status. It shows that, taken as a whole, our theory of electromagnetism and its interac-

tions with matter, given physically reasonable assumptions, does not lead to the kinds of

incoherence described above. From this perspective, one should not care that relativity

theory plays no obvious role in Sommerfeld’s argument. Relativity theory rules out super-

luminal propagation insofar as, given the pathologies just mentioned, we would find any

theory that permitted superluminal propagation theoretically unsatisfactory. So Sommer-

feld shows that, as a matter internal to electromagnetism, our theory of the interactions

between electromagnetic fields and matter is not unsatisfactory in this particular way.

Still, if the pathologies connected with superluminal propagation fall short of outright

contradiction with relativity, it would be desirable to identify more clearly what the prob-

lems are and why we find them troubling. (As Geroch (2011) points out, the world might

well work in ways that we find troubling!) One place where we might expect problems to
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arise would concern the way superluminal fields interact with other matter; another place

might be in how such fields behave in general relativity, where they would contribute as

sources in Einstein’s equation. There is one straightforward sense in which one can treat

interactions between superluminal fields and other fields: namely, by introducing appropri-

ate interaction terms in the relevant differential equations. But if one wants to provide a

full treatment of interactions between fields that makes contact with the rest of physics, one

needs to understand the energy-momentum content of superluminal fields, and one needs

to understand how energy-momentum is transferred between fields. Similarly, one needs to

be able to associate an energy-momentum tensor with a superluminal field in order for that

field to be a source term in Einstein’s equation.

Energy-momentum considerations are especially salient in the present case. For instance,

it would be valuable to know whether the electromagnetic fields described in section 5 violate

the standard energy conditions, which are often taken as a litmus test for superluminal

propagation of energy-momentum.53 (One suspects they do, but it is worth studying.) I

have said nothing to address this issue. The reason is that there is a century-old, still-

unresolved puzzle related to the energy-momentum content of an electromagnetic field in

a moving dielectric.54 Specifically, several proposals have been made for what the energy-

momentum tensor of an electromagnetic field in a moving dielectric should be, and there

is no consensus in the physics literature concerning which proposal is correct. Describing,

never mind adjudicating, this debate would take the present paper too far afield, and so I

have postponed any discussion of energy-momentum to future work.

That said, I will mention one reason that the outcome of such a study would be of

interest. Suppose that the energy-momentum associated with an electromagnetic field in

a dielectric does violate one of the standard energy conditions, such as the so-called dom-

53For more on energy conditions, see Malament (2012, §2.5) or Curiel (2014).
54See Abraham (1909, 1910), Minkowski (1910), and Pfeifer et al. (2007).
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inant energy condition.55 Then it would seem there is a problem. One can show that

the energy-momentum tensor associated with solutions of the vacuum Maxwell equations

always does satisfy the dominant energy condition. Moreover, one can show that if two

energy-momentum tensors both satisfy the dominant energy condition, then so does their

sum—and so, conversely, if the total energy-momentum tensor fails to satisfy the dominant

energy condition, at least one of the contributing energy-momentum tensors must fail to sat-

isfy it.56 Thus, if interactions between electromagnetic fields and dielectric media are treated

in the same way that other interactions in relativity theory are, that is, by adding energy-

momentum tensors, it would seem to follow that interactions with a medium could produce

violations of the dominant energy condition only if the medium itself violates the dominant

energy condition. In other words, one might think one gets a certain kind of superluminality

in electromagnetic fields only for media that already exhibit a kind of superluminality.

There are several places where this last argument could go wrong. In particular, Earman

(2014) has shown that superluminal propagation in the Geroch-Earman sense and violations

of the dominant energy condition are not as tightly linked as one might have expected.

Moreover, it is not clear that interactions between electromagnetic fields and matter of the

form captured by the macroscopic Maxwell equations are naturally represented by summing

two energy-momentum tensors. But such considerations only provide more reasons that a

full analysis of energy-momentum is necessary before the examples described in the present

paper are fully understood.

I will conclude by mentioning four other worries I have about the argument in the

present paper. The first concerns the foundations of the macroscopic Maxwell equations

in the first place. Eqs. 20 are textbook equations of motion, but they are not taken to

be “fundamental”, and their derivation requires a number of assumptions. Although there

55The dominant energy condition holds of an energy-momentum tensor T ab just in case either T ab = 0 or
else for any future-directed timelike vector ηa at any point p, T abηb is future-directed and causal.

56I am grateful to David Malament for suggesting this point.
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is a sense in which they are “relativistic” equations, one might still wonder whether the

arguments by which they are derived are compatible with the spirit of relativity theory. If

not, then the example given in section 5 would be of largely formal interest: there would

be certain phenomenological equations with undesirable properties in unphysical regimes,

which would be neither surprising nor all that exciting. This suggests that some sustained

philosophical attention should be paid to the textbook derivations of these equations.

