
How to Model Mechanistic Hierarchies

Abstract

Mechanisms are usually viewed as hierarchical, with lower levels of a mech-

anism influencing, and decomposing, its higher-level behaviour. In order to

adequately draw quantitative predictions from a model of a mechanism, the

model needs to capture this hierarchical aspect. The recursive Bayesian net-

work (RBN) formalism was put forward as a means to model mechanistic

hierarchies (Casini et al., 2011) by decomposing variables into their consti-

tuting causal networks. The proposal was criticized by Gebharter (2014).

He proposes an alternative formalism, which decomposes arrows. Here, I

defend RBNs from the criticism and argue that they offer a better represen-

tation of mechanistic hierarchies than the rival account.

wordcount: 4899

1 Introduction

Mechanisms are usually viewed as hierarchical, with lower levels of a mecha-

nism influencing, and decomposing, its higher-level behaviour. In order to ade-

quately draw quantitative predictions from a model of a mechanism, the model

needs to capture this hierarchical aspect. The recursive Bayesian network (RBN)

formalism was put forward as a means to model mechanistic hierarchies (Casini

et al., 2011). The formalism extends the Bayesian network (BN) formalism, al-

ready used to model same-level causal relations probabilistically (Pearl, 2000). In

RBNs, higher-level variables decompose into lower-level causal BNs. The rela-

tions between a higher-level variable and its lower-level networks are constitutive.
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This proposal was criticized by Gebharter (2014) and Gebharter and Kaiser

(2014), on two main grounds: descriptive adequacy—it is unclear when the for-

malism is applicable to real mechanisms—and conceptual adequacy—RBNs do

not allow one to draw interlevel inferences for explanation and intervention. To

overcome such limitations, Gebharter (2014) has made the alternative proposal

that decomposition involves arrows rather than variables. In particular, Gebhar-

ter (2014) proposes an alternative formalism, also extending the BN formalism,

namely multilevel causal models (MLCMs).

Decomposing variables and decomposing arrows are two alternative ways of

modelling mechanistic hierarchies, by which one may extend a probabilistic in-

terpretation of causality. In this paper, I argue that the former option is superior to

the latter. I proceed as follows. In §2, I present and illustrate RBNs and MLCMs.

In §3, I argue against decomposing arrows. MLCMs lead to counterintuitive no-

tions of mechanistic decomposition and mechanistic explanation. In §4, I defend

RBNs from the criticism. RBNs do allow interlevel causal explanation, via the un-

coupling of interlevel causal relations into a constitutional step and a causal step.

RBNs also allow reasoning about interlevel interventions; believing otherwise de-

pends on either wrongly assuming that changes cannot transmit along the con-

stitutional downward-directed arrows, or on demanding that the RBN formalism

represent intervention variables, which the formalism is not meant to represent.

2 The two formalisms

Both RBNs and MLCMs are extensions of the BN formalism. A BN consists

of a finite set V = {V1, . . . ,Vn} of variables, each of which takes finitely many

possible values, together with a directed acyclic graph (DAG) whose nodes are

the variables in V , and the probability distribution P(Vi|Pari) of each variable Vi
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Figure 1

conditional on its parents Pari in the DAG. DAG and probability function are

linked by the Markov Condition (MC):

MC. For any Vi ∈ V = {V1, . . . ,Vn}, Vi ⊥⊥ NDi | Pari.

In words, each variable is probabilistically independent of its non-descendants,

conditional on its parents. For instance, the DAG in figure 1 implies that V4 is

independent of V1 and V5 conditional on V2 and V3. In BN jargon, V2 and V3

‘screen off’ V4 from V1 and V5. A BN determines a joint probability distribution

over its nodes via P(v1 · · · vn) =
∏n

i=1 P(vi|pari) where vi is an assignment Vi = x

of a value to Vi and pari is the assignment of values to its parents induced by the

assignment v = v1 · · · vn.

In a causally-interpreted BN, the arrows in the DAG stand for direct causal

relations and the network can be used to infer the effects of interventions and

make probabilistic predictions (Pearl, 2000). In this case, MC is called the Causal

Markov Condition (CMC).

2.1 Recursive Bayesian networks

RBNs represent hierarchies by decomposing variables (Casini et al., 2011). One

of the motivations behind this choice is that scientists often talk of properties at
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different levels that stand in a constitutive relation with one another.1 Another

motivation—only implicit in (Casini et al., 2011)—is that decomposing variables

has the additional advantage of making ‘interlevel causation’ intelligible, by un-

coupling (problematic) cases of interlevel downward or upward causation into two

(less-problematic) steps, a constitutional, across-level step and a causal, same-

level step (Craver and Bechtel, 2007). RBNs make this idea formally precise.

Mechanistic hierarchy is interpreted via the notion of ‘recursive decomposi-

tion’ of variables. An RBN is a BN defined over a finite set V of variables whose

values may themselves be RBNs. A variable is called a network variable if one or

more of its possible values is an RBN and a simple variable otherwise. A standard

BN is an RBN whose variables are all simple. An RBN x that occurs as the value

of a network variable in RBN y is said to be at a lower level than y; variables in y

are the direct superiors of variables in x while variables in the same network are

peers. If an RBN contains no infinite descending chains—i.e., if each descending

chain of networks terminates in a standard BN—then it is well-founded. Only

well-founded RBNs are considered here.

Consider a toy RBN2 defined over V = {C, S }, where C represents whether

some tissue in an organism is cancerous, taking the possible values 1 and 0, while

1 Craver (2007) proposed that constitutive relations are established by the ‘mutual manipulabil-

ity’ of higher- and lower-level properties that stand in the relation. Casini et al. (2011) referred to

Craver’s intuition to further motivate RBNs. The compatibility between Craver (2007)’s account

of constitution and interventionism (Woodward, 2003), on which Craver’s account rests, was ques-

tioned (see Baumgartner and Gebharter, 2015, and references therein). I will not discuss the issue

here. I should only emphasize that the issue is orthogonal to the adequacy of RBNs as mechanistic

models. RBNs are not tools for establishing constitution based on interventions, but tools for rep-

resenting constitutional knowledge—however this may be got—and reasoning probabilistically

across the levels.
2For more realistic examples, see Casini et al. (2011) and Clarke et al. (2014).
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S is survival after 5 years, taking the possible values yes and no. The correspond-

ing BN is: Suppose S is a simple variable but C is a network variable, with each
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Figure 2

of its two values denoting a lower-level (standard) BN that represents a state of

the mechanism for cancer. I will ignore many of the factors, such as DNA damage

response mechanisms, also responsible for cancer, and only focus on the unreg-

ulated cell growth and division, D, that results from mutations in the so-called

‘growth factor’, G. To the assignment of value 1 to C corresponds a lower-level

network c1 representing a functioning control mechanism, with a probabilistic de-

pendence (and a causal connection) between G and D.
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Figure 3

To the assignment of value 0 to C corresponds a lower-level network c0 repre-

senting a malfunctioning growth mechanism, with no dependence (and no causal

connection) between G and D.
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Since these two lower-level networks are standard BNs, the RBN is well-

founded and fully described by the three networks.

If an RBN is to be used to model a mechanism, the arrows at the various levels

of the RBN signify causal connections. In addition, just as standard causally-

interpreted BNs are subject to the CMC, a similar condition applies to causally-

interpreted RBNs, called the Recursive Causal Markov Condition (RCMC). Let

us indicate with NIDi the set of non-inferiors-or-descendants of Vi and with DSupi

the set of direct superiors of Vi. Then, RCMC says that

RCMC. For any Vi ∈ V = {V1, . . . ,Vn}, Vi ⊥⊥ NIDi | DSupi ∪ Pari.