The second worry is related. In the course of the analysis given in section 5, I assumed

that the 4-velocity of the dielectric, ξa, was constant. But as I pointed out in fn. 43,

insofar as the medium affects the behavior of the electromagnetic fields within the medium,

conservation considerations would lead one to expect that the medium will be affected by

the fields, perhaps through a change in the 4-velocity of the medium. The macroscopic

Maxwell equations do not capture this feature of the interaction, which again might be

taken to undermine the significance of any arguments based on them. Here, too, a detailed

treatment of the energy-momentum properties of the fields and the medium would be helpful.

The third worry is that although the arguments surveyed at the end of section 6 for why n

approaches 1 for large frequency do not appear to be motivated by relativistic considerations,

it may be that there is some sense in which relativity theory does provide constraints on the

index of refraction for high-frequency waves. I do not see how such an argument might go,

but it is presumably within the realm of logical possibility.57

Finally, the fourth worry, which I briefly mentioned in footnote 39, is that Einstein’s

equation plays no apparent role in the Geroch-Earman condition or in the calculations in

section 5. Of course, the behavior of “test fields,” i.e., fields that do not act as sources in

57Erik Curiel (private correspondence) has suggested that one might think of higher frequency waves as
carrying more momentum; thus, it would require unbounded work for a medium to deflect arbitrarily high
frequency waves. This may be a fruitful line to pursue, though I worry that it depends crucially on an
intuition from quantum mechanics, concerning the relationship between energy and frequency. Classically,
the energy-momentum of an electromagnetic field depends on the field strength, i.e., the amplitude of the
wave, and so could be made arbitrarily small, relative to any given observer, for arbitrarily high frequencies.
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Einstein’s equation, is of some independent interest. But if one is to claim that superluminal

propagation is in some sense compatible with relativity, one should also ask whether the sorts

of interactions between matter and geometry that are captured by Einstein’s equation put

constraints on the possible superluminal propagation of matter. One way to think about

this issue within the framework set by the Geroch-Earman condition would be to consider

a system of coupled hyperbolic differential equations that includes Einstein’s equation and

then find the causal cones associated with the entire system. I do not know how this changes

things, in general or in the special case of the macroscopic Maxwell equations, but it seems

to me that addressing this question would be a crucial next step in understanding the basic

issues raised in this paper.

In a sense, however, all of these reservations are grist for my mill, insofar as the ultimate

claim is that the relationship between relativity theory and superluminal propagation is

not well understood. Progress on any of the routes I have suggested in this section would

certainly contribute to that understanding.

Appendix A. Proof of Prop. 3

The version of Jordan’s lemma used in section 6 is stronger than one usually encounters

in complex analysis textbooks. For completeness, and because this strengthened version is

invoked without proof or reference, in, for instance, Jackson (1999, §7.11), I present a proof

here.

Proposition 3 (Jordan). Given a complex-valued continuous function f(z), if (1) f(z) =
g(z)eia(z)z for all z ∈ CR = {z : z = Reiθ, θ ∈ [0, π]}, where (2) a(z) is such that there exists
some ε > 0 such that a(z) > ε for all z ∈ CR for sufficiently large R and (3) g(z) approaches
0 uniformly as |z| approaches ∞ in the upper half of the complex plane, then

lim
R→∞

∫
CR

f(z)dz = 0. (A.1)
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Proof. Let f(z) be as described in the proposition. It follow that

∫
CR

f(z)dz = iR

∫ π

0

g(Re−θ)eiRa(Re
iθ)(cos θ+i sin θ)eiθdθ.

Then, using the fact that |
∫ b
a
f(x)dx| ≤

∫ b
a
|f(x)|dx, we have that

∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ R

∫ π

0

|g(Reiθ)|e−Ra(Reiθ) sin θdθ ≤ RgR

∫ π

0

e−Ra(Re
iθ) sin θdθ

where gR = maxθ∈[0,π] |g(Reiθ)|. Now observe that eRa(Re
iθ) sin θ ≤ e−RaR sin θ, where aR =

minθ∈[0,π] a(Reiθ), and so

∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ RgR

∫ π

0

e−RaR sin θdθ.

Now, invoking Jordan’s inequality (Brown and Churchill, 2004, p. 273), which states that

for R > 0, ∫ π

0

e−R sin θdθ <
π

R
,

and the fact that for all sufficiently large R, aR > 0, we find that for sufficiently large R,

∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ π

(
gR
aR

)
.

Finally, using the facts that for large R, aR is bounded away from 0, and that limR→∞ |gR| =

0, we conclude that

lim
R→∞

∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ = 0.

The proposition follows immediately. �
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