In words, each variable in the RBN is independent of those variables that are

neither its effects (i.e., descendants) nor its inferiors, conditional on its direct

causes (i.e., parents) and its direct superiors. RCMC adds to CMC a recursive

MC (RMC), viz. the condition that variables at any level are probabilistically in-

dependent of non-inferiors or peers given their direct superiors. Intuitively, if one

knows the value of C, knowing the value of constituent variables G or D doesn’t

add anything to one’s ability to infer to, say, the causes of C (here, none) or the

effects of C (here, S ). Notice that since the screening off that holds in virtue

of RMC depends on constitutional rather than causal facts, not all dependencies

identified by the RCMC can be causally interpreted.
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While some authors treat CMC as a necessary truth, others argue against its

universal validity (e.g., Williamson, 2005). A similar stance is adopted with re-

spect to RCMC. RCMC is a modelling assumption in need of testing or justifi-

cation, not a necessary truth. Thus, whether or not the formalism allows one to

adequately represent a mechanism is an empirical rather than stipulative matter.

Inference in RBNs proceeds via a formal device called a flattening. Let V =

{V1, . . . ,Vm} (m≥n) be the set of variables of an RBN closed under the inferiority

relation: that is, V contains the variables in V , their direct inferiors, their direct

inferiors, and so on. Let N = {V j1 , . . . ,V jk} ⊆ V be the network variables in V.

For each assignment n = v j1 , . . . , v jk of values to the network variables we can

construct a standard BN, the flattening of the RBN with respect to n, denoted by

n↓, by taking as nodes the simple variables in V plus the assignments v j1 , . . . , v jk

to the network variables, and including an arrow from one variable to another if

the former is a parent or direct superior of the latter in the original RBN. The con-

ditional probability distributions are constrained by those in the original RBN—in

the RBN where V ji is the direct superior of Vi, P(Vi|Pari ∪ DSupi) = Pv ji
(Vi|Pari).

Notice that MC holds in the flattening because the RCMC holds in the RBN.

Only, since the arrows in the flattening that link variables to their direct inferiors

are constitutional, CMC is not satisfied.3

The flattenings determine a joint distribution overV via P(v1 · · · vm) =∏m
i=1 P(vi|paridsupi), where the probabilities on the right-hand side are determined

by a flattening induced by v1 · · · vm.4

3 Notice that the role of RCMC—and of RBNs more generally (cf. fn. 1)—is not to establish

constitution. Whether an arrow in the flattening is causal or constitutional is not dictated by MC,

but depends on background knowledge.
4Pv jl

(Vi | Pari) may be obtained from observed frequencies in a dataset. P(Vi | PariDSupi)

can be obtained by either determining the corresponding observed frequencies from the original
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In the cancer example, the flattening with respect to assignment c1 is c↓1:
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with probability distributions P(c1) = 1 and P(S |c1) determined by the top level

of the RBN, and with P(d1|g1c1) = Pc1(d1|g1) determined by the lower level (sim-

ilarly for g0 and d0). The flattening with respect to assignment c0 is c↓0:
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Again, P(d1|c0) = Pc0(d1) etc. In each case the required conditional distributions

are determined by the distributions given in the original RBN.

Having determined a joint distribution, the causally-interpreted RBN may be

used to draw quantitative inferences for explanation and intervention, both within

and across levels.

dataset, or by first selecting from all functions that satisfy the probabilistic constraints imposed

by the RBN the function Q with maximum entropy (cf. Williamson, 2010) and then setting P(Vi |

PariDSupi) = Q(Vi | PariDSupi).
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2.2 Multilevel causal models

According to Gebharter (2014), RBNs fail to model interlevel causal explana-

tions and interventions, due to the lack of an explicit representation of interlevel

causal arrows, over which causal influence propagates. (These objections, as I ar-

gue in §4, are based on misinterpreting RBNs.) Gebharter’s proposed formalism

purports to remedy these deficiencies by decomposing causal arrows rather than

variables.5 More precisely, a mechanistic hierarchy has to do with ‘marginalizing

out’ variables when moving from a lower-level graph to a higher-level graph. In

short, the formalism exploits the following idea: when the value of some variable

X in the set of Y’s parents Par(Y) is unknown, P(Y |Par(Y)) may be calculated by

summing over X’s possible values,
∑n

i=1 P(Y |Par(Y)X=xi), thereby marginalizing X

out. As a result, one gets a simpler probability distribution overV\{X}, consistent

with the original one overV.

Let us indicate a causal model as 〈V, E, P〉, where 〈V, E〉 is a DAG, defined over

a variable set V and a set of edges E among them, and P an associated probability

distribution.6 Let X ↔ Y indicate that two variables X and Y are effects of a latent

common cause—i.e., a cause of X and Y not represented within the graph of some

variable set V—and with P∗ ↑ V the ‘restriction’ of the probability distribution P∗

to a variable set V . The restriction of a lower-level causal model 〈V∗, E∗, P∗〉 to a

higher-level causal model 〈V, E, P〉 is so defined (2014, 147):

Restriction. 〈V, E, P〉 is a restriction of 〈V∗, E∗, P∗〉 if and only if

5Gebharter and Kaiser (2014, §3.6) make the orthogonal suggestion that levels be ontologically

distinct (partly) on the basis of constitutional relations between whole’s and parts’ properties. It is

not clear how, if at all, this proposal relates to MLCMs. Thus, I will not discuss it here.
6To be consistent with Gebharter’s notation, I henceforth denote sets with italic rather than

calligraphic fonts.
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a V ⊂ V∗, and

b P∗ ↑ V = P, and

c for all X,Y ∈ V:

c.1 if there is a directed path from X to Y in 〈V∗, E∗〉 and no vertex on

this path different from X and Y is in V , then X → Y is in 〈V, E〉,

and

c.2 if X and Y are connected by a common cause path π in 〈V∗, E∗〉

or by a path π free of colliders containing a bidirected edge in

〈V∗, E∗〉, and no vertex on this path π different from X and Y is in

V , then X ↔ Y is in 〈V, E〉, and

d no path not implied by c is in 〈V, E〉.

That is, the lower-level structure 〈V∗, E∗, P∗〉 represents the higher-level structure

〈V, E, P〉 iff 〈V, E, P〉 is the restriction of 〈V∗, E∗, P∗〉 uniquely determined when

V∗ is restricted to V . The restriction is such that information about causal relations

and existence of common causes in 〈V∗, E∗〉 is preserved by 〈V, E〉, and the proba-

bilistic information of P∗ is consistent with P upon marginalizing out variables in

{V∗ \ V}.

A ‘multi-level causal model’ (MLCM) is so defined (2014, 148):

MLCM. 〈M1 = 〈V1, E1, P1〉, . . . ,Mn = 〈Vn, En, Pn〉〉 is a multi-level causal model

if and only if

a M1, . . . ,Mn are causal models, and

b every Mi with 1 < i ≤ n is a restriction of M1, and

c M1 satisfies CMC.
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Figure 7

That is, a MLCM is an ordered set of causal models 〈M1 = 〈V1, E1, P1〉, . . . ,Mn =

〈Vn, En, Pn〉〉, where the bottom-level, unrestricted causal model M1 satisfies CMC.

(Higher-level models may not satisfy CMC.) Each causal model in the MLCM

represents a mechanism.

The information on the hierarchical relations among the nested mechanisms

in the MLCM is contained in a ‘level graph’ (2014, 149):

Level graph. A graph G = 〈V, E〉 is called an MLCM 〈M1 = 〈V1, E1, P1〉, . . . ,

Mn = 〈Vn, En, Pn〉〉’s level graph if and only if

a V = {M1, . . . ,Mn}, and

b for all Mi = 〈Vi, Ei, Pi〉 and M j = 〈V j, E j, P j〉 in V: Mi → M j is in G

if and only if Vi ⊂ V j and there is no Mk = 〈Vk, Ek, Pk〉 in V such that

Vi ⊂ Vk ⊂ V j holds.

A level graph G = 〈V, E〉 is constructed from a MLCM by adding dashed (non-

causal) arrows between any two models Mi and M j, Mi → M j, if and only if Vi

is the largest proper subset of V j in MLCM, so that Mi is, so to say, the smallest
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Figure 8

restriction of M j. In figure 7 is an example of level graph (Gebharter, 2014, 150).

Since the ordering among graphs is not strict, there may be graph pairs (e.g., M2

and M3; M4 and M3) that do not stand in a restriction relation.

Figure 8 depicts a more concrete example (Gebharter, 2014, 151), viz. a two-

level water dispenser mechanism.7 The room temperature T causally influences a

sensor S ; S , together with the status of a tempering button, B, cause the heater H

to be on or off; H causes the temperature of the water dispensed, W.

3 Criticism of MLCMs

It is unclear whether hierarchies, as analysed in terms of the notion of ‘marginal-

izing out’, are mechanistic—that is, represent mechanistic decompositions and

grant mechanistic explanations.

7Gebharter contrasts the virtues of this MLCM with an RBN of the ‘same’ mechanism (2014,

142-3). This may be misleading, since the two models cannot possibly represent the same mech-

anism. (In a nutshell, this is because the RBN contains constitutional arrows.) This motivates my

choice of defending RBNs by reference to the toy model already introduced in §2.1.
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First, it is unclear whether MLCMs represent mechanistic decompositions.

High-level causal models in a MLCM, for instance M2 and M3 in figure 7, are

just more coarse-grain representations of one and the same structure, viz. M1,

such that some of the information in M1 is missing at the higher level, as the term

‘restriction’ suggests.

Second, it is unclear whether MLCMs represent mechanistic explanations.

Admittedly, there is a sense in which one explains the relation between, say, the

room temperature T and the water temperature W by uncovering the mediating

role of the sensor S and the heater H. However, this sort of explanation is dif-

ferent from the explanation whereby one decomposes the cancer mechanism C in

figure 2, and uncovers the role of damage G and response D. G and D have an

obvious mechanistic role—insofar as they constitute C; instead, S and H seem to

have a purely causal role.

The inadequacy of the MLCM notions of mechanistic decomposition and ex-

planation is made more explicit by looking at the kind of hierarchical relations

allowed by the formalism.

Consider the ‘decompositions’ in figure 7, which correspond to restricting (i)

V1 to V2, (ii) V1 to V3, and (iii) V3 to V5. In all such cases, instead of open-

ing a black box (as is common in mechanistic explanation), one ‘creates’ a box,

and does not, strictly speaking, decompose anything. In (i), the decomposition

is ‘filling a blank’: the absence of probabilistic and causal dependencies among

variables is explained by direct causation, a hidden common cause structure, or

combinations thereof that involve new variables, too. The absence of probabilis-

tic and causal dependencies between X and Z in M2 is explained by the structure

X ↔ Y ← Z in M1 (more on this case of ‘explanation’ below). Since there is no

arrow between X and Z in M2, and since mechanisms require causal dependen-
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cies, what mechanism is X ↔ Y ← Z in M1 a decomposition of? In (ii) and (iii),

the decomposition is in fact ‘adding stuff’. For instance, Z ↔ W in M5 is ‘decom-

posed’ into Y ← Z ↔ W in M3. But in what sense is a lower-level mechanism

that includes an isolated effect not included in the higher level a decomposition of

the higher level mechanism?

Relatedly, to some of the represented restrictions do not seem to correspond

‘explanations’ either. Consider the restriction of M4 to M5. Here, the common

cause structure Z ↔ W is ‘explained’ by the absence of probabilistic or causal

dependence between Z and a new variable X, which is apparently disconnected

from whatever mechanism is responsible for Z ↔ W. An even more striking case

of lack of explanation is the ‘decomposition’ of X and Z in M2 into X ↔ Y ← Z

in M1. A first issue—arguably non-intentional (cf. Gebharter, 2014, 146, fn. 8)—

is that the bidirected arrow in M1 violates condition c of a MLCM, namely that

M1 satisfies CMC. Still, even if condition c were satisfied, the problem would

remain that, if decompositions are to explain, this sort of decomposition should

not be allowed at any level. Intuitively, hidden common cause structures such as

X ↔ Y are, insofar as they are hidden, non-explanatory. They add a mystery rather

than remove it. A—drastic—solution that comes to mind is to forbid bidirected

arrows at any level. This would entail, however, that restrictions that marginalize

out common causes are disallowed, too, which is undesirable because—if one

buys into the MLCM framework—the corresponding decompositions would seem

(more) explanatory. One may of course impose further conditions to distinguish

good from bad restrictions, but it is not obvious how one should proceed in a non

ad hoc way, without clear intuitions on the explanatoriness of bidirected arrows.

In sum, the resulting account of mechanistic hierarchies is at best incomplete,

and at worst inadequate. To prove RBNs’ superiority, it remains to be shown
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whether RBNs survive Gebharter (2014)’s and Gebharter and Kaiser (2014)’s ob-

jections. The next section endeavours to establish that they do.

4 Defense of RBNs

RBNs interpret mechanistic hierarchy via the operation of ‘recursive decompo-

sition’, which in turn depends on RCMC. Two kinds of objections were raised

against RCMC. First, about empirical adequacy: it is unclear when RCMC holds,

so it is unclear if the formalism is applicable to real mechanisms. Second, about

conceptual adequacy: RCMC prevents RBNs from being useful for interlevel rea-

soning for explanation and intervention. Let us begin with the first objection:

it is neither obvious that RCMC holds in general, nor is it clear how

one could distinguish cases in which it holds from cases in which it

does not. (Gebharter and Kaiser, 2014, §3.5.3)

Agreed, RCMC may not hold in general. Nor did Casini et al. (2011) claim that

it does. When does it hold, then? What RCMC adds to CMC—which is not

called into question here—is RMC. RMC has to do with the (in)dependencies

among variables at different levels. In the cancer example, RMC depends on the

constitutional relations between C on the one hand, and G and R on the other,

being such that C screens off G and D from S .

Gebharter and Kaiser (2014, §3.5.3) argue that the RBN approach would be

unable to adequately model mechanistic decompositions, where there seems to

exist no intermediate macro-level variable that corresponds to a micro-level struc-

ture. I do not dispute that there may be cases where it is hard or implausible to

define network variables that decompose into lower-level causal structures. How-

ever, this is an empirical problem, and not necessarily a problem with the formal-
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ism. It suffices to say that in many mechanisms, talk of network variables seems

uncontroversial: the state of a tissue depends on the causal structure in the cells; it

has a causal role with respect to survival; etc. Intuitively, network variables exist

whenever there are functional states that are decomposable into structures such

that RCMC holds.

In sum, I concede that RBNs are not universally applicable. Still, the con-

ditions for their applicability are clearly spelled out. When such conditions are

satisfied, RBNs provide adequate mechanistic decompositions. Notice that an

analogous reply is not open to Gebharter. Whether MLCMs adequately repre-

sents hierarchies is not an empirical matter alone; it is also a conceptual matter,

insofar as the restriction condition does not suffice to distinguish between legit-

imate and illegitimate marginalizations, that is, marginalizations that correspond

to mechanistical decompositions as opposed to marginalizations that don’t.8

Finally, let us come to the objection that RBNs do not support interlevel rea-

soning for explanation and for prediction of the results of interventions:

[Casini et al.’s] approach does (i) not allow for a graphical represen-

tation of how a mechanism’s macro variables are causally connected

to the mechanism’s causal micro structure, which is essential when it

comes to causal explanation, and it (ii) leads to the fatal consequence

that a mechanism’s macro variables’ values cannot be changed by

any intervention on the mechanism’s micro structure whatsoever (. . . )

(Gebharter, 2014, 139)

Explanation first. Since there are no arrows between variable at different lev-

els screened off by network variables, Gebharter claims that it is unclear over
8An analogous point applies to the explanatory power of RBNs (see below) vis-à-vis MLCMs

(cf. §3).
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which causal paths probabilistic influence propagates between such higher- and

lower-level variables (2014, 143-4). True, there are no such arrows. But this is

because, by assumption, screened off variables influence each other, if at all, only

via the network variables. When RCMC is satisfied, the probabilistic influence

propagates constitutionally (rather than causally) across the dashed arrows in the

flattenings, and causally across the same-level solid arrows.

Let us now consider the second objection. With reference to the example in

figures 5 and 6, I claimed that one may, for instance, reason about the result of

a lower-level intervention on D on the probability of the higher-level variable S .

Given the observed value of P(s1), calculated as

P(s1) = P(c0)P(s1|c0) + P(c1)P(s1|c1),

one may ask: What is the effect of setting D = d1 on the probability of observing

S = s1? To answer, one calculates as follows. First, one removes the arrow

G → D from c1, so that both flattenings have the same structure below.
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Then, one calculates P(s1||d1) = P(s1d1)/P(d1), where:

P(s1d1) = P(c0s1d1) + P(c1s1d1) = P(c0)P(s1|c0)Pc0(d1) + P(c1)P(s1|c1)Pc1(d1)

P(d1) = P(c0)Pc0(d1) + P(c1)Pc1(d1)
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Gebharter objects that ‘according to the RBN approach, intervening on a mech-

anism’s microvariables does not have any probabilistic influence on any one of the

macrovariables whatsoever’ (2014, 145) because if one were to use an interven-

tion variable I to intervene on a lower-level variable, the intervention ‘would—

and this can directly be read off the BN’s associated graph’s topology (. . . )—not

have any probabilistic influence on any macrovariable at all’ (ibid.). In the cancer

example: an intervention IR on R would not have any effect on S . I think this

objection is due to either of the following misinterpretations.

First, it is true that ci screens off D from S , and thus there is no D→ S causal

arrow. However, concluding that interventions on D can make no difference to S

would be wrong. The lack of causal connections in the flattening does not block

changes along constitutional arrows. It is important to stress that, although the

dashed arrows point downwards in the flattening, this is due to technical reasons

only, having to do with the condition for MC to hold across levels. One may use

the downward-pointing arrows to reason—constitutionally—in both directions.

Here, changing D makes a constitutional difference to C, which makes a causal

difference to S . The overall difference is calculated with the RBN.

Second, it is true that RCMC says that S is independent of any variable that is

not an effect or an inferior (here, none), conditional on its direct causes (here,

C) and direct superiors (here, none). But RCMC is assumed to hold true in

V = {M, S ,G,D}, and not in the expanded setV+ = {M, S ,G,D, ID}. The reason

for this is not ad hoc. RBNs are meant to represent decompositions of (properties

of) wholes into (properties of) their parts. They are not meant to represent parts

that do not belong to any whole—which is what ID is. The graph topology can-

not represent such parts. Thus, one cannot read off the graph topology that such

interventions variables have no effect.
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More generally, in an RBN, everything one gets at lower levels must be the

result of (recursively) decomposing the top level. This is not to be seen as a limita-

tion of RBNs, but a means to an end. In the RBN formalism, one cannot represent

interventions as variables.9 Yet, one can straightforwardly represent interven-

tions as changes in values of either top-level variables or lower-level variables

into which network variables (recursively) decompose. The two representations

correspond to two well-known strategies for representing interventions, which are

exemplified by respectively Woodward (2003)’interventionist semantics and Pearl

(2000)’s do-calculus. Although both strategies are in principle legitimate, only

the latter is suitable to the task for which RBNs were developed, viz. to represent

mechanistic decompositions.

5 Conclusion

Decomposing variables and decomposing arrows are alternative ways of mod-

elling mechanistic hierarchies by means of BNs. The two options have been made

precise by, respectively, RBNs and MLCMs. I argued that RBNs are better than

MLCMs at analysing mechanistic hierarchies and interpreting interlevel mecha-

nistic reasoning. From a conceptual point of view, the argument establishes that

the notion of mechanistic hierarchy has a tight connection to the notion of recur-

sive decomposition, but no such connection to the notion of marginalizing out.

9Unless, of course, the variables describe properties of either top-level mechanisms or lower-

level sub-mechanisms obtained by way of (recursive) decompositions—in which case, however,

the intervention is not external to the mechanism, contrary to the original intention.
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